JP2016105945A - 眼底撮影装置 - Google Patents

眼底撮影装置 Download PDF

Info

Publication number
JP2016105945A
JP2016105945A JP2016055371A JP2016055371A JP2016105945A JP 2016105945 A JP2016105945 A JP 2016105945A JP 2016055371 A JP2016055371 A JP 2016055371A JP 2016055371 A JP2016055371 A JP 2016055371A JP 2016105945 A JP2016105945 A JP 2016105945A
Authority
JP
Japan
Prior art keywords
fundus
unit
light
image
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055371A
Other languages
English (en)
Inventor
酒井 潤
Jun Sakai
潤 酒井
誠 藤野
Makoto Fujino
誠 藤野
有馬 啓介
Keisuke Arima
啓介 有馬
良一 矢萩
Ryoichi Yahagi
良一 矢萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Publication of JP2016105945A publication Critical patent/JP2016105945A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0091Fixation targets for viewing direction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1025Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1208Multiple lens hand-held instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】固視標を投影するための専用の光学系を設けなくとも、被検眼に固視標を提示することが可能な眼底撮影装置を提供する。【解決手段】実施形態の眼底撮影装置は、走査光学系と制御回路部と像構築部とを有する。走査光学系は、光源部からの光により被検眼の眼底を走査し、眼底からの戻り光を受光部にて受光する。制御回路部は、光による走査軌跡が眼底に形成されるように走査光学系を制御する。像構築部は、受光部からの受光信号と走査軌跡の位置とに基づいて眼底の画像を構築する。制御回路部は、可視光による固視標が被検眼に提示されるように走査光学系を制御する。【選択図】図7

Description

本発明は、眼底撮影装置に関する。
従来から、レーザ光を用いて眼底を走査し、その戻り光を検出して眼底像を取得する眼底撮影装置(光走査型検眼鏡、光干渉断層計など)が知られている(たとえば、特許文献1参照。)。また、このような眼底撮影装置において、アライメント指標を被検眼に投影して装置本体の位置合わせを行うものが知られている(たとえば、特許文献2参照。)。
また、眼底カメラ、光干渉断層計、光走査型検眼鏡等の眼底撮影装置を含む眼底撮影システムにおいて、眼底像と被検者とを被検者IDにより関連付けるようにしたものが知られている(たとえば、特許文献3参照。)。また、患者の氏名、カルテに記載する医事データ(疾病名等)と眼底像とをリンクさせて電子データとして保存する医療データ検索システムも知られている(たとえば、特許文献4参照。)。
特開2005−279121号公報 特開2011―147609号公報 特開2002−369801号公報 特開平06−110947号公報
ところで、近時、集団検診、自己検診等を手軽に行うことができるようにするため、ポータブルタイプ(持ち運び可能タイプ、可動タイプ)の眼底撮影装置が要望されている。そのような眼底撮影装置は、小型、軽量であることが望ましい。
ところが、眼底を鮮明に撮影するには、被検眼に対する装置本体の位置合わせが必要である。また、鮮明な眼底像を得るには、被検眼に対する焦点位置合わせ(合焦、フォーカシング)も必要である。
このような要望に応えるための構成として、一般的な据え置き型の眼底撮影装置と同様に、アライメント指標や合焦指標(フォーカス指標)の投影および受光を行うための専用の光学系を設けることが考えられる。しかし、このような専用の光学系を設けることは、装置の大型化や複雑化を招くため、小型化や軽量化やコンパクト化が求められるポータブルタイプには向かない。
なお、ポータブルタイプでない眼底撮影装置(据え置き型など)であっても、アライメント指標や合焦指標や固視標を投影するための専用の光学系を設けると、その分、光学系やそれを駆動するための構成が複雑化する。
なお、指標の投影によらずに、眼底観察時の画像の明るさなどを参照してアライメントを行うことも考えられるが、熟練を要し、手軽に撮影できないという不都合がある。
本発明は、上記の事情に鑑みて為されたもので、その目的は、固視標を投影するための専用の光学系を設けなくとも、被検眼に固視標を提示することが可能な眼底撮影装置を提供することにある。
実施形態の眼底撮影装置は、走査光学系と制御回路部と像構築部とを有する。走査光学系は、光源部からの光により被検眼の眼底を走査し、眼底からの戻り光を受光部にて受光する。制御回路部は、光による走査軌跡が眼底に形成されるように走査光学系を制御する。像構築部は、受光部からの受光信号と走査軌跡位置とに基づいて眼底の画像を構築する。制御回路部は、可視光による固視標が被検眼に提示されるように走査光学系を制御する。
本発明によれば、固視標を投影するための専用の光学系を設けなくとも、被検眼に固視標を提示することができる。
実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の使用形態の一例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の動作例を説明するための概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影装置の構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。 実施形態に係る眼底撮影システムの構成例を示す概略図である。
〈第1の実施形態〉
(光走査型検眼鏡の外観構成の概要)
図1〜図4は、実施形態に係る眼底撮影装置としてのポータブルタイプ(持ち運び可能タイプ、可動タイプ)の光走査型検眼鏡の説明図である。図1において、符号1は、装置本体としての光走査型検眼鏡本体を示し、符号2は取っ手部材を示す。
図1および図2に示すように、光走査型検眼鏡本体1の正面側(被検者に対面する側)には接眼鏡筒部3が設けられている。光走査型検眼鏡本体1の背面側(検者に対面する側)には、図3に示すように、透明板4が設けられている。検者は、透明板4を介して、後述するモニタ部の液晶表示画面5を視認できる。
光走査型検眼鏡本体1の内部には、レーザ走査光学系と、このレーザ走査光学系を制御する制御回路部と、眼底像構築部(像構築部)と、点灯制御回路部と、モニタ部と、電源部と、眼底観察撮影に必要なその他の駆動機構とが設けられている。光走査型検眼鏡本体1の上面には、図2に示すように、電源オン/オフ用の電源ボタンBが設けられている。
この実施形態の接眼鏡筒部3は、図2に示すように、検者に対面する側から見て、左側に設けられている。取っ手部材2には、把持部6と着脱突起部7とが設けられている。図2に点線で示す台形状の凹部8は、光走査型検眼鏡本体1の下側の面において接眼鏡筒部3の配設位置に対応する位置に設けられている。
着脱突起部7は、凹部8の形状に対応する形状を有し、凹部8に嵌合される。着脱突起部7および凹部8の一方には、マグネット部材(図示を略す)が設けられている。
また、着脱突起部7および凹部8の他方には、マグネット部材による引力に作用する磁性部材が設けられている。この実施形態では、取っ手部材2は、マグネット部材による引力によって光走査型検眼鏡本体1に着脱されるが、この構成に限られるものではない。
取っ手部材2の把持部6には、図4に示すように、撮影ボタン9と、アライメントボタン10と、合焦ボタン11とが設けられている(これらの機能については後述する)。
この実施形態の光走査型検眼鏡は、図5に示すように、支持台12に装着された状態でも使用可能である。支持台12の上部には、額当て部13が設けられている。支持台12の傾斜部14には、係合突起部(図示を略す)が形成されている。この係合突起部に凹部8を嵌合させることにより、光走査型検眼鏡本体1が支持台12に支持され、かつ固定される。
光走査型検眼鏡本体1の上面には、撮影ボタン9’、アライメントボタン10’、合焦ボタン11’が設けられている。これらボタン9’〜11’に対する操作は、光走査型検眼鏡本体1が支持台12に装着されているときに有効となる。撮影ボタン9’、アライメントボタン10’および合焦ボタン11’の有効/無効の切り替えは、たとえば、支持台12に設けられた検知スイッチ(図示を略す)を介して行われる。
なお、取っ手部材2が外された状態の光走査型検眼鏡本体1を支持台12に装着せずに使用する場合であっても撮影ボタン9’、アライメントボタン10’および合焦ボタン11’を使用できるように構成することも可能である。
把持部6の下部には、スマートフォン、タブレット端末、携帯情報機器(PDA)等の携帯情報機器を接続するための差し込みプラグ(USB)14が設けられている。差し込みプラグ14は、図6に示す携帯情報機器16にコード15を介して接続される。携帯情報機器16には、複数の操作ボタン17が設けられている。ここでは、複数個の操作ボタン17は、撮影ボタン9、アライメントボタン10、合焦ボタン11に代わるものとして用いられるが、これに限るものではない。
また、この実施形態では、携帯情報機器16の表示画面18に眼底像EGrが表示されるが、これに限るものではない。たとえば、後述する内蔵メモリ部に眼底像EGrを記憶し、図2に示す出力ボタンOBが操作されたことを受けて、眼底像EGrを出力する構成としてよい。
以下の説明では、ポータブルタイプの光走査型検眼鏡における走査光学系および制御回路部について説明するが、ポータブルタイプと据え置き型の双方として使用可能な光走査型検眼鏡や、据え置き型専用の光走査型検眼鏡についても、この実施形態に係る構成を適用することができる。
また、この実施形態では、眼底像EGrは、内蔵メモリ部に逐次保存される。しかし、有線電話回線や無線電話回線を介して眼底像EGrを医療機関に送信するように構成してもよい。
(光走査型検眼鏡の走査光学系、制御回路部の概要)
図7は、この実施形態に係る光走査型検眼鏡の走査光学系および制御部を示すブロック図である。符号20は、照明光を照射する照明光源部を示す。また、符号21は受光部を示す。照明光源部20は、赤外光を照射する赤外光源20aと、B光(青色光)を発生する青色光源20bと、G光(緑色光)を発生する緑色光源20gと、R光(赤色光)を発生する赤色光源20rとを含む。これら光源のそれぞれとしては、空間的コヒーレンシの高い光源、たとえば、半導体レーザ(波長掃引レーザ、スーパールミネセントダイオードを含む)、固体レーザ、ガスレーザ、若しくはそれらから発せられた光を光ファイバに結合させたもの、またはファイバレーザが用いられる。
赤外光源20aから発せされた赤外光Paは、集光レンズ20a’により集光されて、反射ミラー20a”に導かれる。青色光源20bから発せられた青色光Bは、集光レンズ20b’により集光されて、ダイクロイックミラー20b”に導かれる。緑色光源20gから発せられた緑色光Gは、集光レンズ20g’により集光されて、ダイクロイックミラー20g”に導かれる。赤色光源20rから発せられた赤色光Rは、集光レンズ20r’により集光されて、ダイクロイックミラー20r”に導かれる。
ダイクロイックミラー20b”は赤外光Paを透過し、青色光Bを反射する機能を果たす。ダイクロイックミラー20g”は、赤外光Paおよび青色光Bを透過させ、かつ、緑色光Gを反射する。ダイクロイックミラー20r”は、赤色光Rを透過させ、かつ、緑色光G、青色光Bおよび赤外光Paを反射する。
赤外光Pa、青色光B、緑色光Gおよび赤色光Rの光路は、反射ミラー20a”、並びにダイクロイックミラー20b”、20g”および20r”によって合成される。さらに、これら光は、ビームスプリッタ22に導かれ、ビームスプリッタ22を透過し、MEMSミラー23に導かれる。MEMSミラー23は、2軸光走査器として機能する。本実施形態では、2軸光走査器をMEMSミラーとしたが、その限りではない。たとえば、ガルバノミラー光走査器、ポリゴンミラー光走査器などの1軸ミラー走査器2つを組み合わせることにより、2軸光走査器を構成してもよい。この場合、2軸光走査器に含まれる2つの1軸ミラー走査器の間にリレーレンズ光学系が設けられていてもよい。
赤外光Pa、青色光B、緑色光Gおよび赤色光Rは、MEMSミラー23により2次元的に偏向される。さらに、これら光は、リレーレンズ24に導かれ、被検眼Eの眼底Erと共役な面Er’においてスポット光として空中結像される。
共役面Er’において空中結像された光は、合焦レンズとしての対物レンズ25を透過し、被検眼Eの瞳孔Epおよび水晶体Ecを通じて眼内に導かれ、共役面Er’と共役な眼底Erの共役面Er”にスポット光Spとして結像される。
なお、対物レンズ25は、接眼鏡筒部3に設けられており、マニュアル操作によって軸方向に移動される。被検眼Eの屈折力に応じて接眼鏡筒部3の環状リング部材(図示を略す)が回転されると、対物レンズ25が光軸方向に移動される。それにより、共役面Er”が眼底Erに合致され、その結果、鮮明なスポット光Spが眼底Erに形成される。
図8に示すように、眼底Erは、MEMSミラー23の作用により2次元的に走査される。図8において、符号SLは走査スポット光Spによる走査軌跡を示し、符号Brは血管を示し、符号Puは乳頭部を示し、符号Quは黄斑部を示す。
眼底Erからのスポット反射光は、水晶体Ecおよび瞳孔Epを通じて対物レンズ25に導かれ、共役面Er’にいったん空中結像され、リレーレンズ24によってコリメートされ、MEMSミラー23を経由し、ビームスプリッタ22に導かれる。ビームスプリッタ22により反射されたスポット反射光は受光部21に導かれる。ここで、眼底Erからのスポット反射光とは、走査スポット光の位置またはその付近から戻ってくる光(戻り光)であり、たとえば、走査スポット光の正反射光、走査スポット光の散乱光、走査スポット光が励起する蛍光およびその散乱光、などのうち少なくとも1つを含む。
受光部21は、ダイクロイックミラー21r”と、ダイクロイックミラー21g”と、ダイクロイックミラー21b”とを有する。ダイクロイックミラー21r”は、赤色光Rを反射し、かつ、緑色光G、青色光Bおよび赤外光Paを透過させる。ダイクロイックミラー21g”は、緑色光Gを反射し、かつ、青色光Bおよび赤外光Paを透過させる。ダイクロイックミラー21b”は、青色光Bを反射し、かつ、赤外光Paを透過させる。
ダイクロイックミラー21r”による反射方向には、結像レンズ21r’が設けられている。赤色光Rは、結像レンズ21r’により、受像素子としてのPDセンサ21rに結像される。
ダイクロイックミラー21g”による反射方向には、結像レンズ21g’が設けられている。緑色光Gは、結像レンズ21g’により、受像素子としてのPDセンサ21gに結像される。
ダイクロイックミラー21b”による反射方向には、結像レンズ21b’が設けられている。青色光Bは、結像レンズ21b’により、受像素子としてのPDセンサ21bに結像される。
ダイクロイックミラー21b”による透過方向には、結像レンズ21a’が設けられている。赤外光Paは、結像レンズ21a’により、受像素子としてのPDセンサ21aに結像される。
各PDセンサ21a、21b、21gおよび21rからの受光信号は、後述する眼底像構築部に入力される。なお、PDセンサ21aは赤外領域に感度を有し、PDセンサ21bは青色波長領域に感度を有し、PDセンサ21gは緑色波長領域に感度を有し、PDセンサ21rは赤色波長領域に感度を有する。
(光走査型検眼鏡本体1の内部構造の一例)
この実施形態に係る光走査型検眼鏡本体1の内部には、図1に破線で示す可動ケース1Aと、可動ケース1Aを前後上下左右方向に移動する駆動機構(図示を略す)とが設けられている。可動ケース1Aおよび駆動機構は「駆動部」に相当する。
可動ケース1Aの内部には、照明光源部20と、受光部21と、リレーレンズ24と、MEMSミラー23と、ビームスプリッタ22とが設けられている。これら光学系および接眼レンズ鏡筒部3は、可動ケース1Aと一体的に移動する。
光走査型検眼鏡本体1の内部には、図7に示すように、電源回路部26と、制御回路部27と、点灯制御回路部28と、眼底像構築部29と、モニタ部30とが設けられている。電源回路部26は、たとえば、バッテリの交換が可能なタイプ、またはバッテリの充電が可能なタイプである。
電源回路部26は、制御回路部27、眼底像構築部29、点灯制御回路部28などに電力を供給する。制御回路部27には、照明光源部20を制御するためのプログラムと、MEMSミラー23を制御するためのプログラムと、眼底像構築部29を制御するためのプログラムが設けられている。
照明用光源部20を制御するためのプログラムと、MEMSミラー23を制御するためのプログラムは、たとえば、次のような各種の動作モードに応じて設けられている:被検眼Eに対する装置本体のアライメントを行うためのアライメント調節モード;眼底Erに対するフォーカシングを行うための合焦調節モード;眼底観察モード;撮影モード。
電源ボタンBを操作することにより、各回路が起動状態になる。アライメント調節や合焦調節はこの実施形態と直接に関連しないので、これら調節動作は完了したと仮定する。以下、観察モードおよび撮影モードについて説明し、次いで、眼底像と個人情報との関連付けについて説明する。
(観察モード)
検者が電源ボタンBを操作することにより、光走査型検眼鏡本体1は自動的に個人情報取得モードとなり、その後に観察モードに移行する。個人情報取得モードについては後述することにし、観察モードについて先に説明を行う。観察モードにおいて、点灯制御回路部28は、赤外光源20aを点灯させる。これにより、図8に示すように、赤外光であるスポット光Spが眼底Erに形成される。
MEMSミラー23は、これを制御するためのプログラムに従って、たとえば図8に示すように、左から右に向かう複数の走査軌跡SLを上から順に描くように駆動される。これにより、眼底Erの所定範囲がスポット光Spにより走査される。
眼底Erからのスポット光Spの反射光は、赤外受光用のPDセンサ21aに受光される。PDセンサ21aからの受光信号は、眼底像構築部29に入力される。眼底像構築部29は、画像処理部29aと、内蔵メモリ部29bとを有する。
画像処理部29aには、MEMSミラー23を制御するためのプログラムに従って、スポット光Spの走査位置(水平方向における走査軌跡位置、垂直方向における走査軌跡位置)に対応する画素位置信号が入力される。
画像処理部29aは、入力される画素位置信号と、この画素位置信号に対応する受光信号とに基づいて、観察用の眼底画像を構築する。画像処理部29aは、構築された眼底画像の画像信号をモニタ部30に出力する。これにより、モニタ部30の液晶表示画面5に眼底像EGrが表示される(図9を参照)。
検者は、表示されている眼底像EGrを観察しつつ、撮影ボタン9を操作する。この操作を受けて、光走査型検眼鏡の動作モードが撮影モードに切り替わる。
(撮影モード)
撮影モードにおいて、点灯制御回路部28は、青色光源20bと、緑色光源20gと、赤色光源20rとを同時に点灯させる。その点灯時間は、たとえば100ミリ秒に設定されている。青色光源20b、緑色光源20gおよび赤色光源20rが点灯されている間に、観察用の眼底画像を構築する際の走査軌跡SLと同じ走査軌跡SLを描くようにMEMSミラー23が駆動される。
その結果、可視光である白色のスポット光Spを用いて、観察モードと同じ要領で眼底Erが走査される。白色のスポット光Spの反射光はPDセンサ21b、21gおよび21rにより受光される。各PDセンサ21b、21gおよび21rからの受光信号は、眼底像構築部29に入力される。
眼底像構築部29は、PDセンサ21b、21gおよび21rからの受光信号に基づいて、カラー眼底像EGrを構築する。カラー眼底像EGrは、内蔵メモリ部29bに記憶される。
光走査型検眼鏡本体1に、再生ボタン(図示を略す)を設けることができる。この再生ボタンが操作されたことを受けて、カラー眼底像EGrを液晶表示画面5に表示させることができる。また、再生ボタンに対する操作を受けて、取得されたカラー眼底像EGrを自動で診療機関に送信するように構成してもよい。なお、この実施形態では、撮影が終了したことに対応し、光走査型検眼鏡の動作モードが自動的に観察モードに切り替えられる。
(アライメントモード)
まず、被検眼Eに対するアライメントが必要な理由について説明する。
図10に模式的に示すように、被検眼Eに対して装置本体(光学系)の光軸方向のアライメントが合っていない場合、光源部20からの照明光束のうち、周辺から斜めに前眼部に入射する斜光束Qpが、虹彩Rpによって対称的に遮断される。これにより、眼底Erの周辺部に到達する光量が減少する。その結果、図11に模式的に示すように、眼底Erの周辺部に形成されるスポット光Spの光量が減少し、眼底Erの周辺部が暗く照明され、眼底中央部が明るく照明される。なお、図10の破線は光束が虹彩Rpによって遮られていることを示す。
また、図12に模式的に示すように、被検眼Eに対して装置本体の光軸に対し垂直な方向にアライメントが合っていない場合には、たとえば、光源部20からの照明光束のうち周辺から斜めに前眼部に入射した斜光束Qpのうち一方は虹彩Rpによって遮断されるが、他方の斜光束Qpは瞳孔Epを通過する。
その結果、眼底Erの周辺部の一方に形成されるスポット光Spの光量が減少し、他方のスポット光Spの光量は減少しない。それにより、図13に模式的に示すように、眼底Erの周辺部の一方は暗く照明され、かつ、他方は明るく照明される。そのため、眼底Erの照明領域に明るさのむらが生じる。なお、図12の破線は、光束が虹彩Rpによって遮られていることを示す。
これに対し、被検眼Eに対する装置本体のアライメントが光軸方向およびこれに垂直な方向の双方において適正である場合には、図14に示すように、斜光束Qpが瞳孔Epを通って対称的に入射するため、明るさのむらを伴うことなく眼底Erを照明することができる。
アライメントボタン10が操作されると、光走査型検眼鏡本体1の動作モードがアライメントモードに移行する。制御回路部27は、スポット光Spの走査軌跡SLが円形となるようにMEMSミラー23を制御する。これと同時に、点灯制御回路部28は、赤外光源20aを点灯させる。また、アライメントモードにおいては、受光センサ21aからの受光信号が同時に制御回路部27に入力される。
被検眼Eに対して装置本体のアライメントが合っている場合、図16に示すように、円形状軌跡CRSpを形成する斜光束Qp’が瞳孔Epを通過するため、眼底Erには図17に模式的に示すように、スポット光Spによる円形状軌跡CRSpが眼底Er上に形成される。眼底像構築部29は、円弧上軌跡CRSpに対応する画像を構築する。さらに、円形状軌跡CRSpに対応するアライメント指標画像が液晶表示画面5に表示される。
被検眼Eに対して装置本体のアライメントが合っていない場合、たとえば光軸方向のアライメントが不適正な場合、図18に示すように、円形状軌跡CRSpを形成する斜光束Qp’が虹彩Rpによって遮断されるため、スポット光Spによる円形状軌跡CRSpが眼底Erに形成されず、円形状軌跡CRSpに対応するアライメント指標画像が液晶表示画面5に表示されない。
また、被検眼Eに対して装置本体の光軸に対し垂直な方向にアライメントが不適正な場合には、図19に示すように、円形状軌跡CRSpを形成する斜光束Qp’の一部が虹彩Rpによって遮断される。そのため、円形状軌跡CRSpの一部が欠落した形状の軌跡がスポット光Spにより眼底Erに形成され、当該形状のアライメント指標画像が液晶表示画面5に表示される。検者は、液晶表示画面5に表示されたアライメント指標画像により、円形状軌跡CRSpの一部が欠落しているか認識することができ、それにより、被検眼Eに対する装置本体のアライメント状態(つまり、アライメントの適/不適)を把握できる。
さらに、検者は、円形状軌跡CRSpに対応するアライメント指標画像の欠けている方向を確認することにより、被検眼Eに対して装置本体を移動すべき方向を判断できる。
なお、以上においては、単一の円形状軌跡CRSpを用いる場合について説明したが、円形状軌跡CRSpが同心状に形成された多重リング、または螺旋状軌跡などを、アライメント指標として用いることもできる。
また、眼底像構築部29において円形状軌跡CRSpの状態を解析することにより、自動でアライメントの適/不適を求めることができる。さらに、このアライメントの適/不適の判定結果を液晶表示画面5に表示することもできる。
(アライメント指標の変形例)
図20〜図26は、アライメント指標の変形例を示す説明図である。以上においては、MEMSミラー23によるスポット光Spの走査軌跡を、眼底の観察時/撮影時とアライメント調節時とで変更する構成を説明した。
しかしながら、観察時/撮影時の走査方式と同じ走査方式を適用しつつ、赤外光源20aの点灯タイミングをMEMSミラー23の走査位置に応じて同期制御する構成により、アライメント指標を投影することもできる。
(変形例1)
図20は、スポット光Spが眼底Er上で円形状の不連続的軌跡を描くように、MEMSミラー23による走査位置と赤外光源20aの点灯タイミングとを同期させる制御を示す。
ここでは、走査軌跡SLは、一筆書きを描くような往復的な走査が適用されている。
なお、MEMSミラー23の走査位置と赤外光20aの点灯/消灯を同期制御する構成以外にも、たとえば次のような構成を用いることが可能である。まず、赤外光源20aを常時点灯させる。さらに、MEMSミラー23の走査位置と、PDセンサ21aの出力タイミングとを同期制御することにより、アライメント指標に対応する走査位置からの反射光の受光信号のみをPDセンサ21aから眼底像構築部29に送る。
(変形例2)
以上においては、眼底Er上で円形状軌跡CRSpを描くことによりアライメント指標を形成する場合について説明した。しかし、図21に示すように、複数のアライメント指標が異なる位置に形成されるように眼底Erにスポット光Spを照射する構成としてもよい。
この変形例において、被検眼Eに対して装置本体のアライメントが適切な場合には、眼底Erにおける上下左右の隅部の四か所に、それぞれ、水平方向に配列された3個のスポット光Spからなるアライメント指標が形成される。
これに対し、被検眼Eに対する装置本体のアライメントが不適切な場合の例として図22に示す状態が生じることがある。図22に示す状態においては、右上側の3個のスポット光Spが全て欠落し、右下側の3個のスポット光Spのうち2つが欠落している。検者は、このようなスポット光Spの欠落状態に基づいて、被検眼Eに対して装置本体を移動すべき方向や量を判断できる。
(変形例3)
図23に示す例は、走査軌跡SLを縦方向に一筆書きする場合において、縦方向に配列された3個のスポット光Spからなるアライメント指標を、眼底Erにおける上下左右の隅部の四か所にそれぞれ形成する場合を示す。
被検眼Eに対して装置本体のアライメントが左右方向にずれている場合、たとえば、図24に示すように、右上の3個のスポット光Spのうちの上2つが欠落し、右下の3個のスポット光Spのうちの下2つが欠落する。検者はそのスポット光Spの欠落状態を把握することにより、被検眼Eに対して装置本体を移動すべき方向や量を判断できる。
(変形例4)
図25は、走査軌跡SLを横方向に一筆書きする場合において、縦方向に配列された3個のスポット光Spからなるアライメント指標を上側中央位置および下側中央位置にそれぞれ形成し、かつ、横方向に配列された3個のスポット光Spからなるアライメント指標を左側中央位置および右側中央位置にそれぞれ形成する場合を示す。つまり、この変形例は、十字型のアライメント指標が眼底Erに形成されるかのごとく構成したものである。
被検眼Eに対して装置本体のアライメントが左右方向にずれている場合には、たとえば、図26に示すように、左側の3個のスポット光Spが欠落する。検者は、スポット光Spの欠落状態に基づいて、被検眼Eに対して装置本体を移動すべき方向や量を判断できる。
制御回路部27にアライメント指標判断部27aを設けることができる。アライメント指標判断部27aは、アライメント指標としてのスポット光Spの形成状態に応じて、被検眼Eに対して装置本体のアライメントが適切になるように、前後上下左右に可動ケース1Aを移動させる。
(フォーカスモード)
被検眼Eに対する装置本体のアライメント調節が終了した後、ユーザが合焦ボタン11を操作すると、光走査型検眼鏡本体1の動作モードが合焦モード(フォーカスモード)に移行する。なお、アライメント調節の完了をトリガとして自動的に合焦モードに移行させる構成を採用することもできる。この場合、合焦ボタン11は不要である。
被検眼Eに対する装置本体のフォーカスが合っていない場合、眼底像EGrが不鮮明になると共に全体として暗くなる。本例では、図27に示すように、フォーカス指標としてライン状指標SLPが眼底Erに形成される。
制御回路部27は、眼底Erの中央位置に左右方向(水平方向)に延びるライン状指標SLPが形成されるように、点灯制御回路部28を制御する。このとき、点灯制御回路部28は、MEMSミラー23の制御と、赤外光源20aを点灯制御とを同期して行う。
ライン状指標SLPを形成する光束QP”は、図28に示すように、瞳孔Epを通過し、眼底Erに照射される。眼底Erに対するスポット光Spのフォーカスが合っていない場合、スポット光Spの径が大きくなり、ぼやけたスポットが眼底Erに形成される。そのため、ライン状指標SLPの幅が大きくなると共に、ライン状指標SLPが不鮮明となる。
眼底像構築部29は、PDセンサ21aからの受光信号に基づいて、ライン状指標SLPに対応するフォーカス指標画像を構築する。
なお、この実施形態では、フォーカス指標画像の構築は、次のようにして行われる。PDセンサ21aは、走査軌跡位置における受光量を検出するので、スポット光Spの大きさに関する情報は検出できない。しかしながら、フォーカスが合っていない場合には、PDセンサ21aによる受光量が小さくなる。そこで、実際の測定を事前に行うことにより、フォーカスが合っている場合における反射光量と、フォーカスが合っていない場合における反射光量とを取得し、ライン状指標SLPの幅と受光量とが関連付けられた情報を作成する。この情報を参照することにより、ライン状指標SLPの幅をフォーカス状態に応じて描画することができる。なお、受光部がPDセンサ21aの代わりに二次元センサを含む場合には、スポット光の大きさを二次元センサによって直接に検出できるので、ライン状指標SLPをグラフィックによらずに表示させることができる。
被検眼Eに対する装置本体のフォーカスが合っていない場合には、たとえばマニュアル操作により対物レンズ25をその光軸方向に前後方向に移動させることにより、ライン状指標SLPに対応するフォーカス指標画像を細くかつ明るく鮮明にすることができる(図29を参照)。このようにして、被検眼Eに対する装置本体のフォーカス合わせを行うことができる。
なお、マニュアル操作によりフォーカス合わせを行う代わりに、ライン状指標SLPの幅を検出し、この線幅が小さくなるように対物レンズ25を光軸方向に自動で移動させる構成を適用することができる(オートフォーカス)。
(フォーカス指標の変形例)
フォーカス指標はライン状指標SLPに限定されるものではない。たとえば、図30に示すリング状指標SCPや、図31に示す正方形状指標SRPや、図32に示す星形状指標SSPを、フォーカス指標として用いることができる。
以上のように、実施形態に係る眼底撮影装置では、眼底Erの走査に用いる走査光学系を用いることにより、アライメント指標やフォーカス指標を眼底Erに形成する構成としたので、多種多様な指標を形成することが可能である。
また、以上の説明では、赤外光によって指標を形成しているが、これには限定されない。たとえば、赤色光(R光)、緑色光(G光)、青色光(B光)の少なくとも一つを用いて指標を形成する構成とすることもできる。このときに適用される光量は、被検眼Eにダメージを与えない程度の低光量に設定される。
このように、低光量の可視光を被検眼Eに投影することによりフォーカス指標を形成してフォーカスを行う構成とすると、被検者自らがフォーカス調節を行うことができる。
(固視標の提示)
この実施形態において、眼底Erを観察しているときに眼底Erに固視標を投影することができる。この処理は、制御回路部27が点灯制御回路部28を制御することにより行われる。
その具体例を説明する。制御回路部27には、固視標提示プログラムが設けられている。光走査型検眼鏡は、眼底観察のための走査軌跡SLに沿った走査を行いつつ、眼底Erの撮影部位(固視位置)に対応する走査軌跡位置に、図33に示す十字固視標Fixが形成されるように、赤色光源20r等の点灯タイミングを制御する。それにより、低光量のR光によるスポット光Spが眼底Erに形成される。なお、固視標は、被検者が認識できるように可視光を用いて形成される。
図34に示すように、被検者は、十字固視標Fixが視認できるように眼球を旋回させる。そして、十字固視標Fixを固視した状態で撮影が行われる。この実施形態において、固視標は、眼底Erの走査を行うための走査光学系を用いて眼底Erに描画される。したがって、多種多様の固視標を形成することができる。
(眼底Erの撮影順序)
以上の説明では、説明の便宜上、眼底の観察および撮影を先に説明したが、実際の検査はたとえば以下に説明する流れで行われる。
(ステップS1)
電源ボタンBをオンする。
(ステップS2)
被検眼Eの前に光走査型検眼鏡を配置させ、撮影対象の被検眼Eに対して接眼鏡筒部3を対面させる。
(ステップS3)
アライメントボタン10を操作して、被検眼Eに対する光走査型検眼鏡本体1の位置合わせ(アライメント)を行う。
(ステップS4)
合焦ボタン11を操作して、被検眼Eの眼底Erに対するフォーカス調節を行う。
(ステップS5)
アライメントおよび合焦の完了を受けて、光走査型検眼鏡の動作モードが自動的に観察モードに移行する。さらに、観察モードへの移行とともに、眼底Erに固視標が投影される。固視標の提示位置をマニュアルで変更できるように構成してよい。また、複数の提示位置を選択的に適用可能な固視標プログラムをあらかじめ組み込んでもよい。
(ステップS6)
撮影ボタン9に対する操作を受けて、光走査型検眼鏡は、撮影を実行し、取得された眼底像EGrを内蔵メモリ部29bに格納する。
以上において説明した実施形態に係る構成は、ポータブルタイプの眼底撮影装置に適用可能である。
この実施形態では、検者側からみて光走査型検眼鏡本体1の左側に接眼鏡筒部3が配置されていることに対応して、同じく左側に取っ手部材2が配置されているが、取っ手部材2を光走査型検眼鏡本体1の左右幅方向における中央位置に設けてもよい。
また、光走査型検眼鏡本体1の左右幅方向における中央位置に接眼鏡筒部3を設け、かつ、取っ手部材2も同じく中央位置に設けてもよい。
また、光走査型検眼鏡本体1の左右幅方向における中央位置に取っ手部材2を設け、かつ、この中央位置を基準として左側と右側とに対称に接眼鏡筒部3を配置する構成とすることもできる。
〈第2の実施形態〉
第1の実施形態では、眼底撮影装置として光走査型検眼鏡が適用される場合について説明したが、眼底撮影装置は光走査型検眼鏡に限定されるものではない。たとえば、背景技術として説明した光干渉断層計を眼底撮影装置として適用することが可能である。より一般に、実施形態に係る眼底撮影装置は、光を用いて眼底を走査し、眼底からの戻り光を検出し、その検出結果と走査軌跡の位置とに基づいて眼底を画像化するように構成されていればよい。
実施形態に係る光干渉断層計はポータブルタイプであってよい(よって、第1の実施形態における図1〜図6のような構成を適用できる)。一方、光干渉断層計は、ポータブルタイプと据え置き型の兼用、または据え置き型専用であってよい。
光干渉断層計は、被検眼の断面像や3次元画像データ等の形態情報や、血流状態などの機能情報を、干渉光学系を用いることにより取得する装置である。このような光計測は、光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)と呼ばれる。OCTの方式として、タイムドメインOCTと、フーリエドメインOCTとが知られている。また、フーリエドメインOCTとしては、低コヒーレンス光源(広帯域光源)と分光器を用いるスペクトラルドメインタイプと、波長掃引光源(波長可変光源)を用いるスウェプトソースタイプとが知られている。
以下の実施形態ではスペクトラルドメインタイプのOCTを適用した場合について詳しく説明するが、他のタイプのOCTを用いる眼底撮影装置に対して、この実施形態に係る構成を適用してよい。
[構成]
実施形態に係る眼底撮影装置の構成について説明する。図35に示す眼底撮影装置100は、光学ユニット110と、コンピュータ200と、ユーザインターフェイス(UI)300とを有する。眼底撮影装置100は、第1の実施形態の光走査型検眼鏡本体1を代替する。
光学ユニット110、コンピュータ200およびユーザインターフェイス300は一体的に(つまり単一の筐体内に)設けられていてよい。或いは、これらは2つ以上の筐体内に分散配置されていてもよい。その場合、眼底撮影装置の一部が他の装置に設けられていてよい。たとえば、コンピュータ200の一部または全部を、パーソナルコンピュータや携帯端末(タブレット型コンピュータ、携帯電話、スマートフォン等)に設けることができる。また、ユーザインターフェイス300の一部または全部を、パーソナルコンピュータ、携帯端末、テレビ受像機、スマートテレビなどに設けることができる。
〔光学ユニット110〕
光学ユニット110は、OCT計測を行うための光学系と、所定の光学素子を駆動する機構とを含む。光学系は、光源111からの光を測定光と参照光とに分割し、測定光の被検眼Eからの戻り光と参照光とを干渉させ、その干渉光を検出する。この光学系は、従来のスペクトラルドメインタイプのOCT装置と同様の構成を有する。すなわち、この光学系は、低コヒーレンス光(広帯域光)を参照光と測定光に分割し、被検眼Eを経由した測定光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光のスペクトル成分を検出するように構成される。スペクトル成分の検出結果(検出信号)はコンピュータ200に送られる。
スウェプトソースタイプのOCTが適用される場合、低コヒーレンス光源の代わりに波長掃引光源が設けられるとともに、干渉光をスペクトル分解する光学部材が設けられない。一般に、光学ユニット110の構成については、OCTのタイプに応じた公知の技術を任意に適用することができる。
光源111は広帯域の低コヒーレンス光を出力する。この低コヒーレンス光は、たとえば、近赤外領域の波長帯(約800nm〜900nm程度)を含み、数十マイクロメートル程度の時間的コヒーレンス長を有する。なお、人眼では視認できない波長帯、たとえば1040〜1060nm程度の中心波長を有する近赤外光を低コヒーレンス光として用いてもよい。
光源111は、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、LEDや、SOA(Semiconductor Optical Amplifier)等の光出力デバイスを含んで構成される。
光源111から出力された低コヒーレンス光は、コリメートレンズ112により平行光束とされてビームスプリッタ113に導かれる。ビームスプリッタ113は、たとえば、所定割合の光を反射し、残りを透過させるハーフミラーである。ビームスプリッタ113は、この平行光束を測定光と参照光とに分割する。
測定光とは被検眼Eに照射される光である(信号光などとも呼ばれる)。測定光の光路(測定光路)を形成する光学素子群は測定アームと呼ばれる(サンプルアームなどとも呼ばれる)。参照光とは、測定光の戻り光に含まれる情報を干渉信号として抽出するための基準となる光である。参照光の光路(参照光路)を形成する光学素子群は参照アームと呼ばれる。
参照光路の一端はビームスプリッタ113であり、他端は参照ミラー114である。ビームスプリッタ113を透過した成分からなる参照光は、参照ミラー114により反射されてビームスプリッタ113に戻ってくる。
参照ミラー114は、図36に示す参照ミラー駆動部114Aにより、参照光の進行方向に沿って移動される。それにより、参照光路の長さが変更される。参照ミラー駆動部114Aは、測定光路の長さと参照光路の長さとを相対的に変更するように機能し、それにより測定光と参照光との干渉強度が最大となる深度が変更される。
この実施形態では参照光路の長さを変更する構成が適用されているが、この構成の代わりに、或いはこの構成に加えて、測定光路の長さを変更する構成を設けることができる。測定光路の長さの変更は、たとえば、入射する測定光を当該入射方向と反対方向に反射するコーナーキューブと、このコーナーキューブを当該入射方向および当該反射方向に移動させるための機構とにより実現される。
ビームスプリッタ113に反射された成分からなる測定光は、測定光路に対して傾斜配置された固定ミラー115により偏向されてスキャナ116に導かれる。スキャナ116は、たとえば2軸光スキャナである。つまり、スキャナ116は、測定光を2次元的に偏向可能な構成を有する。スキャナ116は、たとえば、互いに直交する方向に偏向可能な2つのミラーを含むミラースキャナである。このミラースキャナは、たとえばMEMS(Micro Electro Mechanical Systems)として構成される。他の例として、1つのミラースキャナとロータリープリズムとを用いてスキャナ116を構成することも可能である。
スキャナ116から出力される測定光は、2次元的に偏向されたコリメート光である。この測定光は、リレーレンズ117により集束光とされ、眼底Efと共役な面(眼底共役面)Pcにおいて空中結像される。さらに、測定光は、合焦レンズとしての機能を有する対物レンズ119により再び集束光とされて被検眼Eに入射する。なお、眼底共役面Pcに配置された光学素子(ダイクロイックミラー118)については後述する。また、後述の切替レンズ127が測定光路に配置されている場合、測定光は、対物レンズ119を経由した後、切替レンズ127により屈折されて被検眼Eに入射する。
対物レンズ119と鏡筒部119Aは、図36に示す鏡筒駆動部119Bにより、測定光路に沿って移動される。対物レンズ119と鏡筒部119Aは、被検眼Eの屈折力に応じて光軸方向に移動される。それにより、眼底共役面Pcが眼底Efと共役な位置に配置される。その結果、測定光は、スポット光として眼底Efに投射される。なお、対物レンズ119とは別に合焦レンズを設ける構成を適用することも可能である。
切替レンズ127は、画像化の対象となる被検眼Eの部位(深さ位置)を切り替えるためのレンズである。画像化の対象部位としては、眼底Ef、前眼部、水晶体、硝子体などがある。なお、眼底Efと前眼部との切り替えを行う場合、第1の実施形態と同様の前眼部撮影用の投影レンズLLが、切替レンズ127として用いられる。切替レンズ127は、図36に示すレンズ駆動部127Aにより測定光路に対して挿入/退避される。なお、3以上の部位が対象となる場合、2以上の切替レンズを選択的に光路に配置可能に構成することが可能である。また、たとえばアルバレッツレンズのように屈折力が可変に構成された光学素子を切替レンズ127として用いることも可能である。この実施形態では、眼底Efの撮影を行う場合には切替レンズ127が光路から退避され、前眼部の撮影を行う場合には切替レンズ127が光路に配置されるものとする。
眼底Efに照射された測定光は、眼底Efの様々な深さ位置において散乱(反射を含む)される。眼底Efによる測定光の後方散乱光(戻り光)は、往路と同じ経路を逆向きに進行してビームスプリッタ113に導かれる。
ビームスプリッタ113は、測定光の戻り光と、参照光路を経由した参照光とを干渉させる。このとき、参照光路の長さとほぼ等しい距離を経由した戻り光の成分、つまり参照光路の長さに対して可干渉距離以内の範囲からの後方散乱光のみが、参照光と実質的に干渉する。ビームスプリッタ113を介して生成された干渉光は、分光器120に導かれる。分光器120に入射した干渉光は、回折格子121により分光(スペクトル分解)され、レンズ122を介してCCDイメージセンサ123の受光面に照射される。なお、図35に示す回折格子121は透過型であるが、たとえば反射型の回折格子など、他の形態の分光素子を用いることも可能である。
CCDイメージセンサ123は、たとえばラインセンサまたはエリアセンサであり、分光された干渉光の各スペクトル成分を検出して電荷に変換する。CCDイメージセンサ123は、この電荷を蓄積して検出信号を生成し、これをコンピュータ200に送る。
前述したように、測定光路の眼底共役面Pcに相当する位置には、ダイクロイックミラー118が傾斜配置されている。ダイクロイックミラー118は、近赤外帯域の測定光を透過させ、可視帯域の光を反射するように構成されている。
ダイクロイックミラー118を介して測定光路から分岐した光路には、フラットパネルディスプレイ(FPD)125と、レンズ126とが設けられている。フラットパネルディスプレイ125は、制御部210による制御を受けて情報を表示する。フラットパネルディスプレイ125に表示される情報として、被検眼Eに対して提示される各種の指標がある。このような指標の例として、被検眼Eを固視させるための固視標などがある。また、検査に関する指示の内容(インストラクション)などの情報を提示することも可能である。
フラットパネルディスプレイ125は、レンズ126を介して眼底共役面Pcと共役な位置(よって、眼底Efと共役な位置)に配置されている。フラットパネルディスプレイ125としては、たとえば液晶ディスプレイ(LCD)または有機ELディスプレイ(OELD)が用いられる。
フラットパネルディスプレイ125から出力された可視光は、レンズ126を介してダイクロイックミラー118に反射される。さらに、この可視光は、対物レンズ119を介して被検眼Eに入射し、眼底Efに到達する。それにより、この可視光に基づく像(たとえば固視標)が眼底Efに投影される。
なお、ダイクロイックミラー118の代わりに、ハーフミラー等の光学素子を設けてもよい。また、測定光路に対して挿入/退避できるように構成された反射ミラーを設けることも可能である。ダイクロイックミラー118やハーフミラーが設けられる場合、OCT計測と指標の投影を同時に行うことができる。一方、反射ミラーが設けられる場合には、OCT計測と指標の投影とが異なるタイミングで実行される。
この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。また、CCDイメージセンサに代えて、他の形態の受光素子、たとえばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを用いることが可能である。
この実施形態では、ビームスプリッタ113に反射された光が測定光として用いられ、これを透過した光が参照光として用いられている。一方、これとは逆に、ビームスプリッタ113に反射された光を参照光として使用し、これを透過した光を測定光として使用する構成を適用することも可能である。その場合、測定アームと参照アームの配置が図35とは逆になる。
測定光および/または参照光の特性を変換する部材を設けることができる。たとえば、光減衰器(アッテネータ)や偏波調整器(偏波コントローラ)を、参照光路に設けることが可能である。光減衰器は、コンピュータ200の制御を受けて、参照光の光量を調整する。光減衰器は、たとえば、減光フィルタと、これを参照光路に対して挿入/退避させるための機構とを含む。偏波調整器は、コンピュータ200の制御を受けて、参照光の偏光状態を調整する。偏波調整器は、たとえば、参照光路に配置された偏光板と、これを回転させるための機構とを含む。これらは、測定光の戻り光と参照光との干渉強度を調整するために使用される。
被検眼Eを撮影してその正面画像を取得するための正面画像取得光学系を設けることが可能である。この正面画像は、前眼部または眼底Efの画像である。正面画像取得光学系は、測定光路から分岐した光路を形成するものであり、たとえば従来の眼底カメラと同様の照明光学系と撮影光学系とを含む。照明光学系は、(近)赤外光または可視光からなる照明光を被検眼Eに照射する。撮影光学系は、被検眼Eからの照明光の戻り光(反射光)を検出する。撮影光学系は、測定光路と共通の合焦レンズ、および/または、測定光路とは独立した合焦レンズを有する。また、撮影光学系は、測定光路と共通の合焦レンズ(対物レンズ119、切替レンズ127など)、および/または、測定光路から独立した合焦レンズを有する。正面画像取得光学系の他の例として、従来のSLOと同様の光学系がある。
正面画像取得光学系が設けられる場合、従来の眼底カメラと同様のアライメント光学系を設けることができる。アライメント光学系は、測定光路から分岐した光路を形成するものであり、被検眼Eに対する装置光学系の位置合わせ(アライメント)を行うための指標(アライメント指標)を生成する。アライメントは、測定光路(対物レンズ119の光軸)に対して直交する面に沿う方向(xy方向と呼ばれる)における位置合わせである。図示は省略するが、アライメント光学系は、アライメント光源(LED等)から出力された光束から2孔絞りによって2つのアライメント光束を生成する。2つのアライメント光束は、測定光路に対して傾斜配置されたビームスプリッタを介して測定光路に導かれ、被検眼Eの角膜に投影される。アライメント光束の角膜反射光は、正面画像取得光学系のイメージセンサによって検出される。
アライメント光学系が設けられる場合、オートアライメントを実行することができる。具体的には、コンピュータ200のデータ処理部230は、正面画像取得光学系のイメージセンサから入力される信号を解析して2つのアライメント指標像の位置を特定する。さらに、制御部210は、特定された2つのアライメント指標像の位置に基づいて、イメージセンサの受光面の所定位置(たとえば中心位置)に2つの角膜反射光が重なって投影されるように、光学ユニット110をxy方向に移動させる。なお、光学ユニット110は、ユニット駆動部110Aによって移動される。
また、正面画像取得光学系が設けられる場合、従来の眼底カメラと同様のフォーカス光学系を設けることができる。フォーカス光学系は、測定光路から分岐した光路を形成するものであり、眼底Efに対するフォーカシング(ピント合わせ)を行うための指標(フォーカス指標、スプリット指標)を生成する。図示は省略するが、フォーカス光学系は、フォーカシング光源(LED等)から出力された光束からスプリット指標板によって2つのフォーカシング光束を生成する。2つのフォーカシング光束は、測定光路に対して傾斜配置された反射部材を介して測定光路に導かれ、眼底Efに投影される。フォーカシング光束の眼底反射光は、正面画像取得光学系のイメージセンサによって検出される。
フォーカス光学系が設けられる場合、オートフォーカスを実行することができる。具体的には、コンピュータ200のデータ処理部230は、正面画像取得光学系のイメージセンサから入力される信号を解析して2つのスプリット指標像の位置を特定する。さらに、制御部210は、特定された2つのスプリット指標像の位置に基づいて、イメージセンサの受光面に対して2つの眼底反射光が一直線上に投影されるように、フォーカス光学系の移動制御および合焦レンズの制御(たとえば対物レンズ119の移動制御)を行う。
正面画像取得光学系が設けられる場合、オートトラッキングを行うことができる。オートトラッキングとは、被検眼Eの動きに合わせて光学ユニット110を移動させるものである。オートトラッキングを行う場合、事前にアライメントとフォーカシングが実行される。オートトラッキングは、たとえば次のようにして実行される。まず、正面画像取得光学系によって被検眼Eを動画撮影する。データ処理部230は、この動画撮影により得られるフレームを逐次に解析することで、被検眼Eの動き(位置の変化)を監視する。制御部210は、逐次に取得される被検眼Eの位置に合わせて光学ユニット110を移動させるようにユニット駆動部110Aを制御する。それにより、被検眼Eの動きに対して光学ユニット110をリアルタイムで追従させることができ、アライメントとピントが合った好適な位置関係を維持することが可能となる。
なお、この実施形態では、アライメント指標やフォーカス指標や固視標を投影するための専用の光学系を設けることなく、スキャナ116により偏向される測定光を用いて眼底Efに指標を投影することが可能である。この処理については後述する。
〔制御系・データ処理系〕
実施形態に係る眼底撮影装置100の制御系およびデータ処理系について説明する。制御系およびデータ処理系の構成例を図36に示す。
制御系およびデータ処理系は、コンピュータ200を中心に構成される。コンピュータ200は、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイスなどを含んで構成される。ハードディスクドライブ等の記憶装置には、眼底撮影装置100に各種処理を実行させるためのコンピュータプログラムが記憶されている。コンピュータ200は、特定の処理を実行する専用の回路基板を有していてよい。たとえばOCT画像を形成するための処理を実行する回路基板が設けられていてよい。
(ユーザインターフェイス300)
コンピュータ200にはユーザインターフェイス300が接続されている。ユーザインターフェイス300には、表示部310と操作部320とが含まれる。表示部310は、フラットパネルディスプレイ等の表示デバイスを含む。操作部320は、眼底撮影装置100の筐体や外部に設けられたボタン、キー、ジョイスティック、操作パネル等の操作デバイスを含む。コンピュータ200がパーソナルコンピュータを含む場合、操作部320は、このパーソナルコンピュータの操作デバイス(マウス、キーボード、トラックパッド、ボタン等)を含んでいてよい。
表示部310と操作部320は、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネルのように、表示機能と操作機能とが一体化されたデバイスを用いることも可能である。その場合、操作部320は、このタッチパネルとコンピュータプログラムとを含んで構成される。操作部320に対する操作内容は、電気信号として制御部210に入力される。また、表示部310に表示されたグラフィカルユーザインターフェイス(GUI)と、操作部320とを用いて、操作や情報入力を行うようにしてもよい。
(制御部210)
制御部210は、コンピュータ200に設けられている。制御部210は、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ等を含んで構成される。制御部210には、主制御部211と記憶部212が設けられている。
(主制御部211)
主制御部211は、眼底撮影装置100の各部の制御を行う。たとえば、主制御部211による制御の対象には、ユニット駆動部110A、光源111、参照ミラー駆動部114A、スキャナ116、鏡筒駆動部119B、CCD(イメージセンサ)123、フラットパネルディスプレイ125、表示部310、データ処理部230、および通信部240が含まれる。
ユニット駆動部110Aは、測定光路(対物レンズ119の光軸)に沿う方向(z方向)と、z方向に対して直交する面に沿う方向(xy方向)とに、光学ユニット110を移動するための機構を有する。参照ミラー駆動部114Aは、参照光路に沿って参照ミラー114を移動する。鏡筒駆動部119Bは、測定光路に沿って対物レンズ119および鏡筒部119Aを移動する。レンズ駆動部127Aは、切替レンズ127を測定光路に対して挿脱する。
(記憶部212)
記憶部212は、各種のデータを記憶する。また、記憶部212には、眼底撮影装置100を動作させるための各種プログラムやデータが記憶されている。記憶部212に記憶されるデータは、眼底撮影装置100により取得されるデータと、あらかじめ記憶されるデータとを含む。
眼底撮影装置100により取得されるデータとしては、OCT画像の画像データ、検査データ、正面画像の画像データなどがある。検査データとは、光学ユニット110による干渉光の検出結果を処理することにより生成される、被検眼の状態を示すデータである。記憶部212には、以下に説明する設定情報があらかじめ記憶されている。
(設定情報)
設定情報は、光学ユニット110およびデータ処理部230に関する所定の項目の設定の内容が記録された情報である。設定情報はたとえば次の事項のうち少なくとも1つに関する設定内容を含む:(1)固視位置;(2)スキャンパターン;(3)合焦位置;(4)視度補正;(5)最大干渉深度;(6)解析処理。
(1)「固視位置」は、被検眼Eを固視させる方向、つまりOCT計測が実行される被検眼Eの部位を示す。固視位置としては、黄斑およびその周囲のOCT計測を行うための固視位置、視神経乳頭およびその周囲のOCT計測を行うための固視位置、黄斑および視神経乳頭並びにこれらの周囲のOCT計測を行うための固視位置などがある。また、被検眼Eの任意の部位に対応する固視位置を設定することも可能である。固視位置は、たとえば、フラットパネルディスプレイ125による固視標の表示位置(画素の位置)を示す情報を含む。
(2)「スキャンパターン」は、被検眼Eに対する測定光の投射位置をどのようなパターンに沿って移動させるかを示す。スキャンパターンとしては、1以上のラインスキャン(水平スキャン、垂直スキャン)、1以上のクロススキャン、ラジアルスキャン、サークルスキャンなどがある。また、3次元画像(3次元データセット)を取得する場合には、複数のラインスキャンの間隔が十分に狭く設定された3次元スキャンが適用される。
(3)「合焦位置」は、OCT計測において適用されるフォーカス条件を示す。合焦位置は、たとえば、対物レンズ119の位置を示す情報を含む。
(4)「視度補正」は、視度補正において適用される条件を示す。具体的には、被検眼Eの屈折力(視力値)を示す値、対物レンズ119の位置を示す情報などがある。
(5)「最大干渉深度」は、OCT計測において適用される、測定光と参照光との干渉強度が最大となる深度を示す。最大干渉深度は、たとえば、参照ミラー114の位置を示す情報を含む。
(6)「解析処理」は、光学ユニット110により取得されるデータに基づき実行される処理の内容、つまり取得される検査データの種別を示す。解析処理の例として、眼底層厚解析、乳頭形状解析などがある。眼底層厚解析は、眼底の所定の層組織(網膜、網膜のサブ組織、脈絡膜、強膜など)の厚さを求めるための解析処理である。乳頭形状解析は、眼底の断面像や3次元画像を解析して、網膜の孔部(切れ目、欠損部位)を検出して視神経乳頭の形状を求める解析処理である。また、乳頭形状解析では、視神経乳頭の傾き(形状の非対称性)を求めることもできる。
解析処理は、被検眼Eの所定部位に相当する画像領域を特定する処理や、特定された画像領域の形態や分布を求める処理を含んでいてよい。特定対象である所定部位としては、たとえば、血管、視神経乳頭、黄斑、所定の層組織(網膜、網膜のサブ組織、脈絡膜、強膜など)、レーザ治療痕、病変部(ドルーゼン、網膜剥離部位、組織欠損部位、組織変形部位など)がある。
解析処理は、OCT計測で取得されたデータに基づいて距離を算出する処理を含んでいてよい。この距離計測の例として、前眼部のOCT計測で取得されたデータと、眼底のOCT計測で取得されたデータとに基づく眼内距離(眼軸長など)の計測がある。なお、眼底または前眼部のOCT画像のみに基づいて眼内距離を求めることも可能である。
被検者の左眼と右眼の双方のOCT計測を行う場合であって、特に左右で異なる設定が適用される場合には、左眼に関する設定情報(左眼用設定情報)と、右眼に関する設定情報(右眼用設定情報)とを別々に設けることが可能である。
また、眼底撮影装置100を2以上の被検者が共用する場合であって、特に被検者ごとに異なる設定が適用される場合には、被検者ごとに個別の設定情報を設けることが可能である。設定情報は、たとえば、被検眼に関する過去の検査結果や診断結果に基づいて作成される。
(画像形成部220)
画像形成部220は、CCDイメージセンサ123からの検出信号に基づいて画像データを形成する。この処理には、従来のスペクトラルドメインタイプのOCTと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、分散補償、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCTが適用される場合、画像形成部220は、そのタイプに応じた公知の処理を実行する。
画像形成部220は、たとえば、専用の回路基板および/またはマイクロプロセッサを含んで構成される。なお、この明細書では、「画像データ」と、それに基づく「画像」とを同一視することがある。
(データ処理部230)
データ処理部230は、各種のデータ処理を実行する。たとえば、データ処理部230は、画像形成部220により形成された画像に対して画像処理を施す。その一例として、データ処理部230は、断面位置が異なる複数の2次元断面像に基づいて、被検眼Eの3次元画像の画像データを形成することができる。3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。また、データ処理部230は、3次元画像の任意の断面を画像化することができる(MPR(Multi−Planar Reconstruction):断面変換)。
また、3次元画像の画像データとして、複数の断面像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断面像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断面像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。データ処理部230は、スタックデータに基づくMPR処理を行うことが可能である。
データ処理部230は、たとえば、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、所定のデータ処理専用の回路基板などを含んで構成される。ハードディスクドライブ等の記憶装置には、後述のデータ処理をマイクロプロセッサに実行させるコンピュータプログラムがあらかじめ格納されている。
(通信部240)
通信部240は、外部装置との間でデータ通信を行う。データ通信の方式は任意である。たとえば、通信部240は、インターネットに準拠した通信インターフェイス、LANに準拠した通信インターフェイス、近距離通信に準拠した通信インターフェイスなどを含む。また、データ通信は有線通信でも無線通信でもよい。
通信部240は、通信回線2000を介して、外部コンピュータ1000との間でデータ通信を行う。なお、外部コンピュータ1000は、1つ以上の任意の個数設けられる。外部コンピュータ1000としては、医療機関に設置されたサーバ、医師が使用する端末、眼底撮影装置100のメーカ(または、販売会社、メンテナンス事業者、若しくはレンタル事業者など)のサーバ、メーカ等の担当者が使用する端末などがある。外部コンピュータ1000は、眼底撮影装置100と直接に通信可能なものには限定されず、他のコンピュータを介して間接的に通信が可能なものでもよい。たとえば第1の実施形態で説明した例において、外部コンピュータ1000には、携帯情報端末16だけでなく、携帯情報端末16’やパーソナルコンピュータ16Aも含まれる。
通信部240による送受信されるデータは暗号化されていてもよい。その場合、制御部210(またはデータ処理部230)は、送信データを暗号化する暗号化処理部と、受信データを復号する復号化処理部とを有する。
[作用・効果]
この実施形態に係る眼底撮影システムの作用および効果について説明する。なお、眼底をスキャンする態様と、眼底に指標を形成する態様は、第1の実施形態と同様であってよい。
実施形態に係る眼底撮影装置(100)は、次の構成要素を有する:光源部(光源111)からの光により被検眼(E)の眼底(Ef)を走査し、眼底からの戻り光を受光部(CCD123)にて受光する走査光学系;光による走査軌跡(スキャンパターン)が眼底に形成されるように走査光学系を制御する制御回路部(制御部210);受光部からの受光信号と走査軌跡の位置とに基づいて眼底の画像を構築する像構築部(画像形成部220、データ処理部230)。
制御回路部の動作モードとしてアライメントモードが設けられる。アライメントモードにおいて、制御回路部(制御部210)は、被検眼に対する走査光学系の位置合わせを行うためのアライメント指標が、光源部からの光(測定光)に基づき眼底に投影されるように走査光学系の制御(特にスキャナ116の制御)を行う。この構成によれば、アライメント指標を投影するための専用の光学系を設けなくとも、アライメントを行うことができる。
アライメントモードにおける制御態様は、第1の実施形態で説明されたいずれかであってよい。具体的には、以下のような制御を適用することが可能である。
アライメントモードにおいて、像構築部(画像形成部220等)は、アライメント指標の画像を形成することができる。また、前述した正面画像取得光学系が設けられる場合には、測定光の波長帯を検出可能に構成することにより、アライメント指標の画像を取得することが可能である。制御回路部(制御部210)は、像構築部により構築されたアライメント指標の画像を表示手段(表示部310)に表示させる。この構成によれば、アライメントの状態をユーザに認識させることができる。なお、表示手段は眼底撮影装置の一部として構成されている必要はなく、外部ディスプレイであってもよい。
実施形態の眼底撮影装置は、走査光学系を移動させるための駆動部(ユニット駆動部110Aを有していてよい。この場合、制御回路部(制御部210)は、アライメント指標に基づいてアライメント状態を判断する判断部を含んでいてよい。この判断部は、第1の実施形態のアライメント指標判断部27aと同様の処理を実行する。制御回路部は、この判断の結果に基づいて駆動部を制御することにより走査光学系を移動させることができる。この構成によれば、アライメント指標に基づくオートアライメントを行うことが可能である。
実施形態の眼底撮影装置において、走査光学系は走査器(スキャナ116)を含んでいてよい。この場合、アライメントモードにおいて、制御回路部(制御部210)は、眼底の画像を構築するための走査軌跡と異なる走査軌跡が眼底に形成されるように走査器を制御することによって、眼底にアライメント指標を投影させることができる。このようなアライメントモードで適用される走査軌跡としては、図16等に示す円形状軌跡CRSpに加え、多重リングや螺旋状軌跡などがある。
走査光学系が走査器(スキャナ116)を含む場合において、制御回路部(制御部210)は、眼底の画像を構築するための走査軌跡と同じ走査軌跡に基づく走査器の制御と、光源部(光源111)の点灯タイミングの制御とを連係して行うことによって(つまり、スキャナ116と光源111との同期制御を行うことによって)、眼底にアライメント指標を投影させることができる。この処理は、たとえば図20等に示す態様で実行される。
走査光学系が走査器(スキャナ116)を含む場合において、制御回路部(制御部210)は、光源部(光源111)を点灯状態としつつ、眼底の画像を構築するための走査軌跡と同じ走査軌跡に基づく走査器の制御と、受光部(CCD123)からの受光信号の出力タイミングの制御とを連係して行うことによって(つまりスキャナ116とCCD123との同期制御によって)、アライメント指標の画像を表示手段(表示部310)に表示させることができる。この処理は、第1の実施形態と同様にして実行される。
アライメントモードにおいて、眼底に照射される光(測定光)は赤外光であってよい。
制御回路部(制御部210)の動作モードとして、フォーカスモードを設けることができる。フォーカスモードでは、被検眼の眼底に対する走査光学系のフォーカス合わせを行うためのフォーカス指標が、光源部(光源111)からの光に基づき眼底Efに投影されるように走査光学系が制御を行われる。この構成によれば、フォーカス指標を投影するための専用の光学系を設けなくとも、フォーカシングを行うことができる。
フォーカスモードにおいて、制御回路部(制御部210)は、像構築部(画像形成部220、データ処理部230)により構築されたフォーカス指標の画像を表示手段(表示部310)に表示させることができる。この構成によれば、フォーカスの状態をユーザに認識させることができる。
走査光学系は、フォーカス合わせを行うためのレンズ(対物レンズ119等)を含んでいてよい。さらに、走査光学系の光軸の方向にレンズを移動させるための駆動部(鏡筒駆動部119B等)を有していてよい。この場合、制御回路部(制御部210)は、フォーカス指標に基づいてフォーカス状態を判断する判断部を含む。この判断部は、第1の実施形態と同様の処理を実行する。制御回路部は、この判断の結果に基づいて駆動部を制御することによりレンズを移動させることができる。この構成によれば、フォーカス指標に基づくオートフォーカスを行うことが可能である。
フォーカスモードにおいて、眼底に照射される光(測定光)は赤外光であってよい。
制御回路部(制御部210)の動作モードとして、被検眼の眼底を動画観察するための眼底観察モードを設けることができる。眼底観察モードでは、同じスキャンパターン(たとえばラインスキャン、3次元スキャン)に基づく走査が繰り返し実行される。それにより、眼底Efの実質的に同じ部位を表す動画像が表示される。このような眼底観察モードにおいて、制御回路部(制御部210)は、可視光による固視標が被検眼に提示されるように光源部(光源111)を制御する。この構成が適用される場合、光源111には、OCT計測のための近赤外光源に加えて、可視光を出力可能な可視光源が設けられる。制御回路部は、固視標に相当する走査軌跡位置に光が照射されるときに可視光(および赤外光)を出力させるように、光源111とスキャナ116との同期制御を行う。
〈第3の実施形態〉
第3の実施形態では、第1の実施形態と同様の光走査型検眼鏡を含む眼底撮影システムについて説明する。以下、第1の実施形態の図1〜図9を適宜に参照する。なお、光学系の構成については第1の実施形態(図7)と一部が異なる。
この実施形態に係る眼底撮影装置の構成を図37に示す。図37に示す構成と、第1の実施形態の図7に示す構成との差は、前者には投影レンズLLが設けられている点である。投影レンズLLについては後述する。
この実施形態の光走査型検眼鏡によれば、被検者自身で眼底撮影を行うことができる。このような場合において、眼底像と個人情報との関連付けを以下のようにして行うことができる。
(個人情報を取得する処理の例)
図38に模式的に示すように、光走査型検眼鏡本体1は、USBを介して携帯情報機器16に接続されている。医療機関(検者側)には、携帯情報機器16’と、パーソナルコンピュータ(PC)16Aと、モニタ部16Bとが設置されている。携帯情報機器16’は、パーソナルコンピュータ16AにUSBを介して接続されている。検者側の携帯情報機器16’は、被検者側の携帯情報機器16から送信された情報を受信する。
パーソナルコンピュータ16Aには、眼底像の情報と個人情報とを解析する解析処理部が設けられている。パーソナルコンピュータ16Aにはモニタ部16Bが接続されている。モニタ部16Bの画面には、必要に応じて、眼底像と個人情報とが関連付けて表示される。
(構成例1)
図39は、この実施形態に係る眼底撮影システムの構成例1を示す。構成例1では、個人情報取得手段(外付け患者認識ユニット)として手形(掌形)または指紋認識センサを用いている。なお、構成例1において適用可能な生体認証情報は手形や指紋に限定されず、たとえば、掌紋や、手または指の静脈(血管)のパターンを適用することが可能である。
光走査型検眼鏡本体1の制御回路部27には、指紋・手形センサ30が接続されている。制御回路部29BのROMには、指紋・手形センサ30を制御するための個人情報取得制御プログラムと、個人情報と眼底像とを関連付ける関連付け手段としてのプログラムとが設けられている。制御回路部27はマイクロプロセッサを含む。このマイクロプロセッサには、リアルタイムクロック回路31からクロック信号が入力される。
この動作例において、電源ボタンBがオンされ、かつ、個人情報取得制御プログラムロードスイッチ(図示を略す)が操作されると、制御回路部27のマイクロプロセッサに個人情報取得制御プログラムが自動的にロードされる。被検者が指紋・手形センサ30に指または手をタッチすると、指紋または手形が個人情報として取得される。取得された個人情報は、内蔵メモリ部29BのRAMに保存される。
前述した例では、個人情報が取得されたことに対応して自動的に観察モードに移行する構成が適用されている。しかし、この動作例のように被検者自身で撮影を行う場合には、眼底観察を行うことなく、被検者自らが撮影ボタン9(外部スイッチ)を操作して眼底撮影を実施する。眼底撮影が行われると、取得された眼底像EGrと、眼底撮影の前に取得された個人情報とが関連付けられて、RAMに一時的に保存される。
眼底像EGrと個人情報は、携帯情報機器16を介して、図38に示す検者側の携帯情報機器16’に送信される。このようにして、検者側の医療機関は、被検者自身により実施された眼底撮影で取得された個人情報および眼底像を得る。
(構成例2)
図40は、この実施形態に係る眼底撮影システムの構成例2を示す。構成例2では、網膜パターンまたは虹彩パターンを認識するためのプログラムが、個人情報取得手段としてROMに設けられている。
網膜パターンを認識する場合、電源がオンされたことに対応し、網膜パターン認識用プログラムがマイクロプロセッサにロードされる。図37に示す走査光学系は、網膜パターン認識用プログラムによって制御される。これにより、網膜パターン像が画像処理部29aに取得され、RAMに保存される。
次いで、被検者が撮影ボタン9を操作すると、眼底像EGrが取得され、この眼底像EGrと網膜パターン像(個人情報)とが関連付けられてRAMに保存される。眼底像EGrと個人情報は、携帯情報機器16を介して、図38に示す検者側の携帯情報機器16’に送信される。それにより、個人情報と眼底像とが検者側の医療機関に取得される。
パーソナルコンピュータ16Aには、被検者毎(被検眼毎)の網膜パターン像があらかじめ登録されている。パーソナルコンピュータ16Aは、被検者側から送信された網膜パターン像と、事前に登録されている網膜パターン像とを照合することにより、被検者を特定する。
虹彩パターンを認識する場合、虹彩パターン認識プログラムがマイクロプロセッサにロードされる。虹彩パターン認識プログラムがマイクロプロセッサにロードされると、制御回路部27により、図37に示す前眼部撮影用の投影レンズLLが走査光学系の光路に挿入される。
次いで、制御回路部27は、虹彩Rpを走査するように走査光学系を制御する。それにより、画像処理部29aによって虹彩パターン像が取得される。取得された虹彩パターン像はRAMに保存される。次いで、被検者により撮影ボタン9が操作されると、走査光学系の光路から投影レンズLLが退避され、眼底像EGrが取得される。取得された眼底像EGrは、個人情報としての虹彩パターン像と関連付けられて、RAMに保存される。
眼底像EGrと個人情報は、携帯情報機器16を介して、図38に示す検者側の携帯情報機器16’に送信される。それにより、個人情報と眼底像とが検者側の医療機関に取得される。
構成例2によれば、眼底像の撮影に用いられる走査光学系を利用して個人情報を取得できるので、個人情報取得手段の物理的構成をいたずらに複雑化することなく個人情報を取得できるというメリットがある。
(構成例3)
図41は、この実施形態に係る眼底撮影システムの構成例3を示す。構成例3では、個人情報取得手段として顔写真撮影用カメラ32が設けられている。本例において、顔写真撮影用カメラ32は、アライメント調節ボタン10により作動するよう構成されている。アライメント調節ボタン10が操作されると、顔写真撮影用カメラ32によって被検者の顔が撮影される。それ以降の動作は、構成例1や構成例2と同様であるので、その詳細な説明は省略する。
構成例3によれば、顔写真撮影用のカメラを個人情報認証以外、たとえば、撮影場所の明るさ判断にも利用できるというメリットがある。
以上、被検者自身で眼底撮影を行う場合に眼底像と個人情報との関連付けを行う構成について説明した。しかし、検者が立ち会って眼底撮影を行う場合においても、同様の関連付け処理を行うことが可能である。
〈第4の実施形態〉
第3の実施形態では、眼底撮影装置として光走査型検眼鏡が適用された眼底撮影システムについて説明したが、眼底撮影装置は光走査型検眼鏡に限定されるものではない。たとえば、背景技術として説明した光干渉断層計を眼底撮影装置として適用することが可能である。
なお、光干渉断層計が適用される場合においても、光干渉断層計はポータブルタイプであってよい(よって、第1の実施形態における図1〜図6のような構成を適用できる)。一方、光干渉断層計は、ポータブルタイプと据え置き型の兼用、または据え置き型専用であってよい。
この実施形態の光干渉断層計は、第2の実施形態と同様の光学系を有する。以下、第2の実施形態の図35を適宜に参照する。また、この実施形態の光干渉断層計のデータ処理部230には、検査データ生成部231と、認証処理部232とが設けられている(図42を参照)。検査データ生成部231は検査データを生成する。検査データとは、光学ユニット110による干渉光の検出結果を処理することにより生成される、被検眼の状態を示すデータである(詳細は後述する)。この実施形態において、検査データは、被検者の認証を行うための認証情報として使用される。記憶部212には、第2の実施形態と同様の設定情報と、以下に説明する正規個人認証情報とが、あらかじめ記憶される。
(正規個人認証情報)
正規個人認証情報は、眼底撮影装置100を用いて検査を行うことが許可された者(正規の被検者)の個人認証情報である。個人認証情報とは、眼底撮影装置100を用いて検査を行おうとしている者の個人認証を行うために使用される情報である。個人認証情報は、第1の実施形態における個人情報として使用される。
個人認証情報は、文字列情報や画像情報であってよい。文字列情報としては、医療機関にて付与された患者ID、被検者の氏名等の個人情報、被検者が任意に指定した文字列情報、ランダムに指定された文字列情報などがある。画像情報としては、生体認証情報(指紋パターン、虹彩パターン、静脈パターン、顔型パターンなど)、1次元コード、2次元コードなどがある。また、個人認証情報として音声パターンや筆跡パターンを用いることも可能である。
また、個人認証情報は、眼底撮影装置100により取得可能な被検眼Eの画像(2次元断面像、3次元画像、眼底正面画像など)に基づいて取得される情報であってよい。このような個人認証情報の例として次のものがある:(1)眼底の所定部位(血管、視神経乳頭、層組織、レーザ治療痕など)の形態を表す形態情報;(2)眼底の所定部位の分布を表す分布情報;(3)眼底の所定の層組織の厚みの分布を表す層厚分布情報;(4)眼底と前眼部との間の距離(眼軸長など)。これら個人認証情報の取得方法については後述する。
血管の形態情報は、たとえば、血管パターン、血管の数・太さ・長さ・曲率、血管の分岐部の数、血管の交差部の数を含む。血管の分布情報は、たとえば、血管の位置(分布)、血管の曲率分布、血管の分岐部の位置、血管の交差部の位置を含む。視神経乳頭の形態情報は、たとえば、その形状・サイズ(面積、ディスク径、カップ径、リム径、これら径の比、乳頭深さなど)を含む。視神経乳頭の分布情報は、たとえば、その位置を含む。層組織の形態情報は、たとえば、その形状・サイズ(長さ、厚さ)を含む。層組織の分布情報は、たとえば、その位置を含む。特徴的部位(レーザ治療痕、病変部など)の形態情報は、たとえば、その形状・サイズを含む。特徴的部位の分布情報は、たとえば、その位置を含む。
眼底撮影装置100を用いた検査を行おうとする者は、所定の方法で個人認証情報を入力する。入力方法は、使用される個人認証情報の種別に対応する。第1の実施形態と同様の個人認証情報は、第1の実施形態と同じ要領で入力される。また、OCT計測を介して取得される個人認証情報は、被検眼Eに対して実際にOCT計測を行い、それにより得られた画像を処理することによって入力される。
眼底撮影装置100を2人以上の被検者が共用する場合、各被検者についての正規個人認証情報が記憶部212にあらかじめ記憶される。
(検査データ生成部231)
検査データ生成部231は、光学ユニット110による干渉光の検出結果を処理することにより、被検眼Eの状態を示す検査データを生成する。「干渉光の検出結果」は、たとえば次のいずれかである:(1)CCDイメージセンサ123から出力される信号;(2)画像形成部220により形成された画像データ;(3)画像形成部220が実行する処理の中間段階で得られるデータ(つまり、画像データ形成処理の途中で得られるデータ);(4)CCDイメージセンサ123から出力される信号を画像形成部220以外の構成要素によって処理して得られるデータ。以下、検査データ生成部231が実行する処理の例を説明する。
第1の例として、検査データ生成部231は、光学ユニット110による干渉光の検出結果に基づいて眼底Efの層厚情報を生成することができる。この場合、検査データ生成部231は、層厚情報生成部として機能し、前述の眼底層厚解析(網膜厚解析、RNFL厚解析など)を実行する。さらに、検査データ生成部231は、眼底層厚解析により取得された層厚情報と標準的な層厚値との比較解析を行うことが可能である。
眼底層厚解析は、干渉光の検出結果に基づいて、眼底Efの所定の層組織の厚さ(分布)を求める処理である。その一例として網膜厚解析について説明する。他の層組織の厚さを求める場合も同様の処理が実行される。
網膜厚解析では、たとえば眼底EfのOCT画像(断面像、3次元画像)を解析することにより、当該スキャン範囲の一部または全部における網膜の厚さ分布を求める。なお、網膜厚には様々な定義がある。たとえば、内境界膜から内顆粒層(視細胞の内接・外接)までの厚さを網膜厚とする場合、内境界膜から網膜色素上皮層までの厚さを網膜厚とする場合などがある。網膜厚解析で求める網膜厚はこのような定義のうちのいずれかである。
網膜厚解析は、たとえば次のようにして実行される。まず、眼底EfのOCT画像を解析して、所定の境界部位(たとえば内境界膜と網膜色素上皮層)に相当する画像領域を特定する。そして、特定された境界部位の間の画素数をカウントして網膜厚(深度方向の距離)を求める。なお、OCT画像を解析して眼底の層の厚さを求める処理は、たとえば本出願人による特開2007−325831号公報、特開2008−206684号公報、特開2009−61203号公報、特開2009−66015号公報などに説明されている。このようにして取得される情報は「層厚分布情報」の例である。
網膜厚解析と同様の処理を行うことにより、眼底Efの任意の層組織に相当する画像領域を特定することができ、また、任意の層組織の層厚分布を取得することができる。それにより、眼底Efの所定部位(所定の層組織)の形態を表す形態情報や、所定部位の分布を表す分布情報、さらには、所定の層組織の層厚分布情報を取得することができる。
網膜厚の比較解析は、網膜厚解析により求められた網膜厚と、あらかじめ記憶された標準データ(Normative data)とを比較する解析処理である。Normative dataは、健常眼の網膜厚の標準値(標準厚)である。Normative dataは、健常眼の網膜厚を多数計測し、その計測結果の統計値(平均値、標準偏差など)を求めることにより作成される。比較解析は、被検眼Eの網膜厚が健常眼のそれの範囲に含まれるか否か判定するものである。なお、比較解析は、疾患のある眼における網膜厚の範囲を求め、網膜厚解析により得られた網膜厚が当該範囲に含まれるか否か判定する処理であってよい。
検査データ生成部231は、眼底Efの特徴的部位(レーザ治療痕、病変部など)に相当する画像領域を特定するための解析処理を実行できるように構成されていてよい。この処理は、たとえばOCT画像を解析することにより、そのスキャン範囲の一部または全部における特徴的部位の形態情報および/または分布情報を求める解析処理である。
この解析処理は、たとえば、OCT画像の画素のうち、特徴的部位に相当する画素を特定する処理を含む。その具体例として、特徴的部位に応じてあらかじめ決められた範囲に属する画素値を有する画素を特定することができる。他の例として、OCT画像を構成する画素について画素値のヒストグラムを作成し、このヒストグラムにおける画素値の分布に基づいて、特徴的部位に相当する画素を特定することができる。
また、OCT画像を複数の画像領域に分割し、またはOCT画像の所定の画像領域を特定し、さらに、この画像領域の形態に基づいて、特徴的部位に相当する画素を特定することができる。たとえば、ブルッフ膜に相当する画像領域と網膜色素上皮に相当する画像領域とを特定し、これら画像領域の間の画素値に基づいて小さな略円形の***形状に相当する画像領域をドルーゼン(の候補)として特定することができる。このような形状に基づく画像領域の特定処理は、たとえば、当該形状のテンプレートを用いた画像マッチングを含んでいてよい。
前述の正面画像取得光学系が設けられている場合であって、眼底Efの撮影が可能である場合には、眼底Efの撮影画像に基づいて、特徴的部位に相当する画像領域を特定することができる。この解析処理は、たとえば、撮影画像の各画素の画素値が所定範囲に含まれるか判定し、所定範囲に含まれる画素を特定することにより実行される。撮影画像がカラー画像である場合、特徴的部位は、特徴的な形状や色を有している。具体的には、レーザ治療痕は小さな円形の白斑として描出され、病変部は特徴的な色(ドルーゼンは黄白色)で描写される。よって、このような特徴的な形状や色に相当する画像領域を探索することにより、特徴的部位に相当する画像領域を特定することが可能である。撮影画像がモノクロ画像である場合には、特徴的な形状や明るさ(輝度)に相当する画像領域を探索することにより、特徴的部位に相当する画像領域を特定することが可能である。
乳頭形状解析は、眼底EfのOCT画像を解析することにより網膜の孔部を検出し、この孔部の形状、つまり視神経乳頭の形状を求める解析処理を含んでいてよい。乳頭形状解析は、たとえば、断面像または3次元画像を解析して視神経乳頭及びその近傍の網膜表面に相当する画像領域を特定し、特定された画像領域を解析してその大域的形状や局所的形状(凹凸)を表すパラメータ(乳頭形状パラメータ)を求める。乳頭形状パラメータの例として、視神経乳頭のカップ径、ディスク径、リム径、乳頭深さなどがある。
また、乳頭形状解析は、視神経乳頭の傾き(形状の非対称性)を求める解析処理を含んでいてよい。この解析処理は、たとえば次のようにして実行される。まず、検査データ生成部231は、視神経乳頭を含む領域をスキャンして得られた3次元画像を解析して乳頭中心を特定する。次に、検査データ生成部231は、乳頭中心を中心とする円形領域を設定し、この円形領域を放射状に分割して複数の部分領域を得る。続いて、検査データ生成部231は、円形領域の断面像を解析することで、各ピクセル位置における所定層(たとえば網膜色素上皮層)の高さ位置を求める。さらに、検査データ生成部231は、各部分領域における所定層の高さ位置の平均値を算出する。次に、検査データ生成部231は、乳頭中心に関して対向位置に相当する一対の部分領域について得られた一対の平均値を比較することにより、この対向方向における眼底Efの傾斜を求める。そして、検査データ生成部231は、複数の対向方向について得られた傾斜に基づいて、上記円形領域における眼底Efの傾斜の分布を示す傾斜分布情報を生成する。なお、生成された傾斜分布情報(およびその標準的な分布を示す情報)に基づいて、疾患の状態の評価情報を生成することができる。
OCTにより取得された3次元画像に基づいて眼底正面画像を形成することができる。眼底正面画像は、眼底Efに対する測定光の入射方向(z方向)に直交する平面に描出される画像である。眼底正面画像は、3次元画像の一部または全部を眼底Efの深さ方向(z方向)に投影することによって形成される。この処理はデータ処理部230により実行される。眼底正面画像は、プロジェクション画像などと呼ばれる。
なお、3次元画像の一部のみを用いて眼底正面画像が形成される場合、この部分領域は、xy方向における一部でもよいし、z方向における一部でもよい。前者は、たとえば、所定の部位(視神経乳頭、黄斑など)の眼底正面画像を得る場合に適用される。後者は、たとえば、z方向における所定範囲の情報を含む眼底正面画像を得る場合に適用される。3次元画像のうちz方向における一部の領域を用いる場合、この部分領域の上面および/または下面は、平面でも曲面でもよい。また、z方向に対して任意の角度をなす平面に描出される画像(傾斜眼底像)を、3次元画像に基づいて形成することが可能である。
検査データ生成部231は、眼底正面画像(または傾斜眼底像)に基づいて検査データを生成することができる。眼底正面画像に基づく検査データの種別は、たとえば上記の形態情報や分布情報など、他種のOCT画像(2次元断面像、3次元画像など)に基づく検査データのそれと同じであってよい。
前述したように、データ処理部230は、3次元画像の任意の断面を画像化することができる(MPR画像)。断面の指定は、手動または自動で実行される。検査データ生成部231は、MPR画像に基づいて検査データを生成することができる。MPR画像に基づく検査データの種別は、たとえば上記の形態情報や分布情報など、他種のOCT画像に基づく検査データのそれと同じであってよい。
検査データ生成部231は、検査データとして眼内距離を求めることができる。2次元断面像や眼底正面画像から眼内距離を求める場合、検査データ生成部231は、この画像中の複数の位置を特定する。特定される位置は、被検眼Eにおける注目点(乳頭中心、中心窩、病変部など)であり、ユーザが手動で指定した点、または画像解析により得られた点である。
検査データ生成部231は、2以上のOCT画像に基づいて眼内距離を特定することができる。その例として、眼軸長を求める処理について説明する。眼底撮影装置100は、眼底Efの画像を取得するための眼底モードと、前眼部の画像を形成するための前眼部モードとを切り替えることができる。動作モードの切り替えは、測定光路に対して切替レンズ127を挿入/退避することにより行われる。切替レンズ127およびレンズ駆動部127Aは「モード切替部」の一例である。主制御部211は、眼底モードにおいて適用された参照ミラー114の位置情報と、前眼部モードにおいて適用された参照ミラー114の位置情報とを、記憶部212に記憶させる。眼底モードにおいては、眼底表面の中心位置を含む2次元断面像または3次元画像が取得される。前眼部モードにおいては、角膜頂点を含む2次元断面像または3次元画像が取得される。
検査データ生成部231は、眼底モードで取得されたOCT画像(眼底OCT画像)と、前眼部モードで取得されたOCT画像(前眼部OCT画像)とに基づいて、眼底と前眼部との間の距離を算出する。具体例として、検査データ生成部231は、眼底OCT画像を解析して眼底中心に相当する座標(眼底中心座標)を特定し、前眼部OCT画像を解析して角膜頂点に相当する座標(角膜頂点座標)を特定する。さらに、検査データ生成部231は、眼底中心座標と、角膜頂点座標と、動作モードの切り替えによる測定光の焦点の変位と、双方の動作モードにおける参照ミラー114の位置情報とに基づいて、被検眼Eの眼軸長を算出する。
(認証処理部232)
この実施形態では、検査データ生成部231により取得された検査データを個人認証情報として用いることができる。また、記憶部212には、正規個人認証情報があらかじめ記憶されている。認証処理部232は、検査データ等の個人認証情報と、正規個人認証情報とを照合する。認証処理部232は、照合結果(照合に成功したか否かを示す情報)を制御部210に送る。
照合に成功した場合、制御部210は、OCT計測を実行するように眼底撮影装置100を制御する。一方、照合に失敗した場合、制御部210は、たとえば、所定の報知情報を表示部310に表示させる。この報知情報は、照合に失敗した旨のメッセージ、個人認証情報の再入力を促すメッセージ、他の個人認証情報の入力を促すメッセージなどを含む。
照合処理について説明する。個人認証情報として検査データが用いられる場合、計測誤差などが介在することにより、正規の被検眼が検査対象であっても個人認証情報と正規個人認証情報とが完全に一致しない場合がある。したがって、個人認証情報と正規個人認証情報との間に或る程度の相違があっても照合に成功したと判定するように構成する必要がある。一例として、個人認証情報と正規個人認証情報との間の相違について、許容範囲(閾値など)をあらかじめ設定する。認証処理部232は、個人認証情報と正規個人認証情報との間の相違を求め、この相違が許容範囲に含まれるか判定する。相違が許容範囲に含まれると判定された場合、認証処理部232は、照合に成功したとの結果を得る。一方、相違が許容範囲に含まれないと判定された場合、認証処理部232は、照合に失敗したとの結果を得る。
前述したように、個人認証情報には様々な種類がある。よって、複数の個人認証情報を選択的に適用することができる。以下、2つの個人認証情報が用いられる場合について説明する。
記憶部212には、第1の個人認証情報に関する正規個人認証情報(第1の正規個人認証情報)と、第2の個人認証情報に関する正規個人認証情報(第2の正規個人認証情報)とが、あらかじめ記憶されている。
まず、第1の個人認証情報が得られたとする。認証処理部232は、取得された第1の個人認証情報と、第1の正規個人認証情報とを照合する。照合に成功した場合、眼底撮影装置100による撮影が許可される。一方、照合に失敗した場合、第2の個人認証情報の取得が行われる。認証処理部232は、取得された第2の個人認証情報と、第2の正規個人認証情報とを照合する。照合に成功した場合、眼底撮影装置100による撮影が許可される。一方、照合に失敗した場合、制御部210は、照合に失敗した旨のメッセージや、個人認証情報の再入力を促すメッセージ、他の個人認証情報の入力を促すメッセージなどを含む報知情報を表示部310に表示させる。
2以上の被検者が眼底撮影装置100を共用する場合、つまり2人以上の正規の被検者が存在する場合、各被検者の正規個人認証情報が記憶部212に記憶される。制御部210は、個人認証情報が取得されたことに対応し、記憶部212に記憶されている全ての正規個人認証情報を認証処理部232に送る。
認証処理部232は、取得された個人認証情報と、各正規個人認証情報とを照合する。取得された個人認証情報と、いずれかの正規個人認証情報との照合に成功した場合、その正規個人認証情報に対応する被検者が今回の検査の被検者として認識される。一方、取得された個人認証情報による照合が全ての正規個人認証情報に対して失敗した場合、制御部210は、上記のような報知情報を表示部310に表示させる。
(関連付け処理)
検査データ生成部231により生成された個人認証情報は、制御部210に送られ、記憶部212に記憶される。また、画像形成部220(およびデータ処理部230)により形成されたOCT画像は、制御部210に送られ、記憶部212に記憶される。制御部210は、OCT画像と個人認証情報(個人情報)とを関連付ける。この処理は、第1の実施形態と同様にして行われる。制御部210は「関連付け手段」の一例である。
(通信部240)
通信部240は、制御部210により関連付けられたOCT画像と個人認証情報(個人情報)とを外部コンピュータ1000に送信する。通信部240は「送信手段」の一例である。
[作用・効果]
この実施形態に係る眼底撮影システムの作用および効果について説明する。
この実施形態に係る眼底撮影システムは、眼底撮影装置(100)と、個人情報取得手段(検査データ生成部231)と、関連付け手段(制御部210)とを含む。眼底撮影装置は、被検者の被検眼の眼底を撮影する。個人情報取得手段は、被検者の個人情報を取得する。関連付け手段は、眼底撮影装置により取得された眼底の画像と、個人情報取得手段により取得された個人情報とを関連付ける。
このような実施形態によれば、それぞれ取得された眼底像と個人情報との関連付けを自動で行うことができるので、眼底像と個人情報との関連付けを簡便に行うことが可能である。たとえば、検者が立ち会わずに実施される検査においても関連付けを行うことが可能である。
この実施形態の眼底撮影装置は、関連付け手段により関連付けられた画像と個人情報とを送信する送信手段(通信部240)を含んでいてよい。この構成によれば、関連付けられた画像と個人情報とを外部装置に送ることが可能である。
この実施形態の眼底撮影装置は、以下のような光学系および処理部を含んでいてよい。光学系は、被検眼の眼底を測定光で走査し、眼底からの測定光の戻り光と参照光とを重ね合わせて得られた干渉光を検出する。つまり、この光学系は、OCTを行うための干渉光学系である(図35を参照)。処理部は、光学系による干渉光の検出結果を処理することにより眼底の画像を形成する。この実施形態において、処理部は、少なくとも画像形成部220を含み、データ処理部230を含んでいてよい。さらに、個人情報取得手段(検査データ生成部231)は、処理部により形成された画像に基づいて個人情報(個人認証情報)を取得する。
この構成によれば、OCT画像に基づいて個人情報を取得することができる。特に、眼底の深さ方向における形態や分布、さらには眼底の部位の3次元的な形態や分布などが反映された個人認証を取得することが可能である。また、ドップラOCTのような機能的OCTによって得られた機能情報(血流情報など)を個人情報として用いることができる。
この実施形態において、個人情報取得手段(検査データ生成部231)は、処理部により形成された画像を解析することにより、以下の個人情報のうち一方または双方を取得するように構成されていてよい:眼底の所定部位の形態を表す形態情報;眼底の所定部位の分布を表す分布情報。ここで、眼底の所定部位は、眼底の血管、視神経乳頭、所定の層組織、およびレーザ治療による治療痕のうちのいずれかを含んでいてよい。
この実施形態において次の構成を適用することが可能である:光学系が、眼底の3次元領域を測定光で走査する;処理部が、眼底の3次元画像を形成する;個人情報取得手段が、この3次元画像に基づいて個人情報を取得する。この構成によれば、情報量が多い3次元画像に基づいて個人情報を取得することができる。たとえば、眼底の所定部位について、2次元的形態や3次元的形態、さらには2次元的分布や3次元的分布を求めることが可能である。また、この構成によれば、取得される個人情報の自由度が高まる。
この実施形態において次の構成を適用することが可能である:光学系が、眼底の3次元領域を測定光で走査する;処理部が、眼底の3次元画像を形成する;処理部が、この3次元画像の少なくとも一部を眼底の深さ方向に投影することにより眼底正面画像(プロジェクション画像)を形成する;個人情報取得手段が、この眼底正面画像に基づいて個人情報を取得する。眼底正面画像には、投影処理に供された範囲の情報が含まれている。この構成によれば、取得される個人情報の自由度が高まる。
この実施形態において次の構成を適用することが可能である:光学系が、眼底の3次元領域を測定光で走査する;処理部が、眼底の3次元画像を形成する;処理部が、この3次元画像の断面を表す2次元断面像を形成する;個人情報取得手段が、この2次元断面像に基づいて個人情報を取得する。この構成によれば、眼底の任意の断面を描画した画像に基づいて個人情報を取得することが可能である。また、この構成によれば、取得される個人情報の自由度が高まる。
この実施形態において、個人情報取得手段は、処理部により形成された画像を解析することにより、眼底の所定の層組織の厚みの分布を表す層厚分布情報を取得するように構成されていてよい。そして、この層厚分布情報を個人情報として用いることが可能である。
この実施形態において、眼底撮影装置は、被検眼の眼底の画像を形成するための眼底モードと、前眼部の画像を形成するための前眼部モードとを切り替えるためのモード切替部(切替レンズ127およびレンズ駆動部127A)を有していてよい。この場合、個人情報取得手段は、眼底モードにおいて形成された眼底の画像と、前眼部モードにおいて形成された前眼部の画像とに基づいて、眼底と前眼部との間の距離を算出することができる。そして、この距離を個人情報として用いることが可能である。
なお、モード切替部は、測定光の光路に対して切替レンズを挿入/退避する構成には限定されない。たとえば、参照光の光路長を十分な距離だけ変更可能な構成を適用することによって、眼底モードと前眼部モードとを切り替えるようにしてもよい。具体例として、一般的な眼軸長に所定距離を加えた範囲において参照ミラー(114)を移動可能に構成することができる。
この実施形態の眼底撮影システムは、以下のような記憶手段と照合手段を有していてよい。記憶手段(記憶部212)には、眼底撮影装置を用いた撮影を行うことが許可された正規の被検者に関する正規個人認証情報があらかじめ記憶される。照合手段は、個人情報取得手段により取得された個人情報と、正規個人認証情報とを照合する。眼底撮影装置は、照合手段により個人情報と正規個人認証情報との照合に成功した場合に撮影を実行する。なお、この構成を第1の実施形態に適用することも可能である。この構成によれば、このシステムの利用が許可されているか否かについて、被検者の認証を行うことができる。
なお、上記の例では眼底撮影装置に記憶手段が設けられているが、記憶手段は、眼底撮影装置に接続されたデバイスに設けられていてよい。たとえば、記憶手段は、サーバやNAS(Network Attached Storage)に設けられていてよい。
この実施形態において、照合手段は、個人情報と正規個人認証情報との間の相違が、あらかじめ設定された許容範囲に含まれる場合に、照合に成功したと判定するように構成されていてよい。この構成によれば、生体情報を用いた個人認証を好適に行うことが可能である。
この実施形態において次の構成を適用することが可能である:個人情報と正規個人認証情報との間の相違が所定の許容範囲に含まれない場合、個人情報取得手段が、他の個人情報を取得する;照合手段が、取得された他の個人情報と、記憶手段にあらかじめ記憶された他の正規個人認証情報とを照合する。この構成によれば、一の種別の個人情報による認証に失敗した場合に、他の種別の個人情報を用いて認証を行うことができる。それにより、たとえば生体情報を用いた認証を好適に行うことが可能である。
この実施形態において、眼底撮影装置は、ポータブルタイプおよび/または据え置き型であってよい。この構成によれば、システム構成の自由度が高まる。
〈第5の実施形態〉
この実施形態では、複数の種別の個人情報を取得可能な眼底撮影システムについて説明する。個人情報の種別は、第3の実施形態および第4の実施形態において用いられた個人情報のうちいずれか1つ以上を含んでいてよい。以下、第4の実施形態に基づいて説明を行う。
[第1の構成例]
本例に係る眼底撮影システムに含まれる眼底撮影装置の構成を図43に示す。眼底撮影装置101は、被検者の診療歴を入力するための機能を有する。診療歴とは、被検者に対して過去に施された診療内容を示す情報である。診療歴には、病歴、治療歴、投薬歴などが含まれる。診療歴の入力は、たとえば、被検者の電子カルテをネットワーク経由で取得することにより、または、ユーザが手入力することにより行われる。前者の処理は、たとえば、制御部210が通信部240を制御することにより実行される。後者の処理は、たとえば、表示部310に表示された所定の入力画面に対し、操作部320を介して行われる。これらは「診療歴入力部」の一例である。
さらに、眼底撮影装置101のデータ処理部230には、種別選択部233が設けられている。種別選択部233は、入力された診療歴に基づいて、個人情報に関する複数の種別のうちから1以上の種別を選択する。ここで、「複数の種別」はあらかじめ設定されており、たとえば個人情報取得手段(検査データ生成部231など)により取得可能な個人情報の全ての種別である。また、取得可能な全ての種別のうちの一部が「複数の種別」であってよい。この場合、「複数の種別」は、自動でまたは手動で事前に設定される。
種別選択部233の例を説明する。種別選択部233は、診療歴に含まれる項目と、個人情報の種別とが対応付けられた対応情報をあらかじめ記憶している。この項目には、たとえば、疾患名、薬剤名、治療項目などが含まれる。各項目に対し、または2以上の項目の組み合わせに対し、個人情報の種別が1つ以上対応付けられている。具体例として、或る項目に対し、この項目による影響が小さい(または影響が無い)個人情報の種別が対応付けられる。たとえば、黄斑の疾患に対して、視神経乳頭に関する形態情報が対応付けられる。逆に、視神経乳頭の疾患に対して、黄斑に関する形態情報が対応付けられる。また、緑内障に対して、加齢黄斑変性症に関連するドルーゼンの分布情報が対応付けられる。また、眼軸長の変化を伴わない疾患に対して、眼軸長が対応付けられる。
種別選択部233による選択結果を示す情報は、検査データ生成部231に入力される。検査データ生成部231は、たとえばOCT画像を解析することにより、種別選択部233により選択された種別の個人情報を取得する。
本例に係る眼底撮影システムの効果について説明する。本例における個人情報取得手段は、複数の種別の個人情報を取得可能に構成される。
本例における個人情報取得手段は、診療歴入力部と種別選択部とを含む。診療歴入力部は、被検者の診療歴を入力するよう作用する。診療歴入力部は、たとえば、制御部210および通信部240、またはユーザインターフェイス300を含んで構成される。種別選択部(233)は、診療歴入力部により入力された診療歴に基づいて、個人情報に関してあらかじめ設定された複数の種別のうちから1以上の種別を選択する。個人情報取得手段は、種別選択部により選択された種別の個人情報を取得するように作用する。
なお、本例における個人情報取得手段は、たとえば、上記の診療歴入力部(制御部210および通信部240、またはユーザインターフェイス300)に加え、データ処理部230(検査データ生成部231および種別選択部233)を含む。また、関連付け手段や送信手段については、第3の実施形態または第4の実施形態の構成を適用することが可能である。
このような眼底撮影システムによれば、被検者の診療歴に応じた種別の個人情報を選択的に適用することが可能である。
[第2の構成例]
本例に係る眼底撮影システムに含まれる眼底撮影装置は、第1の構成例と同様の構成を有する(図43を参照)。この眼底撮影装置は、被検眼Eの眼底Efを前回撮影してからの経過時間を取得する機能を有する。この機能は、たとえば、被検者の電子カルテをネットワーク経由で取得する第1の機能と、この電子カルテから前回の撮影日(および時刻)を取得する第2の機能と、この撮影日と現在日時とに基づいて経過時間を算出する第3の機能とを含む。第1の機能は、たとえば、制御部210が通信部240を制御することにより実現される。第2および第3の機能は、たとえば、制御部210により実現される。これらは「撮影間隔取得部」の一例である。
さらに、本例の種別選択部233は、撮影間隔取得部により入力された経過時間に基づいて、個人情報に関する複数の種別のうちから1以上の種別を選択する。この処理は、たとえば、第1の構成例と同様の対応情報を参照して実行される。
なお、本例の対応情報においては、経過時間と個人情報の種別とが対応付けられている。この対応関係は、たとえば、個人情報の経時変化の程度に応じて決定される。つまり、個人情報には、眼底の画像から生成される形態情報や分布情報のように経時的に変化するものと、文字列情報や指紋パターンのように経時的に変化しないものとがある。一方、形態情報や分布情報の取得において被検者の手を煩わせることはないが、文字列情報や指紋パターンの取得にはそれが必要である。このような事項を考慮し、経過時間が短い場合には経時的に変化する個人情報を適用し、経過時間が長い場合には経時的に変化しない個人情報を適用することができる。さらに、経時的に変化する各種の個人情報を、経時変化の速さや認証の精度などのファクタに応じて分類し、経過時間の時間軸に任意に対応づけることができる。
種別選択部233による選択結果に眼底の画像に基づく個人情報が含まれる場合、その個人情報の種別を示す情報が検査データ生成部231に入力される。検査データ生成部231は、たとえばOCT画像を解析することにより、種別選択部233により選択された種別の個人情報を取得する。
また、種別選択部233による選択結果に被検者の作業を伴う個人情報が含まれる場合、その個人情報の種別を示す情報が制御部210に入力される。制御部210は、たとえば、種別選択部233により選択された種別の個人情報を取得するための作業を促す旨のメッセージを表示部310に表示させる。
本例に係る眼底撮影システムの効果について説明する。本例における個人情報取得手段は、複数の種別の個人情報を取得可能に構成される。
本例における個人情報取得手段は、撮影間隔取得部と種別選択部とを含む。撮影間隔取得部は、当該眼底の前回の撮影からの経過時間を取得する。撮影間隔取得部は、たとえば、制御部210および通信部240を含んで構成される。種別選択部(233)は、撮影間隔取得部により取得された経過時間に基づいて、個人情報に関してあらかじめ設定された複数の種別のうちから1以上の種別を選択する。個人情報取得手段は、種別選択部により選択された種別の個人情報を取得するように作用する。
なお、本例における個人情報取得手段は、たとえば、上記の撮影間隔取得部(制御部210および通信部240)に加え、データ処理部230(検査データ生成部231および種別選択部233、または第3の実施形態の指紋・掌形センサ30等)を含む。また、関連付け手段や送信手段については、第3の実施形態または第4の実施形態の構成を適用することが可能である。
このような眼底撮影システムによれば、前回の撮影からの経過時間に応じた種別の個人情報を選択的に適用することが可能である。
[第3の構成例]
本例に係る眼底撮影システムに含まれる眼底撮影装置の構成を図44に示す。眼底撮影装置102は、画像形成部220またはデータ処理部230により形成された画像を解析することにより、被検眼Eの疾患候補を特定する疾患候補特定部234を有する。疾患候補とは、被検眼Eが患っている可能性がある疾患を意味する。疾患候補特定部234が実行する画像解析は、疾患候補を特定するための任意の処理を含み(公知の処理でもよい)、たとえば眼底層厚解析や乳頭形状解析やドルーゼン解析などを含んでいてよい。なお、疾患候補特定部234は検査データ生成部231内に設けられていてよい。
さらに、眼底撮影装置102のデータ処理部230には、種別選択部233が設けられている。種別選択部233は、疾患候補特定部234により特定された疾患候補に基づいて、個人情報に関する複数の種別のうちから1以上の種別を選択する。この処理は、たとえば、第1の構成例と同様の対応情報を参照して実行される。
なお、本例の対応情報においては、疾患候補と個人情報の種別とが対応付けられている。この対応関係は、たとえば、一の疾患候補と、この疾患候補による影響が無い(または影響が小さい)部位に関する個人情報の種別とを対応付けることによって得られる。具体例として、黄斑の疾患に対して、視神経乳頭に関する形態情報が対応付けられる。逆に、視神経乳頭の疾患に対して、黄斑に関する形態情報が対応付けられる。また、緑内障に対して、加齢黄斑変性症に関連するドルーゼンの分布情報が対応付けられる。また、眼軸長の変化を伴わない疾患に対して、眼軸長が対応付けられる。
種別選択部233による選択結果を示す情報は、検査データ生成部231に入力される。検査データ生成部231は、たとえばOCT画像を解析することにより、種別選択部233により選択された種別の個人情報を取得する。
本例に係る眼底撮影システムの効果について説明する。本例における個人情報取得手段は、複数の種別の個人情報を取得可能に構成される。
本例における個人情報取得手段は、疾患候補特定部(234)と種別選択部(233)とを含む。疾患候補特定部は、眼底撮影装置(102)により取得された画像を解析することにより、被検眼の疾患候補を特定する。種別選択部は、疾患候補特定部により特定された疾患候補に基づいて、個人情報に関してあらかじめ設定された複数の種別のうちから1以上の種別を選択する。個人情報取得手段は、種別選択部により選択された種別の個人情報を取得するように作用する。
なお、本例における個人情報取得手段は、たとえば、上記の疾患候補特定部(234)に加え、データ処理部230(検査データ生成部231および種別選択部233)を含む。また、関連付け手段や送信手段については、第3の実施形態または第4の実施形態の構成を適用することが可能である。
このような眼底撮影システムによれば、眼底の画像に基づき特定された疾患候補に応じた種別の個人情報を選択的に適用することが可能である。
〈変形例〉
以上に説明した構成は、この発明を実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形(省略、置換、付加等)を適宜に施すことが可能である。
第5の実施形態では、診療歴、撮影間隔または疾患候補に応じて、個人情報の種別を使い分けているが、第4の実施形態の照合処理における許容範囲を変更するように構成することが可能である。
上記の実施形態では、光走査型検眼鏡や光干渉断層計について説明したが、複数の撮像方式を適用可能な複合機を眼底撮影装置として用いることができる。複合機としては、光走査型検眼鏡と光干渉断層計とを組み合わせた装置、眼底カメラと光干渉断層計とを組み合わせた装置、光干渉断層計と細隙灯顕微鏡とを組み合わせた装置、光走査型検眼鏡と眼底カメラとを組み合わせた装置などがある。複合機においては、いずれの機能で目的の処理を実行するかは任意である。たとえば、光走査型検眼鏡と光干渉断層計とを組み合わせた装置において、アライメント指標の形成を前者で行い、フォーカス指標の形成を後者で行うように構成することが可能である。
第1および第2の実施形態では、眼底を画像化するための光(スポット光、測定光など)を指標の形成に用いているが、それ以外の用途にこの光を用いてよい。たとえば、視細胞に対して光刺激を与えるためにこの光を用いることが可能である。なお、光刺激を与えるときには、画像化を行うときと比較し、眼底の同じ位置に対する光の照射時間が長い。よって、光刺激を与えるときの光量を、画像化を行うときのそれよりも小さくするように光源部を制御することができる。また、光走査型検眼鏡と光干渉断層計とを組み合わせた装置が用いられる場合には、前者(または後者)で画像化を行いつつ、後者(または前者)で光刺激を与えることができる。
上記の実施形態を実現するためのコンピュータプログラムを、コンピュータによって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、半導体メモリ、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。
また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
[付記]
第3〜第5の実施形態に係る眼底撮影システムに関し、以下のように付記する。
集団検診、在宅医療、僻地医療、老人福祉施設などの現場において、検者が立ち会うことなく検査が実施される場合がある。このような検査条件のもとでは、検者が被検者の特定を行うことはできないため、眼底撮影や、眼底像と被検者(個人情報)との関連付けを、被検者自身により簡便に行えることが望ましい。
このような事情に鑑み、第3〜第5の実施形態の目的は、眼底像と個人情報との関連付けを簡便に行うことにある。この目的を達成するための眼底撮影システムは、以下のような特徴を有する。
[付記項1]
被検者の被検眼の眼底を撮影する眼底撮影装置と、
被検者の個人情報を取得する個人情報取得手段と、
前記眼底撮影装置により取得された眼底の画像と、前記個人情報取得手段により取得された個人情報とを関連付ける関連付け手段と
を備える眼底撮影システム。
[付記項2]
前記眼底撮影装置は、前記関連付け手段により関連付けられた前記画像と前記個人情報とを送信する送信手段を含む
ことを特徴とする付記項1に記載の眼底撮影システム。
[付記項3]
前記個人情報取得手段は、被検者の網膜パターンを前記個人情報として取得する
ことを特徴とする付記項1または付記項2に記載の眼底撮影システム。
[付記項4]
前記眼底撮影装置は、
被検眼の眼底をスポット光により走査しつつ前記眼底からの前記スポット光の戻り光を受光部により受光する走査光学系と、
前記スポット光による走査軌跡が前記眼底に形成されるように前記走査光学系を制御する制御回路部と、
前記受光部からの受光信号と前記走査軌跡の位置とを用いて、前記戻り光による像を構築する像構築部と
を有し、
前記個人情報取得手段は、前記像構築部により構築された像を用いて前記網膜パターンを取得する
ことを特徴とする付記項3に記載の眼底撮影システム。
[付記項5]
前記個人情報取得手段は、被検者の虹彩パターンを前記個人情報として取得する
ことを特徴とする付記項1または付記項2に記載の眼底撮影システム。
[付記項6]
前記眼底撮影装置は、
被検眼の眼底をスポット光により走査しつつ前記眼底からの前記スポット光の戻り光を受光部により受光する走査光学系と、
前記スポット光による走査軌跡が前記眼底に形成されるように前記走査光学系を制御する制御回路部と、
前記受光部からの受光信号と前記走査軌跡の位置とを用いて、前記戻り光による像を構築する像構築部と、
前記走査光学系の光路に対して挿脱可能とされた、被検眼の前眼部に前記スポット光を投影するための投影レンズと
を有し、
前記個人情報取得手段は、前記像構築部により構築された前眼部の像を用いて前記虹彩パターンを取得する
ことを特徴とする付記項5に記載の眼底撮影システム。
[付記項7]
前記個人情報取得手段は、
被検者の顔を撮影する顔写真用カメラを含み、
前記顔写真用カメラにより取得された顔写真を用いて個人情報を取得する
ことを特徴とする付記項1または付記項2に記載の眼底撮影システム。
[付記項8]
前記個人情報取得手段は、被検者の手形、指紋、掌紋および静脈パターンのうちのいずれかを前記個人情報として取得する
ことを特徴とする付記項1または付記項2に記載の眼底撮影システム。
[付記項9]
前記眼底撮影装置は、
被検眼の眼底を測定光で走査し、眼底からの測定光の戻り光と参照光とを重ね合わせて得られた干渉光を検出する光学系と、
前記光学系による干渉光の検出結果を処理することにより眼底の画像を形成する処理部と
を有し、
前記個人情報取得手段は、前記処理部により形成された画像に基づいて前記個人情報を取得する
ことを特徴とする付記項1または付記項2に記載の眼底撮影システム。
[付記項10]
前記個人情報取得手段は、前記処理部により形成された画像を解析することにより、眼底の所定部位の形態を表す形態情報および/または当該所定部位の分布を表す分布情報を前記個人情報として取得する
ことを特徴とする付記項9に記載の眼底撮影システム。
[付記項11]
前記所定部位は、眼底の血管、視神経乳頭、所定の層組織、およびレーザ治療による治療痕のうちのいずれかを含む
ことを特徴とする付記項10に記載の眼底撮影システム。
[付記項12]
前記光学系は、眼底の3次元領域を測定光で走査し、
前記処理部は、眼底の3次元画像を形成し、
前記個人情報取得手段は、前記3次元画像に基づいて前記個人情報を取得する
ことを特徴とする付記項9〜付記項11のいずれか一項に記載の眼底撮影システム。
[付記項13]
前記光学系は、眼底の3次元領域を測定光で走査し、
前記処理部は、眼底の3次元画像を形成し、前記3次元画像の少なくとも一部を眼底の深さ方向に投影することにより眼底正面画像を形成し、
前記個人情報取得手段は、前記眼底正面画像に基づいて前記個人情報を取得する
ことを特徴とする付記項9〜付記項11のいずれか一項に記載の眼底撮影システム。
[付記項14]
前記光学系は、眼底の3次元領域を測定光で走査し、
前記処理部は、眼底の3次元画像を形成し、前記3次元画像の断面を表す2次元断面像を形成し、
前記個人情報取得手段は、前記2次元断面像に基づいて前記個人情報を取得する
ことを特徴とする付記項9〜付記項11のいずれか一項に記載の眼底撮影システム。
[付記項15]
前記個人情報取得手段は、前記処理部により形成された画像を解析することにより、眼底の所定の層組織の厚みの分布を表す層厚分布情報を前記個人情報として取得する
ことを特徴とする付記項9に記載の眼底撮影システム。
[付記項16]
前記眼底撮影装置は、被検眼の眼底の画像を形成するための眼底モードと、前眼部の画像を形成するための前眼部モードとを切り替えるためのモード切替部を有し、
前記個人情報取得手段は、前記眼底モードにおいて形成された眼底の画像と、前記前眼部モードにおいて形成された前眼部の画像とに基づいて、眼底と前眼部との間の距離を前記個人情報として算出する
ことを特徴とする付記項9に記載の眼底撮影システム。
[付記項17]
前記個人情報取得手段は、複数の種別の個人情報を取得可能である
ことを特徴とする付記項1〜付記項16のいずれか一項に記載の眼底撮影システム。
[付記項18]
前記個人情報取得手段は、
被検者の診療歴を入力するための診療歴入力部と、
前記診療歴入力部により入力された診療歴に基づいて、前記複数の種別のうちの1以上の種別を選択する種別選択部と
を含み、
前記種別選択部により選択された種別の個人情報を取得する
ことを特徴とする付記項17に記載の眼底撮影システム。
[付記項19]
前記個人情報取得手段は、
当該眼底の前回の撮影からの経過時間を取得する撮影間隔取得部と、
前記撮影間隔取得部により取得された経過時間に基づいて、前記複数の種別のうちの1以上の種別を選択する種別選択部と
を含み、
前記種別選択部により選択された種別の個人情報を取得する
ことを特徴とする付記項17に記載の眼底撮影システム。
[付記項20]
前記個人情報取得手段は、
前記眼底撮影装置により取得された画像を解析することにより、被検眼の疾患候補を特定する疾患候補特定部と、
前記疾患候補特定部により特定された疾患候補に基づいて、前記複数の種別のうちの1以上の種別を選択する種別選択部と
を含み、
前記種別選択部により選択された種別の個人情報を取得する
ことを特徴とする付記項17に記載の眼底撮影システム。
[付記項21]
前記眼底撮影装置を用いた撮影を行うことが許可された正規の被検者に関する正規個人認証情報があらかじめ記憶された記憶手段と、
前記個人情報取得手段により取得された個人情報と前記正規個人認証情報とを照合する照合手段と
を有し、
前記眼底撮影装置は、前記照合手段により前記個人情報と前記正規個人認証情報との照合に成功した場合に撮影を実行する
ことを特徴とする付記項1〜付記項20のいずれか一項に記載の眼底撮影システム。
[付記項22]
前記照合手段は、前記個人情報と前記正規個人認証情報との間の相違が、あらかじめ設定された許容範囲に含まれる場合に、前記照合に成功したと判定する
ことを特徴とする付記項21に記載の眼底撮影システム。
[付記項23]
前記相違が前記許容範囲に含まれない場合、前記個人情報取得手段は、他の個人情報を取得し、
前記照合手段は、前記他の個人情報と、前記記憶手段にあらかじめ記憶された他の正規個人認証情報とを照合する
ことを特徴とする付記項22に記載の眼底撮影システム。
[付記項24]
前記眼底撮影装置はポータブルタイプである
ことを特徴とする付記項1〜付記項23のいずれか一項に記載の眼底撮影システム。
1 光走査型検眼鏡本体
27 制御回路部
29 眼底像構築部
30 指紋・手形センサ
100、101、102 眼底撮影装置
110 光学ユニット
111 光源
114 参照ミラー
114A 参照ミラー駆動部
116 スキャナ
123 CCDイメージセンサ
127 切替レンズ
127A レンズ駆動部
200 コンピュータ
210 制御部
211 主制御部
212 記憶部
220 画像形成部
230 データ処理部
231 検査データ生成部
232 認証処理部
233 種別選択部
234 疾患候補特定部
240 通信部
300 ユーザインターフェイス
310 表示部
320 操作部
1000 外部コンピュータ
2000 通信回線

Claims (7)

  1. 光源部からの光により被検眼の眼底を走査し、前記眼底からの戻り光を受光部にて受光する走査光学系と、
    前記光による走査軌跡が前記眼底に形成されるように前記走査光学系を制御する制御回路部と、
    前記受光部からの受光信号と前記走査軌跡の位置とに基づいて前記眼底の画像を構築する像構築部と
    を有し、
    前記制御回路部は、可視光による固視標が前記被検眼に提示されるように前記走査光学系を制御する
    ことを特徴とする眼底撮影装置。
  2. 前記光源部は、赤外光を発生する赤外光源と、可視光を発生する可視光源とを含み、
    前記制御回路部は、前記赤外光源により発生された前記赤外光により所定の走査軌跡に沿った走査を行いつつ、所定のタイミングで前記可視光源を点灯させることにより前記固視標を前記被検眼に提示する
    ことを特徴とする請求項1に記載の眼底撮影装置。
  3. 前記可視光源は、赤色光を発生する赤色光源を含み、
    前記制御回路部は、前記赤色光源を点灯させることにより前記固視標を前記被検眼に提示する
    ことを特徴とする請求項2に記載の眼底撮影装置。
  4. 前記制御回路部は、予め設定された複数の形状の固視標のうちのいずれかが前記被検眼に提示されるように前記走査光学系を制御する
    ことを特徴とする請求項1〜請求項3のいずれか一項に記載の眼底撮影装置。
  5. 前記制御回路部は、十字形状の固視標が前記被検眼に提示されるように前記走査光学系を制御する
    ことを特徴とする請求項4に記載の眼底撮影装置。
  6. 前記制御回路部は、ユーザからの指示に応じて前記固視標の提示位置を変更するように前記走査光学系を制御する
    ことを特徴とする請求項1〜請求項5のいずれか一項に記載の眼底撮影装置。
  7. 前記制御回路部は、予め設定された複数の提示位置のいずれかを選択して前記走査光学系に前記固視標を提示させる
    ことを特徴とする請求項1〜請求項6のいずれか一項に記載の眼底撮影装置。
JP2016055371A 2012-11-30 2016-03-18 眼底撮影装置 Pending JP2016105945A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012262727 2012-11-30
JP2012262241 2012-11-30
JP2012262727 2012-11-30
JP2012262241 2012-11-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014549848A Division JP6310859B2 (ja) 2012-11-30 2013-11-27 眼底撮影装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016107999A Division JP2016172041A (ja) 2012-11-30 2016-05-31 眼科撮影装置および眼科装置

Publications (1)

Publication Number Publication Date
JP2016105945A true JP2016105945A (ja) 2016-06-16

Family

ID=50827867

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014549848A Active JP6310859B2 (ja) 2012-11-30 2013-11-27 眼底撮影装置
JP2016055371A Pending JP2016105945A (ja) 2012-11-30 2016-03-18 眼底撮影装置
JP2016107999A Pending JP2016172041A (ja) 2012-11-30 2016-05-31 眼科撮影装置および眼科装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014549848A Active JP6310859B2 (ja) 2012-11-30 2013-11-27 眼底撮影装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016107999A Pending JP2016172041A (ja) 2012-11-30 2016-05-31 眼科撮影装置および眼科装置

Country Status (4)

Country Link
US (2) US10149615B2 (ja)
EP (1) EP2926722A4 (ja)
JP (3) JP6310859B2 (ja)
WO (1) WO2014084231A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143651A1 (ko) * 2017-02-01 2018-08-09 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
KR101911441B1 (ko) * 2017-02-01 2018-10-24 주식회사 루티헬스 휴대용 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
KR101942465B1 (ko) * 2018-01-30 2019-01-28 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
JP2019536500A (ja) * 2016-10-11 2019-12-19 オプトス ピーエルシー 眼球画像撮影装置
JP7435961B2 (ja) 2020-03-27 2024-02-21 興和株式会社 眼底撮影装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11839430B2 (en) 2008-03-27 2023-12-12 Doheny Eye Institute Optical coherence tomography-based ophthalmic testing methods, devices and systems
US8348429B2 (en) 2008-03-27 2013-01-08 Doheny Eye Institute Optical coherence tomography device, method, and system
US8820931B2 (en) 2008-07-18 2014-09-02 Doheny Eye Institute Optical coherence tomography-based ophthalmic testing methods, devices and systems
US10314763B2 (en) * 2013-12-31 2019-06-11 Teeny Clean, Llc Eyelid care appliance
JP6375760B2 (ja) * 2014-07-31 2018-08-22 株式会社ニデック 光コヒーレンストモグラフィー装置、および眼底画像処理プログラム
WO2016112310A1 (en) 2015-01-09 2016-07-14 Smart Vision Labs Portable wavefront aberrometer with open field alignment channel
US10383508B2 (en) * 2015-02-20 2019-08-20 Gwangju Institute Of Science And Technology Endoscope, handpiece of endoscope, calibration method therefor, and method for using the same
US10337983B2 (en) * 2015-04-12 2019-07-02 Taiwan Biophotonic Corporation Module, device and method for optical measurement
US9984459B2 (en) * 2015-04-15 2018-05-29 Kabushiki Kaisha Topcon OCT angiography calculation with optimized signal processing
US10820824B2 (en) 2015-05-12 2020-11-03 Diagnosys LLC Combined stimulator and bipolar electrode assembly for mouse electroretinography (ERG)
US11357442B2 (en) 2015-05-12 2022-06-14 Diagnosys LLC Combined stimulator and electrode assembly for mouse electroretinography (ERG)
EP3340856A4 (en) * 2015-08-24 2019-05-22 The Board of Trustees of the University of Illionis PIXELIZED FIELD MULTIPROTOCOL STIMULUS SOURCE APPARATUS, METHOD AND SYSTEM FOR PROBE OF VISUAL PATH FUNCTION
EP3834705B1 (en) 2015-09-17 2023-12-20 Envision Diagnostics, Inc. Medical interfaces and other medical devices, systems, and methods for performing eye exams
JP6619202B2 (ja) * 2015-10-29 2019-12-11 株式会社トプコン 眼科撮影装置
US10130250B2 (en) * 2015-11-02 2018-11-20 Nidek Co., Ltd. OCT data processing apparatus and OCT data processing program
US20170119250A1 (en) * 2015-11-04 2017-05-04 The Charles Stark Draper Laboratory, Inc. Portable hardware fixture for fundoscopy
EP3373795B1 (en) * 2015-11-10 2022-02-23 Diagnosys LLC Method and apparatus for the assessment of electrophysiological signals
JP6700876B2 (ja) * 2016-03-14 2020-05-27 キヤノン株式会社 眼科装置及びその制御方法、並びに、プログラム
JP6756516B2 (ja) * 2016-04-28 2020-09-16 株式会社トプコン 眼科撮影装置
US10820840B2 (en) * 2016-04-28 2020-11-03 Joshua Noel Hogan Optical coherence tomography for identity verification
WO2017190087A1 (en) 2016-04-30 2017-11-02 Envision Diagnostics, Inc. Medical devices, systems, and methods for performing eye exams and eye tracking
WO2017190071A1 (en) * 2016-04-30 2017-11-02 Envision Diagnostics, Inc. Medical devices, systems, and methods for performing eye exams using displays comprising mems scanning mirrors
US10832051B1 (en) * 2016-06-13 2020-11-10 Facebook Technologies, Llc Eye tracking using optical coherence methods
JP6824659B2 (ja) * 2016-08-10 2021-02-03 株式会社トプコン 眼科撮影装置
KR101948674B1 (ko) 2016-10-20 2019-02-18 (주)하이모 포터블 스캐너 및 그 스캐닝 방법
DE102016121246A1 (de) * 2016-11-07 2018-05-09 Carl Zeiss Ag Verfahren zur Selbstuntersuchung eines Auges und ophthalmologische Selbstuntersuchungsvorrichtung
JP6967184B2 (ja) * 2016-12-16 2021-11-17 株式会社トーメーコーポレーション 眼科装置
RU2667875C2 (ru) * 2017-02-02 2018-09-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Микрофотовидеофиксирующее устройство
DE102018004592A1 (de) * 2017-06-20 2018-12-20 Mitutoyo Corporation Messapparat für dreidimensionale Geometrie und Messverfahren für dreidimensionale Geometrie
US11373450B2 (en) 2017-08-11 2022-06-28 Tectus Corporation Eye-mounted authentication system
JP7027075B2 (ja) 2017-09-06 2022-03-01 キヤノン株式会社 光干渉断層撮影装置及びその制御方法
JP6677859B2 (ja) * 2017-10-05 2020-04-08 株式会社Qdレーザ 視覚検査装置
KR102661654B1 (ko) 2017-11-07 2024-04-29 노탈 비전 엘티디. 망막 이미징 디바이스 및 관련 방법들
EP3675709B1 (en) 2017-11-07 2023-07-26 Notal Vision Ltd. Systems for alignment of ophthalmic imaging devices
CN109859155A (zh) * 2017-11-30 2019-06-07 京东方科技集团股份有限公司 影像畸变检测方法和***
US20190290117A1 (en) * 2018-03-22 2019-09-26 Kabushiki Kaisha Topcon Interferometric fundus imaging method
US10963046B1 (en) 2018-05-17 2021-03-30 Facebook Technologies, Llc Drift corrected eye tracking
KR20190138548A (ko) * 2018-06-05 2019-12-13 주식회사 필로포스 Point of care 진단을 위한 일체형 핸드헬드 배터리 구동 OCT 시스템
US11219362B2 (en) * 2018-07-02 2022-01-11 Nidek Co., Ltd. Fundus imaging apparatus
US11497911B2 (en) 2018-07-18 2022-11-15 Diagnosys LLC Electrically evoked response (EER) stimulator/amplifier combination
CN108734157B (zh) * 2018-08-28 2024-04-05 北京乾沛科技有限公司 第一指节指静脉采集装置和方法
CN110895824B (zh) * 2018-09-12 2023-03-28 上海耕岩智能科技有限公司 确定显示屏幕厚度参数的方法、存储介质及电子设备
WO2020064475A1 (en) * 2018-09-27 2020-04-02 Albanna Walid Method of retinal vessel analysis, a portable retinal vessel analysis apparatus and a non-transitory computer-readable medium
US10595722B1 (en) 2018-10-03 2020-03-24 Notal Vision Ltd. Automatic optical path adjustment in home OCT
US10993613B2 (en) * 2018-12-21 2021-05-04 Welch Allyn, Inc. Fundus image capturing
JP7199236B2 (ja) 2019-01-24 2023-01-05 株式会社トプコン 眼科装置
AU2020285209A1 (en) * 2019-05-31 2022-01-20 Nikon Corporation Ophthalmic device and tomographic image generation device
US10653311B1 (en) 2019-06-12 2020-05-19 Notal Vision Ltd. Home OCT with automatic focus adjustment
US11832885B2 (en) 2019-10-24 2023-12-05 Sanovas Intellectual Property, Llc Patient home monitoring and physician alert for ocular anatomy
WO2021203029A1 (en) * 2020-04-04 2021-10-07 The Board Of Regents Of The University Of Texas System Systems and methods to measure retinal perfusion
US11423569B1 (en) * 2021-04-09 2022-08-23 Varjo Technologies Oy Gaze-tracking system and method employing selective glints
GB2622957A (en) * 2022-09-27 2024-04-03 Optomed Plc Ophthalmic imaging instrument and ophthalmic imaging method
US11864834B1 (en) * 2023-01-25 2024-01-09 SoliDDD Corp. Multi-tiled plenoptic system for the detection and correction of ocular defects and for improved foveated rendering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113025A (ja) * 1987-10-28 1989-05-01 Topcon Corp レーザー走査式眼科装置
JP2003000546A (ja) * 2001-06-18 2003-01-07 Canon Inc 眼科装置
US20050286019A1 (en) * 2004-06-10 2005-12-29 Wiltberger Michael W Scanning ophthalmic fixation method and apparatus
JP2008289642A (ja) * 2007-05-24 2008-12-04 Topcon Corp 光画像計測装置
JP2010259606A (ja) * 2009-05-01 2010-11-18 Nidek Co Ltd 眼科撮影装置
JP2011024930A (ja) * 2009-07-29 2011-02-10 Topcon Corp 眼科観察装置
JP2012176162A (ja) * 2011-02-28 2012-09-13 Topcon Corp 眼底観察装置

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183727A (ja) * 1983-04-02 1984-10-18 株式会社トプコン 眼科器械の合焦検出装置
JPH06110947A (ja) 1992-09-30 1994-04-22 Pfu Ltd 医療データ検索システム
JPH09234186A (ja) 1996-03-01 1997-09-09 Nikon Corp 検眼装置
JPH10151114A (ja) 1996-11-26 1998-06-09 Nippon Telegr & Teleph Corp <Ntt> 眼底画像分類処理方法
JPH119553A (ja) 1997-06-26 1999-01-19 Nikon Corp 眼科装置
US6299307B1 (en) * 1997-10-10 2001-10-09 Visx, Incorporated Eye tracking device for laser eye surgery using corneal margin detection
US6027216A (en) * 1997-10-21 2000-02-22 The Johns University School Of Medicine Eye fixation monitor and tracker
JP3964035B2 (ja) 1998-03-12 2007-08-22 興和株式会社 眼科装置
JP2000189386A (ja) 1998-12-25 2000-07-11 Nidek Co Ltd 眼底カメラ
JP2000237168A (ja) 1999-02-19 2000-09-05 Canon Inc 眼科検査装置
JP2001161646A (ja) 1999-12-07 2001-06-19 Canon Inc 眼科撮影装置
US7050534B2 (en) 2000-08-29 2006-05-23 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
US20020186818A1 (en) 2000-08-29 2002-12-12 Osteonet, Inc. System and method for building and manipulating a centralized measurement value database
AU8689201A (en) 2000-08-29 2002-03-13 Osteonet Com Inc Methods and devices for quantitative analysis of x-ray images
US7467892B2 (en) 2000-08-29 2008-12-23 Imaging Therapeutics, Inc. Calibration devices and methods of use thereof
US6904123B2 (en) 2000-08-29 2005-06-07 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
JP3742288B2 (ja) 2000-09-05 2006-02-01 株式会社ニデック 検眼装置
JP2002369801A (ja) 2001-06-14 2002-12-24 Canon Inc 眼科撮影装置
JP4126244B2 (ja) * 2003-03-27 2008-07-30 株式会社ニデック 眼底カメラ
JP4179606B2 (ja) 2003-06-09 2008-11-12 株式会社コーナン・メディカル フォトレフラクター
US7766903B2 (en) * 2003-12-24 2010-08-03 The Board Of Trustees Of The Leland Stanford Junior University Patterned laser treatment of the retina
JP4446777B2 (ja) 2004-03-31 2010-04-07 株式会社ニデック 眼底撮影装置
JP4510534B2 (ja) 2004-06-22 2010-07-28 株式会社トプコン 光学特性測定装置及び眼底像観察装置
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
JP2007097820A (ja) 2005-10-04 2007-04-19 Sumitomo Electric Ind Ltd 生体検査システムおよび生体検査方法
JP4855150B2 (ja) 2006-06-09 2012-01-18 株式会社トプコン 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
JP4822969B2 (ja) 2006-07-27 2011-11-24 株式会社ニデック 眼科撮影装置
JP4817184B2 (ja) 2006-09-08 2011-11-16 国立大学法人岐阜大学 画像撮影装置及び画像解析プログラム
JP4996917B2 (ja) * 2006-12-26 2012-08-08 株式会社トプコン 光画像計測装置及び光画像計測装置を制御するプログラム
JP5058627B2 (ja) 2007-02-26 2012-10-24 株式会社トプコン 眼底観察装置
JP4937792B2 (ja) 2007-03-01 2012-05-23 株式会社ニデック 眼底カメラ
JP4940070B2 (ja) 2007-09-10 2012-05-30 国立大学法人 東京大学 眼底観察装置、眼科画像処理装置及びプログラム
JP4940069B2 (ja) 2007-09-10 2012-05-30 国立大学法人 東京大学 眼底観察装置、眼底画像処理装置及びプログラム
US10398599B2 (en) 2007-10-05 2019-09-03 Topcon Medical Laser Systems Inc. Semi-automated ophthalmic photocoagulation method and apparatus
JP5192250B2 (ja) 2008-02-04 2013-05-08 株式会社トプコン 眼底観察装置
EP2130486B1 (en) 2008-06-02 2016-03-23 Nidek Co., Ltd. Ophthalmic Photographing Apparatus
JP5209377B2 (ja) * 2008-06-02 2013-06-12 株式会社ニデック 眼底撮影装置
JP5324839B2 (ja) 2008-06-19 2013-10-23 株式会社トプコン 光画像計測装置
JP4810562B2 (ja) 2008-10-17 2011-11-09 キヤノン株式会社 画像処理装置、画像処理方法
WO2010062883A1 (en) 2008-11-26 2010-06-03 Bioptigen, Inc. Methods, systems and computer program products for biometric identification by tissue imaging using optical coherence tomography (oct)
JP5361522B2 (ja) 2009-05-08 2013-12-04 キヤノン株式会社 眼底カメラ
US7980696B1 (en) 2010-01-21 2011-07-19 Nidek Co., Ltd. Ophthalmic photographing apparatus
JP5545629B2 (ja) 2010-01-21 2014-07-09 株式会社ニデック 眼科撮影装置
JP5701625B2 (ja) 2010-03-31 2015-04-15 株式会社ニデック 眼科用レーザ治療装置
JP5783681B2 (ja) 2010-03-31 2015-09-24 キヤノン株式会社 撮像装置及び撮像方法
JP5629493B2 (ja) 2010-05-25 2014-11-19 株式会社トプコン 走査型レーザ撮影装置
JP5650482B2 (ja) * 2010-09-30 2015-01-07 株式会社ニデック 眼科撮影装置
JP5762712B2 (ja) 2010-09-30 2015-08-12 株式会社ニデック 眼科観察システム
JP2012200292A (ja) 2011-03-23 2012-10-22 Nidek Co Ltd 医療情報管理システム
TWI453523B (zh) 2011-12-29 2014-09-21 Ind Tech Res Inst 具有自動對焦功能之診斷設備

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113025A (ja) * 1987-10-28 1989-05-01 Topcon Corp レーザー走査式眼科装置
JP2003000546A (ja) * 2001-06-18 2003-01-07 Canon Inc 眼科装置
US20050286019A1 (en) * 2004-06-10 2005-12-29 Wiltberger Michael W Scanning ophthalmic fixation method and apparatus
JP2008289642A (ja) * 2007-05-24 2008-12-04 Topcon Corp 光画像計測装置
JP2010259606A (ja) * 2009-05-01 2010-11-18 Nidek Co Ltd 眼科撮影装置
JP2011024930A (ja) * 2009-07-29 2011-02-10 Topcon Corp 眼科観察装置
JP2012176162A (ja) * 2011-02-28 2012-09-13 Topcon Corp 眼底観察装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019536500A (ja) * 2016-10-11 2019-12-19 オプトス ピーエルシー 眼球画像撮影装置
US11170213B2 (en) 2016-10-11 2021-11-09 Optos Plc Ocular image capturing device
WO2018143651A1 (ko) * 2017-02-01 2018-08-09 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
KR101911441B1 (ko) * 2017-02-01 2018-10-24 주식회사 루티헬스 휴대용 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
JP2020507386A (ja) * 2017-02-01 2020-03-12 ルーティーヘルス,インク. 網膜撮影装置、及びそれを利用した網膜撮影方法
US11219366B2 (en) 2017-02-01 2022-01-11 Rooteehealth, Inc. Retina photographing apparatus and retina photographing method using same
KR101942465B1 (ko) * 2018-01-30 2019-01-28 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
JP7435961B2 (ja) 2020-03-27 2024-02-21 興和株式会社 眼底撮影装置

Also Published As

Publication number Publication date
JP2016172041A (ja) 2016-09-29
EP2926722A1 (en) 2015-10-07
US10226175B2 (en) 2019-03-12
EP2926722A4 (en) 2016-12-21
US20170042422A1 (en) 2017-02-16
US20150313467A1 (en) 2015-11-05
WO2014084231A1 (ja) 2014-06-05
JP6310859B2 (ja) 2018-04-11
US10149615B2 (en) 2018-12-11
JPWO2014084231A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6310859B2 (ja) 眼底撮影装置
JP6141140B2 (ja) 眼科撮影装置
JP6338358B2 (ja) 眼底撮影システム
JP5989523B2 (ja) 眼科装置
JP2015033472A (ja) 眼科撮影装置
JP6367563B2 (ja) 眼科装置
JP2018103050A (ja) 眼科装置
JP6566541B2 (ja) 眼科装置
JP2016041221A (ja) 眼科撮影装置およびその制御方法
JP6498398B2 (ja) 眼科装置
JP6220022B2 (ja) 眼科装置
JP6407631B2 (ja) 眼科装置
JP6901264B2 (ja) 眼科装置
JP6392408B2 (ja) 眼科装置
JP6422529B2 (ja) プログラムおよび眼科システム
JP2017164522A (ja) 眼科装置
JP2017164520A (ja) 眼科装置
JP2017164521A (ja) 眼科装置
JP2019135005A (ja) 眼科撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180501