JP2016100262A - Catalyst for solid polymer fuel cell - Google Patents

Catalyst for solid polymer fuel cell Download PDF

Info

Publication number
JP2016100262A
JP2016100262A JP2014237690A JP2014237690A JP2016100262A JP 2016100262 A JP2016100262 A JP 2016100262A JP 2014237690 A JP2014237690 A JP 2014237690A JP 2014237690 A JP2014237690 A JP 2014237690A JP 2016100262 A JP2016100262 A JP 2016100262A
Authority
JP
Japan
Prior art keywords
carbon material
catalyst
fuel cell
less
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237690A
Other languages
Japanese (ja)
Other versions
JP6496531B2 (en
Inventor
孝 飯島
Takashi Iijima
孝 飯島
正孝 日吉
Masataka Hiyoshi
正孝 日吉
克公 松本
Katsumasa Matsumoto
克公 松本
晋也 古川
Shinya Furukawa
晋也 古川
広幸 林田
Hiroyuki Hayashida
広幸 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2014237690A priority Critical patent/JP6496531B2/en
Publication of JP2016100262A publication Critical patent/JP2016100262A/en
Application granted granted Critical
Publication of JP6496531B2 publication Critical patent/JP6496531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for a solid polymer fuel cell, which enables the formation of a catalyst layer less in reduction of voltage even if a large current is passed therethrough when used as a catalyst for forming a catalyst layer of a solid polymer fuel cell, and especially a catalyst for a solid polymer fuel cell, which is less in reduction of voltage even when a large current is passed therethrough under a wet environment easy to cause a flooding.SOLUTION: A catalyst for a solid polymer fuel cell comprises a mixture of: a catalyst metal-supporting carbon material including a carrier carbon material consisting of a porous carbon material and a catalyst metal component supported by the carrier carbon material; and a catalyst metal-nonsupporting carbon material consisting of a dendritic graphite carbon material supporting no catalyst metal component. The carrier carbon material of the catalyst-supporting carbon material is 100 m/g or larger in specific surface area (S) of meso holes having a micropore diameter of 4 to less than 10 nm, which is measured by nitrogen absorption measurement. The dendritic graphite carbon material making the catalyst metal-nonsupporting carbon material is 80-220 m/g in BET specific surface area (S), and 80-170 mL/100 g in DBP oil absorption (O), and it has a crystallite size (Lc) of 5-10 nm according to X-ray diffraction.SELECTED DRAWING: None

Description

この発明は、固体高分子形燃料電池を製造する上で有用な固体高分子形燃料電池用触媒に係り、特に固体高分子形燃料電池の触媒層として用いることにより、大電流を流しても、特にフラッディングし易いウエットな環境で大電流を流しても電圧低下が少ない燃料電池を形成することができる固体高分子形燃料電池用触媒に関する。   The present invention relates to a catalyst for a polymer electrolyte fuel cell useful for producing a polymer electrolyte fuel cell, and in particular, by using it as a catalyst layer of a polymer electrolyte fuel cell, In particular, the present invention relates to a polymer electrolyte fuel cell catalyst capable of forming a fuel cell with little voltage drop even when a large current flows in a wet environment where flooding is likely to occur.

固体高分子形燃料電池は、一般に、プロトン伝導性電解質膜を挟んでアノードとなる触媒層とカソードとなる触媒層とが配置され、また、これらを挟んでその外側にガス拡散層が配置され、更にその外側にセパレータが配置された構造を基本構造としており、この基本構造は単位セルと称されている。そして、燃料電池は、通常は、必要な出力を発現させるために必要な数の単位セルをスタックすることにより構成されている。また、アノードやカソードとなる触媒層は、通常、担体炭素材料に触媒金属成分を担持させて得られた触媒と、アイオノマー等の電解質樹脂とをエタノールや水等の適当な分散媒中に分散させ、得られた触媒層インク液をテフロン(登録商標)シート等の基材上に塗布し、乾燥させることにより形成されている。   In general, a polymer electrolyte fuel cell has a catalyst layer serving as an anode and a catalyst layer serving as a cathode with a proton conductive electrolyte membrane sandwiched therebetween, and a gas diffusion layer disposed on the outside with these sandwiched therebetween. Further, the basic structure is a structure in which a separator is arranged outside, and this basic structure is called a unit cell. A fuel cell is usually configured by stacking as many unit cells as necessary to develop a necessary output. In addition, the catalyst layer serving as an anode or a cathode is usually obtained by dispersing a catalyst obtained by supporting a catalytic metal component on a support carbon material and an electrolyte resin such as an ionomer in an appropriate dispersion medium such as ethanol or water. The obtained catalyst layer ink liquid is formed on a substrate such as a Teflon (registered trademark) sheet and dried.

そして、このような基本構造の固体高分子形燃料電池(単位セル)から電流を取り出す際には、アノード側とカソード側にそれぞれ配されたセパレータのガス流路から、カソード側には酸素あるいは空気等の酸化性ガスを、また、アノード側には水素等の還元性ガスをそれぞれ供給し、これら供給された酸化性ガス及び還元性ガスを、それぞれガス拡散層を介して、触媒層まで供給し、アノードの触媒層で起こる化学反応とカソードの触媒層で起こる化学反応との間のエネルギー差(電位差)を利用して、電流を取り出すことが行われている。例えば、水素ガスと酸素ガスを利用する場合、アノードの触媒層の触媒金属上で起こる化学反応〔酸化反応:H→2H+2e(E0=0V)〕と、カソードの触媒層の触媒金属上で起こる化学反応〔還元反応:O+4H+4e→2HO(E0=1.23V)〕とのエネルギー差(電位差)を利用して発電する。 When a current is taken out from the solid polymer fuel cell (unit cell) having such a basic structure, oxygen or air is supplied to the cathode side from the gas flow paths of the separators arranged on the anode side and the cathode side, respectively. In addition, a reducing gas such as hydrogen is supplied to the anode side, and the supplied oxidizing gas and reducing gas are respectively supplied to the catalyst layer through the gas diffusion layer. A current is taken out by utilizing an energy difference (potential difference) between a chemical reaction occurring in the anode catalyst layer and a chemical reaction occurring in the cathode catalyst layer. For example, when hydrogen gas and oxygen gas are used, a chemical reaction [oxidation reaction: H 2 → 2H + + 2e (E 0 = 0 V)] that occurs on the catalyst metal of the anode catalyst layer and the catalyst of the cathode catalyst layer Electricity is generated using an energy difference (potential difference) from a chemical reaction occurring on the metal [reduction reaction: O 2 + 4H + + 4e → 2H 2 O (E 0 = 1.23 V)].

ここで、触媒作用を有する触媒金属成分については、これまでに種々の検討がなされてきたが、固体高分子形燃料電池のように強酸性環境下での作動が求められ、酸化反応及び還元反応共に、純金属としてはPtが最も高い反応活性を有する。現在、実用化されているエネファーム(家庭用燃料電池コージェネレーションシステム)や実用が近い燃料電池自動車の触媒に使用されている触媒金属としても、専ら、Pt若しくはPtを主成分とした合金が用いられている。   Here, various studies have been made on catalytic metal components having catalytic action so far, but operation in a strongly acidic environment such as a polymer electrolyte fuel cell is required, and oxidation reaction and reduction reaction. In both cases, Pt has the highest reaction activity as a pure metal. Currently, Pt or alloys mainly composed of Pt are also used as the catalyst metal used in catalysts for ENE-FARM (household fuel cell cogeneration system) that is currently in practical use and fuel cell automobiles that are close to practical use. It has been.

また、このような触媒金属成分を担持する担体炭素材料については、電子伝導性、化学的安定性、電気化学的安定性等の観点から炭素材料が用いられ、また、触媒層中を反応ガスが抵抗なく拡散するように、触媒層を形成した際に、反応ガスが流れるための細孔を有する必要があり、いわゆる「樹枝状構造」と呼ばれる「立体的に枝が発達した構造」を持つ炭素材料が用いられている。このような担体炭素材料として現時点で最も普及しているのがカーボンブラックであり、このカーボンブラックは、数10nmの粒子が樹枝状に連なった構造〔アグリゲート(aggregate)構造〕を持ち、触媒層を形成した際に枝間の空隙がガス拡散の細孔となり、優れたガス拡散特性を示す。このようなカーボンブラックとしては、代表的には、CABOT社製の商品名:バルカンXC-72、ライオン社製の商品名:EC600JD、及びライオン社製の商品名:EC300等が挙げられる。   Further, for the carrier carbon material supporting such a catalytic metal component, a carbon material is used from the viewpoints of electronic conductivity, chemical stability, electrochemical stability, and the like, and the reaction gas is contained in the catalyst layer. When a catalyst layer is formed so that it diffuses without resistance, it must have pores for the reaction gas to flow, and it has carbon that has a “three-dimensionally developed structure” called a “dendritic structure”. Material is used. At present, carbon black is most widely used as such a carrier carbon material. This carbon black has a structure in which particles of several tens of nanometers are connected in a dendritic shape (aggregate structure), and a catalyst layer. When formed, voids between the branches become gas diffusion pores, and excellent gas diffusion characteristics are exhibited. Representative examples of such carbon black include CABOT's trade name: Vulcan XC-72, Lion's trade name: EC600JD, and Lion's trade name: EC300.

ところで、固体高分子形燃料電池では、上記の発電原理の通り、酸化反応及び還元反応を進行させて発電させるために、プロトン伝導、電子伝導、反応ガス(アノード:水素、カソード:酸素)の流通・拡散が必須である。具体的には、セパレータのガス流路からカソード側あるいはアノード側の触媒層内部の触媒金属成分まで酸素ガスあるいは水素ガスが移動するためのガス拡散経路や、アノード側の触媒金属成分上で発生したプロトン(H+)がプロトン伝導性電解質膜を経由してカソード側の触媒金属成分まで移動するためのプロトン伝導経路、更にはアノード側の触媒金属成分上で発生した電子(e-)がガス拡散層、セパレータ、外部回路を通じてカソード側の触媒金属成分まで移動するための電子伝達経路がそれぞれ分断されることなく連続して連なっていることが必要である。 By the way, in the polymer electrolyte fuel cell, in accordance with the power generation principle described above, proton conduction, electron conduction, and reaction gas (anode: hydrogen, cathode: oxygen) flow in order to proceed with the oxidation reaction and reduction reaction to generate power.・ Diffusion is essential. Specifically, it is generated on the gas diffusion path for oxygen gas or hydrogen gas to move from the gas flow path of the separator to the catalytic metal component in the catalyst layer on the cathode side or the anode side, or on the catalytic metal component on the anode side. Proton (H + ) travels through the proton-conducting electrolyte membrane to the cathode-side catalytic metal component, and the proton conduction path. Furthermore, the electrons (e ) generated on the anode-side catalytic metal component gas diffuse. It is necessary that the electron transfer paths for moving to the catalytic metal component on the cathode side through the layer, the separator, and the external circuit are continuously connected without being divided.

そして、このような触媒層の内部では、一般に、構成材料の間隙に形成された酸素ガスあるいは水素ガスの拡散経路となる細孔、プロトン伝導経路となる電解質材料、及び、電子伝導経路となる炭素材料やセパレータ用金属材料等の導電性材料が、それぞれの連続したネットワークを形成していることが重要である。また、プロトン伝導性電解質膜や触媒層中のプロトン伝導経路となる電解質樹脂としては、高分子電解質材料としてパーフルオロスルホン酸ポリマーに代表されるイオン交換樹脂が用いられている。これら一般に用いられる高分子電解質材料は、水分子を介したプロトンのホッピングが伝導形態であるため、湿潤環境下で初めて高いプロトン伝導性を発現し、乾燥環境下ではプロトン伝導性が低下する。従って、出力電圧のロスをできるだけ低減した状態で燃料電池を作動させるためには、高分子電解質材料が十分に湿潤状態であることが必要であり、このためにカソード、アノードの両極には反応ガスと共に水蒸気を供給し、加湿条件にすることが行われている。   In such a catalyst layer, generally, pores serving as diffusion paths for oxygen gas or hydrogen gas formed in gaps between constituent materials, electrolyte materials serving as proton conduction paths, and carbon serving as electron conduction paths. It is important that conductive materials such as materials and separator metal materials form respective continuous networks. In addition, as an electrolyte resin serving as a proton conduction path in the proton conductive electrolyte membrane or the catalyst layer, an ion exchange resin typified by a perfluorosulfonic acid polymer is used as a polymer electrolyte material. These generally used polymer electrolyte materials have a proton hopping through a water molecule in a conductive form, and therefore exhibit high proton conductivity for the first time in a wet environment and decrease in proton conductivity in a dry environment. Therefore, in order to operate the fuel cell with the output voltage loss reduced as much as possible, it is necessary that the polymer electrolyte material is in a sufficiently wet state. At the same time, steam is supplied to make it humid.

しかしながら、カソード側の触媒層においては、アノード側からプロトンに付随して移動してくる水分子に加えて、カソード側の還元反応により生成する水分子が水蒸気となって加わり、ついには飽和蒸気圧を超えて水に凝縮する。そして、この還元反応により生成した生成水は、例えば高加湿時(飽和加湿条件)の運転条件で1.5A/cm2の電流密度を超える大電流の放電時には、その量が多くなり、ガス拡散と生成水の排水経路を兼ねる触媒層の細孔内に溜まって目詰まりを引き起こし、触媒層内へのガスの供給、拡散が不十分になって燃料電池の電圧が低下する、いわゆるフラッディング(flooding)の問題を引き起こす。そして、このフラッディングの問題は、燃料電池自動車向け等、大電流放電時の出力電圧を高くして最大出力(電流×電圧の最大値)を高め、これによって出力当りの白金使用量を低減しコストダウンを図ることが求められる多くの用途において、固体高分子形燃料電池の実用化における大きな課題となっている。なお、本発明における大電流とは、電極の単位面積当たり1.5A/cm2以上の電流密度の発電を指す。触媒である白金の使用量に拘わらず現時点の技術では、1.5A/cm2で0.6V以上の出力電圧を発揮させるには、酸素ガスの拡散抵抗を減少させ、且つ、発生する水によるフラッディングを抑制することが必須である。 However, in the catalyst layer on the cathode side, water molecules generated by the reduction reaction on the cathode side are added as water vapor in addition to water molecules moving accompanying protons from the anode side. Condensed in water beyond. The amount of water produced by this reduction reaction increases, for example, during high-current discharge exceeding 1.5 A / cm 2 current density under high humidification conditions (saturated humidification conditions). In the catalyst layer, which also serves as a drainage path for the generated water, clogging occurs, causing gas supply and diffusion into the catalyst layer to become insufficient, and the voltage of the fuel cell decreases. ) Cause problems. The problem of flooding is that, for fuel cell vehicles, etc., the output voltage at the time of large current discharge is increased to increase the maximum output (current x maximum voltage), thereby reducing the amount of platinum used per output and reducing the cost. In many applications where down is required, it has become a major issue in the practical application of polymer electrolyte fuel cells. The large current in the present invention refers to power generation with a current density of 1.5 A / cm 2 or more per unit area of the electrode. Regardless of the amount of platinum used as a catalyst, with the current technology, in order to exert an output voltage of 0.6 V or higher at 1.5 A / cm 2 , the diffusion resistance of oxygen gas is reduced and the generated water is used. It is essential to suppress flooding.

そこで、このようなフラッディングの問題を解決するために、従来においても様々な方法、例えば、PTFE粉末、PTFEコロイド、PTFEで撥水処理した炭素粉末、シランカップリング剤で撥水処理した炭素材等の撥水化剤を触媒層内に含有させ、触媒層の撥水性を高めることにより生成水を速やかに系外に排出する方法(特許文献1〜4)、触媒層中の触媒をフルオロカーボンスルホン酸型イオン交換樹脂で被覆すると共に、アノード側のイオン交換樹脂のイオン交換容量をカソード側のイオン交換樹脂のイオン交換容量より大きくする方法(特許文献5)、触媒層中にパーフルオロスルホン酸系イオン交換樹脂を含有させると共に、アノード側のイオン交換樹脂のスルホン酸当量(EW)をカソード側のイオン交換樹脂のスルホン酸当量(EW)より小さくし、カソード側で生成した生成水をアノード側に逆拡散させる方法(特許文献6)等が提案されている。   Therefore, in order to solve such a flooding problem, various conventional methods such as PTFE powder, PTFE colloid, PTFE water-repellent carbon powder, carbon material water-repellent treated with a silane coupling agent, etc. In which water generated in the catalyst layer is contained in the catalyst layer and the water repellency of the catalyst layer is increased to quickly discharge generated water to the outside of the system (Patent Documents 1 to 4). In which the ion exchange capacity of the ion exchange resin on the anode side is made larger than the ion exchange capacity of the ion exchange resin on the cathode side (Patent Document 5), and the perfluorosulfonic acid ion in the catalyst layer The sulfonic acid equivalent (EW) of the ion exchange resin on the anode side is made smaller than the sulfonic acid equivalent (EW) of the ion exchange resin on the cathode side. Method for despreading water generated at the cathode side to the anode side (Patent Document 6) have been proposed.

しかしながら、触媒層内に撥水化剤を含有させる方法においては、撥水化剤の使用量が増加するにつれて触媒層の電気抵抗が増すと共に、触媒層の厚さが増してガス透過性が低下し、かえって電池性能の低下を招くという問題があり、また、触媒層中の触媒をイオン交換樹脂で被覆する方法においては、被覆する樹脂の被覆厚みを制御することが難しく、厚くし過ぎると樹脂で被覆された触媒上への酸素の拡散が悪くなるために電流密度を大きくすることができなくなる。また、イオン交換樹脂は水分を保持する性質が高いため、樹脂による触媒の被覆は触媒上で発生した水が外部へ排出され難くなるため、フラッディングをもたらすことになり大電流を取出すことが難しくなるという問題があり、更に、触媒層内にイオン交換樹脂を含有させる方法においても、同様の理由でフラッディングをもたらすため大電流を取出すことが難しくなるという問題がある。   However, in the method of incorporating a water repellent in the catalyst layer, the electrical resistance of the catalyst layer increases as the amount of the water repellent used increases, and the gas permeability decreases as the thickness of the catalyst layer increases. However, in the method of coating the catalyst in the catalyst layer with an ion exchange resin, it is difficult to control the coating thickness of the resin to be coated. The current density cannot be increased because the diffusion of oxygen on the catalyst coated with is deteriorated. In addition, since the ion-exchange resin has a high property of retaining moisture, coating of the catalyst with the resin makes it difficult for water generated on the catalyst to be discharged to the outside, resulting in flooding and difficult to take out a large current. Further, in the method of incorporating an ion exchange resin in the catalyst layer, there is a problem that it is difficult to take out a large current because it causes flooding for the same reason.

また、特許文献7においては、保湿性炭素材料とカーボンブラックとが所定の比率で混合され、保湿性炭素材料については特定の水蒸気吸着量(V0.95)の値が1250cm3/g≦V0.95≦2500cm3/gであって、V0.95の半分の水蒸気吸着量を示す相対水蒸気圧(P1/2)がP1/2≦0.55であり、また、カーボンブラックについてはDBP吸油量(ODBP)がODBP≧100mL/100gであって、V0.95≧100cm3/gであり、相対湿度50%以下の低加湿環境下でも飽和加湿状態と同等の性能を発現する固体高分子燃料電池用の触媒層用担体炭素材料が提案されている。しかしながら、この特許文献7で提案されている燃料電池においては、保湿性炭素材料もカーボンブラックも共に親水性であり、大電流で発生する生成水の排出性が必ずしも十分ではなく、特に高加湿運転時にフラッディングにより大電流放電時に出力低下が発生するという課題がある。 In Patent Document 7, a moisturizing carbon material and carbon black are mixed at a predetermined ratio, and the value of a specific water vapor adsorption amount (V 0.95 ) for the moisturizing carbon material is 1250 cm 3 / g ≦ V 0.95 ≦ The relative water vapor pressure (P 1/2 ) indicating 2500 cm 3 / g and half the water vapor adsorption amount of V 0.95 is P 1/2 ≦ 0.55, and for carbon black, the DBP oil absorption amount (O DBP ) is O DBP ≧ 100 mL / 100 g, V 0.95 ≧ 100 cm 3 / g, and for solid polymer fuel cells that exhibit performance equivalent to that of saturated humidification even in a low humidification environment with a relative humidity of 50% or less A catalyst carbon material for a catalyst layer has been proposed. However, in the fuel cell proposed in Patent Document 7, both the moisture-retaining carbon material and the carbon black are hydrophilic, and the discharge of generated water generated at a large current is not always sufficient, and particularly high humidification operation. There is a problem that the output decreases at the time of large current discharge due to flooding.

更に、特許文献8においては、少なくともカソード側の触媒層における炭素材料を、触媒成分を担持した触媒担持炭素材料と触媒成分を担持していないガス拡散炭素材料とで構成し、触媒担持炭素材料の水蒸気吸着量を制御することにより触媒層中の物質移動性(ガス拡散、電子伝導、プロトン伝導、湿潤管理)に優れ、低コスト化と出力特性向上とを両立させることが提案されており、また、特許文献9においては、少なくともカソード側の触媒層の炭素材料を、触媒金属成分を担持した触媒金属担体炭素材料と触媒金属成分を担持していないガス拡散炭素材料とで構成し、触媒金属担体炭素材料及び電解質材料を主成分とする触媒凝集相とガス拡散炭素材料を主成分とするガス拡散炭素材料凝集相とが混在した構造にすると共に、触媒金属担体炭素材料とガス拡散炭素材料の水蒸気吸着量を制御し、また、電解質材料として所定のパーフルオロスルホン酸系プロトン伝導性電解質樹脂を用いることにより、低加湿時及び高加湿時の運転環境下において共に十分な発電特性を発揮させることが提案されている。しかしながら、これら特許文献8及び9において提案されている燃料電池においては、高々1000mA/cm2という電流密度でのフラッディング抑制を想定した発電特性の最適化を目的としている。他方、近年の自動車用途では、従来の触媒層ではフラッディングするような2000mA/cm2を超える電流密度で高出力が求められ、より高いフラッディング特性が必須である。特許文献8及び9において提案される触媒層は、2000mA/cm2を超える電流密度でフラッディングによる出力低下という問題を持つ。本発明は正にこのような大きな電流密度でのフラッディング抑制を狙ったものである。 Further, in Patent Document 8, at least the carbon material in the catalyst layer on the cathode side is composed of a catalyst-carrying carbon material carrying a catalyst component and a gas diffusion carbon material not carrying a catalyst component, It has been proposed that by controlling the amount of water vapor adsorbed, the material mobility in the catalyst layer (gas diffusion, electron conduction, proton conduction, wet management) is excellent, and both cost reduction and output characteristic improvement are compatible. In Patent Document 9, at least the carbon material of the catalyst layer on the cathode side is composed of a catalyst metal carrier carbon material carrying a catalyst metal component and a gas diffusion carbon material not carrying a catalyst metal component, and the catalyst metal carrier In addition to a structure in which a catalyst aggregation phase mainly composed of a carbon material and an electrolyte material and a gas diffusion carbon material aggregation phase mainly composed of a gas diffusion carbon material are mixed, catalyst gold By controlling the water vapor adsorption amount of the carrier carbon material and the gas diffusion carbon material, and using a predetermined perfluorosulfonic acid proton conductive electrolyte resin as the electrolyte material, it is possible to operate under low and high humidification operating environments. Both have been proposed to exhibit sufficient power generation characteristics. However, the fuel cells proposed in Patent Documents 8 and 9 are aimed at optimizing the power generation characteristics assuming flooding suppression at a current density of 1000 mA / cm 2 at most. On the other hand, in recent automobile applications, a high output is required at a current density exceeding 2000 mA / cm 2 that causes flooding in the conventional catalyst layer, and higher flooding characteristics are essential. The catalyst layers proposed in Patent Documents 8 and 9 have a problem of output reduction due to flooding at a current density exceeding 2000 mA / cm 2 . The present invention aims at suppressing flooding at such a large current density.

このように、固体高分子形燃料電池を大電流放電時に安定して作動させるためには、カソード側やアノード側の触媒層の内部を十分に加湿しつつ、同時に、特にカソード側の触媒層内において凝縮し生成する生成水を速やかに外部に排出するという、互いに相反する要求を満たす必要があり、これまでに提案された方法では、大電流放電時に確実にフラッディングを防止し、燃料電池を安定して作動させることは困難なことであり、燃料電池自動車向け等の大電流放電時の電池特性を高めてコストダウンを図ることが求められる多くの用途においては、その実用化の上で大きな課題になっていた。   Thus, in order to stably operate the polymer electrolyte fuel cell during a large current discharge, the inside of the catalyst layer on the cathode side or the anode side is sufficiently humidified, and at the same time, particularly in the catalyst layer on the cathode side. It is necessary to satisfy the mutually contradictory requirements of quickly discharging the generated water that is condensed and generated to the outside, and the methods proposed so far reliably prevent flooding during high current discharge and stabilize the fuel cell. In many applications where it is required to improve battery characteristics during high-current discharge and reduce costs, such as for fuel cell vehicles, it is a major issue in practical application. It was.

特開平05-036,418号公報JP 05-036,418 特開平04-264,367号公報Japanese Patent Laid-Open No. 04-264,367 特開平07-183,035号公報Japanese Patent Laid-Open No. 07-183,035 特開2000-243,404号公報Japanese Unexamined Patent Publication No. 2000-243,404 特開平09-213,350号公報JP 09-213,350 A 特開2011-029,070号公報JP 2011-029,070 特開2013-020,793号公報JP 2013-020,793 JP 特開2005-332,807号公報JP 2005-332,807 A 特開2013-225,433号公報JP 2013-225,433 A

そこで、本発明者らは、通常ではフラッディングし易いようなウエットな環境で大電流を流しても電圧低下が少なく、優れた電池性能を維持できる固体高分子形燃料電池の開発を目指し、以下に示す観点の下に、触媒層を形成するための新たな触媒について鋭意検討を重ねた。
すなわち、アノードやカソードとなる触媒層が触媒金属成分を担持した触媒金属担持炭素材料とプロトン伝導性樹脂とで形成されており、このうちの触媒金属担持炭素材料を形成する担体炭素材料の占める割合が重量比率でもまた体積比率でも大きいことに着目し、また、触媒金属成分を担持する担体炭素材料については基本的に親水性であることが求められる半面、特に大電流放電時にカソード側の触媒層で生成した水蒸気がこの触媒層内で凝縮する前にこの水蒸気を触媒層内から速やかに排出させるためには、触媒層について、その細孔の体積比率(空隙率)を高くすると同時に高い撥水性を持たせることが必要であることに着目し、触媒金属成分を担持する担体炭素材料についてはプロトン伝導性を確保するために親水性を確保できる炭素材料を用い、また、形成される触媒層において触媒金属成分を担持した担体炭素材料(触媒金属担持炭素材料)の近くに高い空隙性と撥水性とを兼ね備えた触媒金属成分を担持していない炭素材料(触媒金属非担持炭素材料)を配し、これによって、触媒金属担持炭素材料で生成した水蒸気が触媒金属非担持炭素材料を介して速やかに排出される触媒層を形成することができる新たな触媒を開発することについて鋭意検討を重ねた。
Therefore, the present inventors aim to develop a polymer electrolyte fuel cell that can maintain excellent battery performance with little voltage drop even when a large current is passed in a wet environment that is usually easily flooded. Under the viewpoints shown, the inventors have intensively studied a new catalyst for forming the catalyst layer.
That is, the catalyst layer serving as the anode and the cathode is formed of the catalyst metal-supporting carbon material supporting the catalyst metal component and the proton conductive resin, and the proportion of the support carbon material forming the catalyst metal-supporting carbon material is Is large in both the weight ratio and the volume ratio, and the support carbon material supporting the catalytic metal component is basically required to be hydrophilic, especially on the cathode side catalyst layer during large current discharge. In order to quickly discharge this water vapor from the catalyst layer before the water vapor generated in the catalyst layer condenses in the catalyst layer, the volume ratio (porosity) of the pores of the catalyst layer is increased and at the same time high water repellency. In view of the fact that it is necessary to provide a carrier carbon material carrying a catalytic metal component, hydrophilicity can be ensured in order to ensure proton conductivity. The raw material is used, and the catalyst metal component having high porosity and water repellency is not supported near the support carbon material (catalyst metal support carbon material) supporting the catalyst metal component in the formed catalyst layer. A carbon material (catalyst metal non-supported carbon material) is arranged, and thereby, a new catalyst layer can be formed in which water vapor generated from the catalyst metal support carbon material is quickly discharged through the catalyst metal non-support carbon material. Has been intensively studied to develop a new catalyst.

本発明者らは、この新たな触媒の開発過程で、以下のような開発指針を得た。
すなわち、触媒層内で酸化反応及び還元反応を担う触媒金属担持炭素材料の担体炭素材料については、触媒金属成分をその表面だけでなくその細孔の内部にまで担持させるために、直径4nm以上10nm未満のメソ孔が多く存在することが必要であり、その評価として細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)を採用することが好適であり、また、触媒層内で生成した水蒸気の排出を担う触媒金属非担持炭素材料については、その高い空隙性と撥水性とを達成する上で炭素材料における枝構造と結晶性とが重要であり、これらを評価する上でBET比表面積(SBET)、DBP吸油量(ODBP)、及びX線回折において002面回折線が最も強く現れる結晶子サイズ(Lc:積層方向の平均サイズ)の各物性を採用することが好適であることを見い出した。
The present inventors have obtained the following development guidelines in the process of developing this new catalyst.
That is, with respect to the support carbon material of the catalyst metal-supporting carbon material responsible for the oxidation reaction and the reduction reaction in the catalyst layer, in order to support the catalyst metal component not only on the surface but also inside the pores, the diameter is 4 nm or more and 10 nm. It is necessary that a large number of mesopores less than 10 nm be present, and it is preferable to adopt a mesopore specific surface area (S 4-10 nm ) having a pore diameter of 4 nm or more and less than 10 nm as the evaluation. In order to achieve high porosity and water repellency, the branch structure and crystallinity in the carbon material are important for the catalytic metal non-supporting carbon material that is responsible for the discharge of the generated water vapor. It is preferable to adopt the physical properties of specific surface area (S BET ), DBP oil absorption (O DBP ), and crystallite size (Lc: average size in the stacking direction) at which the 002 plane diffraction line appears most strongly in X-ray diffraction. I found something

また、本発明者らは、上記の触媒金属非担持炭素材料について検討する中で、この触媒金属非担持炭素材料については、触媒層において大電流放電時に電気抵抗による電圧低下を防止するために、導電助剤としての機能も要求されることを突き止め、また、この導電助剤としての特性については、添加した炭素材料の固有の電気抵抗にはあまり関係なく、混合した際の接触抵抗が支配的であり、この接触抵抗を決めるのは炭素材料の形態であることを突き止め、触媒金属非担持炭素材料の粒子の大きさを触媒金属担持炭素材料の担体炭素材料の粒子の大きさと同程度に揃えることが重要であることを見出した。   Further, the present inventors examined the above-mentioned catalytic metal non-supported carbon material, in order to prevent a voltage drop due to electric resistance at the time of large current discharge in the catalyst layer for this catalytic metal non-supported carbon material, It has been determined that a function as a conductive auxiliary is also required, and the characteristic as the conductive auxiliary is not related to the specific electrical resistance of the added carbon material, but the contact resistance when mixed is dominant. It is determined that the contact resistance is determined by the form of the carbon material, and the size of the particles of the non-catalyst metal-supported carbon material is made equal to the size of the particles of the support carbon material of the catalyst metal-supported carbon material. I found it important.

なお、触媒層におけるガス拡散の観点からは、担体炭素材料により形成される細孔の大きさは、酸素の平均自由行程(約70nm)と同程度以上であることが望ましい。他方、数nmの触媒金属微粒子を担持させるには、担持炭素材料の粒子径は少なくとも10nm以上が実際上必須である。触媒層に形成される細孔は、担体炭素材料の粒子径(一次粒子)、及び、一次粒子が凝集した凝集構造(二次粒子)の空隙、更に、二次粒子間の空隙により形成されるが、二次粒子内の空隙は、一次粒子数個が凝集して形成される枝に基づくものである。また、二次粒子間の空隙の大きさは、前述の枝の長さ程度と見なすことができる、即ち、触媒層中に形成される細孔の大きさは、一次粒子の大きさと同程度か、高々数倍の大きさと、見積もることが妥当である。これらの要請から、触媒金属担体、触媒金属非担持担体共に、10nm以上の粒子径(一次粒子径)が望ましい。一次粒子の上限に関しては100nm以下である。100nmよりも大きな一次粒子では、発電に必要な触媒金属微粒子を担持すべき表面積を確保することが難しくなる。   From the viewpoint of gas diffusion in the catalyst layer, it is desirable that the size of the pores formed by the carrier carbon material is equal to or greater than the mean free path of oxygen (about 70 nm). On the other hand, in order to support catalytic metal fine particles of several nm, the particle diameter of the supported carbon material is practically essential at least 10 nm or more. The pores formed in the catalyst layer are formed by the particle diameter (primary particles) of the support carbon material, the voids of the aggregated structure (secondary particles) in which the primary particles are aggregated, and the voids between the secondary particles. However, the voids in the secondary particles are based on branches formed by aggregation of several primary particles. In addition, the size of the voids between the secondary particles can be regarded as the length of the above-mentioned branch, that is, the size of the pores formed in the catalyst layer is about the same as the size of the primary particles. It is reasonable to estimate that the size is several times at most. In view of these requirements, a particle size (primary particle size) of 10 nm or more is desirable for both the catalytic metal carrier and the non-catalyst metal carrier. The upper limit of the primary particles is 100 nm or less. With primary particles larger than 100 nm, it is difficult to secure a surface area on which catalytic metal fine particles necessary for power generation are to be supported.

本発明者らは、以上のような観点の下に鋭意検討した結果、触媒担持炭素材料の担体炭素材料については、窒素吸着測定により測定された細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)が100m2/g以上であること、また、触媒金属非担持炭素材料については、BET比表面積(SBET)が80m2/g以上220m2/g以下であり、DBP吸油量(2)が80mL/100g以上170mL/100g以下であり、また、X線回折による結晶子サイズ(Lc)が5nm以上10nm以下の樹状黒鉛質炭素材料であることが必要であることを突き止め、本発明の固体高分子形燃料電池用触媒を完成した。 As a result of intensive studies under the above-mentioned viewpoints, the present inventors have found that the supported carbon material of the catalyst-supporting carbon material has a mesopore specific surface area (pore diameter of 4 nm or more and less than 10 nm measured by nitrogen adsorption measurement). S 4-10 nm ) is 100 m 2 / g or more, and the catalytic metal non-supporting carbon material has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, and DBP oil absorption amount (2) is 80 mL / 100 g or more and 170 mL / 100 g or less, and the crystallite size (Lc) by X-ray diffraction is required to be a dendritic graphitic carbon material of 5 nm or more and 10 nm or less. The solid polymer fuel cell catalyst of the present invention was completed.

従って、本発明の目的は、たとえフラッディングし易いウエットな環境で大電流を流してもこの大電流放電時に確実にフラッディングを防止することができ、これによって燃料電池を安定して作動させることができるだけでなく、高価な白金等の触媒金属成分の使用量を低減してコストダウンが可能な固体高分子形燃料電池を製造する上で有用な固体高分子形燃料電池用の触媒を提供することにある。   Accordingly, an object of the present invention is to prevent flooding reliably at the time of discharging a large current even if a large current flows in a wet environment where flooding is likely to occur, thereby enabling stable operation of the fuel cell. In addition, the present invention provides a catalyst for a polymer electrolyte fuel cell that is useful in manufacturing a polymer electrolyte fuel cell capable of reducing the cost by reducing the amount of expensive catalytic metal components such as platinum. is there.

すなわち、本発明は、以下のような構成を有するものである。
(1) 多孔質炭素材料からなる担体炭素材料に触媒金属成分を担持させた触媒金属担持炭素材料と、触媒金属成分を担持していない樹状黒鉛質炭素材料からなる触媒金属非担持炭素材料とを混合して得られた触媒であり、前記触媒担持炭素材料の担体炭素材料は、窒素吸着測定により測定された細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)が100m2/g以上であり、また、前記触媒金属非担持炭素材料である樹状黒鉛質炭素材料は、BET比表面積(SBET)が80m2/g以上220m2/g以下であり、DBP吸油量(ODBP)が80mL/100g以上170mL/100g以下であり、また、X線回折による結晶子サイズ(Lc)が5nm以上10nm以下であることを特徴とする固体高分子形燃料電池用触媒。
That is, the present invention has the following configuration.
(1) a catalytic metal-supporting carbon material in which a catalytic metal component is supported on a support carbon material made of a porous carbon material, and a non-catalytic metal-supporting carbon material made of a dendritic graphitic carbon material not supporting a catalytic metal component; The support carbon material of the catalyst-supporting carbon material has a mesopore specific surface area (S 4-10 nm ) of 4 to 10 nm as measured by nitrogen adsorption measurement of 100 m 2. The dendritic graphitic carbon material which is the catalyst metal non-supporting carbon material has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, and a DBP oil absorption amount ( A catalyst for a polymer electrolyte fuel cell, wherein O DBP ) is 80 mL / 100 g or more and 170 mL / 100 g or less, and a crystallite size (Lc) by X-ray diffraction is 5 nm or more and 10 nm or less.

(2) 前記触媒金属担持炭素材料の担体炭素材料の平均粒子径が10nm以上1100nm以下であり、また、前記触媒金属非担持炭素材料の平均粒子径が、前記担体炭素材料の平均粒子径の±50nmの範囲内、且つ、10nm以上50nm以下であることを特徴とする前記(1)に記載の固体高分子形燃料電池用触媒。
(3) 前記触媒金属担持炭素材料と前記触媒金属非担持炭素材料との混合割合は、触媒金属担持炭素材料が60質量%以上99質量%以下であって、触媒金属非担持炭素材料が1質量%以上40質量%以下であることを特徴とする前記(1)又は(2)に記載の固体高分子形燃料電池用触媒。
(2) The average particle diameter of the support carbon material of the catalyst metal-supported carbon material is 10 nm or more and 1100 nm or less, and the average particle diameter of the non-catalyst metal-supported carbon material is ± the average particle diameter of the support carbon material. The solid polymer fuel cell catalyst according to (1), wherein the catalyst is in the range of 50 nm and is in the range of 10 nm to 50 nm.
(3) The mixing ratio of the catalytic metal-carrying carbon material and the catalytic metal-noncarrying carbon material is 60% by mass to 99% by mass of the catalytic metal-carrying carbon material, and 1% by mass of the catalytic metal-noncarrying carbon material. The catalyst for a polymer electrolyte fuel cell according to the above (1) or (2), wherein the catalyst is in the range of% to 40% by mass.

(4) 前記触媒金属非担持炭素材料である樹状構造黒鉛質炭素材料は、BET比表面積(SBET)が90m2/g以上200m2/g以下であり、また、DBP吸油量(ODBP)が100mL/100g以上150mL/100g以下であることを特徴とする前記(1)〜(3)のいずれかに記載の固体高分子形燃料電池用触媒。
(5) 前記触媒金属非担持炭素材料である樹状構造黒鉛質炭素材料は、X線回折による結晶子サイズ(Lc)が6nm以上10nm以下であることを特徴とする前記(1)〜(4)のいずれかに記載の固体高分子形燃料電池用触媒。
(4) The dendritic graphitic carbon material which is the catalyst metal non-supporting carbon material has a BET specific surface area (S BET ) of 90 m 2 / g or more and 200 m 2 / g or less, and DBP oil absorption (O DBP ) Is 100 mL / 100 g or more and 150 mL / 100 g or less, The catalyst for a polymer electrolyte fuel cell according to any one of the above (1) to (3).
(5) The dendritic graphitic carbon material which is the catalyst metal non-supporting carbon material has a crystallite size (Lc) by X-ray diffraction of 6 nm or more and 10 nm or less. The catalyst for a polymer electrolyte fuel cell according to any one of 1).

本発明において、前記触媒金属担持炭素材料を形成するための担体炭素材料は、窒素吸着測定により測定された細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)が100m2/g以上、好ましくは150m2/g以上の多孔質炭素材料である必要があり、このメソ孔比表面積(S4-10nm)が100m2/g未満であると、以下に示す触媒金属成分を所望の担持量、特に40質量%以上で均一に担持させることが難しくなる。 In the present invention, the support carbon material for forming the catalytic metal-supporting carbon material has a mesopore specific surface area (S 4-10 nm ) of 4 to 10 nm as measured by nitrogen adsorption measurement of 100 m 2 / g. As described above, the porous carbon material should preferably be 150 m 2 / g or more, and if the mesopore specific surface area (S 4-10 nm ) is less than 100 m 2 / g, the catalyst metal component shown below is desired. It becomes difficult to carry uniformly with a carrying amount, particularly 40% by mass or more.

ここで、「メソ孔」とは、IUPACに従えば2nmから50nmの直径の細孔であるが、本発明においては、細孔直径4nm以上10nm未満のメソ孔が重要である。これは、大電流放電時の燃料電池運転条件において、細孔直径4nm以上10nm未満のメソ孔内に担持されている触媒金属上で効率良く還元反応が起きると考えられるからである。このメソ孔の計測には、いわゆる窒素ガスの吸着等温線測定を採用し、また、その解析には、吸着過程の窒素吸着等温線をDollimore-Heal法を採用した。   Here, “mesopores” are pores having a diameter of 2 nm to 50 nm according to IUPAC, but in the present invention, mesopores having a pore diameter of 4 nm or more and less than 10 nm are important. This is because a reduction reaction is considered to occur efficiently on the catalyst metal supported in mesopores having a pore diameter of 4 nm or more and less than 10 nm under the fuel cell operating conditions during large current discharge. The measurement of the mesopores employs so-called adsorption isotherm measurement of nitrogen gas, and the analysis employs the Dollimore-Heal method for the nitrogen adsorption isotherm of the adsorption process.

このような担体炭素材料としては、例えば、カーボンブラック、黒鉛、炭素繊維、活性炭等やこれらの粉砕物、カーボンナノファイバー等の炭素化合物等の多孔質炭素材料を使用することができ、その1種のみを単独で用いてもよいほか、2種以上を混合して用いてもよい。ここで、カーボンブラックの市販品としては、例えば、キャボット社製のバルカンXC-72、バルカンP、ブラックパールズ880、ブラックパールズ1100、ブラックパールズ1300、ブラックパールズ2000、リーガル400等のファーネスブラックや、ライオン社製のケッチェンブラックEC、EC600JDや、三菱化学社製の#3150、#3250等のオイルファーネスブラックや、電気化学工業社製のデンカブラック等のアセチレンブラックや、Degussa製のPrintex XE2、Printex XE2-B等を挙げることができ、更に、これらを賦活処理することにより細孔を導入したものを用いることができる。活性炭としては、例えばクラレケミカル社製のYP、RP等を挙げることができ、更に活性炭素繊維等も挙げられる。   As such a carrier carbon material, for example, porous carbon materials such as carbon black, graphite, carbon fiber, activated carbon and the like, pulverized products thereof, and carbon compounds such as carbon nanofiber can be used. May be used alone, or two or more may be used in combination. Here, commercially available products of carbon black include, for example, Furnace Black such as Vulcan XC-72, Vulcan P, Black Pearls 880, Black Pearls 1100, Black Pearls 1300, Black Pearls 2000, and Legal 400 manufactured by Cabot, Lion Ketjen Black EC and EC600JD manufactured by Mitsubishi Chemical, oil furnace black such as # 3150 and # 3250 manufactured by Mitsubishi Chemical, acetylene black such as Denka Black manufactured by Denki Kagaku Kogyo, and Printex XE2 and Printex XE2 manufactured by Degussa -B etc. can be mentioned, and further, those having pores introduced by activating them can be used. Examples of the activated carbon include YP and RP manufactured by Kuraray Chemical Co., and further include activated carbon fibers.

ここで、前記触媒金属担持炭素材料を形成するために前記担体炭素材料に担持させる触媒金属成分については、強酸性環境下において上述した酸化反応や還元反応に対して優れた触媒活性を有するものであればよく、例えば、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、又は、これら金属の2種類以上が複合化した複合体や合金等が挙げられ、更には他の触媒金属や助触媒金属等が併用されてもよいが、好ましくは、純金属としてはPtが最も高い反応活性を有するので、Pt若しくはPtを主成分とした合金が用いられる。そして、前記触媒金属担持炭素材料におけるこの触媒金属成分の担持量については、通常10質量%以上であるのがよく、好ましくは20質量%以上80質量%であり、より好ましくは40質量%以上80質量%であり、この触媒金属成分の担持量が10質量%より低いと触媒層が厚くなり、触媒層中のガス拡散が律速となって大電流特性が低下するという問題が生じる。   Here, the catalyst metal component supported on the support carbon material in order to form the catalyst metal-supported carbon material has excellent catalytic activity for the oxidation reaction and reduction reaction described above in a strongly acidic environment. For example, metals such as platinum, palladium, ruthenium, gold, rhodium, osmium, iridium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, etc. Examples include composites and alloys in which two or more types are combined, and other catalyst metals and promoter metals may be used in combination. Preferably, Pt has the highest reaction activity as a pure metal. Therefore, Pt or an alloy containing Pt as a main component is used. The amount of the catalytic metal component supported in the catalytic metal-supporting carbon material is usually 10% by mass or more, preferably 20% by mass or more and 80% by mass, and more preferably 40% by mass or more and 80% by mass. If the supported amount of the catalytic metal component is lower than 10% by mass, the catalyst layer becomes thick, and gas diffusion in the catalyst layer becomes rate-determining, resulting in a problem that large current characteristics are deteriorated.

また、触媒金属成分を担持していない前記触媒金属非担持炭素材料については、BET比表面積(SBET)が80m2/g以上220m2/g以下、好ましくは90m2/g以上200m2/g以下であり、DBP吸油量(ODBP)が80mL/100g以上170mL/100g以下、好ましくは100mL/100g以上150mL/100g以下であり、また、X線回折による結晶子サイズ(Lc)が5nm以上10nm以下、好ましくは6nm以上10nm以下である樹状黒鉛質炭素材料である必要がある。 The catalyst metal non-supporting carbon material not supporting the catalyst metal component has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, preferably 90 m 2 / g or more and 200 m 2 / g. The DBP oil absorption (O DBP ) is 80 mL / 100 g to 170 mL / 100 g, preferably 100 mL / 100 g to 150 mL / 100 g, and the crystallite size (Lc) by X-ray diffraction is 5 nm to 10 nm. In the following, it is necessary that the dendritic graphitic carbon material is preferably 6 nm or more and 10 nm or less.

ここで、BET比表面積(SBET)は、触媒金属非担持炭素材料として用いる樹状黒鉛質炭素材料について、表面積から粒子の大きさの平均値を評価するものであり、このBET比表面積(SBET)が80m2/g未満であると、一次粒子径が大きくなり過ぎて触媒金属担持炭素材料との均一な混合が困難になり、この触媒金属担持炭素材料との接触が不足して電気抵抗が高くなり、反対に、220m2/gを超えて大きくなると、一次粒子径が小さくなり過ぎるか、若しくは、この場合にも触媒金属担持炭素材料との均一な混合が困難になり、触媒金属担持炭素材料との接触が不足して電気抵抗が高くなり、大電流放電時に電圧低下が発生してしまう。 Here, the BET specific surface area (S BET ) is an evaluation of the average value of the particle size from the surface area of the dendritic graphitic carbon material used as the catalyst metal non-supporting carbon material. If the BET ) is less than 80 m 2 / g, the primary particle size becomes too large, and uniform mixing with the catalytic metal-carrying carbon material becomes difficult, and contact with the catalytic metal-carrying carbon material is insufficient, resulting in electrical resistance. On the other hand, if it exceeds 220 m 2 / g, the primary particle size becomes too small, or even in this case, uniform mixing with the catalyst metal-supporting carbon material becomes difficult, and the catalyst metal support Insufficient contact with the carbon material increases the electrical resistance, causing a voltage drop during large current discharge.

また、DBP吸油量(ODBP)は、触媒金属非担持炭素材料として用いる樹状黒鉛質炭素材料について、作製される触媒層に所望の空隙性を与える上で必要な細孔の大きさを決める枝構造を評価するもので、炭素材料の二次凝集構造の空隙量(ストラクチャーの発達の程度)と相関性のある指標であり、このDBP吸油量(ODBP)が80mL/100g未満であると、触媒層に必要な空隙を作ることが難しくなり、反対に、170mL/100gを超えて大きくなると、枝の機械的強度が弱くなって触媒層インク液の調製時に枝が破壊され、触媒層に必要な細孔を形成することが困難になる。 In addition, the DBP oil absorption (O DBP ) determines the pore size necessary to give a desired porosity to the produced catalyst layer for the dendritic graphitic carbon material used as the catalyst metal non-supported carbon material. This is an evaluation of the branch structure, and is an indicator that correlates with the amount of voids (degree of structure development) in the secondary aggregate structure of the carbon material. The DBP oil absorption (O DBP ) is less than 80 mL / 100 g. On the other hand, it becomes difficult to create the necessary voids in the catalyst layer, and conversely, if it exceeds 170 mL / 100 g, the mechanical strength of the branches is weakened, and the branches are destroyed during the preparation of the catalyst layer ink liquid. It becomes difficult to form necessary pores.

更に、X線回折による結晶子サイズ(Lc)は、触媒金属非担持炭素材料として用いる樹状黒鉛質炭素材料について、その撥水性の指標として結晶性を評価するものであり、結晶が発達していればX線回折で測定される結晶子サイズ(Lc)が大きくなる。このX線回折による結晶子サイズ(Lc)が5nm未満であると、撥水性が低くて所望のフラッディング抑制効果が発揮されず、反対に、10nmを超えて大きくなると、樹状黒鉛質炭素材料の形状が球状ではなくなって尖った多面体形状になり、触媒層において触媒金属担持炭素材料との接触抵抗が高くなり、電気抵抗が高くなり、大電流放電時に電圧低下が発生してしまう。なお、撥水性の評価指標としては、一般的には水蒸気吸着量の評価が用いられるが、本発明が規定する炭素材料の場合には、結晶性が高く細孔構造を持たないので、水蒸気吸着量の絶対値が非常に小さくて材料を区別する指標としては適さず、鋭意検討の結果、結晶の発達の程度を表す結晶子サイズ(Lc)が適していることを見出し、指標として採用したものである。   Further, the crystallite size (Lc) by X-ray diffraction is an evaluation of crystallinity as an index of water repellency of a dendritic graphitic carbon material used as a catalyst metal non-supporting carbon material. Then, the crystallite size (Lc) measured by X-ray diffraction becomes large. If the crystallite size (Lc) by X-ray diffraction is less than 5 nm, the water repellency is low and the desired flooding suppression effect is not exhibited. Conversely, if the crystallite size (Lc) exceeds 10 nm, the dendritic graphitic carbon material The shape is not spherical but is a sharp polyhedron, the contact resistance with the catalytic metal-supporting carbon material is increased in the catalyst layer, the electrical resistance is increased, and a voltage drop occurs during large current discharge. As an evaluation index of water repellency, evaluation of water vapor adsorption amount is generally used. However, in the case of a carbon material specified by the present invention, since water is highly crystalline and has no pore structure, The absolute value of the quantity is very small and is not suitable as an index for distinguishing materials. As a result of intensive studies, it has been found that the crystallite size (Lc) representing the degree of crystal growth is suitable and adopted as an index. It is.

このような触媒金属非担持炭素材料を形成する樹状黒鉛質炭素材料としては、例えば、黒鉛化カーボンブラック、カーボンブラック、黒鉛、炭素繊維、活性炭等やこれらの粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素化合物等を使用することができ、その1種のみを単独で用いてもよいほか、2種以上を混合して用いてもよい。ここで、黒鉛化カーボンブラックの市販品としては、例えば、東海カーボン社製の黒鉛化カーボンブラックであるトーカブラック#3855、トーカブラック#3845、トーカブラック#3800や、市販のカーボンブラックを不活性雰囲気中2000℃以上の温度で熱処理したもの等を例示することができる。   Examples of the dendritic graphitic carbon material forming such a catalyst metal non-supporting carbon material include graphitized carbon black, carbon black, graphite, carbon fiber, activated carbon and the like, pulverized products thereof, carbon nanofiber, carbon nanotube Carbon compounds such as can be used, and only one of them may be used alone, or two or more may be mixed and used. Here, as a commercial product of graphitized carbon black, for example, Toka Black # 3855, Toka Black # 3845, Toka Black # 3800, which are graphitized carbon blacks manufactured by Tokai Carbon Co., and commercial carbon black are used as an inert atmosphere. Examples thereof include those heat-treated at a temperature of 2000 ° C. or higher.

本発明において、前記触媒金属担持炭素材料を形成するための担体炭素材料は、その平均粒子径が10nm以上100nm以下、好ましくは15nm以上90nm以下であるのがよく、また、前記触媒金属非担持炭素材料は、その平均粒子径が前記担体炭素材料の平均粒子径の±50nm、好ましくは±45nmの範囲内であることが望ましい。担体炭素材料の平均粒子径が10nm未満であると、2〜6nmの触媒金属微粒子を担持することが困難になるという問題があり、反対に、100nmを超えて大きくなると、炭素材料の比表面積が小さ過ぎるために触媒層が厚くなり拡散律速のために大電流特性が低下するという問題が生じる。また、触媒金属非担持炭素材料の平均粒子径が前記担体炭素材料の平均粒子径の±50nmの範囲内から外れると、触媒金属担持炭素材料と混合した際に、粒子同士の大きさが異なるためにミクロに分散させることが困難で、その結果、触媒金属担持炭素材料の周辺の撥水性が十分でなくなり、その結果フラッディングによる大電流特性の低下という問題が生じる。   In the present invention, the carrier carbon material for forming the catalytic metal-supported carbon material may have an average particle diameter of 10 nm to 100 nm, preferably 15 nm to 90 nm, and the catalyst metal non-supported carbon. The material desirably has an average particle size within the range of ± 50 nm, preferably ± 45 nm, of the average particle size of the carrier carbon material. When the average particle diameter of the support carbon material is less than 10 nm, there is a problem that it becomes difficult to support the catalyst metal fine particles of 2 to 6 nm. On the contrary, when the average particle diameter exceeds 100 nm, the specific surface area of the carbon material is increased. A problem arises in that the catalyst layer becomes thick because it is too small, and the large current characteristic deteriorates due to diffusion control. Also, if the average particle diameter of the non-catalyst metal carbon material is out of the range of ± 50 nm of the average particle diameter of the support carbon material, the particle size differs when mixed with the catalytic metal carbon material. In this case, it is difficult to disperse microscopically, and as a result, the water repellency around the catalytic metal-supporting carbon material becomes insufficient, and as a result, there arises a problem that the large current characteristic is deteriorated due to flooding.

また、本発明において、前記触媒金属担持炭素材料と前記触媒金属非担持炭素材料との混合割合については、触媒金属担持炭素材料が60質量%以上99質量%以下であって、触媒金属非担持炭素材料が1質量%以上40質量%以下であり、好ましくは、触媒金属担持炭素材料が60質量%以上95質量%以下であって、触媒金属非担持炭素材料が5質量%以上40質量%以下である。この触媒金属担持炭素材料と触媒金属非担持炭素材料との混合割合において、触媒金属非担持炭素材料の割合が1質量%より低いと、触媒金属担持炭素材料の周辺に存在する割合が低下するために撥水性が低下し、発生する水分を速やかに排出することができずフラッディングするという問題があり、反対に、40質量%を超えて多くなると、触媒層が厚くなり過ぎるためにガス拡散抵抗が増大し大電流特性の低下を招くという問題が生じる。   In the present invention, the mixing ratio of the catalytic metal-supported carbon material and the catalytic metal-nonsupported carbon material is such that the catalytic metal-supported carbon material is 60% by mass to 99% by mass, The material is 1% by mass or more and 40% by mass or less, preferably, the catalyst metal-supported carbon material is 60% by mass or more and 95% by mass or less, and the catalyst metal non-supported carbon material is 5% by mass or more and 40% by mass or less. is there. In the mixing ratio of the catalytic metal-supporting carbon material and the non-catalytic metal-supporting carbon material, if the ratio of the catalytic metal-nonsupporting carbon material is lower than 1% by mass, the ratio existing around the catalytic metal-supporting carbon material is reduced. However, if the amount exceeds 40% by mass, the catalyst layer becomes too thick and the gas diffusion resistance is reduced. There arises a problem that it increases and causes a decrease in large current characteristics.

本発明において、多孔質炭素材料からなる担体炭素材料に触媒金属成分を担持させる方法については、特に制限はなく、従来の方法をそのまま採用することができ、また、得られた触媒金属担持炭素材料に樹状黒鉛質炭素材料からなる触媒金属非担持炭素材料を混合する方法についても、2つの炭素材料を均一に混合できればよく、特に制限されるものではない。   In the present invention, the method for supporting the catalyst metal component on the support carbon material made of the porous carbon material is not particularly limited, and the conventional method can be employed as it is, and the obtained catalyst metal-supported carbon material is used. The method of mixing the catalyst metal non-supporting carbon material made of dendritic graphitic carbon material is not particularly limited as long as the two carbon materials can be mixed uniformly.

また、触媒金属担持炭素材料と触媒金属非担持炭素材料とを混合して得られた触媒を用いて、触媒層インク液を調製し、また、この触媒層インク液を用いて触媒層を調製し、更に、作製された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を調製する方法についても、特に制限はなく、従来の方法をそのまま採用することができる。   In addition, a catalyst layer ink liquid is prepared using a catalyst obtained by mixing a catalyst metal-carrying carbon material and a catalyst metal non-carrying carbon material, and a catalyst layer is prepared using the catalyst layer ink liquid. Furthermore, the method for preparing a membrane electrode assembly (MEA) using the produced catalyst layer is not particularly limited, and a conventional method can be employed as it is.

本発明の固体高分子形燃料電池用触媒によれば、この触媒を用いてアノードやカソードとなる触媒層を形成することにより、たとえフラッディングし易いウエットな環境で大電流を流してもこの大電流放電時に確実にフラッディングを防止することができ、これによって、安定して作動させることができるだけでなく、高価な白金等の触媒金属の使用量を低減してコストダウンが可能な固体高分子形燃料電池を形成することができる。   According to the catalyst for a polymer electrolyte fuel cell of the present invention, a catalyst layer that becomes an anode or a cathode is formed using this catalyst, so that even if a large current flows in a wet environment where flooding easily occurs, Solid polymer fuel that can prevent flooding reliably at the time of discharge, thereby enabling stable operation and reducing the cost by reducing the amount of expensive catalytic metals such as platinum A battery can be formed.

以下、実施例及び比較例に基づいて、本発明の固体高分子形燃料電池用触媒の好適な実施の形態を説明する。
なお、以下の実施例及び比較例において、触媒金属担持炭素材料の担体炭素材料における細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)と、触媒金属非担持炭素材料の樹状黒鉛質炭素材料におけるBET比表面積(SBET)、DBP吸油量(ODBP)、及びX線回折による結晶子サイズ(Lc)とについては、下記の方法で測定した。
Hereinafter, preferred embodiments of the polymer electrolyte fuel cell catalyst of the present invention will be described based on Examples and Comparative Examples.
In the following Examples and Comparative Examples, the mesopore specific surface area (S 4-10 nm ) having a pore diameter of 4 nm or more and less than 10 nm in the support carbon material of the catalyst metal-supported carbon material, and the dendritic shape of the catalyst metal non-support carbon material The BET specific surface area (S BET ), DBP oil absorption (O DBP ), and crystallite size (Lc) by X-ray diffraction in the graphitic carbon material were measured by the following methods.

〔細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)の測定〕
細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm:m2/g)については、試料約50mgを測り採り、これを90℃で5時間真空乾燥し、得られた乾燥後の試料について、自動比表面積測定装置(日本ベル製、BELSORP36)を使用し、窒素ガスを用いたガス吸着法にて測定し、吸着過程の窒素吸着等温線をDollimore-Heal法で解析し、細孔直径4nmの時の細孔表面積の累積値と、細孔直径10nmの時の細孔表面積の累積値との差を取ることにより細孔直径4nm以上10nm未満のメソ孔比表面積(m2/g)を求めた。
[Measurement of mesopore specific surface area (S 4-10 nm ) with a pore diameter of 4 nm or more and less than 10 nm]
About mesopore specific surface area (S 4-10 nm : m 2 / g) having a pore diameter of 4 nm or more and less than 10 nm, about 50 mg of a sample was measured and dried in vacuo at 90 ° C. for 5 hours. Samples were measured by a gas adsorption method using nitrogen gas using an automatic specific surface area measuring device (BELSORP36, manufactured by Nippon Bell), and the nitrogen adsorption isotherm during the adsorption process was analyzed by the Dollimore-Heal method. By taking the difference between the cumulative value of the pore surface area when the diameter is 4 nm and the cumulative value of the pore surface area when the pore diameter is 10 nm, the specific surface area of the mesopores with a pore diameter of 4 nm or more and less than 10 nm (m 2 / g )

〔BET比表面積(SBET)の測定〕
BET比表面積(BET:m2/g)については、試料約50mgを測り採り、これを90℃で5時間真空乾燥し、得られた乾燥後の試料について、自動比表面積測定装置(日本ベル製、BELSORP36)を使用し、窒素ガスを用いたガス吸着法にて測定し、BET法に基づく多点法にて比表面積を決定した。
[Measurement of BET specific surface area (S BET )]
About BET specific surface area (BET: m 2 / g), a sample of about 50 mg was measured, and this was vacuum-dried at 90 ° C. for 5 hours. , BELSORP36) was used and measured by a gas adsorption method using nitrogen gas, and the specific surface area was determined by a multipoint method based on the BET method.

〔DBP吸油量(ODBP)の測定〕
DBP吸油量(ODBP:mL/100g)は、カーボンブラックの一般的な物性指標であり、JIS K 6217-4に従って測定され、試料10〜30gを測り採り、これを90℃で1時間真空乾燥し、得られた乾燥後の試料について、アブソープトメーター(Brabender社製)を用い、最大トルクの約50%の時のジブチルフタレート(DBP)添加量を試料100g当りのDBP吸油量に換算して求めたものである。
[Measurement of DBP oil absorption (O DBP )]
DBP oil absorption (O DBP : mL / 100g) is a general property index of carbon black, measured according to JIS K 6217-4, measured 10-30g of sample, and vacuum dried at 90 ° C for 1 hour Then, for the obtained sample after drying, using an absorber meter (manufactured by Brabender), the amount of dibutyl phthalate (DBP) added at about 50% of the maximum torque is converted to the amount of DBP oil absorption per 100 g of sample. It is what I asked for.

〔X線回折による結晶子サイズ(Lc)の測定〕
X線回折による結晶子サイズ(Lc:nm)については、CuKα線を線源として用い、日本学術振興会 第117委員会によって提唱された測定法、及び、解析法を用い、Lcを算出した。
〔平均粒子径の測定〕
平均粒子径は、SEM(二次電子像)の画像から算出した。具体的な手法は以下のとおりである。10〜20万倍の画像から、球状形状が明確に判別できる20個の測定粒子を選定し、その粒子の直径を画面上から算出し、その算術平均をとった。
[Measurement of crystallite size (Lc) by X-ray diffraction]
For the crystallite size (Lc: nm) by X-ray diffraction, Lc was calculated using the measurement method proposed by the Japan Society for the Promotion of Science 117 and the analysis method using CuKα rays as a radiation source.
(Measurement of average particle size)
The average particle diameter was calculated from an SEM (secondary electron image) image. The specific method is as follows. Twenty measurement particles capable of clearly discriminating the spherical shape were selected from an image with a magnification of 100,000 to 200,000, the diameter of the particle was calculated from the screen, and the arithmetic average was taken.

1.触媒金属担持炭素材料について
(1) 担体炭素材料
担体炭素材料として、表1に示す細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)及び平均粒子径を有する多孔質炭素材料(担体A〜Q)を使用した。
担体A:ケッチェンブラック(ライオン社製商品名:EC300)
担体B:ケッチェンブラック(ライオン社製商品名:EC600JD)
担体C:担体Aとして用いたケッチェンブラックを不活性ガス雰囲気下において2000℃及び1時間の条件で熱処理したもの
担体D:担体Aとして用いたケッチェンブラックを不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
担体E:ヤシ殻活性炭(クラレケミカル社製商品名:YP80F)
担体F:カーボンブラック(東海カーボン社製商品名:シーストG−FY)
担体G:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び50分の条件で賦活処理して多孔質化したもの
担体H:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び100分の条件で賦活処理して多孔質化したもの
担体I:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び200分の条件で賦活処理して多孔質化したもの
担体J:カーボンブラック(東海カーボン社製商品名:シーストSP)
担体K:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び70分の条件で賦活処理して多孔質化したもの
担体L:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び110分の条件で賦活処理して多孔質化したもの
担体M:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び200分の条件で賦活処理して多孔質化したもの
担体N:カーボンブラック(東海カーボン社製商品名:シーストTA)
担体O:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び80分の条件で賦活処理して多孔質化したもの
担体P:担体Fとして用いたカーボンブラックをCO2ガス流通下において1100℃及び120分の条件で賦活処理して多孔質化したもの
担体Q:黒鉛化カーボンブラック(東海カーボン社製商品名:トーカブラックTK#3855)
1. About catalytic metal-supported carbon materials
(1) Carrier carbon material As a carrier carbon material, a porous carbon material (carriers A to Q) having a mesopore specific surface area (S 4-10 nm ) having a pore diameter of 4 nm or more and less than 10 nm and an average particle diameter shown in Table 1 is used. used.
Carrier A: Ketjen Black (trade name: EC300, manufactured by Lion)
Carrier B: Ketjen Black (Lion's product name: EC600JD)
Carrier C: Ketjen black used as carrier A was heat-treated in an inert gas atmosphere at 2000 ° C. for 1 hour Carrier D: Ketjen black used as carrier A at 2200 ° C. in an inert gas atmosphere Heat-treated for 1 hour Carrier E: Coconut shell activated carbon (Kuraray Chemical Co., Ltd., trade name: YP80F)
Carrier F: Carbon black (trade name: SEAST G-FY, manufactured by Tokai Carbon Co., Ltd.)
Carrier G: Carbon black used as carrier F is made porous by activation under conditions of 1100 ° C. and 50 minutes under CO 2 gas flow Carrier H: Carbon black used as carrier F under CO 2 gas flow Activated at 1100 ° C. for 100 minutes and made porous by carrier I: carbon black used as carrier F is activated at 1100 ° C. for 200 minutes under a CO 2 gas flow to make it porous Carrier J: Carbon black (trade name: Seast SP, manufactured by Tokai Carbon Co., Ltd.)
Carrier K: Carbon black used as carrier F was activated and made porous under the conditions of 1100 ° C. and 70 minutes under CO 2 gas flow Carrier L: Carbon black used as carrier F under CO 2 gas flow Activated at 1100 ° C. for 110 minutes and made porous by support M: carbon black used as support F was made porous by activation at 1100 ° C. for 200 minutes under CO 2 gas flow Carrier N: Carbon black (trade name: SEAST TA, manufactured by Tokai Carbon Co., Ltd.)
Carrier O: Carbon black used as carrier F is activated and porous under conditions of 1100 ° C. and 80 minutes under CO 2 gas flow Carrier P: Carbon black used as carrier F under CO 2 gas flow Activated at 1100 ° C. for 120 minutes and made porous. Support Q: Graphitized carbon black (trade name: Toka Black TK # 3855 manufactured by Tokai Carbon Co., Ltd.)

Figure 2016100262
Figure 2016100262

(2) 触媒金属担持炭素材料(白金担持炭素材料)の調製
上記の各担体炭素材料(担体A〜Q)をジニトロジアンミン白金錯体の硝酸溶液中に分散させ、95℃に保温しながら撹拌下に1-プロパノールを加えて5時間保持して触媒前駆体を得た。この触媒前駆体を濾過し、水洗し、乾燥した後、アルゴンに5vol%-H2を混合した気流中、150℃及び1時間の条件で還元処理し、白金担持量40質量%の白金担持炭素材料A〜Qを調製した。
(2) Preparation of catalytic metal-supported carbon material (platinum-supported carbon material) Each of the above-mentioned support carbon materials (supports A to Q) is dispersed in a nitric acid solution of a dinitrodiammine platinum complex and stirred while maintaining a temperature of 95 ° C. 1-propanol was added and held for 5 hours to obtain a catalyst precursor. This catalyst precursor is filtered, washed with water, dried, and then subjected to reduction treatment at 150 ° C. for 1 hour in an air stream in which 5 vol% -H 2 is mixed with argon. Materials A to Q were prepared.

2.触媒金属非担持炭素材料について
触媒金属非担持炭素材料として、表2に示すBET比表面積(SBET)、DBP吸油量(ODBP)、X線回折による結晶子サイズ(Lc)、及び平均粒子径を有する樹状黒鉛質炭素材料(炭素材a〜k)を使用した。
炭素材a:黒鉛化カーボンブラック(東海カーボン社製商品名:トーカブラックTK3855)
炭素材b:黒鉛化カーボンブラック(東海カーボン社製商品名:トーカブラックTK3845)
炭素材c:黒鉛化カーボンブラック(東海カーボン社製商品名:トーカブラックTK3800)
炭素材d: 東海カーボン社製商品名トーカブラックFMをCOガス流通下において1100℃及び150分の条件で賦活処理して多孔質化したものを、更に、不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
炭素材e:アセチレンブラック(電気化学工業社製商品名:デンカブラック)
炭素材f:カーボンブラック(東海カーボン社製商品名:トーカブラック#5500)
炭素材g:炭素材fを不活性ガス雰囲気下において2000℃及び1時間の条件で熱処理したもの
炭素材h:炭素材fを不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
炭素材i:炭素材fを不活性ガス雰囲気下において2400℃及び1時間の条件で熱処理したもの
炭素材j:カーボンブラック(東海カーボン社製商品名:シースト3H)
炭素材k:炭素材jを不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
炭素材l:カーボンブラック(東海カーボン社製商品名:シースト300)
炭素材m:炭素材lを不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
炭素材n:東海カーボン社製商品名トーカブラックSOをCOガス流通下において1100℃及び200分の条件で賦活処理して多孔質化したものを、更に、不活性ガス雰囲気下において2200℃及び1時間の条件で熱処理したもの
炭素材o:カーボンブラック(東海カーボン社製商品名:トーカブラック#6300)
2. About non-catalyst metal supported carbon materials BET specific surface area (S BET ), DBP oil absorption (O DBP ), crystallite size (Lc) by X-ray diffraction, and average particle diameter as shown in Table 2 Dendritic graphitic carbon material (carbon materials a to k) having
Carbon material a: graphitized carbon black (trade name: Toka Black TK3855 manufactured by Tokai Carbon Co., Ltd.)
Carbon material b: Graphitized carbon black (trade name: Toka Black TK3845 manufactured by Tokai Carbon Co., Ltd.)
Carbon material c: Graphitized carbon black (trade name: Toka Black TK3800 manufactured by Tokai Carbon Co., Ltd.)
Carbon material d: Toka Carbon manufactured by Tokai Carbon Co., Ltd., which was made porous by activation under conditions of 1100 ° C. and 150 minutes under the flow of CO 2 gas, and further at 2200 ° C. in an inert gas atmosphere Heat treated under conditions for 1 hour Carbon material e: Acetylene black (trade name: Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.)
Carbon material f: Carbon black (trade name: Toka Black # 5500, manufactured by Tokai Carbon Co., Ltd.)
Carbon material g: Carbon material f heat-treated in an inert gas atmosphere at 2000 ° C. for 1 hour Carbon material h: Carbon material f heat-treated in an inert gas atmosphere at 2200 ° C. for 1 hour Carbon material i: Carbon material f heat-treated at 2400 ° C. for 1 hour in an inert gas atmosphere Carbon material j: Carbon black (trade name: SEAST 3H, manufactured by Tokai Carbon Co., Ltd.)
Carbon material k: Carbon material j heat-treated in an inert gas atmosphere at 2200 ° C. for 1 hour Carbon material l: Carbon black (trade name: Seast 300, manufactured by Tokai Carbon Co., Ltd.)
Carbon material m: Carbon material l heat-treated in an inert gas atmosphere at 2200 ° C. for 1 hour Carbon material n: Product name Toka Black SO manufactured by Tokai Carbon Co., Ltd. under CO 2 gas flow at 1100 ° C. and 200 minutes What was further made porous by activation treatment under the conditions described above was further heat-treated in an inert gas atmosphere at 2200 ° C. for 1 hour. Carbon material o: carbon black (trade name: Toka Black # manufactured by Tokai Carbon Co., Ltd.) 6300)

Figure 2016100262
Figure 2016100262

3.白金触媒の調製
〔実施例1〜17及び比較例1〜23〕
触媒金属担持炭素材料として白金担持炭素材料A〜Qを使用し、また、触媒金属非担持炭素材料として炭素材a〜oを使用し、表3に示すように、これら各白金担持炭素材料A〜Qと各炭素材a〜oとを白金担持炭素材料が80重量%で炭素材が20重量%となる割合で配合し、次いでメノー乳鉢を用いて十分に混合し、各実施例1〜17及び各比較例1〜23の固体高分子形燃料電池用の白金触媒を得た。
3. Preparation of platinum catalyst [Examples 1-17 and Comparative Examples 1-23]
Platinum supported carbon materials A to Q are used as catalytic metal supported carbon materials, and carbon materials a to o are used as catalytic metal non-supported carbon materials. As shown in Table 3, each of these platinum supported carbon materials A to O is used. Q and carbon materials a to o were blended in such a ratio that the platinum-supporting carbon material was 80% by weight and the carbon material was 20% by weight, and then thoroughly mixed using a menor mortar. Platinum catalysts for polymer electrolyte fuel cells of Comparative Examples 1 to 23 were obtained.

4.固体高分子形燃料電池の調製と電池性能の評価
(1) 触媒層インク液の作製
上記で調製した各実施例1〜17及び各比較例1〜23の白金触媒を容器に取り、これに5%-ナフィオン溶液(デュポン製DE521)を加え、軽く撹拌後、超音波洗浄器に容器を入れて白金触媒を分散させた。更に撹拌しながら2-プロパノールを加え、白金触媒とナフィオンとの合計の固形分濃度が2質量%となるように調整し、カソード側の触媒層を形成するための触媒層インク液を作製した。なお、この触媒層インク液の作製に際しては、各白金触媒中の担体炭素材料の1質量部に対して、ナフィオンが0.8質量部となる比率で混合した。
なお、アノード側の触媒層を形成するための触媒層インク液については、触媒として上記の白金担持炭素材料Bを使用した以外は、カソード側触媒層インク液の場合と同様にして作製した。
4). Preparation of polymer electrolyte fuel cell and evaluation of battery performance
(1) Preparation of catalyst layer ink liquid The platinum catalysts of Examples 1 to 17 and Comparative Examples 1 to 23 prepared above were placed in a container, and a 5% -Nafion solution (DE521 manufactured by DuPont) was added thereto. After stirring, the container was placed in an ultrasonic cleaner to disperse the platinum catalyst. Further, 2-propanol was added while stirring to adjust the total solid concentration of the platinum catalyst and Nafion to 2% by mass, thereby preparing a catalyst layer ink liquid for forming a cathode-side catalyst layer. In preparing the catalyst layer ink, 1 part by mass of the carrier carbon material in each platinum catalyst was mixed at a ratio of Nafion of 0.8 part by mass.
The catalyst layer ink liquid for forming the anode catalyst layer was prepared in the same manner as the cathode catalyst layer ink liquid except that the platinum-supported carbon material B was used as a catalyst.

(2) カソード側及びアノード側の触媒層の作製
上で作製されたカソード側及びアノード側の各触媒層インク液を用い、この触媒層インク液をテフロン(登録商標)シートにスプレーした後、アルゴン雰囲気中120℃で60分間の条件で乾燥し、それぞれカソード側及びアノード側の触媒層を作製した。
(2) Preparation of cathode-side and anode-side catalyst layers Using the cathode-side and anode-side catalyst layer ink solutions prepared above, this catalyst-layer ink solution was sprayed on a Teflon (registered trademark) sheet, The catalyst layer was dried at 120 ° C. for 60 minutes in an atmosphere to prepare a cathode side catalyst layer and an anode side catalyst layer, respectively.

作製されたカソード側及びアノード側の各触媒層の白金目付け量は、作製したテフロン(登録商標)シート上の触媒層を3cm角の正方形に切り取って質量を測定し、その後、触媒層をスクレーパーで剥ぎ取った後のテフロン(登録商標)シート質量を測定し、先の質量との差分から触媒層質量を算出し、触媒インク液中の固形分が占める割合及びこの固形分中の白金が占める割合から計算により求め、白金目付け量が0.20mg/cm2になるようにスプレー量を調整した。 The amount of platinum per unit area of the prepared catalyst layer on the cathode side and anode side was measured by cutting the catalyst layer on the prepared Teflon (registered trademark) sheet into a 3 cm square and measuring the mass, and then removing the catalyst layer with a scraper. Measure the mass of Teflon (registered trademark) sheet after peeling off, calculate the catalyst layer mass from the difference from the previous mass, the proportion of solid content in the catalyst ink liquid and the proportion of platinum in this solid content The amount of spray was adjusted so that the amount of platinum was 0.20 mg / cm 2 .

(3) 膜電極複合体(MEA:Membrane Electrode Assembly)の作製
以上のようにして作製されたカソード側及びアノード側の各触媒層を用い、以下のようにしてMEAを作製した。
ナフィオン膜(デュポン社製N112)については6cm角の正方形に切り取り、また、テフロン(登録商標)シート上に塗布されたカソード側及びアノード側の各触媒層については、それぞれカッターナイフで2.5cm角の正方形に切り取った。これらカソード側の触媒層とアノード側の触媒層との間にナフィオン膜を挟み込み、この際に各触媒層がアノード及びカソードとしてナフィオン膜の中心部を挟んで互いに正対する位置関係にずれが生じないようにし、120℃、100kg/cm2及び10分間の条件でプレスした。その後、常温まで冷却した後、カソード側及びアノード側共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、カソード及びアノードの触媒層がナフィオン膜に定着した触媒層定着ナフィオン膜を得た。
(3) Production of Membrane Electrode Assembly (MEA) MEA was produced as follows using each of the catalyst layers on the cathode side and the anode side produced as described above.
The Nafion membrane (DuPont N112) was cut into a 6 cm square, and the cathode and anode catalyst layers coated on the Teflon (registered trademark) sheet were each 2.5 cm square with a cutter knife. Cut into squares. A Nafion membrane is sandwiched between the catalyst layer on the cathode side and the catalyst layer on the anode side, and at this time, there is no deviation in the positional relationship in which the catalyst layers face each other across the center of the Nafion membrane as the anode and cathode. And pressed under conditions of 120 ° C., 100 kg / cm 2 and 10 minutes. Thereafter, after cooling to room temperature, only the Teflon (registered trademark) sheet was carefully peeled off on both the cathode side and the anode side to obtain a catalyst layer-fixed Nafion film in which the cathode and anode catalyst layers were fixed to the Nafion film.

次に、ガス拡散層として市販のカーボンクロス(E-TEK社製LT1200W)を2.5cm角の正方形に切り取り、得られた2枚のカーボンクロスの間に、カソードとアノードとの位置関係にずれが生じないように、先に作製した触媒層定着ナフィオン膜を挟み込み、120℃、50kg/cm2及び10分間の条件でプレスし、MEAを作製した。
なお、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差から定着した触媒層の質量を求め、触媒層の組成の質量比より白金目付け量を算出し、0.2mg/cm2であることを確認した。
Next, a commercially available carbon cloth (LT-1200W manufactured by E-TEK) was cut into a 2.5 cm square as the gas diffusion layer, and the positional relationship between the cathode and anode was shifted between the two carbon cloths obtained. The catalyst layer fixing Nafion membrane prepared earlier was sandwiched and pressed under the conditions of 120 ° C., 50 kg / cm 2 and 10 minutes to prepare an MEA.
The mass of the fixed catalyst layer was determined from the difference between the mass of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the mass of the Teflon (registered trademark) sheet peeled off after pressing, and from the mass ratio of the composition of the catalyst layer The platinum basis weight was calculated and confirmed to be 0.2 mg / cm 2 .

(4) 電池性能の評価
以上のようにして作製した各実施例1〜17及び各比較例1〜23のMEAを用いて単位セル(燃料電池)を構成し、それぞれ燃料電池測定装置に組み込み、次の手順で電池性能の評価を行った。
最初に、以下の「高加湿出力」の代表的な条件で電池性能の評価を行った。すなわち、供給ガスとして、カソードに空気を、また、アノードに純水素を、それぞれ利用率が30%と60%となるように供給した。なお、供給ガスはフローで評価し、特にセル下流に設けられた背圧弁での圧力調整は0.05MPaとした。セル温度を80℃に設定し、供給する空気と純水素について、それぞれ80℃に保温された蒸留水中でバブリングを行う高加湿条件で加湿した。このような条件でセルにガスを供給した後、負荷を目標の1000mA/cm2まで約2時間かけて徐々に増加していき、目標の1000mA/cm2に到達した時点で負荷を固定し、その後30分経過した後のセル端子間電圧を測定し、「高加湿出力」として記録した。
(4) Evaluation of battery performance A unit cell (fuel cell) was constructed using the MEAs of Examples 1 to 17 and Comparative Examples 1 to 23 produced as described above, and each unit cell was incorporated into a fuel cell measurement device. The battery performance was evaluated according to the following procedure.
First, battery performance was evaluated under the following typical conditions of “highly humidified output”. That is, as the supply gas, air was supplied to the cathode and pure hydrogen was supplied to the anode so that the utilization rates were 30% and 60%, respectively. The supply gas was evaluated by a flow, and the pressure adjustment at a back pressure valve provided downstream of the cell was 0.05 MPa. The cell temperature was set to 80 ° C., and the supplied air and pure hydrogen were humidified under high humidification conditions in which bubbling was performed in distilled water kept at 80 ° C., respectively. After supplying a gas to the cell under these conditions, the load gradually increases over about 2 hours to 1000 mA / cm 2 of target, the load is fixed at the time of reaching the 1000 mA / cm 2 of the target, Thereafter, the voltage between the cell terminals after 30 minutes was measured and recorded as “highly humidified output”.

次に、以下の「低加湿出力」の代表的な条件で電池性能の評価を行った。すなわち、上述の「高加湿出力」評価の運転のまま、供給する空気と純水素について、それぞれ65℃に保温された蒸留水中でバブリングを行う低加湿条件の加湿に切り替えた。
ここのような条件でセルにガスを供給した後、負荷を目標の1000mA/cm2まで約2時間かけて徐々に増加していき、目標の1000mA/cm2に到達した時点で負荷を固定し、その後30分経過した後のセル端子間電圧を測定し、「低加湿出力」として記録した。
結果を表3に示す。
Next, the battery performance was evaluated under typical conditions of the following “low humidification output”. That is, while the operation of the above “high humidification output” evaluation was performed, the supplied air and pure hydrogen were switched to humidification under low humidification conditions in which bubbling was performed in distilled water kept at 65 ° C., respectively.
After supplying a gas to the cell under conditions such as where the load gradually increases over about 2 hours to 1000 mA / cm 2 of target, to secure the load at the time of reaching the 1000 mA / cm 2 of target Thereafter, the voltage between the cell terminals after 30 minutes was measured and recorded as “low humidified output”.
The results are shown in Table 3.

Figure 2016100262
Figure 2016100262

実施例1〜6と比較例1〜9においては、本発明で規定する担体炭素材料(担体B)にPtを担持させて得られた白金担持炭素材料Bを用い、種々の触媒非担持炭素材料(炭素材a〜o)を混合して、その電池特性を検討した結果をまとめた。本発明の規定を満たすa、d、g、h、k、nを混合して得られた白金触媒(実施例1〜6)は、高加湿、低加湿のどちらの条件においても優れた発電特性と示すことが分かる。これに対して、本発明の規定を満たさない触媒非担持炭素材料を混合した白金触媒の発電特性が低いことが判明した。   In Examples 1 to 6 and Comparative Examples 1 to 9, a platinum-supported carbon material B obtained by supporting Pt on a support carbon material (support B) defined in the present invention was used, and various non-catalyst-supported carbon materials were used. (Carbon materials a to o) were mixed, and the results of examining the battery characteristics were summarized. The platinum catalysts (Examples 1 to 6) obtained by mixing a, d, g, h, k, and n that satisfy the provisions of the present invention have excellent power generation characteristics under both high and low humidification conditions. It can be seen that On the other hand, it was found that the power generation characteristics of a platinum catalyst mixed with a non-catalyst-supported carbon material that does not satisfy the provisions of the present invention are low.

また、実施例7〜11及び比較例10〜19においては、本発明の規定を満たす触媒非担持炭素材料dと、種々の担体炭素材料(担体A、及びC〜Q)を用いて得られた白金担持炭素材料A、及びC〜Qの各々とを混合して得られた白金触媒の発電特性を検討した結果をまとめた。本発明の規定を満たす担体炭素材料(担体C,H、I、L、及びM)を用いて得られた実施例7〜11の白金触媒はいずれも優れた高加湿、低加湿特性を示したが、本発明の規定を満たさない担体炭素材料(担体A、D、E、F、G、J、K、L、M、N、O、及びQ)を用いた比較例10〜19の白金触媒は発電特性が低いことが判明した。   In Examples 7 to 11 and Comparative Examples 10 to 19, the catalyst-unsupported carbon material d satisfying the provisions of the present invention and various support carbon materials (supports A and C to Q) were used. The result of having examined the electric power generation characteristic of the platinum catalyst obtained by mixing each of platinum carrying | support carbon material A and each of C-Q was put together. The platinum catalysts of Examples 7 to 11 obtained using the carrier carbon materials (carriers C, H, I, L, and M) that satisfy the provisions of the present invention exhibited excellent high and low humidification characteristics. Is a platinum catalyst of Comparative Examples 10 to 19 using a carbon support material (supports A, D, E, F, G, J, K, L, M, N, O, and Q) that does not satisfy the provisions of the present invention Was found to have low power generation characteristics.

更に、実施例12〜17と実施例18〜22とにおいては、白金担持炭素材料の調製時に用いられた本発明の規定を満たす担体炭素材料(担体C、H、I、L、M、及びP)の平均粒子径と本発明の規定を満たす触媒非担持炭素材料h又はnの平均粒子径との差について検討した。白金担持炭素材料調製時の担体の粒子径が触媒非担持炭素材料の粒子径よりも±50nmの範囲を外れた実施例15〜17、20、及び21の場合に、発電特性が低下する傾向がみられた。   Further, in Examples 12 to 17 and Examples 18 to 22, the carrier carbon materials (supports C, H, I, L, M, and P) that satisfy the provisions of the present invention used when preparing the platinum-supported carbon material were used. ) And the average particle size of the non-catalyst-supported carbon material h or n that satisfies the provisions of the present invention were examined. In the case of Examples 15 to 17, 20, and 21 in which the particle diameter of the support at the time of preparing the platinum-supporting carbon material is out of the range of ± 50 nm from the particle diameter of the non-catalyst-supported carbon material, power generation characteristics tend to decrease. It was seen.

5.触媒金属担持炭素材料と触媒金属非担持炭素材料との配合割合の検討
〔比較例20及び実施例23〜31〕
触媒金属担持炭素材料として白金担持炭素材料Bを使用し、また、触媒金属非担持炭素材料として炭素材aを使用し、これら白金担持炭素材料Bと炭素材aとを表4に示す配合割合(炭素材aの割合)で配合し、上記の場合と同様にして混合し、各実施23〜31の固体高分子形燃料電池用の白金触媒を得た。なお、参考のために、炭素材aの割合が0質量%の場合を比較例20とした。
5. Examination of blending ratio of catalytic metal-supporting carbon material and non-catalytic metal-supporting carbon material [Comparative Example 20 and Examples 23 to 31]
The platinum-supporting carbon material B is used as the catalytic metal-supporting carbon material, and the carbon material a is used as the non-catalytic metal-supporting carbon material. The blending ratios of these platinum-supporting carbon material B and carbon material a shown in Table 4 ( The ratio of the carbon material a) was mixed and mixed in the same manner as described above to obtain platinum catalysts for solid polymer fuel cells of Examples 23 to 31. For reference, the case where the ratio of the carbon material a was 0 mass% was referred to as Comparative Example 20.

得られた各実施例23〜31及び比較例20の白金触媒を使用し、上記の各実施例1〜22及び各比較例1〜19の場合と同様に、固体高分子形燃料電池の調製と電池性能の評価に従って、触媒層インク液を作製し、カソード側及びアノード側の触媒層を作製し、膜電極複合体(MEA)を作製し、また、電池性能の評価を行った。
結果を表4に示す。
Using the obtained platinum catalysts of Examples 23 to 31 and Comparative Example 20, as in the case of Examples 1 to 22 and Comparative Examples 1 to 19 above, In accordance with the evaluation of battery performance, a catalyst layer ink solution was prepared, cathode and anode catalyst layers were prepared, a membrane electrode assembly (MEA) was prepared, and battery performance was evaluated.
The results are shown in Table 4.

Figure 2016100262
Figure 2016100262

表4に示す実施例23〜31の結果から明らかなように、炭素材aの割合が1〜40質量%の場合に、高加湿条件下及び耐加湿条件下において共に優れた発電特性を発揮した。   As is clear from the results of Examples 23 to 31 shown in Table 4, when the ratio of the carbon material a is 1 to 40% by mass, excellent power generation characteristics were exhibited under both high humidification conditions and humidification resistance conditions. .

Claims (5)

多孔質炭素材料からなる担体炭素材料に触媒金属成分を担持させた触媒金属担持炭素材料と、触媒金属成分を担持していない樹状黒鉛質炭素材料からなる触媒金属非担持炭素材料とを混合して得られた触媒であり、
前記触媒担持炭素材料の担体炭素材料は、窒素吸着測定により測定された細孔直径4nm以上10nm未満のメソ孔比表面積(S4-10nm)が100m2/g以上であり、また、
前記触媒金属非担持炭素材料である樹状黒鉛質炭素材料は、BET比表面積(SBET)が80m2/g以上220m2/g以下であり、DBP吸油量(ODBP)が80mL/100g以上170mL/100g以下であり、また、X線回折による結晶子サイズ(Lc)が5nm以上10nm以下であることを特徴とする固体高分子形燃料電池用触媒。
A catalytic metal-supporting carbon material in which a catalytic metal component is supported on a support carbon material made of a porous carbon material and a non-catalytic metal-supporting carbon material made of a dendritic graphitic carbon material that does not support the catalytic metal component are mixed. A catalyst obtained by
The support carbon material of the catalyst-supported carbon material has a mesopore specific surface area (S 4-10 nm ) of 4 to 10 nm as measured by nitrogen adsorption measurement of 100 m 2 / g or more,
The dendritic graphitic carbon material which is the catalyst metal non-supporting carbon material has a BET specific surface area (S BET ) of 80 m 2 / g or more and 220 m 2 / g or less, and a DBP oil absorption (O DBP ) of 80 mL / 100 g or more. A catalyst for a polymer electrolyte fuel cell, which is 170 mL / 100 g or less and has a crystallite size (Lc) by X-ray diffraction of 5 nm or more and 10 nm or less.
前記触媒金属担持炭素材料の担体炭素材料の平均粒子径が10nm以上100nm以下であり、また、前記触媒金属非担持炭素材料の平均粒子径が、前記担体炭素材料の平均粒子径の±50nmの範囲内であって、且つ、10nm以上50nm以下であることを特徴とする請求項1に記載の固体高分子形燃料電池用触媒。   The average particle diameter of the support carbon material of the catalyst metal-supported carbon material is 10 nm or more and 100 nm or less, and the average particle diameter of the catalyst metal non-support carbon material is within a range of ± 50 nm of the average particle diameter of the support carbon material. 2. The catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst is 10 nm or more and 50 nm or less. 前記触媒金属担持炭素材料と前記触媒金属非担持炭素材料との混合割合は、触媒金属担持炭素材料が60質量%以上99質量%以下であって、触媒金属非担持炭素材料が1質量%以上40質量%以下であることを特徴とする請求項1又は2に記載の固体高分子形燃料電池用触媒。   The mixing ratio of the catalytic metal-supporting carbon material and the catalytic metal-nonsupporting carbon material is 60% by mass or more and 99% by mass or less of the catalytic metal-supporting carbon material, and 1% by mass or more of the catalytic metal-nonsupporting carbon material. The catalyst for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the catalyst is in mass% or less. 前記触媒金属非担持炭素材料である樹状構造黒鉛質炭素材料は、BET比表面積(SBET)が90m2/g以上200m2/g以下であり、また、DBP吸油量(ODBP)が100mL/100g以上150mL/100g以下であることを特徴とする請求項1〜3のいずれかに記載の固体高分子形燃料電池用触媒。 The dendritic graphitic carbon material which is the catalyst metal non-supporting carbon material has a BET specific surface area (S BET ) of 90 m 2 / g to 200 m 2 / g and a DBP oil absorption (O DBP ) of 100 mL. The solid polymer fuel cell catalyst according to any one of claims 1 to 3, wherein the catalyst is / 100g or more and 150mL / 100g or less. 前記触媒金属非担持炭素材料である樹状構造黒鉛質炭素材料は、X線回折による結晶子サイズ(Lc)が6nm以上10nm以下であることを特徴とする請求項1〜4のいずれかに記載の固体高分子形燃料電池用触媒。   The dendritic graphitic carbon material, which is the catalyst metal non-supporting carbon material, has a crystallite size (Lc) by X-ray diffraction of 6 nm or more and 10 nm or less. Catalyst for polymer electrolyte fuel cell.
JP2014237690A 2014-11-25 2014-11-25 Polymer Electrolyte Fuel Cell Catalyst Active JP6496531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237690A JP6496531B2 (en) 2014-11-25 2014-11-25 Polymer Electrolyte Fuel Cell Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237690A JP6496531B2 (en) 2014-11-25 2014-11-25 Polymer Electrolyte Fuel Cell Catalyst

Publications (2)

Publication Number Publication Date
JP2016100262A true JP2016100262A (en) 2016-05-30
JP6496531B2 JP6496531B2 (en) 2019-04-03

Family

ID=56077983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237690A Active JP6496531B2 (en) 2014-11-25 2014-11-25 Polymer Electrolyte Fuel Cell Catalyst

Country Status (1)

Country Link
JP (1) JP6496531B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197703A (en) * 2018-05-11 2019-11-14 トヨタ自動車株式会社 Catalyst layer for fuel cell and manufacturing method therefor
CN110495029A (en) * 2017-03-31 2019-11-22 日本制铁株式会社 The catalyst carrier carbon material and its manufacturing method of polymer electrolyte fuel cell
JP2020047431A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
WO2020059504A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
JP2020047429A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
WO2020059502A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
CN112867564A (en) * 2018-09-28 2021-05-28 日铁化学材料株式会社 Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same
CN113707896A (en) * 2021-08-30 2021-11-26 武汉理工氢电科技有限公司 Fuel cell membrane electrode, preparation method thereof and proton exchange membrane fuel cell
JP7344484B1 (en) 2023-01-23 2023-09-14 石福金属興業株式会社 Catalyst-supported carbon, membrane electrode assembly for polymer electrolyte fuel cells using the same, and polymer electrolyte fuel cells

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268631A (en) * 1999-03-18 2000-09-29 Yazaki Corp Resin composition for semi-conductive layer for power cable
JP2004185901A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Electrode for fuel cell and fuel cell
US20060166811A1 (en) * 2004-12-30 2006-07-27 Industrial Technology Research Institute Hollow mesoporous carbon electrode-catalyst for direct methanol fuel cell and preparation thereof
JP2007256304A (en) * 2006-03-20 2007-10-04 Canon Inc Developing method
WO2007116924A1 (en) * 2006-03-29 2007-10-18 Cataler Corporation Electroconductive carbon carrier for fuel battery, electrode catalyst for fuel battery, and solid polymer electrolyte fuel battery comprising the same
JP2010123572A (en) * 2008-10-22 2010-06-03 Nippon Steel Corp Fuel cell
JP2010167379A (en) * 2009-01-23 2010-08-05 Equos Research Co Ltd Catalyst and catalytic layer for fuel cell
JP2013073870A (en) * 2011-09-29 2013-04-22 Equos Research Co Ltd Production method of catalyst layer for fuel cell and catalyst layer for fuel cell
WO2014185498A1 (en) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 Electrode for fuel cell and method for manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268631A (en) * 1999-03-18 2000-09-29 Yazaki Corp Resin composition for semi-conductive layer for power cable
JP2004185901A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Electrode for fuel cell and fuel cell
US20060166811A1 (en) * 2004-12-30 2006-07-27 Industrial Technology Research Institute Hollow mesoporous carbon electrode-catalyst for direct methanol fuel cell and preparation thereof
JP2007256304A (en) * 2006-03-20 2007-10-04 Canon Inc Developing method
WO2007116924A1 (en) * 2006-03-29 2007-10-18 Cataler Corporation Electroconductive carbon carrier for fuel battery, electrode catalyst for fuel battery, and solid polymer electrolyte fuel battery comprising the same
JP2010123572A (en) * 2008-10-22 2010-06-03 Nippon Steel Corp Fuel cell
JP2010167379A (en) * 2009-01-23 2010-08-05 Equos Research Co Ltd Catalyst and catalytic layer for fuel cell
JP2013073870A (en) * 2011-09-29 2013-04-22 Equos Research Co Ltd Production method of catalyst layer for fuel cell and catalyst layer for fuel cell
WO2014185498A1 (en) * 2013-05-16 2014-11-20 トヨタ自動車株式会社 Electrode for fuel cell and method for manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110495029A (en) * 2017-03-31 2019-11-22 日本制铁株式会社 The catalyst carrier carbon material and its manufacturing method of polymer electrolyte fuel cell
CN110495029B (en) * 2017-03-31 2022-12-06 日铁化学材料株式会社 Carbon material for catalyst support of polymer electrolyte fuel cell and method for producing same
JP2019197703A (en) * 2018-05-11 2019-11-14 トヨタ自動車株式会社 Catalyst layer for fuel cell and manufacturing method therefor
JP7006497B2 (en) 2018-05-11 2022-02-10 トヨタ自動車株式会社 Fuel cell catalyst layer and its manufacturing method
WO2020059501A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
CN112714972A (en) * 2018-09-18 2021-04-27 株式会社科特拉 Anode catalyst layer for fuel cell and fuel cell using the same
WO2020059503A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
WO2020059502A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
JP2020047432A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2020047430A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
CN112703622A (en) * 2018-09-18 2021-04-23 株式会社科特拉 Anode catalyst layer for fuel cell and fuel cell using the same
JP2020047429A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2020047431A (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
WO2020059504A1 (en) * 2018-09-18 2020-03-26 株式会社キャタラー Anode catalyst layer for fuel cell and fuel cell using same
CN112867564A (en) * 2018-09-28 2021-05-28 日铁化学材料株式会社 Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same
CN112867564B (en) * 2018-09-28 2023-12-05 日铁化学材料株式会社 Carbon material for catalyst support of solid polymer fuel cell and method for producing same
CN113707896A (en) * 2021-08-30 2021-11-26 武汉理工氢电科技有限公司 Fuel cell membrane electrode, preparation method thereof and proton exchange membrane fuel cell
JP7344484B1 (en) 2023-01-23 2023-09-14 石福金属興業株式会社 Catalyst-supported carbon, membrane electrode assembly for polymer electrolyte fuel cells using the same, and polymer electrolyte fuel cells

Also Published As

Publication number Publication date
JP6496531B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6496531B2 (en) Polymer Electrolyte Fuel Cell Catalyst
JP4185064B2 (en) Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell
CN104094460B (en) Electrode catalyst layer for fuel cell
CA2925618C (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
JP5998275B2 (en) Fuel cell catalyst, electrode catalyst layer using the fuel cell catalyst, membrane electrode assembly, and fuel cell
CA2910374C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
JP5021292B2 (en) Fuel cell
WO2014175106A1 (en) Electrode and fuel cell electrode catalyst layer containing same
JP5213499B2 (en) Fuel cell
EP3734728A1 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
JP6327681B2 (en) FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING THE SAME, ELECTRODE CATALYST FOR FUEL CELL CONTAINING THE CATALYST, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL USING THE CATALYST OR CATALYST
WO2010150870A1 (en) Hydrophilic porous layer for fuel cells, gas diffusion electrode and manufacturing method thereof, and membrane electrode assembly
JP6276870B2 (en) Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
CN111540917A (en) Catalyst for fuel cell
JP2008204664A (en) Membrane-electrode assembly for fuel cell, and fuel cell using it
JP2017073310A (en) Catalyst layer for fuel cell, and fuel cell
JP2018081740A (en) Carbon powder for fuel cell, catalyst arranged by use thereof, electrode catalyst layer, membrane-electrode assembly and fuel cell
JP6554954B2 (en) Catalyst mixture, production method thereof, and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst mixture
JP6672622B2 (en) Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly using the catalyst layer, fuel cell, and vehicle
JP2016126869A (en) Solid polymer fuel cell
JP2007250214A (en) Electrode catalyst and its manufacturing method
JP2017091639A (en) Catalyst powder for solid polymer fuel cell, manufacturing method thereof, and solid polymer fuel cell arranged by use of catalyst powder
WO2021131386A1 (en) Electrode catalyst and electrode catalyst layer of electrochemical device, film/electrode assembly, and electrochemical device
JP2017076531A (en) Catalyst powder for solid polymer fuel cell, manufacturing method therefor, and solid polymer fuel cell arranged by use of catalyst powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6496531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250