JP2016134498A - Method of manufacturing magnetic material - Google Patents

Method of manufacturing magnetic material Download PDF

Info

Publication number
JP2016134498A
JP2016134498A JP2015008148A JP2015008148A JP2016134498A JP 2016134498 A JP2016134498 A JP 2016134498A JP 2015008148 A JP2015008148 A JP 2015008148A JP 2015008148 A JP2015008148 A JP 2015008148A JP 2016134498 A JP2016134498 A JP 2016134498A
Authority
JP
Japan
Prior art keywords
phase
heat treatment
magnetic field
magnetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015008148A
Other languages
Japanese (ja)
Inventor
前田 徹
Toru Maeda
前田  徹
基 永沢
Motoki Nagasawa
基 永沢
高橋 研
Ken Takahashi
高橋  研
小川 智之
Tomoyuki Ogawa
智之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Electric Industries Ltd filed Critical Tohoku University NUC
Priority to JP2015008148A priority Critical patent/JP2016134498A/en
Publication of JP2016134498A publication Critical patent/JP2016134498A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing magnetic material having an excellent magnetic characteristic.SOLUTION: A magnetic material manufacturing method comprises a preparation step of preparing Sm-Fe-based alloy containing Sm and Fe, a magnetic field heat treatment processing step of performing a heat treatment on the Sm-Fe-based alloy at a temperature of not less than 250°C to not more than 350°C under an atmosphere or pressure-reduced atmosphere in which Sm and Fe do not react with each other while applying a magnetic field of not less than 2T to not more than 4T, and a rapid heat treatment step for subjecting the Sm-Fe-based alloy to a heat treatment of rapidly heating the temperature from the heating temperature in the magnetic field heat treatment step to a temperature of not less than 600°C to not more than 800°C within 5 minutes under the atmosphere or pressure-reduced atmosphere in which Sm and Fe do not react with each other after the magnetic field heat treatment step, holding the Sm-Fe-based allot at this temperature for a time of not less than 2 minutes to not more than 10 minutes, and then rapidly cooling the temperature to 500°C or less within 5 minutes.SELECTED DRAWING: Figure 1

Description

本発明は、希土類磁石の材料となる磁性材料の製造方法に関する。特に、磁気特性に優れる磁性材料の製造方法に関する。   The present invention relates to a method for producing a magnetic material that is a material for a rare earth magnet. In particular, the present invention relates to a method for producing a magnetic material having excellent magnetic properties.

モータや発電機などに使用される永久磁石として、希土類元素(RE)と鉄(Fe)とを含有する希土類−鉄系化合物を主相とする希土類−鉄系合金(RE−Fe系合金)を用いた希土類磁石が広く利用されている。希土類磁石としては、NdFe14B相を主相とするNdFe14B合金を用いたNd−Fe−B磁石(ネオジム磁石)が代表的である(特許文献1,2を参照)。その他、SmFe17相を主相とするSmFe17合金を原料とし、これを窒化したSmFe17相を主相とするSmFe17合金を用いたSm−Fe−N磁石が知られている(特許文献1,2を参照)。 As a permanent magnet used in motors and generators, a rare earth-iron alloy (RE-Fe alloy) containing a rare earth-iron compound containing rare earth elements (RE) and iron (Fe) as a main phase is used. The rare earth magnets used are widely used. A typical rare earth magnet is an Nd—Fe—B magnet (neodymium magnet) using an Nd 2 Fe 14 B alloy having a Nd 2 Fe 14 B phase as a main phase (see Patent Documents 1 and 2). Other, Sm 2 Fe 17 phase is a Sm 2 Fe 17 alloy as a main phase raw material, Sm-Fe with Sm 2 Fe 17 N 3 alloy of which main phase Sm 2 Fe 17 N 3 phase This was nitrided -N magnets are known (see Patent Documents 1 and 2).

また、希土類磁石の高性能化を目指して、ナノコンポジット磁石の研究が進められている(特許文献1を参照)。ナノコンポジット磁石は、ナノサイズの微細な軟磁性相と硬磁性相とを有し、例えば、両相がナノメートルオーダーの間隔で周期的に配置されたナノコンポジット組織を有する。ナノコンポジット磁石は、軟磁性相と硬磁性相との間に働く交換相互作用により軟磁性相が硬磁性相に束縛されて、軟磁性相と硬磁性相とがあたかも単相磁石のように振る舞う。その結果、軟磁性相が持つ高い磁化と硬磁性相が持つ高い保磁力とを併せ持つことができ、磁気特性に優れる磁性材料として期待されている。   In addition, research on nanocomposite magnets is underway with the aim of improving the performance of rare earth magnets (see Patent Document 1). The nanocomposite magnet has a nano-sized fine soft magnetic phase and hard magnetic phase, and has, for example, a nanocomposite structure in which both phases are periodically arranged at intervals of nanometer order. In nanocomposite magnets, the soft magnetic phase is bound to the hard magnetic phase by the exchange interaction between the soft magnetic phase and the hard magnetic phase, and the soft magnetic phase and the hard magnetic phase behave as if they were a single-phase magnet. . As a result, it is possible to have both the high magnetization of the soft magnetic phase and the high coercivity of the hard magnetic phase, which is expected as a magnetic material having excellent magnetic properties.

特開平11−97222号公報JP-A-11-97222 特開2014−146655号公報JP 2014-146655 A

希土類磁石の更なる高性能化が求められており、磁気特性に優れる磁性材料の開発が強く望まれている。   There is a demand for higher performance of rare earth magnets, and the development of magnetic materials with excellent magnetic properties is strongly desired.

本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、磁気特性に優れる磁性材料の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a method for producing a magnetic material having excellent magnetic properties.

本発明の一態様に係る磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。準備工程は、SmとFeとを含有するSm−Fe系合金を準備する工程である。磁場熱処理工程は、前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、250℃以上350℃以下の温度で熱処理を施す工程である。急速熱処理工程は、前記磁場熱処理工程の後、前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す工程である。   The manufacturing method of the magnetic material which concerns on 1 aspect of this invention is equipped with a preparatory process, a magnetic field heat treatment process, and a rapid heat treatment process. The preparation step is a step of preparing an Sm—Fe-based alloy containing Sm and Fe. The magnetic field heat treatment step is a step of heat-treating the Sm—Fe-based alloy at a temperature of 250 ° C. or higher and 350 ° C. or lower while applying a magnetic field of 2T or more and 4T or less in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere. It is. In the rapid heat treatment step, after the magnetic field heat treatment step, the Sm—Fe-based alloy is subjected to 5 minutes from the heating temperature in the magnetic field heat treatment step to 600 ° C. to 800 ° C. in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere. The temperature is rapidly increased within 5 minutes, held at that temperature for 2 minutes to 10 minutes, and then subjected to a heat treatment for rapidly cooling to 500 ° C. or less within 5 minutes.

上記磁性材料の製造方法は、磁気特性に優れる磁性材料を製造できる。   The method for producing a magnetic material can produce a magnetic material having excellent magnetic properties.

実施形態1の磁性材料の製造工程の一例を模式的に示す工程説明図である。FIG. 3 is a process explanatory view schematically showing an example of a manufacturing process of a magnetic material according to the first embodiment.

[本発明の実施形態の説明]
本発明者らは、希土類−鉄系合金としてSm−Fe合金を選択し、SmFe17相を主相とするSmFe17合金を磁性材料として使用した希土類磁石に着目した。SmFe17合金は、希土類磁石として高い保磁力を有するためである。そこで、希土類磁石の更なる高性能化を目指して、Fe相からなる軟磁性相と、SmFe17相からなる硬磁性相とを含むナノコンポジット組織を有する磁性材料の開発に取り組んだ。
[Description of Embodiment of the Present Invention]
The present inventors selected an Sm—Fe alloy as the rare earth-iron-based alloy and focused on a rare earth magnet using an Sm 5 Fe 17 alloy having a Sm 5 Fe 17 phase as a main phase as a magnetic material. This is because the Sm 5 Fe 17 alloy has a high coercive force as a rare earth magnet. Therefore, with the aim of further improving the performance of rare earth magnets, we have developed a magnetic material having a nanocomposite structure including a soft magnetic phase composed of Fe phase and a hard magnetic phase composed of Sm 5 Fe 17 phase.

特許文献1では、急冷法によりアモルファス状態の急冷薄帯合金を作製した後、その合金に600℃以上の温度で熱処理を施すことで、軟磁性相と硬磁性相とを含むナノコンポジット磁石を製造する方法が記載されている。しかし、特許文献1に記載の製造方法では、Fe相からなる軟磁性相とSmFe17相からなる硬磁性相とを含むナノコンポジット磁石は作製できないのが現状である。その理由は、熱処理によって結晶化すると、安定なSmFe17相やSmFe相が主として析出するからである。 In Patent Document 1, an amorphous quenched ribbon alloy is manufactured by a rapid cooling method, and then the alloy is subjected to a heat treatment at a temperature of 600 ° C. or higher to produce a nanocomposite magnet including a soft magnetic phase and a hard magnetic phase. How to do is described. However, in the manufacturing method described in Patent Document 1, a nanocomposite magnet including a soft magnetic phase composed of Fe phase and a hard magnetic phase composed of Sm 5 Fe 17 phase cannot be produced at present. The reason is that when crystallized by heat treatment, stable Sm 2 Fe 17 phase and SmFe 3 phase are mainly precipitated.

そこで、本発明者らは、Fe相からなる軟磁性相と、SmFe17相からなる硬磁性相とを含むナノコンポジット組織とすることを鋭意検討した。その結果、磁場を印加しながら低温で熱処理する磁場熱処理工程と、その後、急速に高温まで昇温して急速に冷却する急速熱処理工程との二段階の熱処理を行うことで、Fe相とSmFe17相とが混在するナノコンポジット組織を有する磁性材料を得られるとの知見を得て本発明を完成するに至った。以下、本発明の実施形態の内容を列記して説明する。 Therefore, the inventors have intensively studied to make a nanocomposite structure including a soft magnetic phase composed of Fe phase and a hard magnetic phase composed of Sm 5 Fe 17 phase. As a result, the Fe phase and Sm 5 are obtained by performing a two-stage heat treatment of a magnetic field heat treatment step in which heat treatment is performed at a low temperature while applying a magnetic field and a rapid heat treatment step in which the temperature is rapidly raised to a high temperature and then rapidly cooled. The present invention was completed upon obtaining the knowledge that a magnetic material having a nanocomposite structure mixed with Fe 17 phase can be obtained. The contents of the embodiments of the present invention will be listed and described below.

(1)実施形態に係る磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。準備工程は、SmとFeとを含有するSm−Fe系合金を準備する工程である。磁場熱処理工程は、前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、250℃以上350℃以下の温度で熱処理を施す工程である。急速熱処理工程は、前記磁場熱処理工程の後、前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す工程である。   (1) The manufacturing method of the magnetic material which concerns on embodiment is equipped with a preparatory process, a magnetic field heat treatment process, and a rapid heat treatment process. The preparation step is a step of preparing an Sm—Fe-based alloy containing Sm and Fe. The magnetic field heat treatment step is a step of heat-treating the Sm—Fe-based alloy at a temperature of 250 ° C. or higher and 350 ° C. or lower while applying a magnetic field of 2T or more and 4T or less in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere. It is. In the rapid heat treatment step, after the magnetic field heat treatment step, the Sm—Fe-based alloy is subjected to 5 minutes from the heating temperature in the magnetic field heat treatment step to 600 ° C. to 800 ° C. in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere. The temperature is rapidly increased within 5 minutes, held at that temperature for 2 minutes to 10 minutes, and then subjected to a heat treatment for rapidly cooling to 500 ° C. or less within 5 minutes.

原料のSm−Fe系合金に熱処理を施すにあたり、磁場熱処理工程⇒急速熱処理工程という二段階の工程を行うことで、微細かつ結晶性の高いFe相およびSmFe17相を含むナノコンポジット組織を有する磁性材料を得ることができる。まず、磁場熱処理工程において、磁場を印加しながら熱処理を施すことで、磁場中でのエネルギー安定性の高いFe相が析出する。このとき、250℃以上350℃以下といった低温で熱処理を施すため、Fe相の粗大化を抑制でき、微細なFe相を析出できる。低温であっても磁場を印加することによって、Fe相は、熱エネルギーによって析出できない分、磁場のエネルギーによって析出することができる。この磁場熱処理工程における加熱温度と印加磁場とを調整することによって、Fe相の析出量を制御でき、残るSmFe17相を得ることができる。次に、急速熱処理工程において、急速な昇温⇒短時間での高温保持⇒急速な冷却を行うことで、Fe相を粗大化させずに、Fe相およびSmFe17相の結晶化を促進しでき、微細かつ結晶性の高いFe相およびSmFe17相を生成できる。SmFe17相を生成できることで、高い保磁力を有する磁性材料を得ることができる。 When heat-treating the raw material Sm-Fe alloy, a nanocomposite structure including a fine and highly crystalline Fe phase and a Sm 5 Fe 17 phase can be obtained by performing a two-step process of a magnetic field heat treatment step ⇒ a rapid heat treatment step. The magnetic material which has can be obtained. First, in the magnetic field heat treatment step, by performing heat treatment while applying a magnetic field, an Fe phase having high energy stability in the magnetic field is precipitated. At this time, since the heat treatment is performed at a low temperature of 250 ° C. or more and 350 ° C. or less, coarsening of the Fe phase can be suppressed and a fine Fe phase can be precipitated. By applying a magnetic field even at a low temperature, the Fe phase can be precipitated by the energy of the magnetic field because it cannot be precipitated by the thermal energy. By adjusting the heating temperature and the applied magnetic field in this magnetic field heat treatment step, the amount of precipitation of the Fe phase can be controlled, and the remaining Sm 5 Fe 17 phase can be obtained. Next, in the rapid heat treatment process, rapid tempering ⇒ keeping high temperature in a short time ⇒ rapid cooling promotes crystallization of Fe phase and Sm 5 Fe 17 phase without coarsening Fe phase Therefore, a fine and highly crystalline Fe phase and Sm 5 Fe 17 phase can be produced. Since a Sm 5 Fe 17 phase can be generated, a magnetic material having a high coercive force can be obtained.

(2)実施形態の磁性材料の製造方法として、前記準備工程におけるSm−Fe系合金は、非晶質状態であり、Smの含有量が10質量%以上45質量%以下であることが挙げられる。   (2) As a manufacturing method of the magnetic material of the embodiment, the Sm—Fe-based alloy in the preparation step is in an amorphous state, and the Sm content is 10% by mass or more and 45% by mass or less. .

上記構成によれば、原料のSm−Fe系合金が非晶質状態であり、Smの含有量が上記範囲内であることで、SmFe17相を生成し易く、Fe相およびSmFe17相を含むナノコンポジット組織を有する磁性材料を製造し易い。 According to the above configuration, the raw material Sm—Fe-based alloy is in an amorphous state, and the Sm content is within the above range, so that it is easy to generate the Sm 5 Fe 17 phase, and the Fe phase and the Sm 5 Fe It is easy to produce a magnetic material having a nanocomposite structure containing 17 phases.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

<実施形態1>
〔磁性材料の製造方法〕
実施形態1の磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。以下、図1に基づいて、各工程について詳しく説明する。
<Embodiment 1>
[Method of manufacturing magnetic material]
The manufacturing method of the magnetic material of Embodiment 1 includes a preparation step, a magnetic field heat treatment step, and a rapid heat treatment step. Hereafter, each process is demonstrated in detail based on FIG.

(準備工程)
準備工程は、SmとFeとを含有するSm−Fe系合金を準備する工程である。Sm−Fe系合金は、Smの含有量が10質量%以上45質量%以下であることが挙げられる。Smの含有量が10質量%以上であることで、SmFe17相を生成し易く、保磁力を向上させることができる。一方、Smの含有量が45質量%以下であることで、Feの含有量が相対的に多くなり、残留磁化を向上させることができる。Smの含有量は、さらに12質量%以上27質量%以下、特に18質量%以上25質量%以下が挙げられる。Sm−Fe系合金は、SmとFe以外にもBまたはC,F,Nb,Zrを5質量%以下程度含んでいてもよい。また、Feの一部をCo,Cuなどの他の遷移金属元素やAl,Siで置換してもよい。Fe(Feの一部を置換したものを含む)の含有量は、71質量%以上88質量%以下含有することが挙げられる。
(Preparation process)
The preparation step is a step of preparing an Sm—Fe-based alloy containing Sm and Fe. In the Sm—Fe-based alloy, the Sm content is 10% by mass or more and 45% by mass or less. When the Sm content is 10% by mass or more, the Sm 5 Fe 17 phase is easily generated, and the coercive force can be improved. On the other hand, when the Sm content is 45% by mass or less, the Fe content is relatively increased, and the residual magnetization can be improved. The Sm content is further 12% to 27% by mass, particularly 18% to 25% by mass. The Sm-Fe alloy may contain about 5% by mass or less of B, C, F, Nb, and Zr in addition to Sm and Fe. Further, a part of Fe may be substituted with other transition metal elements such as Co and Cu, Al and Si. The content of Fe (including those obtained by substituting part of Fe) is 71 to 88% by mass.

Sm−Fe系合金は、非晶質状態であることが挙げられる。Sm−Fe系合金が非晶質状態であり、Smの含有量が上記範囲内であると、後述する二段階の熱処理工程によって結晶質のSmFe17相を生成し易く、Fe相およびSmFe17相を含むナノコンポジット組織を有する磁性材料を製造し易い。 It can be mentioned that the Sm—Fe-based alloy is in an amorphous state. If the Sm-Fe-based alloy is in an amorphous state and the Sm content is within the above range, a crystalline Sm 5 Fe 17 phase can be easily formed by a two-stage heat treatment process described later. easy to manufacture a magnetic material having a nanocomposite structure containing 5 Fe 17 phase.

Sm−Fe系合金は、上記組成範囲となるように配合した合金の溶湯を超急冷法により急冷することで得られる。超急冷法としては、メルトスパン法が挙げられる。冷却速度は、例えば2×10℃/秒以上、好ましくは1×10℃/秒以上である。図1の左図に示すように、メルトスパン法で得られたSm−Fe系合金(急冷薄帯30)は適宜粉砕して、Sm−Fe系合金粉末20としてもよい。Sm−Fe系合金粉末30の平均粒子径は、例えば5μm以上50μm以下、好ましくは10μm以上30μm以下である。「平均粒子径」とは、レーザ回折法で測定された体積基準の粒度分布において、小径側から累積体積が50%になる粒子径(D50:50体積%粒径)のことである。Sm−Fe系合金の粉砕は、例えばジェットミル、ボールミル、ハンマーミル、ブラウンミル、ピンミル、ディスクミル、ジョークラッシャーなどの公知の粉砕機を用いることができる。Sm−Fe系合金の段階では粉砕せず、磁性材料の製造後、磁性材料を粉砕して粉末にしてもよい。 The Sm-Fe-based alloy can be obtained by quenching a molten alloy blended so as to be in the above composition range by a super rapid cooling method. Examples of the ultra-quenching method include a melt span method. The cooling rate is, for example, 2 × 10 5 ° C./second or more, preferably 1 × 10 6 ° C./second or more. As shown in the left diagram of FIG. 1, the Sm—Fe-based alloy (quenched ribbon 30) obtained by the melt span method may be appropriately pulverized to obtain the Sm—Fe-based alloy powder 20. The average particle diameter of the Sm—Fe-based alloy powder 30 is, for example, 5 μm to 50 μm, preferably 10 μm to 30 μm. The “average particle diameter” is a particle diameter (D50: 50 volume% particle diameter) at which the cumulative volume is 50% from the small diameter side in the volume-based particle size distribution measured by the laser diffraction method. For the pulverization of the Sm—Fe alloy, a known pulverizer such as a jet mill, a ball mill, a hammer mill, a brown mill, a pin mill, a disk mill, or a jaw crusher can be used. The magnetic material may be pulverized into powder after the magnetic material is manufactured without being pulverized at the stage of the Sm-Fe alloy.

(磁場熱処理工程)
磁場熱処理工程は、図1の中図に示すように、Sm−Fe系合金粉末20に、不活性雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、250℃以上350℃以下の温度で熱処理を施す工程である。250℃以上350℃以下といった低温で磁場を印加しながら熱処理を施すことで、Fe相が粗大化せずに、磁場中でのエネルギー安定性の高いFe相が析出する。
(Magnetic heat treatment process)
As shown in the middle diagram of FIG. 1, the magnetic field heat treatment step is performed at 250 ° C. or higher and 350 ° C. or lower while applying a magnetic field of 2T or more and 4T or less to the Sm—Fe-based alloy powder 20 in an inert atmosphere or a reduced pressure atmosphere. This is a step of performing heat treatment at a temperature of. By performing heat treatment while applying a magnetic field at a low temperature of 250 ° C. or higher and 350 ° C. or lower, the Fe phase does not become coarse, and an Fe phase with high energy stability in the magnetic field is precipitated.

雰囲気は、SmおよびFeと反応しない雰囲気または減圧雰囲気とする。SmおよびFeと反応しない雰囲気は、酸素や水素、窒素を含まない雰囲気であり、Arが挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいい、最終真空度は10Pa以下、さらに1Pa以下が好ましい。   The atmosphere is an atmosphere that does not react with Sm and Fe or a reduced pressure atmosphere. The atmosphere that does not react with Sm and Fe is an atmosphere that does not contain oxygen, hydrogen, or nitrogen, and includes Ar. The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less, and more preferably 1 Pa or less.

加熱温度は、250℃以上350℃以下とする。加熱温度が250℃以上であると、Fe相の析出を行うことができる。一方、加熱温度が350℃以下であることで、Fe相の粗大化を抑制できる。この加熱温度への昇温速度は特に問わない。熱処理の保持時間は、30分以上10時間以下が挙げられる。加熱温度が低いことでFe相の析出がし難いため、保持時間は30分以上とする。一方、10時間以下とすることで、保持時間が過度に長くなることなく十分にFe相を析出することができる。この保持時間は、1時間以上3時間以下が好ましい。   The heating temperature is 250 ° C. or higher and 350 ° C. or lower. When the heating temperature is 250 ° C. or higher, the Fe phase can be precipitated. On the other hand, when the heating temperature is 350 ° C. or less, coarsening of the Fe phase can be suppressed. The rate of temperature increase to the heating temperature is not particularly limited. Examples of the heat treatment holding time include 30 minutes or more and 10 hours or less. Since the Fe phase is difficult to precipitate due to the low heating temperature, the holding time is 30 minutes or more. On the other hand, when the time is 10 hours or less, the Fe phase can be sufficiently precipitated without excessively increasing the holding time. This holding time is preferably 1 hour or more and 3 hours or less.

印加磁場は、2T以上4T以下とする。加熱温度が低温であることで熱エネルギーによってFe相は析出し難いが、2T以上の磁場を印加することで、磁場のエネルギーによってFe相は析出する。つまり、Fe相は、熱エネルギーによって析出できない分、磁場のエネルギーによって析出することができる。そのため、低温であっても、十分にFe相は析出できる。一方、磁場が4T以下であることで、Fe相の粗大化を抑制できる。このような磁場は、例えば、高温超電導磁石を用いることで安定して形成することができる。   The applied magnetic field is 2T or more and 4T or less. When the heating temperature is low, the Fe phase is hardly precipitated by thermal energy, but by applying a magnetic field of 2T or more, the Fe phase is precipitated by the magnetic field energy. That is, the Fe phase can be deposited by the energy of the magnetic field as much as it cannot be deposited by thermal energy. Therefore, the Fe phase can be sufficiently precipitated even at a low temperature. On the other hand, when the magnetic field is 4T or less, coarsening of the Fe phase can be suppressed. Such a magnetic field can be stably formed by using, for example, a high-temperature superconducting magnet.

磁場熱処理工程において、加熱温度と印加磁場とを調整することによって、Fe相の析出量を制御でき、残るSmFe17相を得ることができる。加熱温度と印加磁場とは、加熱温度が低いときには印加磁場を大きくし、加熱温度が高いときには印加磁場を小さくすることで、熱エネルギーと磁場エネルギーとによって、効果的にFe相を粗大化せずに所望量を析出することができる。 In the magnetic field heat treatment step, by adjusting the heating temperature and the applied magnetic field, the precipitation amount of the Fe phase can be controlled, and the remaining Sm 5 Fe 17 phase can be obtained. The heating temperature and the applied magnetic field are such that the applied magnetic field is increased when the heating temperature is low, and the applied magnetic field is decreased when the heating temperature is high, so that the Fe phase is not effectively coarsened by the heat energy and magnetic field energy. The desired amount can be deposited in

Fe相の平均粒径は、実質的に、この磁場熱処理工程によって決まる。Fe相の平均粒径は、150nm以下、好ましくは100nm以下であることが挙げられる。   The average particle size of the Fe phase is substantially determined by this magnetic field heat treatment step. The average particle diameter of the Fe phase is 150 nm or less, preferably 100 nm or less.

(急速熱処理工程)
急速熱処理工程は、図1の右図に示すように、Sm−Fe系合金粉末20に、急速な昇温(低温T→高温T)⇒短時間での高温保持(高温T)⇒急速な冷却(500℃以下)を行う工程である。この急速熱処理工程は、磁場熱処理工程の後に連続して行う。つまり、急速な昇温を行う前の低温Tとは、磁場熱処理工程における加熱温度のことである。急速な昇温および短時間での高温保持によって、Fe相を粗大化させずに、Fe相およびSmFe17相の結晶化を促進でき、微細かつ結晶性の高いFe相およびSmFe17相を生成できる。
(Rapid heat treatment process)
As shown in the right diagram of FIG. 1, the rapid thermal process is performed by rapidly increasing the temperature of the Sm—Fe-based alloy powder 20 (low temperature T 1 → high temperature T 2 ) → high temperature holding in a short time (high temperature T 2 ) → This is a step of rapid cooling (500 ° C. or less). This rapid heat treatment step is performed continuously after the magnetic field heat treatment step. That is, the low temperature T 1 of the before performing rapid heating, is that the heating temperature in the magnetic field heat treatment step. By rapid Atsushi Nobori and short time high temperature holding, without coarsening the Fe phase, can facilitate the Fe phase and Sm of 5 Fe 17 phase crystallization, fine and highly crystalline Fe phase and Sm 5 Fe 17 A phase can be generated.

雰囲気は、磁場熱処理工程と同様に、SmおよびFeと反応しない雰囲気または減圧雰囲気とする。SmおよびFeと反応しない雰囲気は、酸素や水素、窒素を含まない雰囲気であり、Arが挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいい、最終真空度は10Pa以下、さらに1Pa以下が好ましい。   As in the magnetic field heat treatment step, the atmosphere is an atmosphere that does not react with Sm and Fe or a reduced pressure atmosphere. The atmosphere that does not react with Sm and Fe is an atmosphere that does not contain oxygen, hydrogen, or nitrogen, and includes Ar. The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less, and more preferably 1 Pa or less.

まず、Sm−Fe系合金粉末20に、磁場熱処理工程における加熱温度T(250℃以上350℃以下)から600℃以上800℃以下の高温Tまで5分以内に急速に昇温する。昇温速度としては、50℃/分以上、70℃/分以上、90℃/分以上、110℃/分以上とすることが挙げられる。昇温時間tは5分以内であれば特に問わない。 First, the Sm—Fe-based alloy powder 20 is rapidly heated within 5 minutes from the heating temperature T 1 (250 ° C. to 350 ° C.) in the magnetic field heat treatment step to the high temperature T 2 of 600 ° C. to 800 ° C. Examples of the heating rate include 50 ° C./min or more, 70 ° C./min or more, 90 ° C./min or more, 110 ° C./min or more. Heating time t 1 is not particularly limited if it is within 5 minutes.

高温Tとなったら、その温度Tで2分以上10分以下保持する(図1右図のt−t間)。そうすると、Fe相およびSmFe17相の結晶化が起こり、Fe相からなる軟磁性相11と、SmFe17相からなる硬磁性相12とを含む結晶相を含有する複合組織が形成され、軟磁性相と硬磁性相とがコンポジット化した組織となる。急速熱処理工程は、磁場を印加せずに行うことが好ましい。磁場を印加すると、Fe相が粗大化するためである。 When a high temperature T 2, holding the temperature T 2 in 10 minutes or less than 2 minutes (between t 1 -t 2 of Fig. 1 right panel). Then, crystallization of the Fe phase and the Sm 5 Fe 17 phase occurs, and a composite structure containing a crystal phase including the soft magnetic phase 11 composed of the Fe phase and the hard magnetic phase 12 composed of the Sm 5 Fe 17 phase is formed. A structure in which a soft magnetic phase and a hard magnetic phase are composited is obtained. The rapid heat treatment step is preferably performed without applying a magnetic field. This is because the Fe phase becomes coarse when a magnetic field is applied.

その後、500℃以下まで5分以内に急速に冷却する。そうすることで、コンポジット化されたFe相およびSmFe17相の粗大化を抑制でき、微細かつ結晶性の高いFe相(軟磁性相11)およびSmFe17相(硬磁性相12)のコンポジット化した組織の磁性材料10を得ることができる。冷却速度としては、20℃/分以上、さらに60℃/分とすることが挙げられる。500℃以下とするまでの冷却時間tは5分以内であれば特に問わない。500℃以下となれば、それ以降の冷却速度は特に問わない。 Then, it cools rapidly within 5 minutes to 500 degrees C or less. By doing so, the coarsening of the composite Fe phase and Sm 5 Fe 17 phase can be suppressed, and the fine and highly crystalline Fe phase (soft magnetic phase 11) and Sm 5 Fe 17 phase (hard magnetic phase 12) Thus, a magnetic material 10 having a composite structure can be obtained. Examples of the cooling rate include 20 ° C./min or more, and further 60 ° C./min. Cooling time t 3 until the 500 ° C. or less is not particularly limited if it is within 5 minutes. If it becomes 500 degrees C or less, the cooling rate after that will not be ask | required in particular.

急速熱処理工程は、磁場熱処理工程の後に常温に冷却し、常温から再加熱して高温Tとしてもよい。その場合であっても、常温から昇温して、温度Tとなってからの高温Tへの急速な昇温⇒短時間での高温保持⇒急速な冷却は必須である。急速熱処理工程は、上述したように、磁場熱処理工程の後に連続して行う方が効率的である。 Rapid thermal process is cooled to room temperature after the magnetic field annealing process may be a high temperature T 2, and then re-heated from room temperature. Even in such a case, it is essential to raise the temperature from room temperature and then rapidly raise the temperature to T 2 after reaching temperature T 1 ⇒ hold the high temperature in a short time ⇒ rapid cooling. As described above, it is more efficient to perform the rapid heat treatment step continuously after the magnetic field heat treatment step.

〔磁性材料〕
上述した磁性材料の製造方法によって得られた磁性材料10は、図1の右拡大図に示されるように、Fe相からなる軟磁性相11と、SmFe17相からなる硬磁性相12とを含む結晶相を含有する。Fe相は、例えばα−Fe相である。硬磁性相12は、SmFe17相の結晶粒である。なお、図1において、軟磁性相11と硬磁性相12との区別を明確にするために、軟磁性相11にはハッチングを付している。
[Magnetic material]
The magnetic material 10 obtained by the magnetic material manufacturing method described above includes a soft magnetic phase 11 made of Fe phase and a hard magnetic phase 12 made of Sm 5 Fe 17 phase, as shown in the right enlarged view of FIG. Containing a crystalline phase comprising The Fe phase is, for example, an α-Fe phase. The hard magnetic phase 12 is a crystal grain of the Sm 5 Fe 17 phase. In FIG. 1, the soft magnetic phase 11 is hatched to clarify the distinction between the soft magnetic phase 11 and the hard magnetic phase 12.

磁性材料10は、結晶相として、Fe相からなる軟磁性相11とSmFe17相からなる硬磁性相12とを含有し、両相が混在する複合組織(コンポジット組織)である。高磁化を有するFe相(軟磁性相11)と高保磁力を有するSmFe17相(硬磁性相12)とが混在する複合組織であることで、両相の間に働く交換相互作用より両相が交換結合して、高磁化と高保磁力とを併せ持つ磁気特性を有することが可能であり、磁気特性を改善できる。 The magnetic material 10 has a composite structure (composite structure) containing a soft magnetic phase 11 composed of an Fe phase and a hard magnetic phase 12 composed of an Sm 5 Fe 17 phase as crystal phases. Since it is a composite structure in which an Fe phase having a high magnetization (soft magnetic phase 11) and an Sm 5 Fe 17 phase having a high coercive force (hard magnetic phase 12) are mixed, both of them are exchanged due to exchange interaction between the two phases. The phases can be exchange-coupled to have magnetic characteristics having both high magnetization and high coercive force, and magnetic characteristics can be improved.

特に、磁性材料10は、軟磁性相11と硬磁性相12とがナノサイズであり、軟磁性相11と硬磁性相12とのナノコンポジット組織を有することが好ましい。ナノコンポジット組織を有することで、軟磁性相と硬磁性相との間に強い交換相互作用が働き、両相の交換結合により高磁化と高保磁力とを併せ持つことができ、磁気特性を更に改善できる。「ナノサイズ」とは、平均結晶粒径(結晶粒サイズ)が300nm以下、さらに150nm以下、特に100nmであることを意味する。磁性材料10中の磁性相の平均結晶粒径(結晶粒サイズ)は、X線回折(XRD)による回折ピークの半値幅からシェラーの式を用いて求めることができる。ナノコンポジット組織としては、軟磁性相と硬磁性相とが層状に交互に配列した周期構造を有する形態や、粒状の軟磁性相が硬磁性相中に分散した分散構造を有する形態が挙げられる。磁性材料の組織構造としては、分散構造よりも周期構造の方が硬磁性相の周期間隔が小さくなり、磁気特性的に好ましいと考えられる。   In particular, the magnetic material 10 preferably has a nano-sized soft magnetic phase 11 and a hard magnetic phase 12 and has a nanocomposite structure of the soft magnetic phase 11 and the hard magnetic phase 12. By having a nanocomposite structure, a strong exchange interaction works between the soft magnetic phase and the hard magnetic phase, and both the high-magnetization and high coercive force can be achieved by the exchange coupling of both phases, thereby further improving the magnetic properties. . “Nanosize” means that the average crystal grain size (crystal grain size) is 300 nm or less, more preferably 150 nm or less, and particularly 100 nm. The average crystal grain size (crystal grain size) of the magnetic phase in the magnetic material 10 can be obtained from the half-value width of the diffraction peak by X-ray diffraction (XRD) using the Scherrer equation. Examples of the nanocomposite structure include a form having a periodic structure in which soft magnetic phases and hard magnetic phases are alternately arranged in layers, and a form having a dispersed structure in which granular soft magnetic phases are dispersed in the hard magnetic phase. As the texture structure of the magnetic material, it is considered that the periodic structure is preferable to the magnetic characteristics because the periodic interval of the hard magnetic phase is smaller than the dispersed structure.

上記磁性材料10は、磁石とする場合、窒化処理を行う。窒化処理は、磁性材料に、窒素を含む雰囲気中で、窒化温度以上の温度で熱処理を施す。窒化温度は、結晶相のSmFe17相を窒化して、SmFe17(X=0.5〜3)相が生成される温度とする。この窒化温度は、例えば、300℃以上500℃以下とすることが挙げられる。加熱温度を300℃以上とすることで、窒化を促進でき、SmFe17(X=0.5〜3)相を形成し易い。一方、加熱温度を500℃以下とすることで、Fe相の粗大化を抑制し、SmFe17の過剰窒化や分解を抑制できる。 When the magnetic material 10 is a magnet, nitriding treatment is performed. In the nitriding treatment, heat treatment is performed on the magnetic material at a temperature equal to or higher than the nitriding temperature in an atmosphere containing nitrogen. The nitriding temperature is set to a temperature at which the Sm 5 Fe 17 phase of the crystal phase is nitrided to generate the Sm 5 Fe 17 N x (X = 0.5 to 3) phase. The nitriding temperature is, for example, 300 ° C. or more and 500 ° C. or less. By setting the heating temperature to 300 ° C. or higher, nitriding can be promoted and an Sm 5 Fe 17 N x (X = 0.5 to 3) phase can be easily formed. On the other hand, by setting the heating temperature to 500 ° C. or less, it is possible to suppress coarsening of the Fe phase and to suppress excessive nitridation and decomposition of Sm 5 Fe 17 N x .

<試験例>
以下の準備工程⇒磁場熱処理工程⇒急速熱処理工程という手順で磁性材料(試料No.1〜20)を作製し、得られた磁性材料の磁気特性およびFe相(α−Fe相)の平均結晶粒径を調べた。また、比較例として、磁場熱処理工程を行わず、準備工程⇒急速熱処理工程という手順で磁性材料(試料No.21〜33)を作製し、得られた磁性材料の磁気特性およびFe相(α−Fe相)の平均結晶粒径を調べた。
<Test example>
Magnetic materials (sample Nos. 1 to 20) were prepared by the following preparation process ⇒ magnetic field heat treatment process ⇒ rapid heat treatment process, and the magnetic properties of the obtained magnetic material and average crystal grains of the Fe phase (α-Fe phase) The diameter was examined. In addition, as a comparative example, a magnetic material (sample Nos. 21 to 33) was prepared by a procedure of preparation step ⇒ rapid heat treatment step without performing a magnetic field heat treatment step, and the magnetic properties and Fe phase (α− The average crystal grain size of (Fe phase) was examined.

準備工程では、原料のSm−Fe系合金を準備する。Smを13質量%含有し、残部がFeおよび不可避不純物からなる組成を有する合金の溶湯を、メルトスパン法により急冷(冷却速度5×10℃/秒以上)して、厚み10μm程度の急冷薄帯のSm−Fe系合金を作製した。このSm−Fe系合金は、非晶質合金である。 In the preparation step, a raw material Sm—Fe alloy is prepared. A melt of an alloy containing 13% by mass of Sm and having the balance of Fe and inevitable impurities is quenched by a melt span method (cooling rate of 5 × 10 5 ° C./second or more), and a quenched ribbon having a thickness of about 10 μm. The Sm—Fe-based alloy was prepared. This Sm—Fe based alloy is an amorphous alloy.

磁場熱処理工程では、Sm−Fe系合金に、アルゴン雰囲気中、表1および表2に示す磁場を印加しながら、表1および表2に示す温度Tで熱処理を施した。この加熱温度Tの保持時間は3時間とした。試料No.21〜33では、この工程は行わなかった。 In the magnetic field heat treatment step, heat treatment was performed on the Sm—Fe-based alloy at a temperature T 1 shown in Tables 1 and 2 while applying a magnetic field shown in Tables 1 and 2 in an argon atmosphere. Retention time of the heating temperatures T 1 was 3 hours. Sample No. In 21-33, this process was not performed.

急速熱処理工程では、加熱温度Tでの熱処理に連続して、5分以内に表1および表2に示す温度Tまで昇温し、その温度Tで表1及び表2に示す保持時間で保持し、さらに5分以内に500℃以下まで冷却した。試料No.21〜33では、室温から温度Tまでを5分以内に昇温した。以上のようにして、表1及び表2に示す試料No.1〜No.33の磁性材料を製造した。 The rapid thermal process, continuous heat treatment at a heating temperature T 1, the temperature was raised to within 5 minutes temperature T 2 shown in Table 1 and Table 2, the retention time indicated by the temperature T 2 in Table 1 and Table 2 And cooled to 500 ° C. or lower within 5 minutes. Sample No. In 21 to 33, and the temperature was raised within 5 minutes from room temperature to the temperature T 2. As described above, the sample Nos. Shown in Tables 1 and 2 were used. 1-No. 33 magnetic materials were produced.

試料No.1〜No.33の磁性材料について、磁気特性を評価した。具体的には、振動試料型磁力計(東英工業株式会社製 VSM−5SC−5HF型)を用いて残留磁化(T)および保磁力(kA/m)を測定した。各試料の残留磁化および保磁力を表1および表2に示す。   Sample No. 1-No. The magnetic properties of 33 magnetic materials were evaluated. Specifically, residual magnetization (T) and coercive force (kA / m) were measured using a vibration sample type magnetometer (VSM-5SC-5HF type manufactured by Toei Kogyo Co., Ltd.). Tables 1 and 2 show the remanent magnetization and coercive force of each sample.

また、試料No.1〜No.33の磁性材料について、XRD装置(株式会社リガク製 SmartLab)を用いて結晶相の分析を行うと共に、XRDによる回折ピークの半値幅からシェラーの式を用いてFe相(α−Fe相)の平均結晶粒径(結晶粒サイズ)を求めた。各試料のFe相の平均結晶粒径を表1および表2に示す。   Sample No. 1-No. For 33 magnetic materials, the crystal phase was analyzed using an XRD apparatus (SmartLab, manufactured by Rigaku Corporation), and the average of the Fe phase (α-Fe phase) was calculated using the Scherrer formula from the half-value width of the diffraction peak by XRD. The crystal grain size (crystal grain size) was determined. Tables 1 and 2 show the average crystal grain size of the Fe phase of each sample.

Figure 2016134498
Figure 2016134498

Figure 2016134498
Figure 2016134498

XRDによる結晶相分析の結果から、2T以上4T以下の磁場を印加しながら250℃以上350℃以下の熱処理⇒600℃以上800℃以下まで急速に昇温⇒2分以上10分以下保持⇒500℃以下まで急速に冷却、を行った試料No.1〜9は、結晶相として、Fe相およびSmFe17相の存在が確認でき、Fe相(軟磁性相)とSmFe17相(硬磁性相)とが混在する組織(コンポジット組織)となっていた。これに対し、磁場熱処理において磁場が小さい試料No.12,13や、磁場熱処理を行わずかつ急速熱処理での加熱温度が低い試料No.21ではナノコンポジット組織とはなっていなかった。 From the results of crystal phase analysis by XRD, heat treatment from 250 ° C. to 350 ° C. while applying a magnetic field of 2T or more and 4T or less ⇒Raise the temperature rapidly from 600 ° C. to 800 ° C.⇒Hold for 2 minutes or more and 10 minutes or less⇒500 ° C. Sample No. which was rapidly cooled to below 1 to 9 can confirm the presence of the Fe phase and the Sm 5 Fe 17 phase as crystal phases, and a structure in which the Fe phase (soft magnetic phase) and the Sm 5 Fe 17 phase (hard magnetic phase) coexist (composite structure). It was. On the other hand, Sample No. with a small magnetic field in the magnetic field heat treatment. 12, 13 and sample Nos. 1 and 2 that do not undergo magnetic field heat treatment and have a low heating temperature in rapid heat treatment. No. 21 was not a nanocomposite structure.

試料No.1〜9は、残留磁化が0.72T以上で、かつ保磁力が1000kA/m以上であった。これに対し、磁場熱処理の加熱温度が低い試料No.10、磁場熱処理の加熱温度が高い試料No.11、磁場熱処理の印加磁場が小さい試料No,12,13、磁場熱処理の印加磁場が大きい試料No.14,15、急速熱処理の保持時間が短い試料No.16、急速熱処理の保持時間が長い試料No.17,18、急速熱処理の加熱温度が低い試料No.19、急速熱処理の加熱温度が高い試料No.20、磁場熱処理を行わなかった試料No.21〜33は、残留磁化が0.70T未満、保磁力が950kA/m未満と低かった。それは、微細かつ結晶性の高いFe相およびSmFe17相を十分に析出することができなかったからと考えられる。試料No.1〜9は、Fe相とSmFe17相とが混在するコンポジット組織となっていることで、Fe相によって残留磁化を向上でき、かつSmFe17相によって保磁力を向上できたと考えられる。 Sample No. 1 to 9 had a residual magnetization of 0.72 T or more and a coercive force of 1000 kA / m or more. On the other hand, Sample No. with a low heating temperature of the magnetic field heat treatment. 10. Sample No. with high heating temperature of magnetic field heat treatment 11, Sample Nos. 12, 13 with small applied magnetic field of magnetic field heat treatment, Sample No. 12, with large applied magnetic field of magnetic field heat treatment. 14, 15 and sample No. 1 with a short holding time for rapid thermal processing. 16. Sample No. No. 16 having a long holding time for rapid thermal processing 17, 18 and sample No. with low heating temperature of rapid thermal processing. 19, Sample No. with high heating temperature of rapid thermal processing 20, sample no. 21 to 33 had a low residual magnetization of less than 0.70 T and a coercive force of less than 950 kA / m. This is probably because the fine and highly crystalline Fe phase and Sm 5 Fe 17 phase could not be sufficiently precipitated. Sample No. Nos. 1 to 9 have a composite structure in which the Fe phase and the Sm 5 Fe 17 phase are mixed, so that the residual magnetization can be improved by the Fe phase and the coercive force can be improved by the Sm 5 Fe 17 phase. .

また、試料No.1〜9は、Fe相の平均結晶粒径は150nm以下であり、SmFe17相の平均結晶粒径は120nm以下であった。特に、急速熱処理工程での加熱温度を700℃以下とした試料No.1〜8は、Fe相の平均結晶粒径が100nm以下であり、さらに微細な組織となっていた。それは、磁場熱処理における加熱温度が低く、かつ磁場も小さい上に、急速熱処理での加熱温度も低いことで、Fe相の粗大化がより抑制されたからと考えられる。これに対し、磁場熱処理⇒急速熱処理の二段階の熱処理を行った場合で、磁場熱処理での磁場が大きい試料No.14,15、急速熱処理での加熱温度が高い試料No.20、急速熱処理での保持時間が長い試料No.17,18では、Fe相の平均結晶粒径は150nm超と粗大化していた。磁場熱処理⇒急速熱処理の二段階の熱処理を行った場合で、磁場熱処理での加熱温度が低い試料No.10、急速熱処理での保持時間が短い試料No.16、急速熱処理での加熱温度が低い試料No.19では、Fe相の平均結晶粒径は100nm未満と小さいが、Fe相が十分に析出・結晶化されていないため残留磁化が小さく、SmFe17相が生成されなかったため保磁力が小さくなったと考えられる。 Sample No. In Nos. 1 to 9, the average crystal grain size of the Fe phase was 150 nm or less, and the average crystal grain size of the Sm 5 Fe 17 phase was 120 nm or less. In particular, sample no. In Nos. 1 to 8, the average crystal grain size of the Fe phase was 100 nm or less, and a finer structure was obtained. This is probably because the heating temperature in the magnetic field heat treatment is low, the magnetic field is small, and the heating temperature in the rapid heat treatment is low, so that coarsening of the Fe phase is further suppressed. On the other hand, in the case of performing the two-stage heat treatment from magnetic field heat treatment to rapid heat treatment, the sample No. 14, 15 and sample No. with high heating temperature in rapid thermal processing. 20, Sample No. with a long holding time in rapid thermal processing. 17 and 18, the average crystal grain size of the Fe phase was coarsened to be over 150 nm. In the case of performing the two-stage heat treatment from magnetic field heat treatment to rapid heat treatment, the sample No. 10, Sample No. with a short holding time in rapid thermal processing. 16, Sample No. with low heating temperature in rapid heat treatment 19, the average grain size of the Fe phase is as small as less than 100 nm, but the remanent magnetization is small because the Fe phase is not sufficiently precipitated and crystallized, and the coercive force is small because the Sm 5 Fe 17 phase is not generated. It is thought.

本発明の磁性材料の製造方法は、各種モータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の原料、素材の製造に好適に利用することができる。   The magnetic material manufacturing method of the present invention is preferably used for manufacturing raw materials and materials for permanent magnets used in various motors, particularly high-speed motors used in hybrid vehicles (HEV) and hard disk drives (HDD). Can do.

10 磁性材料
11 軟磁性相(Fe相)
12 硬磁性相(SmFe17相)
20 SM−Fe系合金粉末
30 急冷薄帯
10 Magnetic material 11 Soft magnetic phase (Fe phase)
12 Hard magnetic phase (Sm 5 Fe 17 phase)
20 SM-Fe alloy powder 30 Quenched ribbon

Claims (2)

SmとFeとを含有するSm−Fe系合金を準備する準備工程と、
前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、250℃以上350℃以下の温度で熱処理を施す磁場熱処理工程と、
前記磁場熱処理工程の後、前記Sm−Fe系合金に、SmおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す急速熱処理工程と、を備える磁性材料の製造方法。
A preparation step of preparing an Sm-Fe-based alloy containing Sm and Fe;
A magnetic field heat treatment step in which heat treatment is performed at a temperature of 250 ° C. or higher and 350 ° C. or lower while applying a magnetic field of 2T or higher and 4T or lower to the Sm—Fe-based alloy in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere;
After the magnetic field heat treatment step, the Sm—Fe alloy is rapidly increased within 5 minutes from the heating temperature in the magnetic field heat treatment step to 600 ° C. to 800 ° C. in an atmosphere that does not react with Sm and Fe or in a reduced pressure atmosphere. And a rapid heat treatment step of performing a heat treatment of holding the temperature for 2 minutes to 10 minutes and then rapidly cooling to 500 ° C. or less within 5 minutes.
前記準備工程におけるSm−Fe系合金は、非晶質状態であり、Smの含有量が10質量%以上45質量%以下である請求項1に記載の磁性材料の製造方法。   The method for producing a magnetic material according to claim 1, wherein the Sm—Fe-based alloy in the preparation step is in an amorphous state, and the Sm content is 10% by mass or more and 45% by mass or less.
JP2015008148A 2015-01-19 2015-01-19 Method of manufacturing magnetic material Pending JP2016134498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008148A JP2016134498A (en) 2015-01-19 2015-01-19 Method of manufacturing magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008148A JP2016134498A (en) 2015-01-19 2015-01-19 Method of manufacturing magnetic material

Publications (1)

Publication Number Publication Date
JP2016134498A true JP2016134498A (en) 2016-07-25

Family

ID=56464503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008148A Pending JP2016134498A (en) 2015-01-19 2015-01-19 Method of manufacturing magnetic material

Country Status (1)

Country Link
JP (1) JP2016134498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101410A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Rare earth permanent magnet
WO2018101408A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Permanent magnet and permanent magnet powder
WO2018101409A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Rare-earth sintered magnet
CN114561524A (en) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 Heat treatment method for improving 2:17 type phase content of samarium-iron alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101410A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Rare earth permanent magnet
WO2018101408A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Permanent magnet and permanent magnet powder
WO2018101409A1 (en) * 2016-11-30 2018-06-07 Tdk株式会社 Rare-earth sintered magnet
CN110024056A (en) * 2016-11-30 2019-07-16 Tdk株式会社 Rare-earth sintered magnet
JPWO2018101409A1 (en) * 2016-11-30 2019-11-07 Tdk株式会社 Rare earth sintered magnet
CN114561524A (en) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 Heat treatment method for improving 2:17 type phase content of samarium-iron alloy
CN114561524B (en) * 2021-11-19 2022-10-21 杭州永磁集团有限公司 Heat treatment method for improving 2

Similar Documents

Publication Publication Date Title
TWI707048B (en) R-(Fe,Co)-B SINTERED MAGNET AND MAKING METHOD
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
Chen et al. Magnetic properties and microstructure of mechanically milled Sm 2 (Co, M) 17-based powders with M= Zr, Hf, Nb, V, Ti, Cr, Cu and Fe
JP5163630B2 (en) Rare earth magnet and manufacturing method thereof
JP2017535062A (en) Rare earth-free permanent magnetic material based on Fe-Ni
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JP2016058707A (en) Magnetic compound and method for manufacturing the same
JP2016134498A (en) Method of manufacturing magnetic material
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
JP4830972B2 (en) Method for producing isotropic iron-based rare earth alloy magnet
CN104078177B (en) Rare earth magnet
JP2020188140A (en) Rare earth cobalt permanent magnet and method for manufacturing the same, and device
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH11186012A (en) Rare-earth permanent magnet material and its manufacture
JP3303044B2 (en) Permanent magnet and its manufacturing method
Hou et al. Magnetic properties, phase evolution, and microstructure of the Co–Zr–V ribbons
JP2002294413A (en) Magnet material and manufacturing method therefor
JP2016132796A (en) Method for manufacturing magnetic material
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2017166018A (en) Neodymium-iron-boron-based alloy
JP2016032004A (en) Magnetic material, magnetic material manufacturing method and rare-earth magnet
JP6519300B2 (en) Rare earth permanent magnet and method of manufacturing rare earth permanent magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET
Bae et al. Characterization of Magnetic Properties of Low-Temperature Phase (LTP) Synthesized by Surfactant-Assisted Cryo-Milling Process in MnBi Binary System
JPH08144024A (en) Magnetic material having stable coercive force and its production