JP2016132796A - Method for manufacturing magnetic material - Google Patents

Method for manufacturing magnetic material Download PDF

Info

Publication number
JP2016132796A
JP2016132796A JP2015008147A JP2015008147A JP2016132796A JP 2016132796 A JP2016132796 A JP 2016132796A JP 2015008147 A JP2015008147 A JP 2015008147A JP 2015008147 A JP2015008147 A JP 2015008147A JP 2016132796 A JP2016132796 A JP 2016132796A
Authority
JP
Japan
Prior art keywords
phase
heat treatment
magnetic
less
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015008147A
Other languages
Japanese (ja)
Inventor
前田 徹
Toru Maeda
前田  徹
基 永沢
Motoki Nagasawa
基 永沢
高橋 研
Ken Takahashi
高橋  研
小川 智之
Tomoyuki Ogawa
智之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Tohoku University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Electric Industries Ltd filed Critical Tohoku University NUC
Priority to JP2015008147A priority Critical patent/JP2016132796A/en
Publication of JP2016132796A publication Critical patent/JP2016132796A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnetic material having excellent magnetic properties.SOLUTION: A method for manufacturing a magnetic material includes: a preparation step of preparing a Nd-Fe-B-based alloy; a magnetic heat treatment step of subjecting the Nd-Fe-B-based alloy to heat treatment at 300°C or more and 400°C or less while applying a magnetic field of 2T or more and 4T or less to the Nd-Fe-B-based alloy in an atmosphere not causing a reaction with Nd and Fe or in a reduced-pressure atmosphere; and a rapid heat treatment step of, after the magnetic heat treatment step, subjecting the Nd-Fe-B-based alloy to heat treatment of rapidly raising temperature from the heating temperature in the magnetic heat treatment step to 600°C or more and 800°C or less in 5 min in the atmosphere not causing a reaction with Nd and Fe or in the reduced-pressure atmosphere, maintaining the raised temperature for 2 min or more and 10 min or less, and then rapidly cooling to 500°C or less in 5 min.SELECTED DRAWING: Figure 1

Description

本発明は、希土類磁石の材料となる磁性材料の製造方法に関する。特に、磁気特性に優れる磁性材料の製造方法に関する。   The present invention relates to a method for producing a magnetic material that is a material for a rare earth magnet. In particular, the present invention relates to a method for producing a magnetic material having excellent magnetic properties.

モータや発電機などに使用される永久磁石として、希土類元素(RE)と鉄(Fe)とを含有する希土類−鉄系化合物を主相とする希土類−鉄系合金(RE−Fe系合金)を用いた希土類磁石が広く利用されている。希土類磁石としては、NdFe14B相を主相とするNdFe14B合金を用いたNd−Fe−B磁石(ネオジム磁石)が代表的である(特許文献1,2を参照)。 As a permanent magnet used in motors and generators, a rare earth-iron alloy (RE-Fe alloy) containing a rare earth-iron compound containing rare earth elements (RE) and iron (Fe) as a main phase is used. The rare earth magnets used are widely used. A typical rare earth magnet is an Nd—Fe—B magnet (neodymium magnet) using an Nd 2 Fe 14 B alloy having a Nd 2 Fe 14 B phase as a main phase (see Patent Documents 1 and 2).

また、希土類磁石の高性能化を目指して、ナノコンポジット磁石の研究が進められている(特許文献1を参照)。ナノコンポジット磁石は、ナノサイズの微細な軟磁性相と硬磁性相とを有し、例えば、両相がナノメートルオーダーの間隔で周期的に配置されたナノコンポジット組織を有する。ナノコンポジット磁石は、軟磁性相と硬磁性相との間に働く交換相互作用により軟磁性相が硬磁性相に束縛されて、軟磁性相と硬磁性相とがあたかも単相磁石のように振る舞う。その結果、軟磁性相が持つ高い磁化と硬磁性相が持つ高い保磁力とを併せ持つことができ、磁気特性に優れる磁性材料として期待されている。   In addition, research on nanocomposite magnets is underway with the aim of improving the performance of rare earth magnets (see Patent Document 1). The nanocomposite magnet has a nano-sized fine soft magnetic phase and hard magnetic phase, and has, for example, a nanocomposite structure in which both phases are periodically arranged at intervals of nanometer order. In nanocomposite magnets, the soft magnetic phase is bound to the hard magnetic phase by the exchange interaction between the soft magnetic phase and the hard magnetic phase, and the soft magnetic phase and the hard magnetic phase behave as if they were a single-phase magnet. . As a result, it is possible to have both the high magnetization of the soft magnetic phase and the high coercivity of the hard magnetic phase, which is expected as a magnetic material having excellent magnetic properties.

特許文献1には、急冷法によりアモルファス状態の急冷薄帯合金を作製した後、その合金に600℃以上の温度で熱処理を施すことで、Fe相からなる軟磁性相とNdFe14B相からなる硬磁性相とを含むナノコンポジット磁石を製造する方法が記載されている。 In Patent Document 1, an amorphous quenched ribbon alloy is prepared by a rapid cooling method, and then the alloy is subjected to a heat treatment at a temperature of 600 ° C. or higher so that a soft magnetic phase composed of an Fe phase and an Nd 2 Fe 14 B phase are obtained. A method for producing a nanocomposite magnet comprising a hard magnetic phase consisting of is described.

特開平11−97222号公報JP-A-11-97222 特開2014−146655号公報JP 2014-146655 A

希土類磁石の更なる高性能化が求められており、磁気特性に優れる磁性材料の開発が強く望まれている。   There is a demand for higher performance of rare earth magnets, and the development of magnetic materials with excellent magnetic properties is strongly desired.

上述のようにアモルファス状態の合金に熱処理を施すことで、ナノコンポジット組織を有する磁性材料を製造することができる。しかし、熱処理温度を高くすると、Fe相が粗大化し易く、磁気特性が低下する虞がある。一方、Fe相の粗大化を抑制するために熱処理温度を低くすると、Fe相やNdFe14B相の結晶性が悪化し、磁気特性の低下を招く。 As described above, a magnetic material having a nanocomposite structure can be produced by heat-treating an amorphous alloy. However, when the heat treatment temperature is increased, the Fe phase is likely to be coarsened and the magnetic properties may be deteriorated. On the other hand, if the heat treatment temperature is lowered in order to suppress the coarsening of the Fe phase, the crystallinity of the Fe phase and the Nd 2 Fe 14 B phase deteriorates, leading to a decrease in magnetic properties.

本発明は上記事情に鑑みてなされたもので、本発明の目的の一つは、磁気特性に優れる磁性材料の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is to provide a method for producing a magnetic material having excellent magnetic properties.

本発明の一態様に係る磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。準備工程は、Nd−Fe−B系合金を準備する工程である。磁場熱処理工程は、前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、300℃以上400℃以下の温度で熱処理を施す工程である。急速熱処理工程は、前記磁場熱処理工程の後、前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す工程である。   The manufacturing method of the magnetic material which concerns on 1 aspect of this invention is equipped with a preparatory process, a magnetic field heat treatment process, and a rapid heat treatment process. The preparation step is a step of preparing an Nd—Fe—B alloy. In the magnetic field heat treatment step, heat treatment is performed at a temperature of 300 ° C. or higher and 400 ° C. or lower while applying a magnetic field of 2T or more and 4T or less to the Nd—Fe—B alloy in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere. It is a process to apply. In the rapid heat treatment step, after the magnetic field heat treatment step, the Nd—Fe—B alloy is heated to 600 ° C. to 800 ° C. from the heating temperature in the magnetic field heat treatment step in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere. This is a step of performing a heat treatment in which the temperature is rapidly raised within 5 minutes, held at that temperature for 2 minutes to 10 minutes, and then rapidly cooled to 500 ° C. or less within 5 minutes.

上記磁性材料の製造方法は、磁気特性に優れる磁性材料を製造できる。   The method for producing a magnetic material can produce a magnetic material having excellent magnetic properties.

実施形態1の磁性材料の製造工程の一例を模式的に示す工程説明図である。FIG. 3 is a process explanatory view schematically showing an example of a manufacturing process of a magnetic material according to the first embodiment.

[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.

(1)実施形態に係る磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。準備工程は、Nd−Fe−B系合金を準備する工程である。磁場熱処理工程は、前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、300℃以上400℃以下の温度で熱処理を施す工程である。急速熱処理工程は、前記磁場熱処理工程の後、前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す工程である。   (1) The manufacturing method of the magnetic material which concerns on embodiment is equipped with a preparatory process, a magnetic field heat treatment process, and a rapid heat treatment process. The preparation step is a step of preparing an Nd—Fe—B alloy. In the magnetic field heat treatment step, heat treatment is performed at a temperature of 300 ° C. or higher and 400 ° C. or lower while applying a magnetic field of 2T or more and 4T or less to the Nd—Fe—B alloy in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere. It is a process to apply. In the rapid heat treatment step, after the magnetic field heat treatment step, the Nd—Fe—B alloy is heated to 600 ° C. to 800 ° C. from the heating temperature in the magnetic field heat treatment step in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere. This is a step of performing a heat treatment in which the temperature is rapidly raised within 5 minutes, held at that temperature for 2 minutes to 10 minutes, and then rapidly cooled to 500 ° C. or less within 5 minutes.

原料のNd−Fe−B系合金に熱処理を施すにあたり、磁場熱処理工程⇒急速熱処理工程という二段階の工程を行うことで、微細かつ結晶性の高いFe相およびNdFe14B相を含むナノコンポジット組織を有する磁性材料を得ることができる。まず、磁場熱処理工程において、磁場を印加しながら熱処理を施すことで、磁場中でのエネルギー安定性の高いFe相が析出する。このとき、300℃以上400℃以下といった低温で熱処理を施すため、Fe相の粗大化を抑制でき、微細なFe相を析出できる。低温であっても磁場を印加することによって、Fe相は、熱エネルギーによって析出できない分、磁場のエネルギーによって析出することができる。また、磁場を印加することによって、Fe相は強制的に析出させられるため、例えば、原料のNd−Fe−B系合金のFeの含有量がNdFe14Bの化学量論組成よりも少ない場合であっても、Fe相は十分に析出することができる。次に、急速熱処理工程において、急速な昇温⇒短時間での高温保持⇒急速な冷却を行うことで、Fe相を粗大化させずに、Fe相およびNdFe14B相の結晶化を促進しでき、微細かつ結晶性の高いFe相およびNdFe14B相を生成できる。以上より、Fe相を粗大化させずに十分に析出でき、Fe相およびNdFe14B相を含むナノコンポジット組織を生成できることで、残留磁化を向上させることができる。 When heat-treating the raw material Nd—Fe—B-based alloy, a nano-process including a fine and highly crystalline Fe phase and a Nd 2 Fe 14 B phase is performed by performing a two-step process of a magnetic field heat treatment step → a rapid heat treatment step. A magnetic material having a composite structure can be obtained. First, in the magnetic field heat treatment step, by performing heat treatment while applying a magnetic field, an Fe phase having high energy stability in the magnetic field is precipitated. At this time, since heat treatment is performed at a low temperature of 300 ° C. or more and 400 ° C. or less, coarsening of the Fe phase can be suppressed and a fine Fe phase can be precipitated. By applying a magnetic field even at a low temperature, the Fe phase can be precipitated by the energy of the magnetic field because it cannot be precipitated by the thermal energy. Moreover, since the Fe phase is forcibly precipitated by applying a magnetic field, for example, the Fe content of the raw material Nd—Fe—B alloy is smaller than the stoichiometric composition of Nd 2 Fe 14 B. Even in this case, the Fe phase can be sufficiently precipitated. Next, in the rapid heat treatment process, rapid temperature rise ⇒high temperature retention in a short time ⇒rapid cooling allows the Fe phase and Nd 2 Fe 14 B phase to be crystallized without coarsening the Fe phase. The Fe phase and the Nd 2 Fe 14 B phase that can be promoted and have high crystallinity can be generated. As described above, since the Fe phase can be sufficiently precipitated without coarsening, and a nanocomposite structure including the Fe phase and the Nd 2 Fe 14 B phase can be generated, the residual magnetization can be improved.

(2)実施形態の磁性材料の製造方法として、前記準備工程におけるNd−Fe−B系合金は、Ndの含有量が15.3質量%以上33質量%以下、Feの含有量が65.6質量%以上84.4質量%以下、Bの含有量が0.3質量%以上1.8質量%以下であることが挙げられる。   (2) As a method for producing a magnetic material according to the embodiment, the Nd—Fe—B alloy in the preparation step has an Nd content of 15.3% by mass to 33% by mass and an Fe content of 65.6. It is mentioned that the content of B is 0.3% by mass or more and 1.8% by mass or less.

原料のNd−Fe−B系合金を構成する各元素の含有量が上記範囲であることで、NdFe14B相を生成し易く、Fe相およびNdFe14B相を含むナノコンポジット組織を有する磁性材料を製造し易い。 When the content of each element constituting the raw material Nd—Fe—B alloy is in the above range, a Nd 2 Fe 14 B phase is easily generated, and a nanocomposite structure including the Fe phase and the Nd 2 Fe 14 B phase It is easy to manufacture a magnetic material having

(3)実施形態の磁性材料の製造方法として、前記準備工程におけるNd−Fe−B系合金は、非晶質状態、または非晶質と平均結晶粒径が300nm以下の結晶質とが混在した状態であることが挙げられる。   (3) As a method for producing a magnetic material according to the embodiment, the Nd—Fe—B alloy in the preparation step is in an amorphous state or mixed with an amorphous and crystalline material having an average crystal grain size of 300 nm or less. State.

原料のNd−Fe−B系合金が非晶質状態を有することで、ナノコンポジット組織を有する磁性材料を容易に製造できる。   Since the Nd—Fe—B alloy as a raw material has an amorphous state, a magnetic material having a nanocomposite structure can be easily manufactured.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

<実施形態1>
〔磁性材料の製造方法〕
実施形態1の磁性材料の製造方法は、準備工程と、磁場熱処理工程と、急速熱処理工程とを備える。以下、図1に基づいて、各工程について詳しく説明する。
<Embodiment 1>
[Method of manufacturing magnetic material]
The manufacturing method of the magnetic material of Embodiment 1 includes a preparation step, a magnetic field heat treatment step, and a rapid heat treatment step. Hereafter, each process is demonstrated in detail based on FIG.

(準備工程)
準備工程は、NdとFeとBとを含有するNd−Fe−B系合金を準備する工程である。Nd−Fe−B系合金は、Ndの含有量が15.3質量%以上33質量%以下、Feの含有量が65.6質量%以上84.4質量%以下、Bの含有量が0.3質量%以上1.8質量%以下であることが挙げられる。Nd−Fe−B系合金が、NdFe14Bの化学量論組成よりもFeを少なく含む場合であっても、後述する磁場熱処理工程において磁場を印加しながら熱処理を施すため、Fe相を十分に析出でき残留磁化を向上することができる。NdFe14Bの化学量論組成よりもFeを少なく含む場合、Feの含有量は、例えば、66質量%以上72.3質量%以下程度が挙げられる。一方、Nd−Fe−B系合金が、NdFe14Bの化学量論組成よりもFeを多く含むと、後述する磁場熱処理工程において、Fe相をさらに多く析出して残留磁化を向上させ易い。NdFe14Bの化学量論組成よりもFeを多く含む場合、Feの含有量は、例えば、72.3質量%以上84.1質量%以下程度が挙げられる。なお、Ndの一部を原子比が変わらないように、その他の希土類元素で置換してもよい。また、Feの一部を原子比が変わらないように、Al,Si,Ti,V,Cr,Mn,Co,Ni,Cu,Zn,Ga,Zr,Nb,Moなどで置換してもよい。
(Preparation process)
The preparation step is a step of preparing an Nd—Fe—B alloy containing Nd, Fe, and B. The Nd-Fe-B alloy has an Nd content of 15.3% to 33% by mass, an Fe content of 65.6% to 84.4% by mass, and a B content of 0.8. It is mentioned that they are 3 mass% or more and 1.8 mass% or less. Even when the Nd—Fe—B based alloy contains Fe less than the stoichiometric composition of Nd 2 Fe 14 B, the Fe phase is used for heat treatment while applying a magnetic field in the magnetic field heat treatment step described later. Sufficient precipitation can be achieved and the residual magnetization can be improved. When Fe is contained less than the stoichiometric composition of Nd 2 Fe 14 B, the Fe content is, for example, about 66 mass% or more and 72.3 mass% or less. On the other hand, if the Nd—Fe—B alloy contains more Fe than the stoichiometric composition of Nd 2 Fe 14 B, it is easy to improve the residual magnetization by precipitating more Fe phase in the magnetic field heat treatment step described later. . When Fe is contained more than the stoichiometric composition of Nd 2 Fe 14 B, the Fe content is, for example, about 72.3 mass% or more and 84.1 mass% or less. A part of Nd may be substituted with other rare earth elements so that the atomic ratio does not change. Further, a part of Fe may be replaced with Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo or the like so that the atomic ratio does not change.

Nd−Fe−B系合金は、非晶質状態、または非晶質と平均結晶粒径が300nm以下の結晶質とが混在した状態であることが挙げられる。非晶質と結晶質のNdFe14B相が混在した状態とは、非晶質中に結晶質のNdFe14B相が分散された状態などが挙げられる。結晶質の場合、平均結晶粒径が300nm以下であることで、後述する熱処理において、Fe相の析出、Fe相およびNdFe14B相の結晶化が起こり易い。 The Nd—Fe—B-based alloy may be in an amorphous state or a state in which amorphous and a crystalline material having an average crystal grain size of 300 nm or less are mixed. Examples of the state where the amorphous and crystalline Nd 2 Fe 14 B phases coexist include a state where the crystalline Nd 2 Fe 14 B phase is dispersed in the amorphous. In the case of a crystalline material, when the average crystal grain size is 300 nm or less, precipitation of the Fe phase and crystallization of the Fe phase and the Nd 2 Fe 14 B phase are likely to occur in the heat treatment described later.

Nd−Fe−B系合金は、上記組成範囲となるように配合した合金の溶湯を超急冷法により急冷することで得られる。超急冷法としては、メルトスパン法が挙げられる。冷却速度は、例えば2×10℃/秒以上、好ましくは1×10℃/秒以上である。図1の左図に示すように、メルトスパン法で得られたNd−Fe−B系合金(急冷薄帯30)は適宜粉砕して、Nd−Fe−B系合金粉末20としてもよい。Nd−Fe−B系合金粉末30の平均粒子径は、例えば5μm以上50μm以下、好ましくは10μm以上30μm以下である。「平均粒子径」とは、レーザ回折法で測定された体積基準の粒度分布において、小径側から累積体積が50%になる粒子径(D50:50体積%粒径)のことである。Nd−Fe−B系合金の粉砕は、例えばジェットミル、ボールミル、ハンマーミル、ブラウンミル、ピンミル、ディスクミル、ジョークラッシャーなどの公知の粉砕機を用いることができる。Nd−Fe−B系合金の段階では粉砕せず、磁性材料の製造後、磁性材料を粉砕して粉末にしてもよい。 The Nd—Fe—B alloy can be obtained by quenching a molten alloy blended so as to be in the above composition range by a super quenching method. Examples of the ultra-quenching method include a melt span method. The cooling rate is, for example, 2 × 10 5 ° C./second or more, preferably 1 × 10 6 ° C./second or more. As shown in the left diagram of FIG. 1, the Nd—Fe—B alloy (quenched ribbon 30) obtained by the melt span method may be appropriately pulverized to obtain an Nd—Fe—B alloy powder 20. The average particle size of the Nd—Fe—B alloy powder 30 is, for example, 5 μm or more and 50 μm or less, preferably 10 μm or more and 30 μm or less. The “average particle diameter” is a particle diameter (D50: 50 volume% particle diameter) at which the cumulative volume is 50% from the small diameter side in the volume-based particle size distribution measured by the laser diffraction method. For the pulverization of the Nd—Fe—B alloy, a known pulverizer such as a jet mill, a ball mill, a hammer mill, a brown mill, a pin mill, a disk mill, or a jaw crusher can be used. The magnetic material may be pulverized into powder after the magnetic material is manufactured without being pulverized at the stage of the Nd—Fe—B alloy.

(磁場熱処理工程)
磁場熱処理工程は、図1の中図に示すように、Nd−Fe−B系合金粉末20に、不活性雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、300℃以上400℃以下の温度で熱処理を施す工程である。300℃以上400℃以下といった低温で磁場を印加しながら熱処理を施すことで、Fe相が粗大化せずに、磁場中でのエネルギー安定性の高いFe相が析出する。
(Magnetic heat treatment process)
As shown in the middle diagram of FIG. 1, the magnetic field heat treatment step is performed at 300 ° C. or more and 400 ° C. while applying a magnetic field of 2T or more and 4T or less to the Nd—Fe—B-based alloy powder 20 in an inert atmosphere or a reduced pressure atmosphere. This is a step of performing heat treatment at a temperature of ℃ or less. By performing heat treatment while applying a magnetic field at a low temperature of 300 ° C. or more and 400 ° C. or less, the Fe phase does not become coarse, and an Fe phase having high energy stability in the magnetic field is precipitated.

雰囲気は、NdおよびFeと反応しない雰囲気または減圧雰囲気とする。NdおよびFeと反応しない雰囲気は、酸素や水素、窒素を含まない雰囲気であり、Arが挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいい、最終真空度は10Pa以下、さらに1Pa以下が好ましい。   The atmosphere is an atmosphere that does not react with Nd and Fe or a reduced pressure atmosphere. The atmosphere that does not react with Nd and Fe is an atmosphere that does not contain oxygen, hydrogen, or nitrogen, and includes Ar. The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less, and more preferably 1 Pa or less.

加熱温度は、300℃以上400℃以下とする。加熱温度が300℃以上であると、Fe相の析出を行うことができる。一方、加熱温度が400℃以下であることで、Fe相の粗大化を抑制でき、さらに330℃以下とすることが挙げられる。この加熱温度への昇温速度は特に問わない。熱処理の保持時間は、30分以上10時間以下が挙げられる。加熱温度が低いことでFe相の析出がし難いため、保持時間は30分以上とする。一方、10時間以下とすることで、保持時間が過度に長くなることなく十分にFe相を析出することができる。この保持時間は、1時間以上3時間以下が好ましい。   The heating temperature is 300 ° C. or higher and 400 ° C. or lower. When the heating temperature is 300 ° C. or higher, the Fe phase can be precipitated. On the other hand, when the heating temperature is 400 ° C. or lower, it is possible to suppress the coarsening of the Fe phase and further to 330 ° C. or lower. The rate of temperature increase to the heating temperature is not particularly limited. Examples of the heat treatment holding time include 30 minutes or more and 10 hours or less. Since the Fe phase is difficult to precipitate due to the low heating temperature, the holding time is 30 minutes or more. On the other hand, when the time is 10 hours or less, the Fe phase can be sufficiently precipitated without excessively increasing the holding time. This holding time is preferably 1 hour or more and 3 hours or less.

印加磁場は、2T以上4T以下とする。加熱温度が低温であることで熱エネルギーによってFe相は析出し難いが、2T以上の磁場を印加することで、磁場のエネルギーによってFe相は析出する。つまり、Fe相は、熱エネルギーによって析出できない分、磁場のエネルギーによって析出することができる。そのため、低温であっても、十分にFe相は析出できる。また、例えば、原料のNd−Fe−B系合金のFeの含有量がNdFe14Bの化学量論組成よりも少ない場合であっても、十分にFe相は析出できる。一方、磁場が4T以下であることで、Fe相の粗大化を抑制できる。このような磁場は、例えば、高温超電導磁石を用いることで安定して形成することができる。 The applied magnetic field is 2T or more and 4T or less. When the heating temperature is low, the Fe phase is hardly precipitated by thermal energy, but by applying a magnetic field of 2T or more, the Fe phase is precipitated by the magnetic field energy. That is, the Fe phase can be deposited by the energy of the magnetic field as much as it cannot be deposited by thermal energy. Therefore, the Fe phase can be sufficiently precipitated even at a low temperature. Further, for example, even if the Fe content of the raw material Nd—Fe—B alloy is less than the stoichiometric composition of Nd 2 Fe 14 B, the Fe phase can be sufficiently precipitated. On the other hand, when the magnetic field is 4T or less, coarsening of the Fe phase can be suppressed. Such a magnetic field can be stably formed by using, for example, a high-temperature superconducting magnet.

特に、加熱温度と印加磁場とは、加熱温度が低いときには印加磁場を大きくし、加熱温度が高いときには印加磁場を小さくすることで、熱エネルギーと磁場エネルギーとによって、効果的にFe相を粗大化せずに析出することができる。   In particular, the heating temperature and the applied magnetic field effectively increase the applied magnetic field when the heating temperature is low, and reduce the applied magnetic field when the heating temperature is high, thereby effectively coarsening the Fe phase by heat energy and magnetic field energy. It can precipitate without.

Fe相の平均粒径は、実質的に、この磁場熱処理工程によって決まる。Fe相の平均粒径は、150nm以下、好ましくは100nm以下であることが挙げられる。   The average particle size of the Fe phase is substantially determined by this magnetic field heat treatment step. The average particle diameter of the Fe phase is 150 nm or less, preferably 100 nm or less.

(急速熱処理工程)
急速熱処理工程は、図1の右図に示すように、Nd−Fe−B系合金粉末20に、急速な昇温(低温T→高温T)⇒短時間での高温保持(高温T)⇒急速な冷却(500℃以下)を行う工程である。この急速熱処理工程は、磁場熱処理工程の後に連続して行う。つまり、急速な昇温を行う前の低温Tとは、磁場熱処理工程における加熱温度のことである。急速な昇温および短時間での高温保持によって、Fe相を粗大化させずに、Fe相およびNdFe14B相の結晶化を促進でき、微細かつ結晶性の高いFe相およびNdFe14B相を生成できる。
(Rapid heat treatment process)
In the rapid heat treatment step, as shown in the right diagram of FIG. 1, the Nd—Fe—B-based alloy powder 20 is rapidly heated (low temperature T 1 → high temperature T 2 ) → high temperature holding in a short time (high temperature T 2). ) ⇒This is a process of rapid cooling (500 ° C or less). This rapid heat treatment step is performed continuously after the magnetic field heat treatment step. That is, the low temperature T 1 of the before performing rapid heating, is that the heating temperature in the magnetic field heat treatment step. Rapid temperature increase and high temperature holding in a short time can promote crystallization of the Fe phase and the Nd 2 Fe 14 B phase without coarsening the Fe phase, and the fine and highly crystalline Fe phase and Nd 2 Fe 14 B phase can be generated.

雰囲気は、磁場熱処理工程と同様に、NdおよびFeと反応しない雰囲気または減圧雰囲気とする。NdおよびFeと反応しない雰囲気は、酸素や水素、窒素を含まない雰囲気であり、Arが挙げられる。減圧雰囲気は、標準の大気雰囲気よりも圧力を低下させた真空状態をいい、最終真空度は10Pa以下、さらに1Pa以下が好ましい。   As in the magnetic field heat treatment step, the atmosphere is an atmosphere that does not react with Nd and Fe or a reduced pressure atmosphere. The atmosphere that does not react with Nd and Fe is an atmosphere that does not contain oxygen, hydrogen, or nitrogen, and includes Ar. The reduced pressure atmosphere refers to a vacuum state in which the pressure is lower than that of a standard air atmosphere, and the final vacuum is preferably 10 Pa or less, and more preferably 1 Pa or less.

まず、Nd−Fe−B系合金粉末20に、磁場熱処理工程における加熱温度T(300℃以上400℃以下)から600℃以上800℃以下の高温Tまで5分以内に急速に昇温する。昇温速度としては、40℃/分以上、さらに60℃/分以上、80℃/分以上、100℃/分以上とすることが挙げられる。昇温時間tは5分以内であれば特に問わない。 First, the Nd—Fe—B-based alloy powder 20 is rapidly heated within 5 minutes from the heating temperature T 1 (300 ° C. to 400 ° C.) in the magnetic field heat treatment step to the high temperature T 2 of 600 ° C. to 800 ° C. . Examples of the heating rate include 40 ° C./min or more, 60 ° C./min or more, 80 ° C./min or more, or 100 ° C./min or more. Heating time t 1 is not particularly limited if it is within 5 minutes.

高温Tとなったら、その温度Tで2分以上10分以下保持する(図1右図のt−t間)。そうすると、Fe相およびNdFe14B相の結晶化が起こり、Fe相からなる軟磁性相11と、NdFe14B相からなる硬磁性相12とを含む結晶相を含有する複合組織が形成され、軟磁性相と硬磁性相とがコンポジット化した組織となる。急速熱処理工程は、磁場を印加せずに行うことが好ましい。磁場を印加すると、Fe相が粗大化するためである。 When a high temperature T 2, holding the temperature T 2 in 10 minutes or less than 2 minutes (between t 1 -t 2 of Fig. 1 right panel). Then, crystallization of the Fe phase and the Nd 2 Fe 14 B phase occurs, and a composite structure containing a crystal phase including the soft magnetic phase 11 made of Fe phase and the hard magnetic phase 12 made of Nd 2 Fe 14 B phase is formed. The resulting structure is a composite of a soft magnetic phase and a hard magnetic phase. The rapid heat treatment step is preferably performed without applying a magnetic field. This is because the Fe phase becomes coarse when a magnetic field is applied.

その後、500℃以下まで5分以内に急速に冷却する。そうすることで、コンポジット化されたFe相およびNdFe14B相の粗大化を抑制でき、微細かつ結晶性の高いFe相(軟磁性相11)およびNdFe14B相(硬磁性相12)のコンポジット化した組織の磁性材料10を得ることができる。冷却速度としては、20℃/分以上、さらに60℃/分以上とすることが挙げられる。500℃以下とするまでの冷却時間tは5分以内であれば特に問わない。500℃以下となれば、それ以降の冷却速度は特に問わない。 Then, it cools rapidly within 5 minutes to 500 degrees C or less. By doing so, the coarsening of the composite Fe phase and Nd 2 Fe 14 B phase can be suppressed, and the fine and highly crystalline Fe phase (soft magnetic phase 11) and Nd 2 Fe 14 B phase (hard magnetic phase) The magnetic material 10 having a composite structure of 12) can be obtained. Examples of the cooling rate include 20 ° C./min or more, and further 60 ° C./min or more. Cooling time t 3 until the 500 ° C. or less is not particularly limited if it is within 5 minutes. If it becomes 500 degrees C or less, the cooling rate after that will not be ask | required in particular.

急速熱処理工程は、磁場熱処理工程の後に常温に冷却し、常温から再加熱して高温Tとしてもよい。その場合であっても、常温から昇温して、温度Tとなってからの高温Tへの急速な昇温⇒短時間での高温保持⇒急速な冷却は必須である。急速熱処理工程は、上述したように、磁場熱処理工程の後に連続して行う方が効率的である。 Rapid thermal process is cooled to room temperature after the magnetic field annealing process may be a high temperature T 2, and then re-heated from room temperature. Even in such a case, it is essential to raise the temperature from room temperature and then rapidly raise the temperature to T 2 after reaching temperature T 1 ⇒ hold the high temperature in a short time ⇒ rapid cooling. As described above, it is more efficient to perform the rapid heat treatment step continuously after the magnetic field heat treatment step.

〔磁性材料〕
上述した磁性材料の製造方法によって得られた磁性材料10は、図1の右拡大図に示されるように、Fe相からなる軟磁性相11と、NdFe14B相からなる硬磁性相12とを含む結晶相を含有する。Fe相は、例えばα−Fe相である。硬磁性相12は、NdFe14B相の結晶粒である。なお、図1において、軟磁性相11と硬磁性相12との区別を明確にするために、軟磁性相11にはハッチングを付している。
[Magnetic material]
The magnetic material 10 obtained by the magnetic material manufacturing method described above includes a soft magnetic phase 11 made of Fe phase and a hard magnetic phase 12 made of Nd 2 Fe 14 B phase, as shown in the enlarged right view of FIG. A crystal phase containing The Fe phase is, for example, an α-Fe phase. The hard magnetic phase 12 is a crystal grain of the Nd 2 Fe 14 B phase. In FIG. 1, the soft magnetic phase 11 is hatched to clarify the distinction between the soft magnetic phase 11 and the hard magnetic phase 12.

磁性材料10は、結晶相として、Fe相からなる軟磁性相11とNdFe14B相からなる硬磁性相12とを含有し、両相が混在する複合組織(コンポジット組織)である。高磁化を有するFe相(軟磁性相11)と高保磁力を有するNdFe14B相(硬磁性相12)とが混在する複合組織であることで、両相の間に働く交換相互作用より両相が交換結合して、高磁化と高保磁力とを併せ持つ磁気特性を有することが可能であり、磁気特性を改善できる。 The magnetic material 10 has a composite structure (composite structure) in which a soft magnetic phase 11 made of an Fe phase and a hard magnetic phase 12 made of an Nd 2 Fe 14 B phase are contained as crystal phases, and both phases are mixed. Since it is a composite structure in which an Fe phase having a high magnetization (soft magnetic phase 11) and an Nd 2 Fe 14 B phase having a high coercive force (hard magnetic phase 12) are mixed, the exchange interaction acting between the two phases Both phases are exchange-coupled to have a magnetic characteristic having both high magnetization and high coercive force, and the magnetic characteristic can be improved.

特に、磁性材料10は、軟磁性相11と硬磁性相12とがナノサイズであり、軟磁性相11と硬磁性相12とのナノコンポジット組織を有することが好ましい。ナノコンポジット組織を有することで、軟磁性相と硬磁性相との間に強い交換相互作用が働き、両相の交換結合により高磁化と高保磁力とを併せ持つことができ、磁気特性を更に改善できる。「ナノサイズ」とは、平均結晶粒径(結晶粒サイズ)が300nm以下、さらに150nm以下、特に100nmであることを意味する。磁性材料10中の磁性相の平均結晶粒径(結晶粒サイズ)は、X線回折(XRD)による回折ピークの半値幅からシェラーの式を用いて求めることができる。ナノコンポジット組織としては、例えば、軟磁性相と硬磁性相とが層状に交互に配列した周期構造を有する形態や、粒状の軟磁性相が硬磁性相中に分散した分散構造を有する形態が挙げられる。磁性材料の組織構造としては、分散構造よりも周期構造の方が硬磁性相の周期間隔が小さくなり、磁気特性的に好ましいと考えられる。   In particular, the magnetic material 10 preferably has a nano-sized soft magnetic phase 11 and a hard magnetic phase 12 and has a nanocomposite structure of the soft magnetic phase 11 and the hard magnetic phase 12. By having a nanocomposite structure, a strong exchange interaction works between the soft magnetic phase and the hard magnetic phase, and both the high-magnetization and high coercive force can be achieved by the exchange coupling of both phases, thereby further improving the magnetic properties. . “Nanosize” means that the average crystal grain size (crystal grain size) is 300 nm or less, more preferably 150 nm or less, and particularly 100 nm. The average crystal grain size (crystal grain size) of the magnetic phase in the magnetic material 10 can be obtained from the half-value width of the diffraction peak by X-ray diffraction (XRD) using the Scherrer equation. Examples of the nanocomposite structure include a form having a periodic structure in which soft magnetic phases and hard magnetic phases are alternately arranged in layers, and a form having a dispersed structure in which granular soft magnetic phases are dispersed in the hard magnetic phase. It is done. As the texture structure of the magnetic material, it is considered that the periodic structure is preferable to the magnetic characteristics because the periodic interval of the hard magnetic phase is smaller than the dispersed structure.

<試験例>
以下の準備工程⇒磁場熱処理工程⇒急速熱処理工程という手順で磁性材料(試料No.1〜No.22)を作製し、得られた磁性材料の磁気特性およびFe相(α−Fe相)の平均結晶粒径を調べた。また、比較例として、磁場熱処理工程を行わず、準備工程⇒急速熱処理工程という手順で磁性材料(試料No.23〜35)を作製し、得られた磁性材料の磁気特性およびFe相(α−Fe相)の平均結晶粒径を調べた。
<Test example>
Magnetic materials (samples No. 1 to No. 22) were prepared by the following preparation step ⇒ magnetic field heat treatment step ⇒ rapid heat treatment step, and the magnetic properties of the obtained magnetic material and the average of the Fe phase (α-Fe phase) The crystal grain size was examined. In addition, as a comparative example, a magnetic material (sample No. 23 to 35) was prepared by a procedure of preparation step ⇒ rapid heat treatment step without performing the magnetic field heat treatment step, and the magnetic properties and Fe phase (α− The average crystal grain size of (Fe phase) was examined.

準備工程では、原料のNd−Fe−B系合金を準備する。25質量%Nd、1質量%B、5質量%Co、0.5質量%Ga含有し、残部がFeおよび不可避不純物からなる組成を有する合金の溶湯を、メルトスパン法により急冷(冷却速度5×10℃/秒以上)して、厚み10μm程度の急冷薄帯のNd−Fe−B系合金を作製した。このNd−Fe−B系合金は、非晶質合金である。 In the preparation step, a raw material Nd—Fe—B alloy is prepared. A melt of an alloy containing 25% by mass Nd, 1% by mass B, 5% by mass Co, 0.5% by mass Ga and the balance comprising Fe and inevitable impurities is rapidly cooled by a melt span method (cooling rate 5 × 10 5 ° C./second or more) to prepare a quenched ribbon Nd—Fe—B alloy having a thickness of about 10 μm. This Nd—Fe—B alloy is an amorphous alloy.

磁場熱処理工程では、Nd−Fe−B系合金に、アルゴン雰囲気中、表1および表2に示す磁場を印加しながら、表1および表2に示す温度Tで熱処理を施した。この加熱温度Tの保持時間は3時間とした。試料No.23〜35では、この工程は行わなかった。 In the magnetic field heat treatment step, the Nd—Fe—B alloy was subjected to heat treatment at a temperature T 1 shown in Tables 1 and 2 while applying a magnetic field shown in Tables 1 and 2 in an argon atmosphere. Retention time of the heating temperatures T 1 was 3 hours. Sample No. In 23-35, this step was not performed.

急速熱処理工程では、加熱温度Tでの熱処理に連続して、5分以内に表1および表2に示す温度Tまで昇温し、その温度Tで表1および表2に示す保持時間で保持し、さらに5分以内に500℃以下まで冷却した。試料No.23〜35では、室温から温度Tまでを5分以内に昇温した。以上のようにして、表1および表2に示す試料No.1〜No.35の磁性材料を製造した。 The rapid thermal process, continuous heat treatment at a heating temperature T 1, the temperature was raised to within 5 minutes temperature T 2 shown in Table 1 and Table 2, the retention time indicated by the temperature T 2 in Table 1 and Table 2 And cooled to 500 ° C. or lower within 5 minutes. Sample No. In 23-35, the temperature was raised within 5 minutes from room temperature to the temperature T 2. As described above, the sample Nos. Shown in Tables 1 and 2 were used. 1-No. 35 magnetic materials were produced.

試料No.1〜No.35の磁性材料について、磁気特性を評価した。具体的には、振動試料型磁力計(東英工業株式会社製 VSM−5SC−5HF型)を用いて残留磁化(T)および保磁力(kA/m)を測定した。各試料の残留磁化および保磁力を表1および表2に示す。   Sample No. 1-No. The magnetic properties of 35 magnetic materials were evaluated. Specifically, residual magnetization (T) and coercive force (kA / m) were measured using a vibration sample type magnetometer (VSM-5SC-5HF type manufactured by Toei Kogyo Co., Ltd.). Tables 1 and 2 show the remanent magnetization and coercive force of each sample.

また、試料No.1〜No.35の磁性材料について、XRD装置(株式会社リガク製 SmartLab)を用いて結晶相の分析を行うと共に、XRDによる回折ピークの半値幅からシェラーの式を用いてFe相(α−Fe相)の平均結晶粒径(結晶粒サイズ)を求めた。各試料のFe相の平均結晶粒径を表1および表2に示す。   Sample No. 1-No. For 35 magnetic materials, the crystal phase was analyzed using an XRD apparatus (SmartLab, manufactured by Rigaku Corporation), and the average of the Fe phase (α-Fe phase) was calculated using the Scherrer formula from the half-value width of the diffraction peak by XRD. The crystal grain size (crystal grain size) was determined. Tables 1 and 2 show the average crystal grain size of the Fe phase of each sample.

Figure 2016132796
Figure 2016132796

Figure 2016132796
Figure 2016132796

XRDによる結晶相分析の結果から、2T以上4T以下の磁場を印加しながら300℃以上400℃以下の熱処理⇒600℃以上800℃以下まで急速に昇温⇒2分以上10分以下保持⇒500℃以下まで急速に冷却、を行った試料No.1〜11は、結晶相として、Fe相およびNdFe14B相の存在が確認でき、Fe相(軟磁性相)とNdFe14B相(硬磁性相)とが混在する組織(コンポジット組織)となっていた。これに対し、磁場熱処理において磁場が小さい試料No.14,15や、磁場熱処理を行わずかつ急速熱処理での加熱温度が低い試料No.23,24ではコンポジット組織とはなっていなかった。 From the results of crystal phase analysis by XRD, heat treatment from 300 ° C. to 400 ° C. while applying a magnetic field of 2T or more and 4T or less ⇒Raise the temperature rapidly from 600 ° C. to 800 ° C.⇒Hold from 2 minutes to 10 minutes⇒500 ° C. Sample No. which was rapidly cooled to below 1 to 11 can confirm the presence of an Fe phase and an Nd 2 Fe 14 B phase as crystal phases, and have a structure in which an Fe phase (soft magnetic phase) and an Nd 2 Fe 14 B phase (hard magnetic phase) are mixed (composite) Organization). On the other hand, Sample No. with a small magnetic field in the magnetic field heat treatment. No. 14 and 15 and sample Nos. 1 and 2 that do not perform magnetic field heat treatment and have a low heating temperature in rapid heat treatment. 23 and 24 were not composite structures.

試料No.1〜11は、残留磁化が0.80T以上で、かつ保磁力が680kA/m以上であった。これに対し、磁場熱処理の加熱温度が低い試料No.12、磁場熱処理の加熱温度が高い試料No.13、磁場熱処理の印加磁場が小さい試料No,14,15、磁場熱処理の印加磁場が大きい試料No.16,17、急速熱処理の保持時間が短い試料No.18、急速熱処理の保持時間が長い試料No.19,20、急速熱処理の加熱温度が低い試料No.21、急速熱処理の加熱温度が高い試料No.22、磁場熱処理を行わなかった試料No.23〜35は、残留磁化が0.80T未満と低かった。それは、微細なFe相を十分に析出することができなかったからと考えられる。試料No.1〜11は、Fe相とNdFe14B相とが混在するコンポジット組織となっていることで高い保磁力を確保でき、さらに微細なFe相を十分に析出できたことで残留磁化が向上したと考えられる。 Sample No. 1 to 11 had a residual magnetization of 0.80 T or more and a coercive force of 680 kA / m or more. On the other hand, Sample No. with a low heating temperature of the magnetic field heat treatment. 12. Sample No. with high heating temperature of magnetic field heat treatment 13. Sample Nos. 14, 15 with small applied magnetic field of magnetic field heat treatment, Sample Nos. 14, 15 with large applied magnetic field of magnetic field heat treatment. 16, 17 and Sample No. with short heat treatment holding time. 18. Sample No. 18 with a long holding time for rapid thermal processing 19, 20 and sample No. with low heating temperature of rapid thermal processing. 21, Sample No. with high heating temperature of rapid thermal processing 22, Sample No. which was not subjected to magnetic field heat treatment In Nos. 23 to 35, the residual magnetization was as low as less than 0.80T. This is probably because the fine Fe phase could not be sufficiently precipitated. Sample No. Nos. 1 to 11 have a composite structure in which the Fe phase and the Nd 2 Fe 14 B phase coexist, so that a high coercive force can be secured, and further, a fine Fe phase can be sufficiently precipitated to improve the residual magnetization. It is thought that.

また、試料No.1〜11は、Fe相の平均結晶粒径は150nm以下であり、NdFe14B相の平均結晶粒径も150nm以下であった。特に、3T以下の磁場を印加しながら350℃以下の磁場熱処理を行い、その後に700℃以下の急速熱処理を行った試料No.1〜3,6,8〜10は、Fe相の平均結晶粒径が100nm以下であり、さらに微細な組織となっていた。それは、磁場熱処理において加熱温度が低く、さらに磁場も小さいことで、Fe相の粗大化がより抑制されたからと考えられる。これに対し、磁場熱処理⇒急速熱処理の二段階の熱処理を行った場合で、磁場熱処理での加熱温度が高い試料No.13、磁場熱処理での磁場が大きい試料No.16,17、急速熱処理での加熱温度が高い試料No.22、急速熱処理での保持時間が長い試料No.19,20では、Fe相の平均結晶粒径は150nm超と粗大化していた。磁場熱処理⇒急速熱処理の二段階の熱処理を行った場合で、磁場熱処理での加熱温度が低い試料No.12、急速熱処理での保持時間が短い試料No.18、急速熱処理での加熱温度が低い試料No.21では、Fe相の平均結晶粒径は100nm未満と小さいが、Fe相が十分に析出・結晶化されていないため、残留磁化が小さくなったと考えられる。 Sample No. 1 to 11, the average crystal grain size of the Fe phase was 150 nm or less, and the average crystal grain size of the Nd 2 Fe 14 B phase was also 150 nm or less. In particular, sample No. 1 was subjected to magnetic field heat treatment at 350 ° C. or lower while applying a magnetic field at 3 T or lower, and then subjected to rapid heat treatment at 700 ° C. or lower. 1 to 3, 6, 8 to 10 had an average crystal grain size of Fe phase of 100 nm or less, and had a finer structure. This is presumably because the coarsening of the Fe phase was further suppressed by the low heating temperature and the small magnetic field in the magnetic field heat treatment. On the other hand, in the case where the two-stage heat treatment of the magnetic field heat treatment → rapid heat treatment is performed, the sample No. 13. Sample No. with a large magnetic field in the magnetic field heat treatment 16, 17 and Sample No. with high heating temperature in rapid heat treatment. 22, Sample No. with a long holding time in rapid thermal processing In 19 and 20, the average crystal grain size of the Fe phase was coarsened to over 150 nm. In the case of performing the two-stage heat treatment from magnetic field heat treatment to rapid heat treatment, the sample No. 12, Sample No. with a short holding time in rapid thermal processing. 18, Sample No. with low heating temperature in rapid heat treatment In No. 21, although the average crystal grain size of the Fe phase is as small as less than 100 nm, the residual phase is considered to be small because the Fe phase is not sufficiently precipitated and crystallized.

本発明の磁性材料の製造方法は、各種モータ、特に、ハイブリッド車(HEV)やハードディスクドライブ(HDD)などに具備される高速モータに用いられる永久磁石の原料、素材の製造に好適に利用することができる。   The method for producing a magnetic material of the present invention is preferably used for producing raw materials and materials for permanent magnets used in various motors, in particular, high-speed motors used in hybrid vehicles (HEVs) and hard disk drives (HDDs). Can do.

10 磁性材料
11 軟磁性相(Fe相)
12 硬磁性相(NdFe14B相)
20 Nd−Fe−B系合金粉末
30 急冷薄帯
10 Magnetic material 11 Soft magnetic phase (Fe phase)
12 Hard magnetic phase (Nd 2 Fe 14 B phase)
20 Nd-Fe-B alloy powder 30 Quenched ribbon

Claims (3)

Nd−Fe−B系合金を準備する準備工程と、
前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、2T以上4T以下の磁場を印加しながら、300℃以上400℃以下の温度で熱処理を施す磁場熱処理工程と、
前記磁場熱処理工程の後、前記Nd−Fe−B系合金に、NdおよびFeと反応しない雰囲気中または減圧雰囲気中、前記磁場熱処理工程における加熱温度から600℃以上800℃以下まで5分以内に急速に昇温し、その温度で2分以上10分以下保持してから、500℃以下まで5分以内に急速に冷却する熱処理を施す急速熱処理工程と、を備える磁性材料の製造方法。
A preparation step of preparing an Nd—Fe—B alloy;
A magnetic field heat treatment step in which heat treatment is performed at a temperature of 300 ° C. to 400 ° C. while applying a magnetic field of 2T or more and 4T or less to the Nd—Fe—B-based alloy in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere; ,
After the magnetic field heat treatment step, the Nd—Fe—B alloy is rapidly applied within 5 minutes from the heating temperature in the magnetic field heat treatment step to 600 ° C. to 800 ° C. in an atmosphere that does not react with Nd and Fe or in a reduced pressure atmosphere. And a rapid heat treatment step of performing a heat treatment of holding the temperature for 2 minutes to 10 minutes and then rapidly cooling to 500 ° C. or less within 5 minutes.
前記準備工程におけるNd−Fe−B系合金は、
Ndの含有量が15.3質量%以上33質量%以下、
Feの含有量が65.6質量%以上84.4質量%以下、
Bの含有量が0.3質量%以上1.8質量%以下である請求項1に記載の磁性材料の製造方法。
The Nd—Fe—B alloy in the preparation step is
Nd content is 15.3% by mass or more and 33% by mass or less,
Fe content is 65.6 mass% or more and 84.4 mass% or less,
The method for producing a magnetic material according to claim 1, wherein the content of B is 0.3 mass% or more and 1.8 mass% or less.
前記準備工程におけるNd−Fe−B系合金は、非晶質状態、または非晶質と平均結晶粒径が300nm以下の結晶質とが混在した状態である請求項1または請求項2に記載の磁性材料の製造方法。   3. The Nd—Fe—B alloy in the preparation step is in an amorphous state or in a state in which amorphous and a crystalline material having an average crystal grain size of 300 nm or less are mixed. Manufacturing method of magnetic material.
JP2015008147A 2015-01-19 2015-01-19 Method for manufacturing magnetic material Pending JP2016132796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008147A JP2016132796A (en) 2015-01-19 2015-01-19 Method for manufacturing magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008147A JP2016132796A (en) 2015-01-19 2015-01-19 Method for manufacturing magnetic material

Publications (1)

Publication Number Publication Date
JP2016132796A true JP2016132796A (en) 2016-07-25

Family

ID=56437639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008147A Pending JP2016132796A (en) 2015-01-19 2015-01-19 Method for manufacturing magnetic material

Country Status (1)

Country Link
JP (1) JP2016132796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022834A (en) * 2016-08-05 2018-02-08 Tdk株式会社 R-T-B based sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022834A (en) * 2016-08-05 2018-02-08 Tdk株式会社 R-T-B based sintered magnet

Similar Documents

Publication Publication Date Title
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
JP6288076B2 (en) R-T-B sintered magnet
JP5163630B2 (en) Rare earth magnet and manufacturing method thereof
CN104078176A (en) Rare earth based magnet
JP5692231B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP2014502034A5 (en)
JP6429021B2 (en) permanent magnet
WO2012029738A1 (en) Sintered magnet
Rehman et al. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets
JP2016134498A (en) Method of manufacturing magnetic material
JP2013021015A (en) Rare earth nano composite magnet and manufacturing method thereof
WO2017110680A1 (en) Method of producing r-t-b sintered magnet
JP4830972B2 (en) Method for producing isotropic iron-based rare earth alloy magnet
CN104078177B (en) Rare earth magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPH118109A (en) Rare earth permanent magnet material and its manufacture
JP2016132796A (en) Method for manufacturing magnetic material
JP2000003808A (en) Hard magnetic material
JP2017166018A (en) Neodymium-iron-boron-based alloy
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP6519300B2 (en) Rare earth permanent magnet and method of manufacturing rare earth permanent magnet
JP4742228B2 (en) Alloy strip for rare earth magnet and manufacturing method, alloy for rare earth magnet
JP2016032004A (en) Magnetic material, magnetic material manufacturing method and rare-earth magnet
JP2013098319A (en) METHOD FOR MANUFACTURING Nd-Fe-B MAGNET