JP2016094124A - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
JP2016094124A
JP2016094124A JP2014232075A JP2014232075A JP2016094124A JP 2016094124 A JP2016094124 A JP 2016094124A JP 2014232075 A JP2014232075 A JP 2014232075A JP 2014232075 A JP2014232075 A JP 2014232075A JP 2016094124 A JP2016094124 A JP 2016094124A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel
power
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014232075A
Other languages
Japanese (ja)
Inventor
鈴木 孝
Takashi Suzuki
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014232075A priority Critical patent/JP2016094124A/en
Publication of JP2016094124A publication Critical patent/JP2016094124A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the degradation of a catalyst and suppress the degradation of exhaust emissions.SOLUTION: When the temperature Tc of an exhaust gas purification catalyst is not lower than a permissible temperature Tlim, the pressure Pi of fuel supplied to a fuel injection valve is not lower than a set pressure Pset and a remaining capacity SOC of a power storage device is not higher than a predetermined value SOC1, the fuel cut of an internal combustion engine is prohibited to control the internal combustion engine to perform load operation although an accelerator is turned off (S106). A motor-generator is controlled to perform power generation operation using power obtained by the load operation of the internal combustion engine and the power storage device is charged with electric power generated by the motor-generator via an inverter.SELECTED DRAWING: Figure 3

Description

本発明は、ハイブリッド車両の制御装置に関し、特に、燃料噴射弁へ供給する燃料の圧力が可変な内燃機関の排気を触媒で浄化し、内燃機関の動力を利用して駆動軸の駆動及び回転電機の発電運転が可能であり、回転電機の発電電力を蓄電装置に充電可能であるハイブリッド車両の制御装置に関する。   The present invention relates to a control device for a hybrid vehicle, and in particular, exhausts from an internal combustion engine in which the pressure of fuel supplied to a fuel injection valve is variable is purified by a catalyst, and driving of a drive shaft and rotating electric machine using the power of the internal combustion engine It is related with the control apparatus of the hybrid vehicle which can perform the electric power generation driving | operation, and can charge the electrical storage apparatus with the electric power generated of a rotary electric machine.

下記特許文献1では、車両減速時に触媒の温度が所定値以上である場合は、内燃機関の燃料カットを禁止することで触媒の劣化を抑制し、さらに、燃料カット禁止中には、内燃機関の回転速度に応じて吸入空気量を制御することで、失火や加速を招くことのないようにしている。   In Patent Document 1 below, when the temperature of the catalyst is greater than or equal to a predetermined value when the vehicle is decelerated, the deterioration of the catalyst is suppressed by prohibiting the fuel cut of the internal combustion engine. By controlling the amount of intake air according to the rotational speed, misfires and accelerations are prevented.

特開平11−107825号公報Japanese Patent Laid-Open No. 11-107825 特開2006−299976号公報JP 2006-299976 A 特開2010−163948号公報JP 2010-163948 A

触媒の劣化を抑制するために、アクセルオフ時に内燃機関の燃料カットを禁止してアイドリング運転を行うと、スロットル開度が小さく吸入空気量が少ないため、燃料噴射弁へ供給する燃料の圧力が高いときは、吸入空気量に対し燃料噴射量が過剰となって空燃比が過剰に小さくなりやすい。その結果、排気エミッションが悪化する虞がある。   In order to suppress deterioration of the catalyst, when the idling operation is performed by prohibiting the fuel cut of the internal combustion engine when the accelerator is off, the throttle opening is small and the intake air amount is small, so the pressure of the fuel supplied to the fuel injection valve is high In some cases, the fuel injection amount becomes excessive with respect to the intake air amount, and the air-fuel ratio tends to become excessively small. As a result, exhaust emission may be deteriorated.

本発明は、触媒の劣化を抑制するとともに排気エミッションの悪化を抑制することを目的とする。   An object of this invention is to suppress deterioration of a catalyst, and to suppress deterioration of exhaust emission.

本発明に係るハイブリッド車両の制御装置は、上述した目的を達成するために以下の手段を採った。   The control device for a hybrid vehicle according to the present invention employs the following means in order to achieve the above-described object.

本発明に係るハイブリッド車両の制御装置は、燃料噴射弁へ供給する燃料の圧力が可変な内燃機関の排気を触媒で浄化し、内燃機関の動力を利用して駆動軸の駆動及び回転電機の発電運転が可能であり、回転電機の発電電力を蓄電装置に充電可能であるハイブリッド車両の制御装置であって、アクセルオフ時に内燃機関の燃料カットを行う内燃機関制御部を備え、内燃機関制御部は、触媒の温度が許容温度以上であり、燃料噴射弁へ供給する燃料の圧力が設定圧力以上であり、蓄電装置の残存容量が所定値以下である場合は、アクセルオフ時にもかかわらず内燃機関の燃料カットを禁止して内燃機関の負荷運転を行い、当該内燃機関の負荷運転による動力を利用して回転電機の発電運転を行うことを要旨とする。   A control apparatus for a hybrid vehicle according to the present invention purifies exhaust gas of an internal combustion engine with variable pressure of fuel supplied to a fuel injection valve with a catalyst, drives a drive shaft and generates electric power of a rotating electrical machine using the power of the internal combustion engine. A control device for a hybrid vehicle that is operable and capable of charging electric power generated by a rotating electrical machine to a power storage device, comprising an internal combustion engine control unit that performs fuel cut of the internal combustion engine when the accelerator is off, and the internal combustion engine control unit is When the temperature of the catalyst is equal to or higher than the allowable temperature, the pressure of the fuel supplied to the fuel injection valve is equal to or higher than the set pressure, and the remaining capacity of the power storage device is equal to or lower than the predetermined value, the internal combustion engine The gist of the invention is to perform a load operation of the internal combustion engine while prohibiting fuel cut, and to perform a power generation operation of the rotating electrical machine using the power generated by the load operation of the internal combustion engine.

本発明によれば、触媒の温度が許容温度以上であり、燃料噴射弁へ供給する燃料の圧力が設定圧力以上であり、蓄電装置の残存容量が所定値以下である場合は、アクセルオフ時にもかかわらず内燃機関の燃料カットを禁止して内燃機関の負荷運転を行うことで、燃料噴射弁へ供給する燃料の圧力が高くても空燃比がリッチになるのを抑制することができる。その結果、触媒の劣化を抑制することができるとともに、排気エミッションの悪化を抑制することができる。その際には、内燃機関の負荷運転による動力を利用して回転電機の発電運転を行うことで、アクセルオフ時に内燃機関の負荷運転による動力が駆動軸の駆動に用いられるのを防ぐことができる。   According to the present invention, when the temperature of the catalyst is equal to or higher than the allowable temperature, the pressure of the fuel supplied to the fuel injection valve is equal to or higher than the set pressure, and the remaining capacity of the power storage device is equal to or lower than the predetermined value, even when the accelerator is off. Regardless of this, by prohibiting the fuel cut of the internal combustion engine and performing the load operation of the internal combustion engine, it is possible to prevent the air-fuel ratio from becoming rich even if the pressure of the fuel supplied to the fuel injection valve is high. As a result, catalyst deterioration can be suppressed, and exhaust emission deterioration can be suppressed. At that time, by using the power generated by the load operation of the internal combustion engine to perform the power generation operation of the rotating electrical machine, it is possible to prevent the power generated by the load operation of the internal combustion engine from being used for driving the drive shaft when the accelerator is off. .

本発明の実施形態に係る制御装置を備えるハイブリッド車両の構成例を示す図である。It is a figure which shows the structural example of a hybrid vehicle provided with the control apparatus which concerns on embodiment of this invention. 燃料噴射弁の噴射量特性の一例を示す図である。It is a figure which shows an example of the injection quantity characteristic of a fuel injection valve. アクセルオフ時に電子制御装置により実行される処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the process performed by the electronic control apparatus at the time of accelerator-off.

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、本発明の実施形態に係る制御装置を備えるハイブリッド車両の概略構成を示す図である。内燃機関12は、例えばスロットル弁を有する火花点火機関により構成され、燃料噴射弁へ供給する燃料の圧力を変化させることが可能な可変燃圧装置を有し、燃料噴射弁から噴射された燃料を燃焼させることで動力を発生する。内燃機関12の燃焼後の排気は排気浄化触媒24を通り、内燃機関12の排気中に含まれる窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)等の有害成分が排気浄化触媒24で浄化される。   FIG. 1 is a diagram illustrating a schematic configuration of a hybrid vehicle including a control device according to an embodiment of the present invention. The internal combustion engine 12 is composed of, for example, a spark ignition engine having a throttle valve, has a variable fuel pressure device capable of changing the pressure of fuel supplied to the fuel injection valve, and burns fuel injected from the fuel injection valve To generate power. Exhaust gas after combustion of the internal combustion engine 12 passes through the exhaust purification catalyst 24, and harmful components such as nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO) contained in the exhaust gas of the internal combustion engine 12 are exhausted. It is purified by the purification catalyst 24.

内燃機関12が発生する動力は、遊星歯車機構(シングルピニオン遊星歯車)32のキャリアCに伝達される。ここでの遊星歯車機構32は、キャリアCに伝達された動力をサンギアS及びリングギアRに分配する動力分配機構として機能する。キャリアCからリングギアRに分配された動力が駆動軸17へ伝達されることで、内燃機関12の動力を利用して駆動軸17(駆動輪18)を回転駆動して車両の走行を行うことが可能である。一方、キャリアCからサンギアSに分配された動力はモータジェネレータ(回転電機)14に伝達され、モータジェネレータ14の発電運転による電力に変換される。モータジェネレータ14の発電電力は、インバータ22,23を介してモータジェネレータ(回転電機)15に供給される。その際には、モータジェネレータ14の発電電力の一部をインバータ22を介して二次電池等の蓄電装置20に回収して蓄電装置20の充電を行ったり、あるいは、蓄電装置20に蓄えられた電力をインバータ23を介してモータジェネレータ15に供給することも可能である。モータジェネレータ15に供給された交流電力は、モータジェネレータ15の力行運転による動力に変換され、モータジェネレータ15の動力が減速ギア19を介して駆動軸17へ伝達されることによっても、駆動軸17を回転駆動して車両の走行を行うことが可能である。また、駆動軸17の動力をモータジェネレータ15の発電運転による電力に変換し、モータジェネレータ15の発電電力をインバータ23を介して蓄電装置20に回収して蓄電装置20の充電を行うことも可能である。   The power generated by the internal combustion engine 12 is transmitted to the carrier C of the planetary gear mechanism (single pinion planetary gear) 32. The planetary gear mechanism 32 here functions as a power distribution mechanism that distributes the power transmitted to the carrier C to the sun gear S and the ring gear R. When the power distributed from the carrier C to the ring gear R is transmitted to the drive shaft 17, the drive shaft 17 (drive wheel 18) is rotationally driven using the power of the internal combustion engine 12 to travel the vehicle. Is possible. On the other hand, the power distributed from the carrier C to the sun gear S is transmitted to the motor generator (rotating electric machine) 14 and converted into electric power generated by the power generation operation of the motor generator 14. The electric power generated by the motor generator 14 is supplied to a motor generator (rotary electric machine) 15 via inverters 22 and 23. At that time, a part of the power generated by the motor generator 14 is collected in the power storage device 20 such as a secondary battery via the inverter 22 to charge the power storage device 20 or stored in the power storage device 20. It is also possible to supply electric power to the motor generator 15 via the inverter 23. The AC power supplied to the motor generator 15 is converted into motive power by the power running operation of the motor generator 15, and the motive power of the motor generator 15 is transmitted to the drive shaft 17 via the reduction gear 19. It is possible to drive the vehicle by rotating it. It is also possible to convert the motive power of the drive shaft 17 into electric power generated by the power generation operation of the motor generator 15, collect the electric power generated by the motor generator 15 in the power storage device 20 through the inverter 23, and charge the power storage device 20. is there.

内燃機関12の運転状態は、エンジン用電子制御装置(エンジンECU)40により制御される。エンジンECU40には、燃圧センサ61で検出された可変燃圧装置の燃料の圧力(燃料噴射弁へ供給する燃料の圧力)Piを示す信号、及び触媒温度センサ62で検出された排気浄化触媒24の温度Tcを示す信号が入力される。エンジンECU40はハイブリッド用電子制御装置(ハイブリッドECU)60と通信しており、ハイブリッドECU60からの制御信号により内燃機関12を運転制御するとともに内燃機関12の運転状態に関するデータをハイブリッドECU60へ出力する。モータジェネレータ14,15の運転状態は、モータ用電子制御装置(モータECU)50により制御される。モータECU50もハイブリッドECU60と通信しており、ハイブリッドECU60からの制御信号によりモータジェネレータ14,15を運転制御するとともにモータジェネレータ14,15の運転状態に関するデータをハイブリッドECU60へ出力する。ハイブリッドECU60には、アクセル開度センサ64で検出されたアクセル開度(アクセルペダルの踏み込み量)ACを示す信号が入力される。内燃機関12の動力を利用して車両の走行(駆動軸17の回転駆動)を行う場合、ハイブリッドECU60は、アクセル開度ACに基づいて駆動軸17の要求トルクTdreqを設定して内燃機関12の要求トルクTereqとモータジェネレータ14,15の要求トルクTmg1req,Tmg2reqを設定する。そして、エンジンECU40は、内燃機関12のトルクTeを要求トルクTereqにするように内燃機関12の運転を制御し、モータECU50は、モータジェネレータ14,15のトルクTmg1,Tmg2を要求トルクTmg1req,Tmg2reqにするようにモータジェネレータ14の発電運転及びモータジェネレータ15の力行運転を制御する。   The operating state of the internal combustion engine 12 is controlled by an engine electronic control unit (engine ECU) 40. The engine ECU 40 has a signal indicating the fuel pressure (pressure of fuel supplied to the fuel injection valve) Pi of the variable fuel pressure device detected by the fuel pressure sensor 61, and the temperature of the exhaust purification catalyst 24 detected by the catalyst temperature sensor 62. A signal indicating Tc is input. The engine ECU 40 communicates with a hybrid electronic control unit (hybrid ECU) 60, and controls the operation of the internal combustion engine 12 by a control signal from the hybrid ECU 60 and outputs data related to the operating state of the internal combustion engine 12 to the hybrid ECU 60. The operating state of the motor generators 14 and 15 is controlled by a motor electronic control device (motor ECU) 50. The motor ECU 50 is also in communication with the hybrid ECU 60, controls the operation of the motor generators 14, 15 by a control signal from the hybrid ECU 60, and outputs data related to the operation state of the motor generators 14, 15 to the hybrid ECU 60. The hybrid ECU 60 receives a signal indicating the accelerator opening (depressed amount of the accelerator pedal) AC detected by the accelerator opening sensor 64. When the vehicle travels (rotation drive of the drive shaft 17) using the power of the internal combustion engine 12, the hybrid ECU 60 sets the required torque Tdreq of the drive shaft 17 on the basis of the accelerator opening AC, and The required torque Tereq and the required torques Tmg1req and Tmg2req of the motor generators 14 and 15 are set. The engine ECU 40 controls the operation of the internal combustion engine 12 so that the torque Te of the internal combustion engine 12 becomes the required torque Tereq, and the motor ECU 50 changes the torques Tmg1, Tmg2 of the motor generators 14, 15 to the required torques Tmg1req, Tmg2req. Thus, the power generation operation of the motor generator 14 and the power running operation of the motor generator 15 are controlled.

内燃機関12の燃料噴射弁では、ソレノイドに通電することで、ニードルバルブが開いて燃料が噴射され、ソレノイドへの通電を停止することで、ニードルバルブが閉じて燃料噴射が停止する。ある燃料噴射圧力Piにおける通電時間と燃料噴射量との関係を図2に示す。ニードルバルブが全開位置、全閉位置に変位するとき、ニードルバルブはストッパ(全開時)やバルブシート(全閉時)に突き当たって跳ね返る。そのため、図2に示すように、ソレノイドへの通電時間が短くニードルバルブの開弁時間が短い領域(図2のTimin以下の領域)では、通電時間と燃料噴射量との直線性が失われる。燃料噴***度を確保するためには、Timin以上の通電時間で燃料噴射を行う必要があり、通電時間Timinに対応する燃料噴射量qminが最小噴射量に相当する。Timin,qminは、燃料噴射弁へ供給する燃料の圧力Piに応じて変化し、圧力Piの低下に対して減少する。 In the fuel injection valve of the internal combustion engine 12, when the solenoid is energized, the needle valve is opened and fuel is injected, and when the solenoid is de-energized, the needle valve is closed and fuel injection is stopped. FIG. 2 shows the relationship between the energization time and the fuel injection amount at a certain fuel injection pressure Pi. When the needle valve is displaced to the fully open position or the fully closed position, the needle valve hits the stopper (when fully opened) or the valve seat (when fully closed) and rebounds. Therefore, as shown in FIG. 2, in the region where the energization time to the solenoid is short and the opening time of the needle valve is short (region below Ti min in FIG. 2), the linearity between the energization time and the fuel injection amount is lost. . To ensure the fuel injection accuracy, it is necessary to perform the fuel injection in the Ti min or more energizing time, fuel injection amount q min corresponding to energization time Ti min corresponds to the minimum injection amount. Ti min and q min change according to the pressure Pi of the fuel supplied to the fuel injection valve, and decrease with a decrease in the pressure Pi.

本実施形態では、エンジンECU40は、例えば車両(駆動軸17)の減速時等に、内燃機関12の燃料カットを行う。内燃機関12の燃料カットを開始する条件としては、例えばアクセルオフ(アクセル開度ACが0)、つまり駆動軸17の要求トルクTdreqが0である条件等を挙げることができる。一方、内燃機関12の燃料カットを解除する条件としては、例えばアクセルオン(アクセル開度ACが0より大きい)、つまり駆動軸17の要求トルクTdreqが0より大きい条件等を挙げることができる。以下、アクセルオフ時にエンジンECU40が実行する処理について、図3のフローチャートを用いて説明する。図3のフローチャートの処理は、アクセルオフ時に所定時間毎(例えば数msec毎)に繰り返し実行される。   In the present embodiment, the engine ECU 40 performs fuel cut of the internal combustion engine 12 when the vehicle (drive shaft 17) is decelerated, for example. Examples of the condition for starting the fuel cut of the internal combustion engine 12 include an accelerator-off state (accelerator opening AC is 0), that is, a condition that the required torque Tdreq of the drive shaft 17 is 0. On the other hand, examples of the condition for canceling the fuel cut of the internal combustion engine 12 include an accelerator-on state (accelerator opening degree AC is greater than 0), that is, a condition that the required torque Tdreq of the drive shaft 17 is greater than 0. Hereinafter, the process executed by the engine ECU 40 when the accelerator is off will be described with reference to the flowchart of FIG. The process of the flowchart of FIG. 3 is repeatedly executed at predetermined time intervals (for example, every several milliseconds) when the accelerator is off.

まずステップS101では、排気浄化触媒24の温度Tcが許容温度Tlim以上であるか否かが判定される。ここでの許容温度Tlimについては、内燃機関12の燃料カットを行っても排気浄化触媒24の劣化が進行しない上限温度として設定される。Tc≧Tlimの場合(ステップS101の判定結果がYESの場合)は、ステップS102に進む。一方、Tc<Tlimの場合(ステップS101の判定結果がNOの場合)は、ステップS104に進む。   First, in step S101, it is determined whether or not the temperature Tc of the exhaust purification catalyst 24 is equal to or higher than the allowable temperature Tlim. The allowable temperature Tlim here is set as an upper limit temperature at which the exhaust purification catalyst 24 does not deteriorate even if the fuel of the internal combustion engine 12 is cut. If Tc ≧ Tlim (if the determination result in step S101 is YES), the process proceeds to step S102. On the other hand, when Tc <Tlim (when the determination result of step S101 is NO), the process proceeds to step S104.

ステップS102では、可変燃圧装置の燃料の圧力(燃料噴射弁へ供給する燃料の圧力)Piが設定圧力Pset以上であるか否かが判定される。ここでの設定圧力Psetについては、qminの燃料噴射量(Timinの通電時間)でアイドリング運転を行う場合の空燃比がリッチにならない上限圧力として設定される。Pi≧Psetの場合(ステップS102の判定結果がYESの場合)は、ステップS103に進む。一方、Pi<Psetの場合(ステップS102の判定結果がNOの場合)は、ステップS105に進む。 In step S102, it is determined whether or not the fuel pressure (pressure of fuel supplied to the fuel injection valve) Pi of the variable fuel pressure device is equal to or higher than the set pressure Pset. The set pressure Pset here is set as an upper limit pressure at which the air-fuel ratio does not become rich when idling operation is performed with the fuel injection amount of q min (the energization time of Ti min ). If Pi ≧ Pset (if the determination result in step S102 is YES), the process proceeds to step S103. On the other hand, when Pi <Pset (when the determination result of step S102 is NO), the process proceeds to step S105.

ステップS103では、蓄電装置20の残存容量SOCが所定値SOC1以下であるか否かが判定される。蓄電装置20の残存容量SOCについては、例えば蓄電装置20の電流及び電圧を基に算出可能である。ここでの所定値SOC1については、蓄電装置20の充電が可能な上限値として設定される。SOC≦SOC1の場合(ステップS103の判定結果がYESの場合)は、ステップS106に進む。一方、SOC>SOC1の場合(ステップS103の判定結果がNOの場合)は、ステップS107に進む。   In step S103, it is determined whether or not the remaining capacity SOC of power storage device 20 is equal to or less than a predetermined value SOC1. The remaining capacity SOC of the power storage device 20 can be calculated based on, for example, the current and voltage of the power storage device 20. The predetermined value SOC1 here is set as an upper limit value at which the power storage device 20 can be charged. If SOC ≦ SOC1 (if the determination result in step S103 is YES), the process proceeds to step S106. On the other hand, when SOC> SOC1 (when the determination result of step S103 is NO), the process proceeds to step S107.

ステップS104では、内燃機関12の燃料カットが実行される。つまり、アクセルオフ時に排気浄化触媒24の温度Tcが許容温度Tlimより低い場合は、内燃機関12の燃料カットが実行される。   In step S104, the fuel cut of the internal combustion engine 12 is executed. That is, if the temperature Tc of the exhaust purification catalyst 24 is lower than the allowable temperature Tlim when the accelerator is off, the fuel cut of the internal combustion engine 12 is executed.

ステップS105では、内燃機関12の燃料カットが禁止され、内燃機関12のアイドリング運転が行われる。つまり、排気浄化触媒24の温度Tcが許容温度Tlim以上であり、且つ燃料噴射弁へ供給する燃料の圧力Piが設定圧力Psetより低い場合は、アクセルオフ時にもかかわらず内燃機関12の燃料カットを禁止して内燃機関12のアイドリング運転を行う。   In step S105, the fuel cut of the internal combustion engine 12 is prohibited and the idling operation of the internal combustion engine 12 is performed. That is, when the temperature Tc of the exhaust purification catalyst 24 is equal to or higher than the allowable temperature Tlim and the pressure Pi of the fuel supplied to the fuel injection valve is lower than the set pressure Pset, the fuel cut of the internal combustion engine 12 is performed even when the accelerator is off. The idling operation of the internal combustion engine 12 is performed with prohibition.

ステップS106では、内燃機関12の燃料カットが禁止され、内燃機関12の負荷運転が行われる。つまり、排気浄化触媒24の温度Tcが許容温度Tlim以上であり、燃料噴射弁へ供給する燃料の圧力Piが設定圧力Pset以上であり、且つ蓄電装置20の残存容量SOCが所定値SOC1以下である場合は、アクセルオフ時にもかかわらず内燃機関12の燃料カットを禁止して内燃機関12の負荷運転を行う。負荷運転においては、アイドリング運転と比較して、スロットル開度が大きい(吸入空気量が多い)。そして、内燃機関12の負荷運転による動力を利用してモータジェネレータ14,15の発電運転を行い、モータジェネレータ14,15の発電電力をインバータ22,23を介して蓄電装置20に充電する。その際には、内燃機関12の負荷運転による動力が駆動軸17の回転駆動に用いられるのを防ぐために、エンジン12の負荷運転時のトルクをTe、遊星歯車機構32のサンギアSとリングギアRの歯数比(サンギアSとリングギアRのトルク分配比)をρ(0<ρ<1)、減速ギア19の減速比(モータジェネレータ15の回転速度/駆動軸17の回転速度)をγとすると、以下の(1)、(2)式が成立するように、モータジェネレータ14の発電運転時の回生トルクTmg1、モータジェネレータ15の発電運転時の回生トルクTmg2を制御することが好ましい。   In step S106, the fuel cut of the internal combustion engine 12 is prohibited, and the load operation of the internal combustion engine 12 is performed. That is, the temperature Tc of the exhaust purification catalyst 24 is equal to or higher than the allowable temperature Tlim, the pressure Pi of the fuel supplied to the fuel injection valve is equal to or higher than the set pressure Pset, and the remaining capacity SOC of the power storage device 20 is equal to or lower than the predetermined value SOC1. In this case, the fuel cut of the internal combustion engine 12 is prohibited even when the accelerator is off, and the internal combustion engine 12 is loaded. In the load operation, the throttle opening is large (the intake air amount is large) compared to the idling operation. Then, power generation operation of motor generators 14 and 15 is performed using power generated by load operation of internal combustion engine 12, and electric power generated by motor generators 14 and 15 is charged to power storage device 20 via inverters 22 and 23. In that case, in order to prevent the power generated by the load operation of the internal combustion engine 12 from being used for the rotational drive of the drive shaft 17, the torque during the load operation of the engine 12 is Te, the sun gear S and the ring gear R of the planetary gear mechanism 32. The gear ratio (the torque distribution ratio of the sun gear S and the ring gear R) is ρ (0 <ρ <1), and the reduction ratio of the reduction gear 19 (the rotational speed of the motor generator 15 / the rotational speed of the drive shaft 17) is γ. Then, it is preferable to control the regenerative torque Tmg1 during the power generation operation of the motor generator 14 and the regenerative torque Tmg2 during the power generation operation of the motor generator 15 so that the following expressions (1) and (2) are satisfied.

Tmg1=ρ×Te/(ρ+1) (1)
Tmg2=1/γ×Te/(ρ+1) (2)
Tmg1 = ρ × Te / (ρ + 1) (1)
Tmg2 = 1 / γ × Te / (ρ + 1) (2)

ステップS107では、内燃機関12の燃料カットが実行される。つまり、アクセルオフ時に、排気浄化触媒24の温度Tcが許容温度Tlim以上であり、燃料噴射弁へ供給する燃料の圧力Piが設定圧力Pset以上であり、且つ蓄電装置20の残存容量SOCが所定値SOC1より大きい場合は、内燃機関12の燃料カットが実行される。   In step S107, the fuel cut of the internal combustion engine 12 is executed. That is, when the accelerator is off, the temperature Tc of the exhaust purification catalyst 24 is equal to or higher than the allowable temperature Tlim, the pressure Pi of the fuel supplied to the fuel injection valve is equal to or higher than the set pressure Pset, and the remaining capacity SOC of the power storage device 20 is a predetermined value. When it is larger than SOC1, the fuel cut of the internal combustion engine 12 is executed.

排気浄化触媒24が高温雰囲気下にある場合に、内燃機関12の燃料カットを行うと、排気浄化触媒24の劣化の進行が早まるが、アクセルオフ時の燃料カットを禁止する触媒劣化抑制制御を行うことで、排気浄化触媒24の劣化を抑制することが可能となる。ただし、内燃機関12のアイドリング運転を行うと、スロットル開度が小さく吸入空気量が少ないため、燃料噴射弁へ供給する燃料の圧力Piが高いときは、通電時間をTiminまで短くして燃料噴射量をqminまで少なくしたとしても、吸入空気量に対し燃料噴射量が過剰となって空燃比がリッチに(小さく)なりやすい。 When the fuel purification of the internal combustion engine 12 is performed when the exhaust purification catalyst 24 is in a high temperature atmosphere, the deterioration of the exhaust purification catalyst 24 is accelerated, but the catalyst deterioration suppression control is performed to prohibit the fuel cut when the accelerator is off. As a result, it is possible to suppress the deterioration of the exhaust purification catalyst 24. However, when the idling operation of the internal combustion engine 12 is performed, the throttle opening is small and the amount of intake air is small. Therefore, when the pressure Pi of the fuel supplied to the fuel injection valve is high, the energization time is shortened to Ti min and fuel injection is performed. Even if the amount is reduced to q min, the fuel injection amount becomes excessive with respect to the intake air amount, and the air-fuel ratio tends to become rich (small).

これに対して本実施形態によれば、排気浄化触媒24が高温雰囲気下にあり、燃料噴射弁へ供給する燃料の圧力Piが高く、さらに、蓄電装置20の残存容量SOCに充電可能な余裕がある場合は、触媒劣化抑制制御として内燃機関12の負荷運転を行う。これによって、アイドリング運転よりも吸入空気量が多くなるので、燃料噴射弁へ供給する燃料の圧力Piが高くても、燃料噴射量が過剰となって空燃比がリッチになるのを抑制することができる。その結果、排気浄化触媒24の劣化を抑制することができるとともに、排気エミッションの悪化を抑制することができる。その際には、内燃機関12の負荷運転による動力をモータジェネレータ14,15の発電運転により電力に変換して蓄電装置20に充電することで、アクセルオフ時に内燃機関12の負荷運転による動力が駆動軸17の回転駆動に用いられるのを防ぐことができる。   On the other hand, according to the present embodiment, the exhaust purification catalyst 24 is in a high temperature atmosphere, the pressure Pi of the fuel supplied to the fuel injection valve is high, and there is a margin for charging the remaining capacity SOC of the power storage device 20. In some cases, the load operation of the internal combustion engine 12 is performed as catalyst deterioration suppression control. As a result, the amount of intake air is larger than that in idling operation, so even if the pressure Pi of the fuel supplied to the fuel injection valve is high, the fuel injection amount becomes excessive and the air-fuel ratio is prevented from becoming rich. it can. As a result, deterioration of the exhaust purification catalyst 24 can be suppressed, and deterioration of exhaust emission can be suppressed. At that time, the power generated by the load operation of the internal combustion engine 12 is converted into electric power by the power generation operation of the motor generators 14 and 15 and is charged into the power storage device 20. It is possible to prevent the shaft 17 from being used for rotational driving.

そして、内燃機関12の負荷運転により、燃料噴射弁へ供給する燃料の圧力Piが低くなったら、触媒劣化抑制制御としてアイドリング運転に移行する。圧力Piが低いときは、スロットル開度の小さい(吸入空気量の少ない)アイドリング運転を行っても、Timin,qminが減少しているため、空燃比がリッチになるのを抑制することができる。その結果、排気浄化触媒24の劣化を抑制することができるとともに、排気エミッションの悪化を抑制することができる。 When the pressure Pi of the fuel supplied to the fuel injection valve becomes low due to the load operation of the internal combustion engine 12, the operation shifts to the idling operation as the catalyst deterioration suppression control. When the pressure Pi is low, even if idling operation with a small throttle opening (small intake air amount) is performed, Ti min and q min are reduced, so that the air-fuel ratio can be prevented from becoming rich. it can. As a result, deterioration of the exhaust purification catalyst 24 can be suppressed, and deterioration of exhaust emission can be suppressed.

以上の実施形態では、図1に示す構成のハイブリッド車両を例に挙げて説明した。ただし、本発明の適用が可能なハイブリッド車両は、図1に示す構成に限られるものではなく、燃料噴射弁へ供給する燃料の圧力が可変な内燃機関の排気を触媒で浄化し、内燃機関の動力を利用して駆動軸の駆動及び回転電機の発電運転が可能であり、回転電機の発電電力を蓄電装置に充電可能であるハイブリッド車両であれば本発明の適用が可能である。   In the above embodiment, the hybrid vehicle having the configuration shown in FIG. 1 has been described as an example. However, the hybrid vehicle to which the present invention can be applied is not limited to the configuration shown in FIG. 1, and the exhaust gas of the internal combustion engine in which the pressure of the fuel supplied to the fuel injection valve is variable is purified by a catalyst. The present invention can be applied to any hybrid vehicle capable of driving the drive shaft and generating electric power of the rotating electrical machine using power and charging the power storage device with the electric power generated by the rotating electrical machine.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

12 内燃機関、14,15 モータジェネレータ、17 駆動軸、18 駆動輪、20 蓄電装置、22,23 インバータ、32 遊星歯車機構、40 エンジン用電子制御装置、50 モータ用電子制御装置、60 ハイブリッド用電子制御装置、61 燃圧センサ、62 触媒温度センサ、64 アクセル開度センサ。   12 internal combustion engine, 14, 15 motor generator, 17 drive shaft, 18 drive wheel, 20 power storage device, 22, 23 inverter, 32 planetary gear mechanism, 40 engine electronic control device, 50 motor electronic control device, 60 hybrid electronic Control device, 61 fuel pressure sensor, 62 catalyst temperature sensor, 64 accelerator opening sensor.

Claims (1)

燃料噴射弁へ供給する燃料の圧力が可変な内燃機関の排気を触媒で浄化し、内燃機関の動力を利用して駆動軸の駆動及び回転電機の発電運転が可能であり、回転電機の発電電力を蓄電装置に充電可能であるハイブリッド車両の制御装置であって、
アクセルオフ時に内燃機関の燃料カットを行う内燃機関制御部を備え、
内燃機関制御部は、触媒の温度が許容温度以上であり、燃料噴射弁へ供給する燃料の圧力が設定圧力以上であり、蓄電装置の残存容量が所定値以下である場合は、アクセルオフ時にもかかわらず内燃機関の燃料カットを禁止して内燃機関の負荷運転を行い、
当該内燃機関の負荷運転による動力を利用して回転電機の発電運転を行う、ハイブリッド車両の制御装置。
The exhaust of the internal combustion engine with variable fuel pressure supplied to the fuel injection valve is purified with a catalyst, and the drive shaft can be driven and the rotating electrical machine can be driven using the power of the internal combustion engine. Is a control device for a hybrid vehicle capable of charging a power storage device,
An internal combustion engine controller that cuts the fuel of the internal combustion engine when the accelerator is off;
When the temperature of the catalyst is equal to or higher than the allowable temperature, the pressure of the fuel supplied to the fuel injection valve is equal to or higher than the set pressure, and the remaining capacity of the power storage device is equal to or lower than a predetermined value, the internal combustion engine control unit Regardless of which the fuel cut of the internal combustion engine is prohibited and the internal combustion engine is loaded,
A control apparatus for a hybrid vehicle that performs power generation operation of a rotating electrical machine using power generated by load operation of the internal combustion engine.
JP2014232075A 2014-11-14 2014-11-14 Hybrid vehicle control device Pending JP2016094124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232075A JP2016094124A (en) 2014-11-14 2014-11-14 Hybrid vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232075A JP2016094124A (en) 2014-11-14 2014-11-14 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
JP2016094124A true JP2016094124A (en) 2016-05-26

Family

ID=56071099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232075A Pending JP2016094124A (en) 2014-11-14 2014-11-14 Hybrid vehicle control device

Country Status (1)

Country Link
JP (1) JP2016094124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107415730A (en) * 2017-07-11 2017-12-01 电子科技大学 A kind of Poewr control method of vehicle fuel battery power-supply system
JP2018155191A (en) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 Fuel cut control device
JP2020189541A (en) * 2019-05-21 2020-11-26 トヨタ自動車株式会社 Hybrid vehicle and method for controlling the same
US11427181B2 (en) 2020-09-17 2022-08-30 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine, control method for internal combustion engine, and memory medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155191A (en) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 Fuel cut control device
CN107415730A (en) * 2017-07-11 2017-12-01 电子科技大学 A kind of Poewr control method of vehicle fuel battery power-supply system
JP2020189541A (en) * 2019-05-21 2020-11-26 トヨタ自動車株式会社 Hybrid vehicle and method for controlling the same
US11427181B2 (en) 2020-09-17 2022-08-30 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine, control method for internal combustion engine, and memory medium

Similar Documents

Publication Publication Date Title
JP4123254B2 (en) Internal combustion engine misfire determination device and internal combustion engine misfire determination method
JP4254762B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP4544163B2 (en) Vehicle and control method thereof
JP2006161804A (en) Controller for power train
JP2007084034A (en) Power output unit, control method therefor, and vehicle
JP6512116B2 (en) vehicle
JP2014080163A (en) Hybrid vehicle control device
JP2016094124A (en) Hybrid vehicle control device
JP4085996B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP5673644B2 (en) Hybrid vehicle
JP2008247128A (en) Power output unit, control method therefor, and vehicle
JP2005320911A (en) Power output device, automobile having the power output device, and method of controlling the power output device
JP2010105626A (en) Vehicle and control method therefor
JP3956944B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor
JP5692008B2 (en) Hybrid car
JP6361684B2 (en) Control device for hybrid vehicle
JP2015058786A (en) Hybrid vehicle control device
JP6036362B2 (en) Control device for hybrid vehicle
JP2006316663A (en) Power output device and method for starting internal combustion engine provided with same
JP2005341644A (en) Controller of hybrid vehicle
JP6398943B2 (en) vehicle
JP2016094910A (en) Control device for internal combustion engine
JP5751185B2 (en) Hybrid car
JP2007283899A (en) Internal combustion engine device, its control method, and vehicle
JP2009279965A (en) Hybrid vehicle and method of controlling the same