JP2016103468A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016103468A
JP2016103468A JP2015196724A JP2015196724A JP2016103468A JP 2016103468 A JP2016103468 A JP 2016103468A JP 2015196724 A JP2015196724 A JP 2015196724A JP 2015196724 A JP2015196724 A JP 2015196724A JP 2016103468 A JP2016103468 A JP 2016103468A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
moles
nonaqueous
positive electrode
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015196724A
Other languages
Japanese (ja)
Other versions
JP7091574B2 (en
Inventor
稔 稲葉
Minoru Inaba
稔 稲葉
貴之 土井
Takayuki Doi
貴之 土井
麟 増原
Rin Masuhara
麟 増原
雄介 清水
Yusuke Shimizu
雄介 清水
中川 裕江
Hiroe Nakagawa
裕江 中川
秀美 山本
Hidemi Yamamoto
秀美 山本
稲益 徳雄
Tokuo Inamasu
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Doshisha Co Ltd
Original Assignee
GS Yuasa Corp
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp, Doshisha Co Ltd filed Critical GS Yuasa Corp
Publication of JP2016103468A publication Critical patent/JP2016103468A/en
Application granted granted Critical
Publication of JP7091574B2 publication Critical patent/JP7091574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery superior in charge and discharge efficiencies, in which a positive electrode active material including Mn element is used.SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode including a positive electrode active material including Mn element; a negative electrode; and a nonaqueous electrolytic solution including a nonaqueous solvent and an alkali metal salt. The nonaqueous electrolytic solution includes the nonaqueous solvent of which the number of donors is 15 or more. The nonaqueous solvent of which the number of donors is 15 or more is 16.5 or less in the number of donors. The mole number of the nonaqueous solvent of which the number of donors is 15 or more is no more than four times that of the alkali metal salt.SELECTED DRAWING: None

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウム二次電池に代表される非水電解質二次電池は、その高エネルギー密度という利点を活かして、携帯電話に代表されるモバイル機器の電源として幅広く普及している。また、近年、小形機器用電源だけでなく、電力貯蔵用、電気自動車用及びハイブリッド自動車用等の中大型産業用途への展開がなされている。   Nonaqueous electrolyte secondary batteries typified by lithium secondary batteries are widely used as power sources for mobile devices typified by mobile phones, taking advantage of their high energy density. In addition, in recent years, development has been made not only for power supplies for small devices, but also for medium and large-sized industrial applications such as power storage, electric vehicles, and hybrid vehicles.

非水電解質二次電池は、一般に、正極活物質を含む正極と、負極活物質を含む負極と、セパレータと、非水溶媒及びリチウム塩を含有する非水電解質とを備えている。非水電解質二次電池を構成する正極活物質としてはリチウム含有遷移金属酸化物が、負極活物質としてはグラファイトに代表される炭素材料が広く用いられている。非水電解質としては、非水溶媒に六フッ化リン酸リチウム(LiPF)等の電解質を種々の濃度で溶解したものが広く用いられている。 A nonaqueous electrolyte secondary battery generally includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator, and a nonaqueous electrolyte containing a nonaqueous solvent and a lithium salt. A lithium-containing transition metal oxide is widely used as the positive electrode active material constituting the nonaqueous electrolyte secondary battery, and a carbon material typified by graphite is widely used as the negative electrode active material. As the non-aqueous electrolyte, those obtained by dissolving an electrolyte such as lithium hexafluorophosphate (LiPF 6 ) in a non-aqueous solvent at various concentrations are widely used.

特許文献1には、電解液を不燃化した安全性の高い二次電池を提供することを目的として、1.5mol/L以上3.5mol/L以下のリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)のリチウム塩と、20〜60体積%のリン酸エステル誘導体を含む電解液を用いることが記載され、正極にLiMnを用いた電池が具体的に記載され、LiTFSIを高濃度用いることでアルミニウムの腐食が抑制されることが記載されている。 Patent Document 1 discloses a lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) of 1.5 mol / L or more and 3.5 mol / L or less for the purpose of providing a highly safe secondary battery in which the electrolyte solution is made nonflammable. ) And an electrolyte solution containing 20 to 60% by volume of a phosphoric ester derivative, a battery using LiMn 2 O 4 for the positive electrode is specifically described, and LiTFSI is used at a high concentration It is described that corrosion of aluminum is suppressed.

特許文献2には、高い入出力特性と良好な高温サイクル特性との両特性のバランスのとれたリチウム二次電池を提供することを目的として、1.2M以上3M以下のLiPF6
を溶解させた非水電解液を用いることが記載され、正極にLiNi0.8Co0.15Al0.05を用いた電池が具体的に記載され、LiCoO、LiNiOと、LiMn、LiMnO等を用いることができること(段落0014)が記載されている。
In Patent Document 2, LiPF 6 of 1.2 M or more and 3 M or less is provided for the purpose of providing a lithium secondary battery in which both high input / output characteristics and good high-temperature cycle characteristics are balanced.
A battery using LiNi 0.8 Co 0.15 Al 0.05 O 2 as a positive electrode is specifically described, and LiCoO 2 , LiNiO 2 , and LiMn are described. It describes that 2 O 4 , LiMnO 2 and the like can be used (paragraph 0014).

特許文献3には、低空孔率電極を使用した場合でも、電池のハイレート特性や低温特性が劣化しない非水電解質電池を提供することを目的として、正極の空孔率が25%以下であり、前記正極の単位面積あたりの活物質坦持量が20mg/cm以上であり、かつ非水電解質の塩濃度が伝導度ピークを与える濃度を超えている非水電解質電池が記載され、伝導度ピークを与える濃度が「六フッ化リン酸リチウム(LiPF)等の下記に例示される塩では1mol・dm−3付近であり、それより高い濃度とすることが好ましく、特に1.3mol・dm−3以上である。その上限としては、3mol・dm−3程度である。」(段落0013)と記載され、正極活物質としてLiCoOを用い、塩濃度を2.5mol・dm−3とした電池(実施例5、実施例14)等が具体的に記載され、正極活物質として「LiCoO、LiMn、LiNiO、LiVなどが挙げられる。」(段落0022)との記載がある。 In Patent Document 3, even when a low porosity electrode is used, the positive electrode has a porosity of 25% or less for the purpose of providing a nonaqueous electrolyte battery in which the high rate characteristics and low temperature characteristics of the battery are not deteriorated. A non-aqueous electrolyte battery is described in which the amount of active material carried per unit area of the positive electrode is 20 mg / cm 2 or more and the salt concentration of the non-aqueous electrolyte exceeds the concentration that gives the conductivity peak. Is 1 mol · dm −3 in a salt exemplified below such as “lithium hexafluorophosphate (LiPF 6 )”, and it is preferable that the concentration be higher than that, particularly 1.3 mol · dm −. 3 or more. the upper limit is about 3 mol · dm -3. "is described as (paragraph 0013), a LiCoO 2 used as the positive electrode active material, and 2.5 mol · dm -3 salt concentration Batteries (Example 5, Example 14) or the like is specifically described, as a cathode active material "such as LiCoO 2, LiMn 2 O 4, LiNiO 2, LiV 2 O 4 and the like." (The paragraph 0022) Is described.

特許文献4には、黒鉛系炭素材料からなる負極であっても、プロピレンカーボネート(PC)を含有する有機電解液を使用できるようにすることを目的として、PCにリチウムビス(パーフルオロエタンスルホニル)イミド(LiBETI)を2.12〜3.15モル/Lの濃度で溶解した電解液を用いることが記載されている。   In Patent Document 4, lithium bis (perfluoroethanesulfonyl) is added to PC for the purpose of using an organic electrolyte containing propylene carbonate (PC) even for a negative electrode made of a graphite-based carbon material. It describes that an electrolytic solution in which imide (LiBETI) is dissolved at a concentration of 2.12 to 3.15 mol / L is used.

非特許文献1には、溶媒のドナー数の定義及び求め方が記載されている。ドナー数とは、非特許文献1の著者であるグットマンにより提唱された、1,2−ジクロロエタン中の五塩化アンチモンと、対象とする溶媒との間の1:1付加化合物の生成エンタルピーの負値で定義される、溶媒の電子対供与能を表すパラメーターである。   Non-Patent Document 1 describes the definition and how to obtain the number of solvent donors. The number of donors is the negative value of the enthalpy of formation of a 1: 1 addition compound between antimony pentachloride in 1,2-dichloroethane and the solvent of interest proposed by Gutman, the author of Non-Patent Document 1. Is a parameter that represents the electron pair donating ability of the solvent.

特許第5557337号公報Japanese Patent No. 5557337 特開2002−025606号公報Japanese Patent Laid-Open No. 2002-025606 特許第4180335号公報Japanese Patent No. 4180335 特開2004−095522号公報JP 2004-095522 A

Viktor Gutmann, "The Donor-Acceptor Approach to Molecular Interactions", Springer, 1978(ISBN-13: 978-0306310645)Viktor Gutmann, "The Donor-Acceptor Approach to Molecular Interactions", Springer, 1978 (ISBN-13: 978-0306310645)

非水電解質二次電池の正極活物質として用いられるリチウム含有遷移金属酸化物は、遷移金属元素であるMn,Ni,Co等を主として含むものが多用されている。これらのうち、Mnは地球資源として豊富であり、安価であることから、遷移金属中のMn元素の比率が高いリチウム含有遷移金属酸化物を用いることが望まれてきた。   As lithium-containing transition metal oxides used as positive electrode active materials for nonaqueous electrolyte secondary batteries, those containing mainly transition metal elements such as Mn, Ni, Co and the like are frequently used. Among these, since Mn is abundant as a global resource and inexpensive, it has been desired to use a lithium-containing transition metal oxide having a high ratio of Mn element in the transition metal.

しかしながら、このような非水電解質二次電池は、正極活物質から非水電解質へのMnの溶出が起こりやすく、充放電効率を十分に高くすることができないという問題があった。本発明は、充放電効率が優れた非水電解質二次電池を提供することを課題とする。   However, such a non-aqueous electrolyte secondary battery has a problem that Mn is easily eluted from the positive electrode active material to the non-aqueous electrolyte, and the charge / discharge efficiency cannot be sufficiently increased. An object of the present invention is to provide a nonaqueous electrolyte secondary battery having excellent charge / discharge efficiency.

本発明においては、上記課題を解決するために、以下の手段を採用する。
Mn元素を含む正極活物質を含有する正極、負極、及び、
非水溶媒がアルカリ金属塩を含有してなる非水電解質を備えた非水電解質二次電池であって、
前記非水電解質は、
ドナー数が15以上の非水溶媒を含有し、
前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率が4倍以下である、
非水電解質二次電池。
In the present invention, in order to solve the above problems, the following means are adopted.
A positive electrode containing a positive electrode active material containing Mn element, a negative electrode, and
A nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte in which a nonaqueous solvent contains an alkali metal salt,
The non-aqueous electrolyte is
A non-aqueous solvent having a donor number of 15 or more,
The ratio of the number of moles of the non-aqueous solvent in which the number of donors is 15 or more with respect to the number of moles of the alkali metal salt is 4 times or less,
Non-aqueous electrolyte secondary battery.

本発明によれば、充放電効率が優れた非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery excellent in charging / discharging efficiency can be provided.

本発明に係る非水電解質二次電池の一実施形態を示す外観斜視図1 is an external perspective view showing an embodiment of a nonaqueous electrolyte secondary battery according to the present invention. 本発明に係る非水電解質二次電池を複数個備えた蓄電装置を示す概略図Schematic which shows the electrical storage apparatus provided with multiple nonaqueous electrolyte secondary batteries which concern on this invention

本発明に係る非水電解質二次電池は、Mn元素を含む正極活物質を含有する正極、負極、及び、非水溶媒がアルカリ金属塩を含有してなる非水電解質を備えた非水電解質二次電池であって、前記非水電解質は、ドナー数が15以上の非水溶媒を含有し、前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率が4倍以下であることを特徴としている。   A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode containing a positive electrode active material containing a Mn element, a negative electrode, and a non-aqueous electrolyte provided with a non-aqueous electrolyte in which a non-aqueous solvent contains an alkali metal salt. In the secondary battery, the nonaqueous electrolyte contains a nonaqueous solvent having a donor number of 15 or more, and a ratio of the number of moles of the nonaqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt is 4. It is characterized by being less than double.

本発明の作用機構については必ずしも明らかではないが、本発明者らは次のように推察している。正極活物質から非水電解質へのMnの溶出は、非水電解質中でアルカリ金属イオンに溶媒和せずに遊離している非水溶媒がMnイオンに溶媒和することによって起こる。本発明に係る非水電解質は、前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率が4倍以下であるため、前記ドナー数が15以上の非水溶媒のほとんどがアルカリ金属イオンに溶媒和している。即ち、非水電解質中に、溶媒和せずに遊離している前記ドナー数が15以上の非水溶媒がほとんど存在しない。従って、Mnイオンに溶媒和しうる非水溶媒がほとんど存在しないため、正極活物質から非水電解質へのMnの溶出が抑制される。   Although the mechanism of action of the present invention is not necessarily clear, the present inventors presume as follows. The elution of Mn from the positive electrode active material to the non-aqueous electrolyte occurs when a non-aqueous solvent that is liberated without solvating with alkali metal ions in the non-aqueous electrolyte solvates with Mn ions. In the non-aqueous electrolyte according to the present invention, the ratio of the number of moles of the non-aqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt is 4 times or less. Most of them are solvated to alkali metal ions. That is, in the non-aqueous electrolyte, there is almost no non-aqueous solvent having a donor number of 15 or more that is liberated without being solvated. Therefore, since there is almost no nonaqueous solvent that can be solvated with Mn ions, the elution of Mn from the positive electrode active material to the nonaqueous electrolyte is suppressed.

正極活物質としては、Mn元素を含むものであれば、限定されない。例えば、LiMO(MはMnを含む一種又は二種以上の遷移金属を表す)で表される複合酸化物(LiNiMn(2−y)、LiMn、LiNiMnCo(1−y−z)、Li1+x(NiMnCo(1−y−z)1−x等)、Li(XO(MはMnを含む一種又は二種以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)で表されるポリアニオン化合物(LiMnPO、LiMnSiO等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。 The positive electrode active material is not limited as long as it contains Mn element. For example, a composite oxide (Li x Ni y Mn (2-y) O 4 , Li x Mn 2 O 4 ) represented by Li x MO y (M represents one or more transition metals including Mn ). Li x Ni y Mn z Co (1-yz) O 2 , Li 1 + x (Ni y Mn z Co (1-yz) ) 1-x O 2 etc.), Li w M x (XO y ) and polyanion compounds (LiMnPO 4 , Li 2 MnSiO 4, etc.) represented by z (M represents one or more transition metals including Mn, and X represents P, Si, B, V, for example). . The elements or polyanions in these compounds may be partially substituted with other elements or anion species.

正極活物質からのMnの溶出は、正極活物質の作動電位が貴である方が促進される傾向がある。従って、正極活物質をより貴な電位で作動させる非水電解質電池に対して本発明を適用すると、本発明の効果が顕著に奏されるため、好ましい。   The elution of Mn from the positive electrode active material tends to be promoted when the working potential of the positive electrode active material is noble. Therefore, it is preferable to apply the present invention to a nonaqueous electrolyte battery in which the positive electrode active material is operated at a more noble potential because the effects of the present invention are remarkably exhibited.

非水電解質に用いる非水溶媒のドナー数は、便覧等で確認できる。あるいは、非特許文献1に記載の方法で求めることができる。   The number of donors of the non-aqueous solvent used for the non-aqueous electrolyte can be confirmed by handbook. Alternatively, it can be obtained by the method described in Non-Patent Document 1.

ドナー数が15以上の非水溶媒としては、限定されない。例えば、プロピレンカーボネート(ドナー数:15.1)、エチレンカーボネート(16.4)、ジエチルカーボネート(16.4)、ジメチルカーボネート(15.2)、エチルメチルカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、フルオロエチレンカーボネート、1,2−ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、スチレンカーボネート、カテコールカーボネート、1−フェニルビニレンカーボネート、1,2−ジフェニルビニレンカーボネート、ジフェニルカーボネート等の環状又は鎖状カーボネート、γ−ブチロラクトン(18)、γ−バレロラクトン、プロピオラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル(17.1)、酪酸メチル等の鎖状カルボン酸エステル、テトラヒドロフラン(20)若しくはその誘導体、1,3−ジオキサン、1,2−ジメトキシエタン(20)、ジエトキシエタン、メトキシエトキシエタン、ジグライム(19.2)、テトラグライム(16.6)、メチルジグライム等のエーテル類、ニトリル類、ジオキサラン若しくはその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。特に、エチレンカーボネート等の環状カーボネート及び/又はジエチルカーボネート等の鎖状カーボネートを含有するものが好ましい。また、これらの非水溶媒は、2種以上を任意の割合で混合して用いることができる。   The non-aqueous solvent having a donor number of 15 or more is not limited. For example, propylene carbonate (number of donors: 15.1), ethylene carbonate (16.4), diethyl carbonate (16.4), dimethyl carbonate (15.2), ethyl methyl carbonate, butylene carbonate, chloroethylene carbonate, fluoroethylene Cyclic or linear chain such as carbonate, 1,2-difluoroethylene carbonate, trifluoropropylene carbonate, vinylene carbonate, vinyl ethylene carbonate, styrene carbonate, catechol carbonate, 1-phenyl vinylene carbonate, 1,2-diphenyl vinylene carbonate, diphenyl carbonate Cyclic carboxylic acid esters such as carbonate, γ-butyrolactone (18), γ-valerolactone, propiolactone, methyl acetate, acetic acid Chain carboxylic acid esters such as ethyl (17.1) and methyl butyrate, tetrahydrofuran (20) or derivatives thereof, 1,3-dioxane, 1,2-dimethoxyethane (20), diethoxyethane, methoxyethoxyethane, diglyme (19.2), tetraglyme (16.6), ethers such as methyldiglyme, nitriles, dioxalane or derivatives thereof, or a mixture of two or more thereof. In particular, those containing a cyclic carbonate such as ethylene carbonate and / or a chain carbonate such as diethyl carbonate are preferred. Moreover, these non-aqueous solvents can be used by mixing two or more kinds at an arbitrary ratio.

前記非水電解質に用いるドナー数が15以上の非水溶媒は、ドナー数が大きすぎない非水溶媒を選択して用いることが好ましい。ドナー数が大きすぎない非水溶媒を選択して用いることにより、該非水溶媒がアルカリ金属イオンへ溶媒和する配位力が強くなりすぎる虞を低減できる。従って、活物質表面でのアルカリ金属イオンの脱溶媒和に要するエネルギーが大きくなりすぎる虞を低減でき、電極反応の進行が阻害される懸念を低減できる。この観点から、非水電解質が含有するドナー数が15以上の非水溶媒は、ドナー数が16.5以下であるものを用いることが好ましい。   As the non-aqueous solvent having a donor number of 15 or more used for the non-aqueous electrolyte, it is preferable to select and use a non-aqueous solvent having a donor number not too large. By selecting and using a nonaqueous solvent having a donor number that is not too large, it is possible to reduce the possibility that the coordinating power of the nonaqueous solvent to solvate with alkali metal ions becomes too strong. Therefore, the possibility that the energy required for desolvation of alkali metal ions on the active material surface becomes too large can be reduced, and the concern that the progress of the electrode reaction is hindered can be reduced. From this point of view, it is preferable to use a non-aqueous solvent having a donor number of 15 or more and a non-aqueous electrolyte having a donor number of 16.5 or less.

本発明に係る非水電解質は、ドナー数が15未満の非水溶媒を含有してもよい。例えば、トリグライム(ドナー数:14.0)、アセトニトリル(14.1)、ベンゾニトリル(11.9)や、1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル(6〜7)、1,1,2,2−テトラフルオロエチル−1,1,1−トリフルオロエチルエーテル、1,1,2,2−テトラフルオロプロピル−1,1,1,2,3,3−ヘキサフルオロプロピルエーテル等のハイドロフルオロエーテル類等の非水溶媒を混合して用いることができる。特に、非水溶媒単独での耐酸化性及び耐還元性に優れ、かつ、低粘度なドナー数が15未満の非水溶媒を含有することにより、本発明の作用効果を阻害することなく非水電解液の粘度を低減することができるため、好ましい。   The nonaqueous electrolyte according to the present invention may contain a nonaqueous solvent having a donor number of less than 15. For example, triglyme (donor number: 14.0), acetonitrile (14.1), benzonitrile (11.9), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoro Propyl ether (6-7), 1,1,2,2-tetrafluoroethyl-1,1,1-trifluoroethyl ether, 1,1,2,2-tetrafluoropropyl-1,1,1,2 , 3,3-hexafluoropropyl ether and other non-aqueous solvents such as hydrofluoroethers can be used. In particular, by containing a non-aqueous solvent that is excellent in oxidation resistance and reduction resistance with a non-aqueous solvent alone and has a low viscosity donor number of less than 15, the non-aqueous solvent does not impair the effects of the present invention. This is preferable because the viscosity of the electrolytic solution can be reduced.

本発明に係る非水電解質が含有するドナー数が15未満の非水溶媒は、ドナー数が小さい非水溶媒を選択して用いることが好ましい。ドナー数が小さい非水溶媒を選択して用いることにより、該非水溶媒がアルカリ金属イオンへ溶媒和する配位力が低減でき、ドナー数が15以上の非水溶媒が選択的にアルカリ金属イオンに溶媒和することを阻害しない。さらに、該非水溶媒がMnイオンに溶媒和することもなく、正極活物質から非水電解質へのMnの溶出も抑制できる。   As the non-aqueous solvent having a donor number of less than 15 and contained in the non-aqueous electrolyte according to the present invention, it is preferable to select and use a non-aqueous solvent having a small donor number. By selecting and using a non-aqueous solvent having a small donor number, the coordinating power of the non-aqueous solvent to solvate to alkali metal ions can be reduced, and a non-aqueous solvent having a donor number of 15 or more can be selectively converted to alkali metal ions. Does not inhibit solvation. Furthermore, the nonaqueous solvent does not solvate with Mn ions, and the elution of Mn from the positive electrode active material to the nonaqueous electrolyte can be suppressed.

なお、非水電解質がドナー数が15未満の非水溶媒を含有する場合であっても、「前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率」を計算するにあたって、ドナー数が15未満の非水溶媒の含有量は考慮しない。その理由は、本発明の作用機構は、ドナー数が15以上の非水溶媒が選択的にアルカリ金属イオンに溶媒和することによって、正極活物質から非水電解質へのMnの溶出を抑制できることにあると考えられるところ、非水電解質中において、ドナー数が15未満の非水溶媒が、アルカリ金属イオンや正極活物質から溶出するMnイオンに対してほとんど溶媒和しないと考えられることから、ドナー数が15以上の非水溶媒のアルカリ金属イオンへの溶媒和をほとんど阻害しないと考えられるためである。   Even when the non-aqueous electrolyte contains a non-aqueous solvent having a donor number of less than 15, “the ratio of the number of moles of the non-aqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt” is In the calculation, the content of the nonaqueous solvent having a donor number of less than 15 is not considered. The reason is that the non-aqueous solvent having a donor number of 15 or more selectively suppresses dissolution of Mn from the positive electrode active material to the non-aqueous electrolyte by selectively solvating the alkali metal ion with the non-aqueous solvent having a donor number of 15 or more. Since it is considered that there is a nonaqueous solvent having a donor number of less than 15 in the nonaqueous electrolyte, it is considered that the nonaqueous solvent hardly solvates the alkali metal ions or Mn ions eluted from the positive electrode active material. This is because it is considered that the solvation of the nonaqueous solvent of 15 or more to the alkali metal ion is hardly inhibited.

本発明に係る非水電解質が含有するアルカリ金属塩は、限定されない。一般に非水電解質二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。 The alkali metal salt contained in the nonaqueous electrolyte according to the present invention is not limited. In general, a lithium salt that is stable in a wide potential region used for a non-aqueous electrolyte secondary battery can be used. For example, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2) , LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3 and the like. These may be used alone or in combination of two or more.

本発明に係る非水電解質におけるアルカリ金属塩の濃度は、ドナー数が15以上の非水溶媒のモル数との関係で決定できる。例えば、ドナー数が15以上の非水溶媒としてプロピレンカーボネート(PC)を単独で用い、アルカリ金属塩としてLiPFを単独で用いる場合、PCのドナー数は15.1であり、PCの分子量は102.1であり、LiPFの分子量は151.9であるから、LiPFのモル数に対するPCのモル数の比率が4倍以下である非水電解質は、1kg(9.8モル)のPCと372g(2.45モル)以上のLiPFとを含有する非水電解質(塩濃度2.45mol/L以上に相当)である。 The concentration of the alkali metal salt in the nonaqueous electrolyte according to the present invention can be determined in relation to the number of moles of the nonaqueous solvent having a donor number of 15 or more. For example, when propylene carbonate (PC) is used alone as a non-aqueous solvent having a donor number of 15 or more and LiPF 6 is used alone as an alkali metal salt, the PC donor number is 15.1 and the PC molecular weight is 102. Since the molecular weight of LiPF 6 is 151.9, the ratio of the number of moles of PC to the number of moles of LiPF 6 is 4 times or less, and 1 kg (9.8 moles) of PC can be obtained. A non-aqueous electrolyte (corresponding to a salt concentration of 2.45 mol / L or more) containing 372 g (2.45 mol) or more of LiPF 6 .

なお、前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率の下限、即ち、アルカリ金属塩濃度の上限については、本発明の作用機構に鑑みる限り、限定されない。また、非水溶媒の種類や2種以上混合して用いる場合の組成比率についても、本発明の作用機序に鑑みる限り、限定されない。もっとも、これらの事項は、設計上の理由や事情等に鑑みて、適宜調整することが好ましい。例えば、アルカリ金属塩濃度を高くしすぎないことによって非水電解質の粘度を高すぎないものとすることにより非水電解質電池の製造を容易とし、あるいは、セパレータへの含浸を容易とすることは好ましい。この観点から、前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率は、1倍以上が好ましい。   Note that the lower limit of the ratio of the number of moles of the non-aqueous solvent having 15 or more donors to the number of moles of the alkali metal salt, that is, the upper limit of the alkali metal salt concentration is not limited as long as the action mechanism of the present invention is considered. . Also, the type of non-aqueous solvent and the composition ratio in the case of mixing two or more types are not limited as long as the action mechanism of the present invention is taken into consideration. However, these items are preferably adjusted as appropriate in consideration of design reasons and circumstances. For example, it is preferable that the non-aqueous electrolyte battery is easily manufactured by making the viscosity of the non-aqueous electrolyte not too high by not making the alkali metal salt concentration too high, or that the separator is easily impregnated. . From this viewpoint, the ratio of the number of moles of the nonaqueous solvent having the number of donors of 15 or more to the number of moles of the alkali metal salt is preferably 1 or more.

また、例えば、低誘電率である非水溶媒の組成比率を高くしすぎないことによりアルカリ金属塩が析出する虞を低減することは好ましい。   In addition, for example, it is preferable to reduce the risk of alkali metal salt precipitation by not increasing the composition ratio of the non-aqueous solvent having a low dielectric constant.

また、例えば、トリグライム、テトラグライム等のエーテル類は、貴な電位で分解しやすいことが知られているから、正極活物質の作動電位に応じて、貴な電位で分解しやすい非水溶媒の使用を避けることは好ましい。   In addition, for example, ethers such as triglyme and tetraglyme are known to be easily decomposed at a noble potential. Therefore, in accordance with the operating potential of the positive electrode active material, a nonaqueous solvent that is easily decomposed at a noble potential is used. It is preferred to avoid use.

正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料が好ましく、特に軽量で安価である点からアルミニウムが好ましい。   There is no restriction | limiting in particular as a material of a positive electrode electrical power collector, A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbonaceous materials such as carbon cloth and carbon paper. Of these, metal materials are preferable, and aluminum is particularly preferable because it is lightweight and inexpensive.

なお、例えば非水電解質が含有するアルカリ金属塩としてLiN(CFSOが高い比率で用いられている場合に、アルミニウム集電体を用いた正極を4V(vs.Li/Li)よりも貴な電位で作動させると、アルミニウム集電体が腐食する場合があることが知られているから、正極活物質の作動電位に応じて、アルミニウム集電体とLiN(CFSOとの組み合わせを避けることは好ましい。 For example, when LiN (CF 3 SO 2 ) 2 is used at a high ratio as an alkali metal salt contained in the nonaqueous electrolyte, a positive electrode using an aluminum current collector is set to 4 V (vs. Li / Li + ). Since it is known that the aluminum current collector may corrode when operated at a more noble potential than that, the aluminum current collector and LiN (CF 3 SO 2 ) are selected according to the operating potential of the positive electrode active material. It is preferable to avoid the combination with 2 .

本発明の非水電解質二次電池を構成する負極に使用する負極活物質としては、電気化学的にリチウムイオンを挿入・脱離可能なものであれば、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、チタン酸リチウム等の金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、SnやSi等のリチウムと合金形成可能な金属等が挙げられる。 炭素質材料としては、天然グラファイト、人造グラファイト、コークス類、難黒鉛化性炭素、低温焼成易黒鉛化性炭素、フラーレン、カーボンナノチューブ、カーボンブラック、活性炭等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。中でも炭素質材料又は金属複合酸化物が安全性の点から好ましく用いられる。   The negative electrode active material used for the negative electrode constituting the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can electrochemically insert and desorb lithium ions, and is a carbonaceous material, oxidized Examples thereof include metal oxides such as tin and silicon oxide, metal composite oxides such as lithium titanate, lithium alloys such as lithium alone and lithium aluminum alloys, and metals capable of forming an alloy with lithium such as Sn and Si. Examples of the carbonaceous material include natural graphite, artificial graphite, coke, non-graphitizable carbon, low-temperature calcinable graphitizable carbon, fullerene, carbon nanotube, carbon black, activated carbon and the like. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio. Of these, carbonaceous materials or metal composite oxides are preferably used from the viewpoint of safety.

負極の集電体としては、公知のものを任意に用いることができる。例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられ、中でも加工し易さとコストの点から特に銅が好ましい。   As the current collector for the negative electrode, a known one can be arbitrarily used. For example, metal materials such as copper, nickel, stainless steel, nickel-plated steel and the like can be mentioned, and copper is particularly preferable from the viewpoint of ease of processing and cost.

セパレータとしては、微多孔性膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等に代表されるポリフッ化ビニリデン及びその共重合体、ポリイミド、ポリアミド、ポリアミドイミド、セルロース等を挙げることができる。また、ガラスフィルターを用いることもできる。中でもポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂を主成分とする微多孔性膜であることが好ましい。   As the separator, it is preferable to use a microporous membrane or a nonwoven fabric alone or in combination. Examples of the material constituting the separator include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. , Vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoro Ethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - tetrafluoroethylene, polyvinylidene fluoride represented by ethylene copolymers and copolymers thereof, polyimides, polyamides, polyamide-imides, cellulose and the like. A glass filter can also be used. Among these, a microporous film mainly composed of a polyolefin resin typified by polyethylene, polypropylene and the like is preferable.

その他の電池の構成要素としては、端子、絶縁板、電池ケース等があるが、これらの部品は従来用いられてきたものをそのまま用いて差し支えない。   Other battery components include a terminal, an insulating plate, a battery case, and the like, but these components may be used as they are.

図1に、本発明に係る非水電解質二次電池の一実施形態である矩形状の非水電解質二次電池1の外観斜視図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質二次電池1は、電極群2が電池容器3に収納されている。電極群2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。   FIG. 1 shows an external perspective view of a rectangular nonaqueous electrolyte secondary battery 1 which is an embodiment of the nonaqueous electrolyte secondary battery according to the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 1, an electrode group 2 is housed in a battery container 3. The electrode group 2 is formed by winding a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material via a separator. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.

本発明に係る非水電解質二次電池の形状については特に限定されるものではなく、コイン型電池、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質二次電池を複数個集合した蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。前記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。   The shape of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited, and examples thereof include a coin-type battery, a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like. The present invention can also be realized as a power storage device in which a plurality of the nonaqueous electrolyte secondary batteries are assembled. One embodiment of a power storage device is shown in FIG. In FIG. 2, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte secondary batteries 1. The power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV).

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はその要旨を超えない限り、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples, unless the summary is exceeded.

(非水電解質A)
プロピレンカーボネート(PC)1kgに対して六フッ化リン酸リチウム(LiPF)を0.83mol(126g)の割合で用いて非水電解質を作製した。LiPF濃度は1.0mol/Lに相当する。LiPFのモル数に対するPCのモル数の比率は11
.8と計算される。
(Nonaqueous electrolyte A)
A non-aqueous electrolyte was produced using 0.86 mol (126 g) of lithium hexafluorophosphate (LiPF 6 ) per 1 kg of propylene carbonate (PC). The LiPF 6 concentration corresponds to 1.0 mol / L. The ratio of the number of moles of PC to the number of moles of LiPF 6 is 11
. 8 is calculated.

(非水電解質B)
PC1kgに対してLiPFを2.45mol(372g)の割合で用いて非水電解質を作製した。LiPF濃度は2.9mol/Lに相当する。LiPFのモル数に対するPCのモル数の比率は4.0と計算される。
(Nonaqueous electrolyte B)
A nonaqueous electrolyte was prepared using LiPF 6 at a ratio of 2.45 mol (372 g) to 1 kg of PC. The LiPF 6 concentration corresponds to 2.9 mol / L. The ratio of the number of moles of PC to the number of moles of LiPF 6 is calculated to be 4.0.

(非水電解質C)
PC1kgに対してLiPFを3.26mol(495g)の割合で用いて非水電解質を作製した。LiPF濃度は3.9mol/Lに相当する。LiPFのモル数に対するPCのモル数の比率は3.0と計算される。
(Nonaqueous electrolyte C)
A nonaqueous electrolyte was prepared using LiPF 6 at a ratio of 3.26 mol (495 g) to 1 kg of PC. The LiPF 6 concentration corresponds to 3.9 mol / L. The ratio of the number of moles of PC to the number of moles of LiPF 6 is calculated to be 3.0.

(非水電解質D)
PC1kgに対してLiPFを4.45mol(676g)の割合で用いて非水電解質を作製した。LiPF濃度は5.9mol/Lに相当する。LiPFのモル数に対するPCのモル数の比率は2.2と計算される。
(Nonaqueous electrolyte D)
A non-aqueous electrolyte was prepared using LiPF 6 at a ratio of 4.45 mol (676 g) with respect to 1 kg of PC. The LiPF 6 concentration corresponds to 5.9 mol / L. The ratio of the number of moles of PC to the number of moles of LiPF 6 is calculated to be 2.2.

(実施例1)
(正極板の作製)
N−メチルピロリドンを分散媒とし、正極活物質としてのLiNi0.5Mn1.5、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比80:10:10の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、乾燥工程及びプレス工程を経て正極板を作製した。
Example 1
(Preparation of positive electrode plate)
Using N-methylpyrrolidone as a dispersion medium, LiNi 0.5 Mn 1.5 O 4 , acetylene black (AB), and polyvinylidene fluoride (PVdF) as a positive electrode active material are kneaded and dispersed at a mass ratio of 80:10:10. A coating paste was prepared. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm, and a positive electrode plate was produced through a drying process and a pressing process.

(非水電解質電池の組立)
以下の試験に供するため、上記正極板を用いて非水電解質電池を組立てた。正極板は直径13mmの円盤状に切り出して用いた。負極は50μmの金属リチウムをニッケル箔集電体に密着させて用いた。密閉可能なステンレス鋼製の電池試験用セルに、上記負極、セパレータとしてガラスフィルター、及び、上記正極の順に積層し、非水電解液を封入して密閉した。このようにして、非水電解質A〜Dを用いて組立てた電池をそれぞれ非水電解質電池A1〜D1とする。
(Assembly of non-aqueous electrolyte battery)
In order to use for the following tests, a nonaqueous electrolyte battery was assembled using the positive electrode plate. The positive electrode plate was cut into a disk shape having a diameter of 13 mm. As the negative electrode, 50 μm of metallic lithium was used in close contact with a nickel foil current collector. In the battery test cell made of stainless steel that can be sealed, the negative electrode, a glass filter as a separator, and the positive electrode were laminated in this order, and a nonaqueous electrolyte was sealed and sealed. The batteries assembled using the nonaqueous electrolytes A to D in this way are designated as nonaqueous electrolyte batteries A1 to D1, respectively.

(Mn溶出量定量試験)
非水電解質電池A1〜D1を用いて、次の条件で正極活物質から非水電解質へのMn溶出量定量試験を行った。25℃において、非水電解質電池を電流0.1CmA、終止電圧5.0Vの定電流充電を行った後、開回路状態で60℃の恒温槽中に3日間保存した。次に、電池を解体して負極を取り出し、濃度0.05mol/Lの塩酸に溶解し、ICP発光分光分析によって負極中のMn量を定量し、「Mn溶出量(mg)」として記録した。このようにして、保存中に正極活物質から非水電解質へ溶出して負極上に析出したMn量を比較した。結果を表1に示す。なお、以下の表では、アルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率を「高DN溶媒/塩(モル比)」の欄に示した。
(Mn elution quantitative test)
Using the nonaqueous electrolyte batteries A1 to D1, Mn elution amount quantification tests from the positive electrode active material to the nonaqueous electrolyte were performed under the following conditions. At 25 ° C., the nonaqueous electrolyte battery was charged with a constant current of 0.1 CmA and a final voltage of 5.0 V, and then stored in a constant temperature bath at 60 ° C. for 3 days in an open circuit state. Next, the battery was disassembled, the negative electrode was taken out, dissolved in hydrochloric acid having a concentration of 0.05 mol / L, the amount of Mn in the negative electrode was quantified by ICP emission spectroscopic analysis, and recorded as “Mn elution amount (mg)”. Thus, the amount of Mn eluted from the positive electrode active material to the non-aqueous electrolyte and deposited on the negative electrode during storage was compared. The results are shown in Table 1. In the table below, the ratio of the number of moles of the nonaqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt is shown in the column of “high DN solvent / salt (molar ratio)”.

表1に示されるように、非水電解質が含有するアルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率が大きい非水電解質電池A1に比べて、非水電解質が含有するアルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率が4倍以下である非水電解質電池B1〜D1では、正極活物質から非水電解質へ溶出するMn量が抑制されていることがわかった。また、アルカリ金属塩濃度が高いほど、正極活物質から非水電解質へのMn溶出を抑制する効果が高いことがわかった。   As shown in Table 1, compared with nonaqueous electrolyte battery A1 in which the ratio of the number of moles of the nonaqueous solvent in which the number of donors is 15 or more with respect to the number of moles of the alkali metal salt contained in the nonaqueous electrolyte is larger, the nonaqueous electrolyte is In the nonaqueous electrolyte batteries B1 to D1 in which the ratio of the number of moles of the nonaqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt contained is 4 times or less, the amount of Mn eluted from the positive electrode active material to the nonaqueous electrolyte Was found to be suppressed. Moreover, it turned out that the effect which suppresses Mn elution from a positive electrode active material to a nonaqueous electrolyte is so high that alkali metal salt concentration is high.

以下の処方により、非水電解質E〜Hを調整した。   The nonaqueous electrolytes E to H were adjusted according to the following formulation.

(非水電解質E)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:1の質量比率で混合した混合溶媒1kgに対してLiPFを2.53mol(384g)の割合で用いて非水電解質を作製した。LiPF濃度は2.9mol/Lに相当する。LiPFのモル数に対する前記混合溶媒のモル数の比率は3.8と計算される。
(Nonaqueous electrolyte E)
A non-aqueous electrolyte was prepared using LiPF 6 at a ratio of 2.53 mol (384 g) to 1 kg of a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a mass ratio of 1: 1. The LiPF 6 concentration corresponds to 2.9 mol / L. The ratio of the number of moles of the mixed solvent to the number of moles of LiPF 6 is calculated as 3.8.

(非水電解質F)
PC1kgに対して四フッ化ホウ酸リチウム(LiBF)を4.90mol(459g)の割合で用いて非水電解質を作製した。LiBF濃度は5.9mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は2.0と計算される。
(Nonaqueous electrolyte F)
A non-aqueous electrolyte was prepared using 4.90 mol (459 g) of lithium tetrafluoroborate (LiBF 4 ) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 5.9 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 2.0.

(非水電解質G)
ECとDECを1:1の体積比率で混合した混合溶媒1kgに対してLiPFを0.87mol(132g)の割合で用いて非水電解質を作製した。LiPF濃度は1.0mol/Lに相当する。LiPFのモル数に対する前記混合溶媒のモル数の比率は11.6と計算される。
(Nonaqueous electrolyte G)
A nonaqueous electrolyte was prepared using LiPF 6 at a ratio of 0.87 mol (132 g) with respect to 1 kg of a mixed solvent in which EC and DEC were mixed at a volume ratio of 1: 1. The LiPF 6 concentration corresponds to 1.0 mol / L. The ratio of the number of moles of the mixed solvent to the number of moles of LiPF 6 is calculated as 11.6.

(非水電解質H)
PC1kgに対してLiBFを0.83mol(78g)の割合で用いて非水電解質を作製した。LiBF濃度は1.0mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は11.8と計算される。
(Nonaqueous electrolyte H)
A nonaqueous electrolyte was prepared using LiBF 4 at a ratio of 0.83 mol (78 g) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 1.0 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 11.8.

(実施例2)
(非水電解質電池の組立)
前記非水電解質A〜Hをそれぞれ用いて、実施例1と同様にして、非水電解質電池A2〜H2を組立てた。
(Example 2)
(Assembly of non-aqueous electrolyte battery)
Using the nonaqueous electrolytes A to H, nonaqueous electrolyte batteries A2 to H2 were assembled in the same manner as in Example 1.

(充放電サイクル試験)
非水電解質電池A2〜H2を用いて、25℃において、次の条件で15サイクルの充放電試験を行った。充電は、電流0.25CmA、上限電圧5.0Vの定電流充電とし、放電は、電流0.25CmA、下限電圧3.55Vの定電流充電とした。このようにして、全てのサイクルにおける充電電気量(mAh)及び放電電気量(mAh)を記録した。このデータに基づき、1サイクル目のクーロン効率を「初期クーロン効率(%)」として求めた。また、1サイクル目から15サイクル目までの充電電気量の和と、1サイクル目から15サイクル目までの放電電気量の和との差を正極活物質質量あたりの「積算不可逆容量(mAh/g)」として算出した。結果を表2に示す。
(Charge / discharge cycle test)
Using the nonaqueous electrolyte batteries A2 to H2, 15 cycles of charge / discharge tests were performed at 25 ° C. under the following conditions. The charging was constant current charging with a current of 0.25 CmA and an upper limit voltage of 5.0 V, and the discharging was constant current charging with a current of 0.25 CmA and a lower limit voltage of 3.55 V. In this way, the charge electricity amount (mAh) and the discharge electricity amount (mAh) in all cycles were recorded. Based on this data, the first cycle coulomb efficiency was determined as “initial coulomb efficiency (%)”. Further, the difference between the sum of the charge electricity amount from the first cycle to the fifteenth cycle and the sum of the discharge electricity amount from the first cycle to the fifteenth cycle is expressed as “integrated irreversible capacity (mAh / g per mass of the positive electrode active material). ) ". The results are shown in Table 2.

表2からわかるように、非水電解質が含有するアルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率が大きい非水電解質電池A2、G2及びH2に比べて、非水電解質が含有するアルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率が4倍以下である非水電解質電池B2〜F2では、「初期クーロン効率(%)」が向上し、「積算不可逆容量(mAh/g)」が低減できていることがわかった。また、アルカリ金属塩濃度が高いほど、これらの効果が優れていることがわかった。   As can be seen from Table 2, the non-aqueous electrolyte batteries A2, G2, and H2 have a larger ratio of the number of moles of the non-aqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt contained in the non-aqueous electrolyte. In the nonaqueous electrolyte batteries B2 to F2 in which the ratio of the number of moles of the nonaqueous solvent having a donor number of 15 or more to the number of moles of the alkali metal salt contained in the water electrolyte is 4 times or less, the “initial Coulomb efficiency (%)” is It was found that “integrated irreversible capacity (mAh / g)” was reduced. Moreover, it turned out that these effects are excellent, so that alkali metal salt concentration is high.

以下の処方により、非水電解質I〜Rを調整した。   Nonaqueous electrolytes I to R were prepared according to the following formulation.

(非水電解質I)
PC1kgに対してLiBFを5.31mol(498g)の割合で用いて非水電解質を作製した。LiBF濃度は6.4mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は1.8と計算される。
(Nonaqueous electrolyte I)
A nonaqueous electrolyte was prepared using LiBF 4 at a ratio of 5.31 mol (498 g) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 6.4 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 1.8.

(非水電解質J)
PC1kgに対してLiBFを6.22mol(583g)の割合で用いて非水電解質を作製した。LiBF濃度は7.5mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は1.6と計算される。
(Nonaqueous electrolyte J)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 6.22 mol (583 g) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 7.5 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 1.6.

(非水電解質K)
PC1kgに対してLiBFを7.30mol(684g)の割合で用いて非水電解質を作製した。LiBF濃度は8.8mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は1.3と計算される。
(Nonaqueous electrolyte K)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 7.30 mol (684 g) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 8.8 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 1.3.

(非水電解質L)
PC1kgに対してLiBFを6.62mol(621g)とLiN(FSO(LiFSI)を0.0833mol(16g)の割合で用いて非水電解質を作製した。LiBFとLiFSIの合計の濃度は8.1mol/Lに相当する。LiBFとLiFSIの合計のモル数に対するPCのモル数の比率は1.5と計算される。
(Nonaqueous electrolyte L)
A nonaqueous electrolyte was produced using LiBF 4 at a ratio of 6.62 mol (621 g) and LiN (FSO 2 ) 2 (LiFSI) at a ratio of 0.0833 mol (16 g) with respect to 1 kg of PC. The total concentration of LiBF 4 and LiFSI corresponds to 8.1 mol / L. The ratio of the number of moles of PC to the total number of moles of LiBF 4 and LiFSI is calculated to be 1.5.

(非水電解質M)
GBL1kgに対してLiBFを2.90mol(272g)の割合で用いて非水電解質を作製した。LiBF濃度は3.3mol/Lに相当する。LiBFのモル数に対するGBLのモル数の比率は4.0と計算される。
(Nonaqueous electrolyte M)
A nonaqueous electrolyte was prepared using LiBF 4 at a ratio of 2.90 mol (272 g) with respect to 1 kg of GBL. The LiBF 4 concentration corresponds to 3.3 mol / L. The ratio of moles of GBL to moles of LiBF 4 is calculated to be 4.0.

(非水電解質N)
GBL1kgに対してLiBFを3.87mol(363g)の割合で用いて非水電解質を作製した。LiBF濃度は4.3mol/Lに相当する。LiBFのモル数に対するGBLのモル数の比率は3.0と計算される。
(Nonaqueous electrolyte N)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 3.87 mol (363 g) to 1 kg of GBL. The LiBF 4 concentration corresponds to 4.3 mol / L. The ratio of moles of GBL to moles of LiBF 4 is calculated to be 3.0.

(非水電解質O)
GBL1kgに対してLiBFを4.65mol(436g)の割合で用いて非水電解質を作製した。LiBF濃度は5.2mol/Lに相当する。LiBFのモル数に対するGBLのモル数の比率は2.5と計算される。
(Nonaqueous electrolyte O)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 4.65 mol (436 g) with respect to 1 kg of GBL. The LiBF 4 concentration corresponds to 5.2 mol / L. The ratio of moles of GBL to moles of LiBF 4 is calculated to be 2.5.

(非水電解質P)
PCとジメチルカーボネート(DMC)を2:1の体積比率で混合した混合溶媒1kgに対してLiBFを7.84mol(735g)の割合で用いて非水電解質を作製した。LiBF濃度は9.1mol/Lに相当する。LiBFのモル数に対する前記混合溶媒のモル数の比率は1.3と計算される。
(Nonaqueous electrolyte P)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 7.84 mol (735 g) with respect to 1 kg of a mixed solvent in which PC and dimethyl carbonate (DMC) were mixed at a volume ratio of 2: 1. The LiBF 4 concentration corresponds to 9.1 mol / L. The ratio of the number of moles of the mixed solvent to the number of moles of LiBF 4 is calculated as 1.3.

(非水電解質Q)
PC1kgに対してLiBFを3.75mol(352g)の割合で用いて非水電解質を作製した。LiBF濃度は4.5mol/Lに相当する。LiBFのモル数に対するPCのモル数の比率は2.6と計算される。
(Nonaqueous electrolyte Q)
A nonaqueous electrolyte was prepared using LiBF 4 at a ratio of 3.75 mol (352 g) with respect to 1 kg of PC. The LiBF 4 concentration corresponds to 4.5 mol / L. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 2.6.

(非水電解質R)
PCと1,1,2,2−テトラフルオロエチル−2,2,3,3−テトラフルオロプロピルエーテル(HFE)を2:1の体積比率で混合した混合溶媒1kgに対してLiBFを2.50mol(234g)の割合で用いて非水電解質を作製した。LiBFのモル数に対するPCのモル数の比率は2.4と計算される。
(Nonaqueous electrolyte R)
LiBF 4 is added to 1 kg of a mixed solvent in which PC and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE) are mixed at a volume ratio of 2: 1. A nonaqueous electrolyte was prepared using 50 mol (234 g). The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 2.4.

(実施例3)
(非水電解質電池の組立)
前記非水電解質H、前記非水電解質F及び前記非水電解質I〜Rをそれぞれ用いて、非水電解質電池を組み立てた。これをそれぞれ非水電解質電池H3、非水電解質電池F3及び非水電解質電池I3〜R3とする。
(Example 3)
(Assembly of non-aqueous electrolyte battery)
A nonaqueous electrolyte battery was assembled using each of the nonaqueous electrolyte H, the nonaqueous electrolyte F, and the nonaqueous electrolytes I to R. These are designated as nonaqueous electrolyte battery H3, nonaqueous electrolyte battery F3, and nonaqueous electrolyte batteries I3 to R3, respectively.

(充放電サイクル試験)
非水電解質電池H3、非水電解質電池F3及び非水電解質電池I3〜R3を用いて、25℃において、次の条件で50サイクルの充放電試験を行った。充電は、電流0.1CmA、上限電圧5.0Vの定電流充電とし、放電は、電流0.1CmA、下限電圧3.55Vの定電流充電とした。このようにして、全てのサイクルにおける充電電気量(mAh)及び放電電気量(mAh)を記録した。このデータに基づき、1サイクル目のクーロン効率を「初期クーロン効率(%)」として求めた。また、1サイクル目から50サイクル目(但し、非水電解質電池Q3及びR3については40サイクル目)までの充電電気量の和と、1サイクル目から50サイクル目(但し、非水電解質電池Q3及びR3については40サイクル目)までの放電電気量の和との差を正極活物質質量あたりの「積算不可逆容量(mAh/g)」として算出した。結果を表3に示す。
(Charge / discharge cycle test)
Using the nonaqueous electrolyte battery H3, the nonaqueous electrolyte battery F3, and the nonaqueous electrolyte batteries I3 to R3, a charge / discharge test of 50 cycles was performed at 25 ° C. under the following conditions. The charging was constant current charging with a current of 0.1 CmA and an upper limit voltage of 5.0 V, and the discharging was constant current charging with a current of 0.1 CmA and a lower limit voltage of 3.55 V. In this way, the charge electricity amount (mAh) and the discharge electricity amount (mAh) in all cycles were recorded. Based on this data, the first cycle coulomb efficiency was determined as “initial coulomb efficiency (%)”. In addition, the sum of the amount of charge from the first cycle to the 50th cycle (however, for the nonaqueous electrolyte batteries Q3 and R3, the 40th cycle) and the first cycle to the 50th cycle (however, the nonaqueous electrolyte batteries Q3 and Q3) For R3, the difference from the sum of the amount of discharge electricity up to the 40th cycle) was calculated as “integrated irreversible capacity (mAh / g)” per mass of the positive electrode active material. The results are shown in Table 3.

非水電解質電池I3〜K3の結果からわかるように、PCに対するLiBF濃度を非水電解質Qや非水電解質Fよりもさらに高くした非水電解質I〜Kを用いた場合であっても、本発明の効果が奏されることが確認された。
非水電解質電池L3の結果からわかるように、複数のアルカリ金属塩を混合して用いた場合であっても、本発明の効果が奏されることが確認された。
非水電解質電池M3〜O3の結果からわかるように、ドナー数が15以上の非水溶媒が環状カーボネートや鎖状カーボネート以外の溶媒であっても、初期クーロン効率を向上できることが確認された。
非水電解質電池P3の結果からわかるように、ドナー数が15以上の非水溶媒を複数種類混合して用いた場合であっても、本発明の効果が奏されることが確認された。
非水電解質電池R3の結果からわかるように、非水電解質が含有するアルカリ金属塩のモル数に対するドナー数が15以上の非水溶媒のモル数の比率が4倍以下であれば、ドナー数が15未満の非水溶媒を混合して用いた場合であっても、本発明の効果が奏されることが確認された。
As can be seen from the results of the nonaqueous electrolyte batteries I3 to K3, even when the nonaqueous electrolytes I to K in which the LiBF 4 concentration relative to the PC is higher than the nonaqueous electrolyte Q and the nonaqueous electrolyte F are used, It was confirmed that the effects of the invention were achieved.
As can be seen from the results of the non-aqueous electrolyte battery L3, it was confirmed that the effects of the present invention were exhibited even when a plurality of alkali metal salts were mixed and used.
As can be seen from the results of the nonaqueous electrolyte batteries M3 to O3, it was confirmed that the initial coulomb efficiency can be improved even if the nonaqueous solvent having a donor number of 15 or more is a solvent other than cyclic carbonate or chain carbonate.
As can be seen from the results of the nonaqueous electrolyte battery P3, it was confirmed that the effects of the present invention were exhibited even when a plurality of nonaqueous solvents having a donor number of 15 or more were mixed and used.
As can be seen from the results of the nonaqueous electrolyte battery R3, if the ratio of the number of moles of the nonaqueous solvent in which the number of donors is 15 or more to the number of moles of the alkali metal salt contained in the nonaqueous electrolyte is 4 times or less, the number of donors is Even when a non-aqueous solvent of less than 15 was mixed and used, it was confirmed that the effects of the present invention were exhibited.

以下の処方により、非水電解質Sを調整した。   The nonaqueous electrolyte S was prepared according to the following formulation.

(非水電解質S)
PCとHFEを2:1の体積比率で混合した混合溶媒1kgに対してLiBFを2.30mol(216g)の割合で用いて非水電解質を作製した。LiBFのモル数に対するPCのモル数の比率は2.6と計算される。
(Nonaqueous electrolyte S)
A non-aqueous electrolyte was prepared using LiBF 4 at a ratio of 2.30 mol (216 g) to 1 kg of a mixed solvent in which PC and HFE were mixed at a volume ratio of 2: 1. The ratio of the number of moles of PC to the number of moles of LiBF 4 is calculated to be 2.6.

(実施例4)
(正極板の作製)
N−メチルピロリドンを分散媒とし、正極活物質としてのLi1.2Mn0.56Co0.08Ni0.16、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)が質量比80:10:10の割合で混練分散されている塗布用ペーストを作製した。該塗布ペーストを厚さ20μmのアルミニウム箔集電体の片方の面に塗布し、乾燥工程及びプレス工程を経て正極板を作製した。
Example 4
(Preparation of positive electrode plate)
N-methylpyrrolidone is used as a dispersion medium, and Li 1.2 Mn 0.56 Co 0.08 Ni 0.16 O 2 , acetylene black (AB) and polyvinylidene fluoride (PVdF) as a positive electrode active material have a mass ratio of 80: A coating paste kneaded and dispersed at a ratio of 10:10 was prepared. The coating paste was applied to one side of an aluminum foil current collector having a thickness of 20 μm, and a positive electrode plate was produced through a drying process and a pressing process.

(非水電解質電池の組立)
この正極板を用い、前記非水電解質A、D、K及びSをそれぞれ用いたことを除いては、実施例1と同様にして、非水電解質電池A4、非水電解質電池D4、非水電解質電池K4及び非水電解質電池S4を組立てた。
(Assembly of non-aqueous electrolyte battery)
A nonaqueous electrolyte battery A4, a nonaqueous electrolyte battery D4, and a nonaqueous electrolyte were used in the same manner as in Example 1 except that this positive electrode plate was used and the nonaqueous electrolytes A, D, K, and S were used. Battery K4 and nonaqueous electrolyte battery S4 were assembled.

(充放電サイクル試験)
非水電解質電池A4、非水電解質電池D4、非水電解質電池K4及び非水電解質電池S4を用いて、25℃において、次の条件で50サイクルの充放電試験を行った。充電は、電流0.1CmA、上限電圧4.8Vの定電流充電とし、放電は、電流0.1CmA、下限電圧2.5Vの定電流充電とした。このようにして、全てのサイクルにおける充電電気量(mAh)及び放電電気量(mAh)を記録した。このデータに基づき、1サイクル目のクーロン効率を「初期クーロン効率(%)」として求めた。また、1サイクル目から100サイクル目までの充電電気量の和と、1サイクル目から100サイクル目までの放電電気量の和との差を正極活物質質量あたりの「積算不可逆容量(mAh/g)」として算出した。結果を表4に示す。
(Charge / discharge cycle test)
Using the nonaqueous electrolyte battery A4, the nonaqueous electrolyte battery D4, the nonaqueous electrolyte battery K4, and the nonaqueous electrolyte battery S4, 50 cycles of charge / discharge tests were performed at 25 ° C. under the following conditions. The charging was constant current charging with a current of 0.1 CmA and an upper limit voltage of 4.8 V, and the discharging was constant current charging with a current of 0.1 CmA and a lower limit voltage of 2.5 V. In this way, the charge electricity amount (mAh) and the discharge electricity amount (mAh) in all cycles were recorded. Based on this data, the first cycle coulomb efficiency was determined as “initial coulomb efficiency (%)”. Further, the difference between the sum of the charge electricity amount from the first cycle to the 100th cycle and the sum of the discharge electricity amount from the first cycle to the 100th cycle is expressed as “integrated irreversible capacity (mAh / g per mass of positive electrode active material). ) ". The results are shown in Table 4.

この結果からわかるように、本発明の効果は、正極活物質の種類によらず、奏されることが確認された。   As can be seen from this result, it was confirmed that the effect of the present invention was exhibited regardless of the type of the positive electrode active material.

(符号の説明)
1 非水電解質二次電池
2 電極群
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
(Explanation of symbols)
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Battery container 4 Positive electrode terminal 4 'Positive electrode lead 5 Negative electrode terminal 5' Negative electrode lead 20 Power storage unit 30 Power storage device

Claims (1)

Mn元素を含む正極活物質を含有する正極、負極、及び、
非水溶媒がアルカリ金属塩を含有してなる非水電解質を備えた非水電解質二次電池であって、
前記非水電解質は、
ドナー数が15以上の非水溶媒を含有し、
前記アルカリ金属塩のモル数に対する前記ドナー数が15以上の非水溶媒のモル数の比率が4倍以下である、
非水電解質二次電池。
A positive electrode containing a positive electrode active material containing Mn element, a negative electrode, and
A nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte in which a nonaqueous solvent contains an alkali metal salt,
The non-aqueous electrolyte is
A non-aqueous solvent having a donor number of 15 or more,
The ratio of the number of moles of the non-aqueous solvent in which the number of donors is 15 or more with respect to the number of moles of the alkali metal salt is 4 times or less,
Non-aqueous electrolyte secondary battery.
JP2015196724A 2014-11-17 2015-10-02 Non-aqueous electrolyte secondary battery Active JP7091574B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233167 2014-11-17
JP2014233167 2014-11-17

Publications (2)

Publication Number Publication Date
JP2016103468A true JP2016103468A (en) 2016-06-02
JP7091574B2 JP7091574B2 (en) 2022-06-28

Family

ID=56089601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015196724A Active JP7091574B2 (en) 2014-11-17 2015-10-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7091574B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031598A1 (en) 2017-08-10 2019-02-14 株式会社Gsユアサ Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element
CN115367718A (en) * 2022-08-31 2022-11-22 安徽新宸新材料有限公司 Method for purifying lithium bis (fluorosulfonyl) imide

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161845A (en) * 1995-12-12 1997-06-20 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH09306538A (en) * 1996-05-16 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> Secondary battery having nonaqueous solvent electrolyte
JP2000048828A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003197255A (en) * 2001-12-25 2003-07-11 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2005038629A (en) * 2003-07-15 2005-02-10 Mitsubishi Chemicals Corp Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, and lithium secondary battery using same
JP2008283048A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Electrochemical energy storage device
WO2010030008A1 (en) * 2008-09-11 2010-03-18 日本電気株式会社 Secondary battery
JP2014116078A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery
JP2015056241A (en) * 2013-09-11 2015-03-23 日立マクセル株式会社 Nonaqueous secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161845A (en) * 1995-12-12 1997-06-20 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH09306538A (en) * 1996-05-16 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> Secondary battery having nonaqueous solvent electrolyte
JP2000048828A (en) * 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2001243978A (en) * 2000-02-28 2001-09-07 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003197255A (en) * 2001-12-25 2003-07-11 Yuasa Corp Nonaqueous electrolyte secondary battery
JP2005038629A (en) * 2003-07-15 2005-02-10 Mitsubishi Chemicals Corp Lithium secondary battery positive electrode active material, lithium secondary battery positive electrode, and lithium secondary battery using same
JP2008283048A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Electrochemical energy storage device
WO2010030008A1 (en) * 2008-09-11 2010-03-18 日本電気株式会社 Secondary battery
JP2014116078A (en) * 2012-12-06 2014-06-26 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery, secondary battery system including the same, nonaqueous electrolytic solution for lithium ion secondary battery
JP2015056241A (en) * 2013-09-11 2015-03-23 日立マクセル株式会社 Nonaqueous secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031598A1 (en) 2017-08-10 2019-02-14 株式会社Gsユアサ Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element
CN111033866A (en) * 2017-08-10 2020-04-17 株式会社杰士汤浅国际 Nonaqueous electrolyte and nonaqueous electrolyte storage element
US11450888B2 (en) 2017-08-10 2022-09-20 Gs Yuasa International Ltd. Nonaqueous electrolyte and nonaqueous electrolyte energy storage device
CN115367718A (en) * 2022-08-31 2022-11-22 安徽新宸新材料有限公司 Method for purifying lithium bis (fluorosulfonyl) imide
CN115367718B (en) * 2022-08-31 2023-03-24 安徽新宸新材料有限公司 Purification method of lithium bis (fluorosulfonyl) imide

Also Published As

Publication number Publication date
JP7091574B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP4725594B2 (en) Method for manufacturing lithium secondary battery
CN108370068B (en) Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same
JP4012174B2 (en) Lithium battery with efficient performance
KR102525619B1 (en) Rechargeable lithium battery
US20160380309A1 (en) Long-life lithium-ion batteries
JP2007287518A (en) Nonaqueous secondary battery
JP2017528881A (en) Cathode in the state before the first charging step, lithium ion battery including the cathode, method for forming the lithium ion battery, and lithium ion battery after the formation
JP2017208246A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
WO2017098682A1 (en) Nonaqueous electrolyte secondary battery
JP6755182B2 (en) Lithium ion secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2010177124A (en) Nonaqueous electrolyte secondary battery
JP2017208215A (en) Nonaqueous electrolyte for power storage device, nonaqueous electrolyte power storage device, and method for manufacturing the same
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JPWO2013042503A1 (en) Non-aqueous secondary battery
JP5544342B2 (en) Lithium ion secondary battery
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP7091574B2 (en) Non-aqueous electrolyte secondary battery
JP6680244B2 (en) Lithium-ion secondary battery and manufacturing method thereof
JP2011040333A (en) Nonaqueous electrolyte secondary battery
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
JP2023531038A (en) Improved electrolyte for electrochemical cells
JP2017059415A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery and battery pack
JP4078864B2 (en) Negative electrode for secondary battery and secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210518

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211007

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20211125

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220315

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220419

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R150 Certificate of patent or registration of utility model

Ref document number: 7091574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150