JP2016124734A - 耐食性部材、静電チャック装置および耐食性部材の製造方法 - Google Patents

耐食性部材、静電チャック装置および耐食性部材の製造方法 Download PDF

Info

Publication number
JP2016124734A
JP2016124734A JP2014266405A JP2014266405A JP2016124734A JP 2016124734 A JP2016124734 A JP 2016124734A JP 2014266405 A JP2014266405 A JP 2014266405A JP 2014266405 A JP2014266405 A JP 2014266405A JP 2016124734 A JP2016124734 A JP 2016124734A
Authority
JP
Japan
Prior art keywords
resistant member
corrosion
powder
samarium
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014266405A
Other languages
English (en)
Inventor
恵 大友
Megumi Otomo
恵 大友
高橋 健太郎
Kentaro Takahashi
健太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014266405A priority Critical patent/JP2016124734A/ja
Publication of JP2016124734A publication Critical patent/JP2016124734A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】フッ素系ガス、塩素系ガス等のハロゲン系腐食性ガス及びこれらのプラズマに対して優れた耐食性を有し、静電チャック装置の載置板として用いた場合、半導体ウエハ等の板状試料の吸着性に優れた耐食性部材、前記耐食性部材の製造方法及び前記耐食性部材を備える静電チャック装置の提供。【解決手段】サマリウム・アルミニウム・ペロブスカイトのサマリウムの一部をサマリウムではない希土類元素(RE)で置換してなる複合酸化物と、REAlO3と、を含み、式(1)で表される焼結体からなる耐食性部材17。SmxREyAlO3…(1)(x+y=1、x>0、y>0;好ましくは、0.5≦x<1、0<y≦0.5)分散剤存在下でSm2O3、Al2O3及びRE2O3の各々の粉末を混合し、分散媒に分散させ、スラリーを調整し、分散媒を除去造粒し、燃結する耐食部材17の製造方法。【選択図】図1

Description

本発明は、耐食性部材、静電チャック装置および耐食性部材の製造方法に関する。
従来、IC、LSI、VLSI等の半導体装置の製造ラインにおいては、フッ素系腐食性ガス、塩素系腐食性ガス等のハロゲン系腐食性ガスおよびこれらのプラズマを用いる工程があり、なかでもドライエッチング、プラズマエッチング、クリーニング等の工程においては、CF、SF、HF、NF、F等のフッ素系ガスや、Cl、SiCl、BCl、HCl等の塩素系ガスを用いていることから、これらの腐食性ガスやプラズマによる半導体製造装置内の構成部材の耐腐食性の向上が求められている。特に、半導体製造装置内の構成部材のなかでも、静電チャック部材に優れた耐食性が求められている。
そこで、従来、静電チャック部材に用いられる耐食性材料として、希土類金属元素酸化物、立方晶系ガーネット型の酸化イットリウムアルミニウム(イットリウムアルミニウムガーネット:5Al・3Y、YAG)やイットリウム以外の希土類金属酸化物を添加したYAGを焼結したものが使用されている(例えば、特許文献1、2参照)。
特開2004−315308号公報 特開2012−94826号公報
しかしながら、YAGの誘電率は10.7と低いため、YAGの焼結体を静電チャック部材の誘電層に適用した場合、吸着力が低いという問題があった。
一方、REAlO(REは希土類金属元素)は、ペロブスカイト相として構造を制御することができれば、高い誘電率を有することを期待できる。REAlOは、REとAlの等モル混合物を加熱処理して合成されるが、得られたREAlO粒子の表面は、欠陥が多く、誘電損失が高くなる。そのため、REAlO焼結体を静電チャック部材の誘電層に適用した場合、残留吸着力が高くなるという問題があった。
また、YAGにREAlOを含有させ、誘電率を向上させた場合、REAlOの含有率が高すぎる(たとえば10%以上)と、REAlOが異常粒成長し、機械的強度の低下を招くことから、多く含有させることが困難であった。
本発明は、上記の課題を解決するためになされたものであって、フッ素系腐食性ガス、塩素系腐食性ガス等のハロゲン系腐食性ガスおよびこれらのプラズマに対して優れた耐食性を有するとともに、静電チャック装置の載置板として用いた場合、半導体ウエハ等の板状試料の吸着性に優れた耐食性部材を提供することを目的とする。また、本発明は、上述の耐食性部材の製造方法、および上述の耐食性部材を備える静電チャック装置を提供することをあわせて目的とする。
上記の課題を解決するため、本発明の一態様は、サマリウム・アルミニウム・ペロブスカイトのサマリウムの一部をサマリウムではない希土類元素(RE)で置換してなる複合酸化物と、REAlOと、を含み、下記式(1)で表される焼結体からなる耐食性部材を提供する。
SmREAlO…(1)(ただし、x+y=1、x>0、y>0)
本発明の一態様においては、前記式(1)において、xが0.5以上1未満、かつyが0より多く0.5以下である構成としてもよい。
本発明の一態様においては、前記REが、La、Ce、Pr、Nd、Pm、Y、Eu、Gd、Tb、Dy、Hoからなる群から選ばれる少なくとも1種の金属である構成としてもよい。
本発明の一態様においては、X線結晶構造回折において、REが検出限界以下である構成としてもよい。
本発明の一態様においては、40Hzにおける誘電率が20以上である構成としてもよい。
本発明の一態様においては、4点曲げ強度が、150MPa以上である構成としてもよい。
また、本発明の一態様は、セラミック焼結体を形成材料とし、一主面が板状試料を載置する載置面であるセラミックス板状体と、前記セラミックス板状体の他の主面に設けられた静電吸着用電極と、を有し、前記セラミックス板状体は、上記の耐食性部材である静電チャック装置を提供する。
また、本発明の一態様は、分散剤の存在下で、Sm粉末、Al粉末およびRE粉末を混合して分散媒に分散させ、スラリーを調整する工程と、前記スラリーから前記分散媒を除去して造粒する工程と、得られた粒子を焼結する工程と、を有する耐食性部材の製造方法を提供する。
本発明の一態様においては、前記焼結する工程の後に、得られた焼結体を大気中で1300℃以上1600℃以下に加熱し、アニール処理する工程を有する製造方法としてもよい。
本発明によれは、フッ素系腐食性ガス、塩素系腐食性ガス等のハロゲン系腐食性ガスおよびこれらのプラズマに対して優れた耐食性を有するとともに、静電チャック装置の載置板として用いた場合、半導体ウエハ等の板状試料の吸着性に優れた耐食性部材を提供することができる。また、上述の耐食性部材の製造方法、および上述の耐食性部材を備える静電チャック装置を提供することができる。
本発明の静電チャック装置の一実施形態を示す概略断面図である。
本発明の耐食性部材およびそれを用いた静電チャック装置の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[耐食性部材]
本実施形態の耐食性部材は、サマリウム・アルミニウム・ペロブスカイトのサマリウムの一部をサマリウムではない希土類元素(RE)で置換してなる複合酸化物と、REAlOと、を含み、下記式(1)で表される焼結体からなる耐食性部材である。
SmREAlO … (1)
(ただし、x+y=1、x>0、y>0)
すなわち、複合酸化物は、サマリウム−アルミニウム酸化物(SmAlO)結晶中の酸化サマリウム(Sm)がサマリウム(Sm)ではない希土類金属元素(RE)の酸化物(以下、希土類金属酸化物(RE)とも称する)により一部置換固溶してなるペロブスカイト構造を呈している。
ここでは、上記の希土類金属酸化物をREと表記しているが、ランタノイド(Ln)は3価の酸化物(Ln)以外に、2価の酸化物(LnO)、4価の酸化物(LnO)等を取り得る。例えば、サマリウム(Sm)、ユウロピウム(Eu)、イッテルビウム(Yb)では2価の酸化物SmO、EuO、YbOも取ることができ、プラセオジム(Pr)では、高酸化数酸化物(Pr11)が安定である。そこで、希土類金属酸化物を指すときはREと表記することとし、特に必要のある場合のみ、例えば、REO等表記することとする。
サマリウムではない希土類金属元素(RE)としては、Smよりもイオン半径の大きい希土類元素が好ましい。例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジウム(Nd)、プロメチウム(Pm)、イットリウム(Y)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロジウム(Dy)、ホルミウム(Ho)からなる群から選ばれる少なくとも1種の金属が好ましい。REとしては、中でもYまたはNdが好ましい。
複合酸化物において、サマリウム−アルミニウム酸化物(SmAlO)に添加した希土類金属酸化物(RE)は、SmAlOに固溶していてもよく、SmAlOの粒界に第2相として存在していてもよいが、SmAlOに固溶していることが好ましい。
これにより、複合酸化物の結晶相は、斜方晶系ペロブスカイト相をなしている。
複合酸化物が、SmAlOとREとの固溶体の場合、SmAlOのSmをSmよりもイオン半径の大きい希土類元素で置き換えることで、REイオン周囲の酸素イオンを押し広げることとなる。その結果、Alイオンの周囲に隙間が生じて分極が生じ、誘電率が向上する。
また、本実施形態の耐食性部材に含まれるREAlOは、上述のサマリウムではない希土類金属元素(RE)とアルミニウムとの酸化物である。REとしては、複合酸化物に用いられる金属と同じ金属を挙げることができる。
REAlOの含有量は、得られる焼結体の組成式SmReAlOにおいてxが0.5以上1未満、かつyが0より多く0.5以下であることが好ましい。xが0.5以上であれば、アニール処理をして酸素欠陥をなくしても、十分な吸着力が得られる。また、yが0.5以下であれば、誘電率が高くなり、本実施形態の耐食性部材を静電チャック装置の静電チャック部に用いた場合に十分な吸着力が得られる。
このような組成の本実施形態の耐食性部材は、X線結晶構造回折において、REが検出限界以下であることが好ましい。本明細書において、「REが検出限界以下」とは、耐食性部材の原料である金属酸化物について、粉末X線回折装置(商品名:X´ Pert PRO MPD,PANalytial社製)を用いて測定した結果、REに該当する回折ピークが検出限界以下であることを指す。
本実施形態の耐食性部材は、40Hzの周波数における誘電率が20以上であることが好ましい。これにより、本実施形態の耐食性部材を静電チャック装置の静電チャック部に用いた場合に、十分な吸着力が得られる。
本実施形態の耐食性部材は、4点曲げ強度が150MPa以上であると好ましい。なお、本明細書において、「4点曲げ強度」は、耐食性部材からJIS R1601に準じる試験片を作製し、マルトーJIS曲げ試験機MZ−401を用いて、4点曲げ試験にて曲げ強度を測定した結果(6本の算術平均)を指す。
本実施形態の耐食性部材は、以上のような構成となっている。
以上のような構成の耐食性部材は、ハロゲン系腐食性ガスおよびこれらのプラズマに対して優れた耐食性を有するばかりでなく、静電チャック装置の載置板として用いた場合、半導体ウエハ等の板状試料の吸着性にも優れたものとなる。
[耐食性部材の製造方法]
本実施形態の耐食性部材の製造方法は、分散剤の存在下で、Sm粉末、Al粉末およびRE粉末を混合して分散媒に分散させ、スラリーを調整する工程と、前記スラリーから水を除去して造粒する工程と、得られた粒子を焼結する工程と、を有する。以下、順に説明する。
(スラリーを調整する工程)
まず、Sm粉末、Al粉末およびRE粉末を混合して分散媒に分散させたスラリーを調整する。
出発原料としては、酸化サマリウム(Sm)粉末、酸化アルミニウム(Al)粉末、酸化サマリウム(Sm)以外の希土類金属酸化物(RE)粉末、を用いる。
これらの粉末は、例えば純度99%以上であることが好ましい。また、一次粒子の平均粒径が0.01μm〜10μmであることが好ましい。一次粒子の平均粒径を0.01μm〜10μmとすることで、得られる焼結体(耐食性部材)の耐食性の低下を抑制できる。
これらSm粉末、Al粉末およびRE粉末を、分散剤の存在下で、分散媒に分散させ、スラリーを調整する。
分散媒としては、水、有機溶媒、水と有機溶媒との混合溶媒、等を挙げることができる。
有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、トルエン、キシレン、アセトン、塩化メチレン、酢酸エチル、ジメチルホルムアミド、ジエチルエーテルなどが好適に用いられ、これらの溶媒のうち1種または2種以上を用いることができる。
分散剤としては、陰イオン系界面活性剤、陽イオン系界面活性剤、あるいは非イオン系界面活性剤が用いられ、使用する出発原料粉末の種類や粒子径により適宜選択できる。また、分散剤はポリマー系分散剤が好適であり、ポリアクリル酸塩、ポリカルボン酸塩、アクリルアミド、ポリビニルアルコール、ポリメタクリル酸塩がより好ましい。分散剤は、1種を用いても、2種以上を混合して用いてもよい。
スラリーの調整は、Sm粉末、Al粉末およびRE粉末を混合した後に、混合粉末を分散剤の存在下で分散媒に分散させることとしてもよい。または、Sm粉末、Al粉末およびRE粉末を個別に分散剤の存在下で分散媒に分散させ、得られる分散液を混合することで目的とするスラリーを調整することとしてもよい。Sm粉末、Al粉末およびRE粉末の個別の分散液を混合する際には、単に混合するだけでなく、さらに分散させることとしてもよい。
スラリーの調整時には、公知の方法を用いることができる。例えば、スラリーの調整時には、超音波分散機、ボールミル、サンドミル、高圧分散機などを用いることができる。
この複合酸化物(耐食性部材)においては、充分な量の斜方晶系ペロブスカイト相の生成を確保するために、サマリウムの原子数(NSm)とサマリウムを除く希土類金属元素の原子数(NRE)の和(NSm+NRE)に対する、サマリウムを除く希土類金属元素の原子数(NRE)の比(NRE/(NSm+NRE))は、0より多くかつ0.5以下となるよう、原料粉末を調整することが好ましい。
なお、結晶相の生成量は、原料粉末の比率の他、混合条件、焼成条件等によっても変動するので、これらの条件を予め予備実験にて求めておくことが望ましい。
(造粒する工程)
次いで、得られたスラリーから分散媒を除去して造粒する。
分散媒の除去方法は、加熱、減圧、送風など種々の方法を採用することができるが、分散媒の除去と造粒とを同時に行うことができるスプレードライが好ましい。
また、上記スプレードライによらず、スラリーから分散媒の除去した後、乾燥物を粉砕することにより造粒することとしてもよい。
得られた乾燥物(顆粒)は、大気雰囲気にて50℃以上600℃以下で加熱することにより、脱脂させると好ましい。
(造粒する工程)
次いで、造粒する工程で得られた粒子を焼結する。
具体的には、上記造粒する工程で得られた粒子を、大気中、真空中または不活性ガス雰囲気中、1400℃以上1700℃以下、好ましくは1550℃以上1650℃以下にて1時間以上3時間以下焼成する。これにより、98%以上の焼結密度を有する緻密な焼結体を作製することができる。
焼成方法としては、常圧焼成法でもよいが、緻密な焼結体を得るためにはホットプレス、熱間静水圧プレス(HIP)等の加圧焼成法が好ましい。加圧焼成時の加圧圧力は特に制限はないが、通常、10〜40MPa程度である。
得られた焼結体は、本実施形態の耐食性部材として用いられる。
以上により、本実施形態の耐食性部材を製造することができる。
(アニール処理する工程)
なお、上述した焼結する工程の後に、得られた焼結体を大気中で1300℃以上1600℃以下に加熱し、アニール処理することとしてもよい。アニール処理を施すことにより、得られた焼結体(耐食性部材)の酸素欠陥を低減させ、残留吸着を低減することができる。
1300℃以上に加熱することで、酸素欠陥を十分に低減させることができる。また、アニール処理を行うと、耐食性部材を静電チャック装置の静電チャック部に用いた場合に吸着力が低下する傾向があるが、1600℃以下でアニール処理することで、吸着力の低下を抑制することができる。
アニール処理の時間は、2時間以上10時間以下が好ましい。2時間以上アニール処理を行うと、酸素欠陥を十分に低減させることができる。また、10時間以下アニール処理することで、吸着力の低下を抑制することができる。
以上のような構成の耐食性部材の製造方法は、ハロゲン系腐食性ガスおよびこれらのプラズマに対して優れた耐食性を有するばかりでなく、静電チャック装置の載置板として用いた場合、半導体ウエハ等の板状試料の吸着性にも優れた耐食性部材を好適に製造することができる。
[静電チャック装置]
図1は、本実施形態の静電チャック装置の一例を示す概略断面図である。
本実施形態の静電チャック装置10は、円板状の静電チャック部11と、この静電チャック部11を所望の温度に調整する厚みのある円板状の冷却ベース部12と、冷却ベース部12の上面12aに接着剤13を介して接着された絶縁部材14と、静電チャック部11の下面(他の主面)側で、かつ、絶縁部材14の上面14aに所定のパターンに設けられたヒータエレメント(加熱部材)15と、静電チャック部11と冷却ベース部12上のヒータエレメント15とを対向させた状態でこれらを接着一体化する有機系接着剤層16とから概略構成されている。
静電チャック部11は、上面(一主面)17aが半導体ウエハ等の板状試料を載置する載置面とされた載置板(セラミックス板状体)17と、載置板17の下面(他の主面)17bに設けられた静電吸着用内部電極18と、載置板17の下面17bにおいて、静電吸着用内部電極18の周囲に、接着剤19を介して接着された絶縁部材20と、接着剤19および絶縁部材20、有機系接着剤層16、第二の接着剤13、第二の絶縁部材14および冷却ベース部12を貫通するようにして設けられ、静電吸着用内部電極18に直流電圧を印加する給電用端子21とから概略構成されている。
絶縁部材20は、接着剤19を介して、静電吸着用内部電極18の周囲(静電吸着用内部電極18における載置板17と接している面以外の面)を覆っている。これにより、載置板17と静電吸着用内部電極18が一体化されている。
載置板17は、円板状のもので、本実施形態の耐食性部材を形成材料としている。載置板17は、本実施形態の耐食性部材の製造方法で製造した耐食性部材をそのまま用いることとしてもよく、必要に応じて研削・研磨などの加工を施して得られるものであってもよい。
載置板17の載置面(上面(一主面))17aには、突起部17cが所定の間隔を隔てて、複数個設けられている。これらの突起部17cが、半導体ウエハ等の板状試料を支える構成になっている。
静電吸着用内部電極18は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
静電吸着用内部電極18は、酸化アルミニウム−炭化タンタル(Al−Ta)導電性複合焼結体、酸化アルミニウム−タングステン(Al−W)導電性複合焼結体、酸化アルミニウム−炭化ケイ素(Al−SiC)導電性複合焼結体、窒化アルミニウム−タングステン(AlN−W)導電性複合焼結体、窒化アルミニウム−タンタル(AlN−Ta)導電性複合焼結体、酸化イットリウム−モリブデン(Y−Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属、あるいは、銀(Ag)や炭素等の導電性の物質が含まれた樹脂により形成されている。
接着剤19は、静電吸着用内部電極18と絶縁部材20の間に介在して、静電吸着用内部電極18の周囲に絶縁部材20を接着するものである。
接着剤19としては、例えば、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性および絶縁性を有するシート状またはフィルム状の接着性樹脂が用いられる。
絶縁部材20は、接着剤19を介して、静電吸着用内部電極18を囲繞して腐食性ガスおよびそのプラズマから静電吸着用内部電極18を保護するとともに、載置板17と静電吸着用内部電極18を接合一体化するものである。
絶縁部材20は、耐熱性および絶縁性を有し、かつ、腐食性ガスおよびそのプラズマに対する耐久性に優れるものであれば特に限定されるものではないが、例えば、ポリイミドシートからなるものが用いられる。
給電用端子21は、静電吸着用内部電極18に直流電圧を印加するために設けられた柱状のものである。給電用端子21は、柱状の電極22と、絶縁性を有する碍子23とから構成されている。
柱状の電極22の材料としては、耐熱性に優れた導電性材料であれば特に限定されるものではないが、熱膨張係数が静電吸着用内部電極18の熱膨張係数に近似したものが好ましく、例えば、静電吸着用内部電極18を構成している耐食性部材、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料が好適に用いられる。
柱状の電極22は、絶縁性を有する碍子23により冷却ベース部12に対して絶縁されている。
また、柱状の電極22は、導電性接着剤24を介して、静電吸着用内部電極18に接続されている。
そして、給電用端子21は、絶縁部材20に接合一体化されて静電チャック部11を構成している。
冷却ベース部12は、静電チャック部11を所望の温度に調整するためのもので、厚みのある円板状のものである。
冷却ベース部12としては、例えば、その内部に水を循環させる流路(図示略)が形成された水冷ベース等が好適である。
冷却ベース部12を構成する材料としては、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はなく、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)等が好適に用いられる。冷却ベース部12の表面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
また、第二の接着剤13、第二の絶縁部材14および冷却ベース部12を貫通するようにして、ヒータエレメント15に直流電圧を印加するために、金属箔状の電極25が設けられている。電極25は、金属箔であることが好ましいが、熱応力を緩和できれば金属繊維や金属撚り線であってもよい。ヒータエレメント15と電極25は溶接により結線されていることが好ましいが、十分な導電性と接着強度があれば導電性接着剤等で接着してもよい。
電極25は、絶縁性を有する碍子26により冷却ベース部12に対して絶縁されている。電極25と碍子26との間は、シリコーン樹脂のような低弾性接着剤で充填されていてもよく、さらに、その低弾性接着剤が、無機酸化物、無機窒化物、無機酸窒化物からなるフィラーを含有してもよい。該フィラーは、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子や酸化アルミニウム(Al)粒子であることが好ましい。
電極25の材料としては、耐熱性に優れた導電性材料であれば特に限定されるものではないが、熱膨張係数がヒータエレメント15の熱膨張係数に近似したものが好ましく、例えば、ヒータエレメント15を構成している非磁性金属材料からなる金属箔状のものが好適に用いられる。
接着剤13は、冷却ベース部12と絶縁部材14の間に介在して、冷却ベース部12の上面12aに絶縁部材14を接着するものである。
接着剤13としては、例えば、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性および絶縁性を有するシート状またはフィルム状の接着性樹脂が用いられる。
絶縁部材14は、冷却ベース部12とヒータエレメント15の間に介在して、冷却ベース部12とヒータエレメント15を絶縁するものである。
絶縁部材14は、絶縁性および耐電圧性を有し、かつ、腐食性ガスおよびそのプラズマに対する耐久性に優れるものであれば特に限定されるものではないが、例えば、ポリイミドシートからなるものが用いられる。
絶縁部材14の熱伝導率は、0.05W/mk以上かつ0.5W/mk以下が好ましく、より好ましくは0.1W/mk以上かつ0.25W/mk以下である。
ここで、熱伝導率が0.1W/mk未満であると、静電チャック部11から冷却ベース部12への絶縁部材14を介しての熱伝達が難しくなり、冷却速度が低下するので好ましくなく、一方、熱伝導率が1W/mkを超えると、ヒータ部から冷却ベース部12への絶縁部材14を介しての熱伝達が増加し、昇温速度が低下するので好ましくない。
ヒータエレメント15は、冷却ベース部12の上面12aに、接着剤13および絶縁部材14を介して配設されたものである。
ヒータエレメント15は、例えば、幅の狭い帯状の金属材料を蛇行させたパターンを、軸を中心として、この軸の回りに繰り返し配置し、かつ隣接するパターン同士を接続することで、1つの連続した帯状のヒーターパターンとなっている。
また、ヒータエレメント15を非磁性金属で形成すると、静電チャック装置10を高周波雰囲気中で用いてもヒータエレメント15が高周波により自己発熱せず、したがって、載置板17の上面17aに載置した板状試料の面内温度を所望の一定温度または一定の温度パターンに維持することが容易となるので好ましい。
また、一定の厚みの非磁性金属薄板を用いてヒータエレメント15を形成すると、ヒータエレメント15の厚みが加熱面全域で一定となり、さらに発熱量も加熱面全域で一定となるので、静電チャック部11の載置面(載置板17の上面17a)における温度分布を均一化することができる。
有機系接着剤層16は、静電チャック部11と冷却ベース部12上のヒータエレメント15とを対向させた状態でこれらを接着一体化するとともに、熱応力の緩和作用を有するものである。
有機系接着剤層16は、例えば、シリコーン系樹脂組成物を加熱硬化した硬化体またはアクリル樹脂で形成されている。
シリコーン系樹脂組成物は、耐熱性、弾性に優れた樹脂であり、シロキサン結合(Si−O−Si)を有するケイ素化合物である。このシリコーン系樹脂組成物は、例えば、下記の式(1)または式(2)の化学式で表すことができる。
Figure 2016124734
但し、上記の式(1)中、Rは、Hまたはアルキル基(C2n+1−:nは整数)である。
Figure 2016124734
但し、上記の式(2)中、Rは、Hまたはアルキル基(C2n+1−:nは整数)
である。
このようなシリコーン樹脂としては、特に、熱硬化温度が70℃〜140℃のシリコーン樹脂が好ましい。
ここで、熱硬化温度が70℃を下回ると、静電チャック部11と冷却ベース部12上のヒータエレメント15とを対向させた状態でこれらを接合する際に、接合過程で硬化が始まってしまい、作業性に劣ることとなるので好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部11の絶縁部材20と、冷却ベース部12および絶縁部材14との熱膨張差が大きく、静電チャック部11の絶縁部材20と、冷却ベース部12および絶縁部材14との間の応力が増加し、これらの間で剥離が生じるおそれがあるので好ましくない。
このシリコーン樹脂としては、硬化後のヤング率が8MPa以下の樹脂が好ましい。ここで、硬化後のヤング率が8MPaを超えると、有機系接着剤層16に昇温、降温の熱サイクルが負荷された際に、静電チャック部11の絶縁部材20と、冷却ベース部12との熱膨張差を吸収することができず、有機系接着剤層16の耐久性が低下するので、好ましくない。
この有機系接着剤層16には、平均粒径が1μm以上かつ10μm以下の無機酸化物、無機窒化物、無機酸窒化物からなるフィラー、例えば、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子や酸化アルミニウム(Al)粒子が含有されていることが好ましい。
この表面被覆窒化アルミニウム(AlN)粒子は、シリコーン樹脂の熱伝導性を改善するために混入されたもので、その混入率を調整することにより、有機系接着剤層16の熱伝達率を制御することができる。
すなわち、表面被覆窒化アルミニウム(AlN)粒子の混入率を高めることにより、有機系接着剤層16を構成する有機系接着剤の熱伝達率を大きくすることができる。
また、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成されているので、表面被覆が施されていない単なる窒化アルミニウム(AlN)粒子と比較して優れた耐水性を有している。したがって、シリコーン系樹脂組成物を主成分とする有機系接着剤層16の耐久性を確保することができ、その結果、静電チャック装置1の耐久性を飛躍的に向上させることができる。
また、この表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面が、優れた耐水性を有する酸化ケイ素(SiO)からなる被覆層により被覆されているので、窒化アルミニウム(AlN)が大気中の水により加水分解されるおそれがなく、窒化アルミニウム(AlN)の熱伝達率が低下する虞もなく、有機系接着剤層16の耐久性が向上する。
なお、この表面被覆窒化アルミニウム(AlN)粒子は、半導体ウエハ等の板状試料への汚染源となるおそれもなく、この点からも好ましいフィラーということができる。
この表面被覆窒化アルミニウム(AlN)粒子は、被覆層中のSiとシリコーン系樹脂組成物とにより強固な結合状態を得ることが可能であるから、有機系接着剤層16の伸び性を向上させることが可能である。これにより、静電チャック部11の絶縁部材20の熱膨張率と、冷却ベース部12の熱膨張率との差に起因する熱応力を緩和することができ、静電チャック部11と冷却ベース部12とを精度よく、強固に接着することができる。また、使用時の熱サイクル負荷に対する耐久性が充分となるので、静電チャック装置10の耐久性が向上する。
この表面被覆窒化アルミニウム(AlN)粒子の平均粒径は、1μm以上かつ10μm以下が好ましく、より好ましくは2μm以上かつ5μm以下である。
ここで、この表面被覆窒化アルミニウム(AlN)粒子の平均粒径が1μmを下回ると、粒子同士の接触が不十分となり、結果的に熱伝達率が低下する虞があり、また、粒径が細か過ぎると、取扱等の作業性の低下を招くこととなり、好ましくない。一方、平均粒径が10μmを超えると、接着層の厚みにばらつきが生じ易くなるので好ましくない。
また、この有機系接着剤層16は、ヤング率が1GPa以下で、柔軟性(ショア硬さがA100以下)を有する熱硬化型アクリル樹脂接着剤で形成されていてもよい。この場合は、フィラーは含有していてもよく、含有していなくともよい。
本実施形態の静電チャック装置10は、以上のような構成となっている。
以上のような構成の静電チャック装置10は、載置板17が本実施形態の耐食性部材からなるので、載置板17がハロゲン系腐食性ガスおよびこれらのプラズマに対して優れた耐食性を有するばかりでなく、半導体ウエハ等の板状試料の吸着性にも優れたものとなる。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
市販の酸化アルミニウム(Al)粉末と、市販の酸化サマリウム(Sm)粉末と、市販の酸化イットリウム(Y)粉末と、を用い、これらの粉末を表1に示す組成となるように秤量した。
粉末とSm粉末とを混合し、5質量%のアクリル酸系ポリマーの分散剤を添加して、水を分散媒として超音波処理(ヤマト科学社製、ブランソン超音波洗浄機5510J)を30分間行い、水中にY粉末とSm粉末とを分散させた。
また、Al粉末に1質量%のポリカルボン酸系分散剤を添加して、水を分散媒として超音波処理(ヤマト科学社製、ブランソン超音波洗浄機5510J)を30分間行い、水中にAl粉末を分散させた。
得られたY粉末とSm粉末との分散液、およびAl粉末の分散液を混合し、高圧分散機(スギノマシン社製、スターバーストラボHJP−25005)で分散させることにより、スラリーを得た。
得られたスラリーを、スプレードライを用いて乾燥させ、顆粒を作製した。次いで、得られた顆粒を大気雰囲気下500℃で4時間加熱し、脱脂処理を行った。
次いで、脱脂処理後の顆粒を、成型モールドに入れ、10MPaの圧力をかけて成型を行った。この成型体を、ホットプレスを用いて、アルゴン中、1600℃にて2時間、加圧焼成して、焼結体を作製した。この際の加圧圧力を20MPaとした。
次いで、得られた焼結体を、大気雰囲気下1450℃で4時間加熱処理することで、アニール処理を行い、実施例1の耐食性部材を得た。
[実施例2,3]
使用するAl粉末、Y粉末、Sm粉末の比率を表1に記載の比率にしたこと以外は、実施例1と同様にして、実施例2,3の耐食性部材を得た。
[実施例4]
アニール処理を行わなかったこと以外は、実施例1と同様にして、実施例4の耐食性部材を得た。
[実施例5〜8]
粉末の代わりに市販の酸化ガドリニウム(Ga)粉末を用いたこと以外は、実施例1〜4と同様にして、実施例5〜8の耐食性部材を得た。
[比較例1]
粉末を用いないこと以外は、実施例1と同様にして、比較例1の耐食性部材を得た。
[比較例2,3]
使用するAl粉末、Y粉末、Sm粉末の比率を表1に記載の比率にしたこと以外は、実施例1と同様にして、比較例2,3の耐食性部材を得た。
[比較例4,5]
粉末の代わりに市販の酸化ガドリニウム(Ga)粉末を用いたこと以外は、比較例2,3と同様にして、比較例4,5の耐食性部材を得た。
[比較例6]
市販のAl粉末と、市販のY粉末と、市販の酸化サマリウムアルミニウム(SmAlO)粉末と、を用い、これらの粉末を表1に示す組成となるように秤量した。
秤量した粉末を容器に入れ、分散剤を用いずに水を分散媒としてボールミルにて分散を行い、スラリーを得た。
得られたスラリーを、スプレードライを用いて乾燥させ、顆粒を作製した。
次いで、得られた顆粒を、脱脂処理を行うことなくホットプレスを用いて、アルゴン中、1600℃にて2時間、加圧焼成して、焼結体を作製した。この際の加圧圧力を20MPaとした。
次いで、得られた焼結体を、大気雰囲気下1450℃で4時間加熱処理することで、アニール処理を行い、比較例6の耐食性部材を得た。
[比較例7]
Sm粉末の代わりに市販の酸化ガドリニウムアルミニウム(GaAlO)粉末を用いたこと以外は、比較例6と同様にして、比較例7の耐食性部材を得た。
[比較例8]
市販のAl粉末と、市販のSm粉末と、市販のY粉末と、を用い、これらの粉末を表1中に示す組成となるように秤量した。
秤量した粉末を容器に入れ、エタノールを溶媒として遊星型ボールミルにて分散を行い、スラリーを得た。
得られたスラリーを、スプレードライを用いて乾燥させ、顆粒を作製した。
次いで、得られた顆粒を、大気中、1500℃にて4時間仮焼した後、平均粒径が100μm以下になるように粉砕し、この粉末を成型した。
次いで、得られた成型体を真空中にて脱脂し、ホットプレスを用いて、大気中、1600℃で2時間、加圧焼結して、焼結体を作製した。この際の加圧圧力を20MPaとした。
次いで、得られた焼結体を、大気雰囲気下1450℃で4時間加熱処理することで、アニール処理を行い、比較例8の耐食性部材を得た。
[比較例9]
Sm粉末の代わりにGa粉末を用いたこと以外は、比較例8と同様にして、比較例9の耐食性部材を得た。
[評価]
実施例および比較例の耐食性部材について、下記評価を行った。
(1)耐食性部材の相対密度
アルキメデス法により、耐食性部材の密度を測定し、下記式により求めた理論密度に対する割合(相対密度)を算出した。なお、酸化サマリウムアルミニウム及びREAlOの各結晶相のmol%は、原料粉体の仕込み量から算出した。
理論密度=単位胞質量(g)/単位胞体積(cm
・単位胞質量:(酸化サマリウムアルミニウム結晶相の各単位胞質量×各結晶相のmol%)+(REAlO結晶相の単位胞質量×各結晶相のmol%)
・単位胞体積:(酸化サマリウムアルミニウム結晶相の各単位胞体積×各結晶相のmol%)+(REAlO結晶相の単位胞体積×各結晶相のmol%)
(2)耐食性部材における結晶相の同定
X線回折装置(PANalytical社製、X‘Pert PRO MPD)を用いて、粉末X線回折法により結晶相の同定を行った。
(3)耐食性部材の比誘電率
耐食性部材をφ48×1mmに加工し、試験片を作製した。
得られた試験片について、40Hzから1MHzの周波数領域における誘電率を、充放電評価装置(東洋システム社製、TOSCAT−3000)を用いて測定した。
(4)耐食性部材の吸着力
耐食性部材を厚さ1mmに加工し、試験片を作製した。
得られた試験片について、アルミナセラミックス/電極/焼結体の構成で接着し、試料載置面温度25℃にて印加電圧2.0kv、印加時間60秒、真空中(<0.5Pa)の条件で、1インチのシリコンウエハに対する吸着力を測定した。
測定はロードセルを用いた引き剥がしにより行い、そのとき発生した最大引き剥がし応力を吸着力とした。
吸着力については、15kPa以上であるものを良品、15kPaを下回るものを不適合品として判断した。
(5)耐食性部材の残留吸着力
焼結体を厚さ1mmに加工し、試験片を作製した。
得られた試験片について、アルミナセラミックス/電極/焼結体の構成で接着し、試料載置面温度25℃にて2.0kvの印加電圧を60秒間付与した後、電圧の印加を解除し、電圧の印加解除直後に吸着力を測定した。
測定は1インチのシリコンウエハを用いた引き剥がしにより行い、そのとき発生した最大引き剥がし応力を残留吸着力とした。
(6)耐食性部材の4点曲げ強度
耐食性部材からJIS R1601に準じる試験片を切り出し、マルトーJIS曲げ試験機MZ−401を用いて、4点曲げ試験にて曲げ強度(6本平均)を測定した。
評価結果を表1、2に示す。
Figure 2016124734
Figure 2016124734
評価の結果、実施例1〜8の耐食性部材は、酸化サマリウムアルミニウムを基本とするため耐食性に優れ、さらに高い吸着力を発現することが分かった。
一方、比較例1〜9の耐食性部材は、酸化サマリウムアルミニウムを基本とするため耐食性を有するものの、吸着力が低く、静電チャック装置の載置板として用いるには不適な材料であることが分かった。
以上の結果より、本発明が有用であることが確かめられた。
10…静電チャック装置、11…静電チャック部、12…冷却ベース部、13…接着剤、14…絶縁部材、15…ヒータエレメント(加熱部材)、16…有機系接着剤層、17…載置板、18…静電吸着用内部電極、19…接着剤、20…絶縁部材、21…給電用端子、22…電極、23…碍子、24…導電性接着剤、25…電極、26…碍子

Claims (9)

  1. サマリウム・アルミニウム・ペロブスカイトのサマリウムの一部をサマリウムではない希土類元素(RE)で置換してなる複合酸化物と、REAlOと、を含み、
    下記式(1)で表される焼結体からなる耐食性部材。
    SmREAlO … (1)
    (ただし、x+y=1、x>0、y>0)
  2. 前記式(1)において、xが0.5以上1未満、かつyが0より多く0.5以下である請求項1に記載の耐食性部材。
  3. 前記REが、La、Ce、Pr、Nd、Pm、Y、Eu、Gd、Tb、Dy、Hoからなる群から選ばれる少なくとも1種の金属である請求項1または2に記載の耐食性部材。
  4. X線結晶構造回折において、REが検出限界以下である請求項1から3のいずれか1項に記載の耐食性部材。
  5. 40Hzにおける誘電率が20以上である請求項1から4のいずれか1項に記載の耐食性部材。
  6. 4点曲げ強度が、150MPa以上である請求項1から5のいずれか1項に記載の耐食性部材。
  7. セラミック焼結体を形成材料とし、一主面が板状試料を載置する載置面であるセラミックス板状体と、
    前記セラミックス板状体の他の主面に設けられた静電吸着用電極と、を有し、
    前記セラミックス板状体は、請求項1から6のいずれか1項に記載の耐食性部材である静電チャック装置。
  8. 分散剤の存在下で、Sm粉末、Al粉末およびRE粉末を混合して分散媒に分散させ、スラリーを調整する工程と、
    前記スラリーから前記分散媒を除去して造粒する工程と、
    得られた粒子を焼結する工程と、を有する耐食性部材の製造方法。
  9. 前記焼結する工程の後に、得られた焼結体を大気中で1300℃以上1600℃以下に加熱し、アニール処理する工程を有する請求項8に記載の耐食性部材の製造方法。
JP2014266405A 2014-12-26 2014-12-26 耐食性部材、静電チャック装置および耐食性部材の製造方法 Pending JP2016124734A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266405A JP2016124734A (ja) 2014-12-26 2014-12-26 耐食性部材、静電チャック装置および耐食性部材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266405A JP2016124734A (ja) 2014-12-26 2014-12-26 耐食性部材、静電チャック装置および耐食性部材の製造方法

Publications (1)

Publication Number Publication Date
JP2016124734A true JP2016124734A (ja) 2016-07-11

Family

ID=56358832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266405A Pending JP2016124734A (ja) 2014-12-26 2014-12-26 耐食性部材、静電チャック装置および耐食性部材の製造方法

Country Status (1)

Country Link
JP (1) JP2016124734A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101965895B1 (ko) * 2018-11-08 2019-04-04 주식회사 케이에스엠컴포넌트 정전 척 및 그 제조 방법
CN110050327A (zh) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 具覆盖层间边界线的沉积层的半导体制造用部件
JP2019187222A (ja) * 2018-04-06 2019-10-24 アポロ テク カンパニー リミテッド 緩衝性に優れた静電チャック
JP2021125639A (ja) * 2020-02-07 2021-08-30 新光電気工業株式会社 セラミックス基板、静電チャック、静電チャックの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050327A (zh) * 2016-12-20 2019-07-23 韩国东海碳素株式会社 具覆盖层间边界线的沉积层的半导体制造用部件
CN110050327B (zh) * 2016-12-20 2023-05-12 韩国东海碳素株式会社 具覆盖层间边界线的沉积层的半导体制造用部件
JP2019187222A (ja) * 2018-04-06 2019-10-24 アポロ テク カンパニー リミテッド 緩衝性に優れた静電チャック
KR101965895B1 (ko) * 2018-11-08 2019-04-04 주식회사 케이에스엠컴포넌트 정전 척 및 그 제조 방법
WO2020096267A1 (ko) * 2018-11-08 2020-05-14 주식회사 케이에스엠컴포넌트 정전 척 및 그 제조 방법
CN112219273A (zh) * 2018-11-08 2021-01-12 Ksm元件株式会社 静电吸盘及其制造方法
EP3792964A4 (en) * 2018-11-08 2021-08-18 KSM Component Co., Ltd. ELECTROSTATIC CHUCK AND ITS MANUFACTURING PROCESS
JP2021521653A (ja) * 2018-11-08 2021-08-26 ケーエスエム・コンポーネント・カンパニー・リミテッド 静電チャック及びその製造方法
CN112219273B (zh) * 2018-11-08 2022-01-21 Ksm元件株式会社 静电吸盘及其制造方法
US11251061B2 (en) 2018-11-08 2022-02-15 Ksm Component Co., Ltd. Electrostatic chuck and manufacturing method therefor
JP2021125639A (ja) * 2020-02-07 2021-08-30 新光電気工業株式会社 セラミックス基板、静電チャック、静電チャックの製造方法
JP7312712B2 (ja) 2020-02-07 2023-07-21 新光電気工業株式会社 セラミックス基板、静電チャック、静電チャックの製造方法

Similar Documents

Publication Publication Date Title
CN105980331B (zh) 电介质材料及静电卡盘装置
JP6394396B2 (ja) 耐食性部材、静電チャック装置
JP6769439B2 (ja) フォーカスリング、フォーカスリングの製造方法
US9837296B2 (en) Electrostatic chuck apparatus
JP6432649B2 (ja) セラミックス材料、静電チャック装置
JP6741042B2 (ja) 静電チャック装置
JP5604888B2 (ja) 静電チャックの製造方法
US20140204501A1 (en) Electrostatic chucking device
JP6693600B2 (ja) 複合焼結体、静電チャック部材および静電チャック装置
JP2016124734A (ja) 耐食性部材、静電チャック装置および耐食性部材の製造方法
JP6424563B2 (ja) 静電チャック装置およびその製造方法
JP5874248B2 (ja) 静電チャック及びその製造方法
JP6503689B2 (ja) 静電チャック装置およびその製造方法
JP2005093919A (ja) 静電チャック及びその製造方法
JP6531693B2 (ja) 静電チャック装置、静電チャック装置の製造方法
JP2003313078A (ja) 窒化アルミニウム焼結体およびそれを用いた静電チャック
JP2016155704A (ja) 耐食性部材、その製造方法および静電チャック装置
JP2016155705A (ja) 耐食性部材、その製造方法および静電チャック装置
JP6834468B2 (ja) 静電チャック部材、静電チャック装置および高周波透過材料
JP2016188160A (ja) 耐食性部材及び静電チャック用部材
JP2020150169A (ja) 静電チャック装置およびその製造方法
JP2020055715A (ja) 誘電体材料、誘電体材料の製造方法及び静電チャック装置
JP2009203113A (ja) プラズマ処理装置用セラミックス
JP2016154178A (ja) 静電チャック用部材及びその製造方法