JP2016090453A - 探知装置及び水中探知装置 - Google Patents

探知装置及び水中探知装置 Download PDF

Info

Publication number
JP2016090453A
JP2016090453A JP2014226659A JP2014226659A JP2016090453A JP 2016090453 A JP2016090453 A JP 2016090453A JP 2014226659 A JP2014226659 A JP 2014226659A JP 2014226659 A JP2014226659 A JP 2014226659A JP 2016090453 A JP2016090453 A JP 2016090453A
Authority
JP
Japan
Prior art keywords
detection device
transmission
reception
wave
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014226659A
Other languages
English (en)
Inventor
康平 上月
Kohei Kozuki
康平 上月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2014226659A priority Critical patent/JP2016090453A/ja
Priority to EP15193062.5A priority patent/EP3018494A1/en
Priority to US14/933,496 priority patent/US20160131760A1/en
Publication of JP2016090453A publication Critical patent/JP2016090453A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8918Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being linear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8954Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using a broad-band spectrum

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供する。【解決手段】CTFM方式を用いる探知装置1であって、周波数掃引された送信波を送波し3次元状の送信ビームを形成する送波部2と、送信波の反射波を受信波として受波する受波素子31a,31bと、受波素子31a,31bを動かして受波素子31a,31bによって形成される受信ビームを送信ビームの3次元範囲内で走査させる駆動機構4と、送波部2から送波された送信波と受波素子31a,31bで受波された受信波とに基づいて生成されるビート信号に基づき3次元範囲内の物標に関する情報を生成する物標情報生成部とを備えた探知装置1を構成する。【選択図】図1

Description

本発明は、3次元的な拡がりを有する空間に含まれる物標を探知するための探知装置及び水中探知装置に関する。
従来から知られている探知装置として、例えば特許文献1、及び非特許文献1に開示される探知装置が挙げられる。
特許文献1には、段落0069及び図19等に開示されるように、互いに反対方向にソナー信号を送信するように配置された2本のソナー素子を180度回転させることにより(又は、1本のソナー素子を360度回転させることにより)、水平面内における360度の範囲を探知可能なソナー(探知装置)が開示されている。
また、非特許文献1には、扇状に広がるビーム(いわゆるファンビーム)を形成可能な送信素子と、比較的細いビーム(いわゆるペンシルビーム)を形成可能な受信素子とを備えたソナー(探知装置)が開示されている。この探知装置では、送信素子と受信素子とがモータによって回転されることにより、広範囲に亘って物標を探知することができる。
また、全方位に亘って送波された送信波のエコーを、2次元状に配列されたアレイでビームフォーミングを行うことにより、所定範囲内の物標探知を比較的短時間で行うことが可能なスキャニングソナーも、一般的に知られている。
米国特許出願公開第2013/215719号明細書
サンウエストテクノロジズ(SUNWEST TECHNOLOGIES)、「CTFMソナーSS330」、[online]、[平成26年8月29日検索]、インターネット〈http://www.sunwest-tech.com/SS300%20Broch%20-%20REV%20G.pdf〉
しかし、上述した特許文献1に開示される探知装置は、いわゆるパルスエコー方式の探知装置であるため、物標の探知に比較的時間がかかる。具体的には、所定の方位に送波されたパルス状の送信波が受波されるまでの時間が方位毎に累積していくため、所定範囲を探知する際に比較的時間がかかってしまう。
また、上述した非特許文献1に開示される探知装置では、ファンビームが拡がる2次元状の範囲内に含まれる物標については探知できるものの、3次元的な拡がりを有する空間内に含まれる物標については探知することができない。
一方、上述したスキャニングソナーでは、2次元状に配列されたアレイを形成するために多数の素子が必要となり、その分コストがかかってしまう。
本発明は、上記課題を解決するためのものであり、その目的は、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供することである。
(1)上記課題を解決するため、本発明のある局面に係る探知装置は、CTFM方式を用いる探知装置であって、周波数掃引された送信波を送波し、3次元状の送信ビームを形成する送波部と、前記送信波の反射波を受信波として受波する受波素子と、前記受波素子を動かして、該受波素子によって形成される受信ビームを前記送信ビームの3次元範囲内で走査させる駆動機構と、前記送波部から送波された前記送信波と、前記受波素子で受波された前記受信波とに基づいて生成されるビート信号に基づき、前記3次元範囲内の物標に関する情報を生成する物標情報生成部とを備えている。
(2)好ましくは、前記受波素子は、2次元状の前記受信ビームを形成し、前記駆動機構は、2次元状の前記受信ビームが拡がる方向に交わる方向に向かって前記受波素子を動かす。
(3)更に好ましくは、前記駆動機構は、2次元状の前記受信ビームが拡がる前記方向に垂直な方向に向かって前記受波素子を動かす。
(4)好ましくは、前記受波素子は、扇状の前記受信ビームを形成する。
(5)更に好ましくは、前記受波素子において前記受信波が受波される部分である受波面は、長方形状に形成されている。
(6)好ましくは、前記送波部は、錐状の前記送信ビームを形成し、前記受信ビームは、前記駆動機構によって動かされることにより、前記送信ビームの範囲内に含まれる錐状の範囲を走査する。
(7)更に好ましくは、前記送波部において前記送信波が送波される部分である送波面は、円形状に形成されている。
(8)好ましくは、前記駆動機構は、前記受波素子を回転させる。
(9)更に好ましくは、前記受波素子の回転軸と前記受信ビームのビーム軸とによって形成される角度は、鋭角又は鈍角である。
(10)好ましくは、前記駆動機構は、前記受波素子を往復動させる。
(11)好ましくは、前記探知装置は、複数の前記受波素子を更に備え、各前記受波素子において前記受信波が受波される部分である受波面は、互いに異なる方向に向かって配置されている。
(12)上記課題を解決するため、本発明のある局面に係る水中探知装置は、上述したいずれかの探知装置としての水中探知装置である。
本発明によれば、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供できる。
本発明の実施形態に係る水中探知装置の構成を示すブロック図である。 図1に示す送波部から送波される超音波の、時間と周波数との関係を示すグラフである。 図1に示す2つの超音波振動子を模式的に示す図であって、各超音波振動子によって形成される受信ビームの形状とともに示す図であり、(A)は下方から視た図、(B)は側方から視た図、である。 図1に示す水中探知装置によって物標が探知される過程を模式的に示す図であって、水中探知装置が搭載された自船とともに示す図である。 図1に示す信号処理部の構成を示すブロック図である。 図5に示す第1乗算部によって生成されたビート信号の一例を示すグラフである。 対象区間ビート信号の生成について説明するための図であり、(A)は、ローパスフィルタから出力されたビート信号の波形(すなわち、対象区間ビート信号を抽出する前の波形)であり、(B)は、(A)に示すビート信号から抽出された対象区間ビート信号の波形である。 変形例に係る水中探知装置によって形成される送信ビーム及び受信ビームを、当該水中探知装置が搭載される自船とともに示す模式図であって、(A)は側方から視た図、(B)は上方から視た図である。 変形例に係る水中探知装置によって形成される送信ビーム及び受信ビームを、当該水中探知装置が搭載される自船とともに示す模式図であって、上方から視た図である。 変形例に係る水中探知装置によって形成される送信ビーム及び受信ビームを、当該水中探知装置が搭載される自船とともに示す模式図であって、上方から視た図である。
以下、本発明に係る水中探知装置の実施形態について図面を参照しつつ説明する。本発明の実施形態に係る水中探知装置1は、いわゆるCTFM(Continuous Transmission Frequency Modulated)方式の探知装置であって、例えば、自船(漁船などの船舶)の船底に装備され、主に魚及び魚群等の物標の探知に用いられる。他にも、岩礁のような海底の起伏、人工漁礁のような構造物の探知などに用いられる。また、この水中探知装置1によれば、3次元的な空間に存在する物標を探知することができる。
[全体構成]
図1は、本発明の実施形態に係る水中探知装置1の構成を示すブロック図である。水中探知装置1は、図1に示すように、送波部2と、受波部3と、モータ4(駆動機構)と、送受信装置5と、信号処理部10と、表示部8とを備えている。
送波部2は、送信波としての超音波を水中に送波するためのものであって、超音波が送波される送波面2aが海中に露出して鉛直下方へ向かうように、船底に対して固定される。本実施形態では、送波面2aが円形状に形成されている。これにより、本実施形態の送波部2は、比較的広範囲に亘る3次元状の送信ビームVB(いわゆるボリュームビーム)を送波することができる。この送信ビームVBの形状は、例えば一例として、送波部2を頂点として下方へ延びる錐状(本実施形態では、円錐状)であって、その頂角は120度程度である。
また、送波部2からは、周波数が掃引された超音波が送波される。より具体的には、送波部2からは、周波数が時間経過に応じて徐々に変化するチャープ波が、一定の周期毎に、連続的に送波される。図2は、送波部2から送波される超音波の、時間と周波数との関係を示すグラフである。図2におけるXmaxは掃引時間を示し、Δfmaxは掃引帯域幅を示している。
受波部3は、複数の(本実施形態では、2つの)超音波振動子31a,31b(受波素子)を有している。各超音波振動子31a,31bでは、超音波が受波される受波面32a,32bが海中に露出している。各超音波振動子31a,31bは、送波部2から送波された超音波の反射波を、受信波として受波し、電気信号(受信信号)に変換する。なお、図1では、超音波振動子31a,31bのうち、受波面32a,32b以外の部分の図示を省略している。
図3は、図1に示す2つの超音波振動子31a,31bを模式的に示す図であって、各超音波振動子31a,31bによって形成される受信ビームFB,FBの形状とともに示す図であり、(A)は下方から視た図、(B)は側方から視た図、である。各受波面32a,32bは、平面視で(下方から視て)長方形状に形成されている。これにより、超音波振動子31a,31bでは、図3(A)及び(B)に示すように、各受波面32a,32bの長手方向に垂直な面に沿って延びるファンビーム状の受信ビームFB,FBが形成される。受信ビームFB,FBの形状は、例えば一例として、厚みが6度程度と比較的薄い形状を有している。
各受波面32a,32bは、それぞれが下方に向かうように配置されている。具体的には、各受波面32a,32bは、各面32a,32bに垂直な方向が、鉛直下方に対して傾く方向であって互いに離反する方向d,dとなるように配置される。これにより、受信ビームFB,FBのビーム軸の方向が、互いに離反する方向d,dとなる。また、各受波面32a,32bは、図3(A)に示すように、上下方向から視て、各受波面32a,32bの短辺が延びる方向に沿って並べられている。これにより、受信ビームFB,FBは、同一面に沿って形成される。また、上述のように、各受波面32a,32bを互いに離反する方向に向かうように配置することにより、受信ビームFB,FB同士が重なる部分を小さくできるため、各超音波振動子31a,31bで探知可能なエリアが重複する範囲を無くし、又は小さくできる。なお、受信ビームのビーム軸とは、受信ビーム内に含まれる軸であって受信感度が最も高い方向に延びる軸である。
モータ4は、受波部3を動かすためのものである。具体的には、モータ4は、2つの受波面32a,32bの中央部分を中心として鉛直方向に延びる中心軸を回転中心として、該受波部3を回転させる。すなわち、受波部3の回転軸と、受信ビームFB,FBのビーム軸の方向とによって形成される角度は、直角になっていない。本実施形態では、この角度は、鋭角となっている。受波部3は、鉛直方向に垂直な水平面に沿って回転する。モータ4は、受波部3を、所定の時間間隔毎に、所定角度ずつ回転させる。
図4は、水中探知装置1によって物標が探知される過程を模式的に示す図であって、水中探知装置1が搭載された自船Sとともに示す図である。本実施形態では、モータ4によって受波部3が回転させられることにより、各超音波振動子31a,31bで生成される受信ビームFB,FBが、送波部2で形成された送信ビームVBの範囲内で回転する。これにより、本実施形態に係る水中探知装置1によれば、自船下方における3次元空間(図3の破線によって囲まれる空間)内の物標を探知することができる。
送受信装置5は、送信部6と、受信部7とを備えている。
送信部6は、信号処理部10で生成された周波数掃引された送信信号を増幅し、増幅後の高電圧送信信号を送波部2に印加する。
受信部7は、受波部3が出力する電気信号(受信信号)を増幅し、増幅した受信信号をA/D変換する。その後、受信部7は、デジタル信号に変換された受信信号を、信号処理部10に対して出力する。より具体的には、受信部7は、2つの受信回路(図示省略)を有し、各受信回路が、対応する超音波振動子31a,31bによって受波された受信波を電気音響変換して得られた各受信信号に対して上述した所定の処理を行い、各受信信号を信号処理部10に出力する。
信号処理部10は、送信信号(電気信号)を生成し、送信部6に入力する。また、信号処理部10は、受信部7から出力される受信信号を処理し、物標の映像信号を生成する処理を行う。信号処理部10の構成については、詳しくは後述する。
表示部8は、信号処理部10から出力された映像信号に応じた映像を表示画面に表示する。本実施形態では、表示部8は、自船下方における海中の状態をPPI表示する。これにより、ユーザは、当該表示画面を見て、自船下方における海中の状態(単体魚及び魚群、海底の起伏、人工漁礁のような構造物の有無及び位置)を推測することができる。
[信号処理部の構成]
図5は、信号処理部10の構成を示すブロック図である。信号処理部10は、図5に示すように、送信信号生成部10aと、送受信処理部11と、探知映像生成部18(物標情報生成部)と、を有している。
送信信号生成部10aは、送波部2から送波される送信波の基となる送信信号(電気信号)を生成する。送信信号生成部10aで生成された送信信号は、送信部6及び送受信処理部11へ送信される。
送受信処理部11は、2つの送受信処理回路11a,11bを有している。各送受信処理回路11a,11bには、送信信号生成部10aで生成された送信信号、及び対応する受信回路で生成された受信信号(各超音波振動子31a,31bによって得られた受信信号)が入力される。具体的には、送受信処理回路11aには、超音波振動子31aによって得られた受信信号が入力される一方、送受信処理回路11bには、超音波振動子31bによって得られた受信信号が入力される。
各送受信処理回路11a,11bは、第1乗算部12と、ローパスフィルタ13と、対象区間信号抽出部14と、窓関数記憶部15と、第2乗算部16と、周波数解析部17と、を有している。なお、各送受信処理回路11a,11bで行われる処理は、互いに異なる超音波振動子31a,31bによって受信された受信波から得られる受信信号が入力される点を除いて、同じである。
第1乗算部12は、送信信号生成部10aで生成された送信信号と、超音波振動子31a,31bによって受波された超音波から得られた受信信号とに基づいて、ビート信号を生成する。より具体的には、第1乗算部12は、上述した送信信号と受信信号とを混合(ミキシング、乗算)することにより、ビート信号を生成する。図6は、第1乗算部12によって生成されたビート信号の一例を示すグラフである。
ローパスフィルタ13は、第1乗算部12で生成されたビート信号から不要な信号成分(高周波成分)を取り除く。
対象区間信号抽出部14は、ローパスフィルタ13によって不要な信号成分が除去されたビート信号のうち、後工程での処理対象となる区間の信号を抽出する。具体的には、対象区間信号抽出部14は、処理対象となる区間を受信ゲート区間として設定し、当該受信ゲート区間内におけるビート信号を対象区間ビート信号として生成する。図7は、対象区間ビート信号の生成について説明するための図であり、(A)はローパスフィルタから出力されたビート信号の波形(すなわち、対象区間ビート信号を抽出する前の波形)、(B)は(A)に示すビート信号から抽出された対象区間ビート信号の波形、である。
窓関数記憶部15は、所定の窓関数を記憶する。そして、第2乗算部16は、窓関数記憶部15に記憶される所定の窓関数を、対象区間ビート信号に掛ける処理を行う。
周波数解析部17は、第2乗算部16からの出力結果(窓関数が掛けられた対象区間ビート信号)を解析し、各周波数における振幅及び位相を示すデータ(振幅スペクトル及び位相スペクトル、以降、これらをまとめて複素スペクトルと称する場合もある)を生成する。解析手段として、離散フーリエ変換(DFT)、高速フーリエ変換(FFT)などが挙げられる。なお、上述のように対象区間ビート信号に窓関数が掛けられることにより、周波数解析部17によって生成された複素スペクトルのサイドローブを低減することができる。
そして、送受信処理部11では、各送受信処理回路11a,11bによって、各超音波振動子31a,31bに対応する複素スペクトルが生成される。各周波数解析部17によって生成された当該複素スペクトルは、探知映像生成部18に出力される。
探知映像生成部18は、各送受信処理回路11a,11bで生成された複素スペクトルの横軸を、周波数から距離(自船からの距離)へ変換し、エコーデータ(自船からの各距離におけるエコーの複素振幅データ)を生成する。周波数から距離への変換係数は、送信信号の掃引帯域幅、送信信号の掃引時間、水中の音速に基づき、予め算出される。
そして、探知映像生成部18は、モータ4によって徐々に変化する回転角度位置(図4におけるφ=φ,φ,…)のそれぞれに対応する受信信号に基づいて、各角度位置におけるエコーデータを生成し、これらを合成して、3次元状(本実施形態の場合、円錐状)の探知エリア内におけるエコーデータを生成する。ここで、モータ4の回転速度は、受信ビームFB,FBの厚み方向の角度分を回転する時間が送受信処理部11における受信ゲート区間の時間より長くなるように設定する必要がある。探知時間をできるだけ短縮したい場合、両時間が一致するようにモータ4の回転速度を設定すればよい。
[シミュレーション結果]
以下では、本実施形態に係る水中探知装置1で物標を探知するのに必要な探知時間と、既知の水中探知装置(パルスエコー法に基づく機械走査型の水中探知装置)で物標を探知するのに必要な探知時間とを、シミュレーションにより比較する。自船を中心として水平方向の全周を探知するための受波部の旋回ステップ数を同じとすると、一方位でのエコー受信に必要な時間を比較することで、全周探知時間の比較を行うことができる。よって、以下では、一方位でのエコー受信に必要な時間を比較することで、本実施形態に係る水中探知装置1において必要な探知時間と、既知の水中探知装置において必要な探知時間とを比較する。シミュレーションを行う際の条件として、探知レンジを25m、レンジ分解能を0.19m、CTFM掃引帯域幅を15kHz、とした。
上述のような条件によりシミュレーションを行った結果、一方位でのエコー受信に必要な時間は、既知の水中探知装置では33msであった。なお、この数値は、探知レンジ内の超音波の伝搬時間に基づいて算出している。具体的には、超音波の伝搬距離(探知レンジの2倍、上述したシミュレーション条件の場合、50m)を、水中における超音波の速度(1500m/s)で除算した値である。
一方、本実施形態に係る水中探知装置1を用いた場合における、一方位でのエコー受信に必要な時間は、9msであった。なお、この数値は、上述のシミュレーション条件に基づいて算出している。具体的には、探知レンジを25m、レンジ分解能を0.19mとしたとき、レンジ分解能を比率で表現すると1/113となるため、CTFM掃引帯域幅(15kHz)に1/113を乗算した値である0.11kHzが周波数分解能として必要となる。この周波数分解能を達成するために必要な時間は、0.11kHzの逆数をとって9msと算出される。
以上のように、本実施形態に係る水中探知装置1の場合、従来からの手法であるパルスエコー法と比べて、3.6倍程度の高速化を実現できることが確認された。
[効果]
以上のように、本実施形態に係る水中探知装置1では、受波部3を位置的に動かすことにより、3次元状の送信ビームVBの範囲内に含まれる3次元状の範囲を探知している。これにより、水中探知装置1によれば、3次元空間を探知することができる。更に、従来から知られているスキャニングソナーのように、受波素子を2次元状又は3次元状に配列する必要がなくなり、必要な受波素子の数量を減らすことができるため、装置を簡素化できる。
また、水中探知装置1では、いわゆるCTFM方式を採用して物標の探知を行っているため、パルスエコー方式を採用する場合と比べると、所定範囲を探知する際に必要となる時間を短縮することができる。より具体的には、水中探知装置1では、CTFM方式の採用により超音波パルスが探知レンジを往復伝搬するのに要する時間より短い時間で、一方位における超音波の受信を行うことができる。これにより、比較的短時間で一方位におけるエコー強度を求めることができ、結果として所定範囲を探知する際に必要となる時間を短縮することができる。
また、水中探知装置1では、送信ビームVBを3次元状に形成しているため、物標を探知する領域に対して一度に超音波を送波することができる。こうすると、探知領域全体に送信ビームを行き渡らせるために送波部2を動かす必要がなくなるため、装置を簡素化することができる。
従って、水中探知装置1によれば、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供できる。
また、水中探知装置1では、2次元状の受信ビームFB,FBが該受信ビームの拡がる方向に交わる方向に向かって動かされるため、受信ビームFB,FBによって3次元空間を走査することができる。しかも、受信ビームFB,FBの形状を2次元状にすることで、例えばペンシル状の受信ビームを送信ビーム内で走査させる場合と比べ、短時間で物標を探知することができる。
また、水中探知装置1では、2次元状の受信ビームFB,FBが該受信ビームの拡がる方向に垂直な方向に向かって動かされるため、水中探知装置1を中心とした3次元的な拡がりを有する比較的広い範囲を探知することができる。
また、水中探知装置1では、扇状の受信ビームFB,FBを動かすことによって、自船下方における比較的広い3次元範囲を探知することができる。
また、水中探知装置1では、受波面32a,32bが長方形状に形成されているため、2次元状の受信ビームFB,FBを適切に形成することができる。
また、水中探知装置1では、送波部2が錘状(本実施形態では、円錐状)の送信ビームVBを形成し、受波部3が当該送信ビームVBの範囲を走査しているため、自船下方を広範囲に亘って探知することができる。
また、水中探知装置1では、送波面2aが円形状に形成されているため、3次元状の送信ビームVBを適切に形成することができる。
また、水中探知装置1では、モータ4によって受波部3が回転されるため、比較的簡易な構成で、3次元空間を探知可能な探知装置を構成することができる。
また、水中探知装置1では、受波部3の回転軸と、各超音波振動子31a,31bで形成される受信ビームFB,FBのビーム軸とによって形成される角度が、0度、鋭角、或いは鈍角である。すなわち、受波部3の回転軸と受信ビームFB,FBのビーム軸とは、垂直に交わっていない。こうすると、受信部の回転軸と受信ビームのビーム軸とが垂直である場合と比べて、3次元的に広い範囲を探知することができる。
また、水中探知装置1では、受波面32a,32bが互いに異なる方向d,dを向いているため、各角度位置(図4におけるφ)において探知可能な範囲を広げることができる。
また、水中探知装置1によれば、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な水中探知装置を、低コストで提供できる。
[変形例]
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
(1)図8は、変形例に係る水中探知装置1aによって形成される送信ビーム及び受信ビームを、当該水中探知装置1aが搭載される自船Sとともに示す模式図であって、(A)は側方から視た図、(B)は上方から視た図である。上記実施形態に係る水中探知装置1は、自船の下方を探知するように構成されているが、これに限らず、本変形例に係る水中探知装置1aのように、自船の前方を探知するように構成されていてもよい。すなわち、本変形例に係る水中探知装置1aは、座礁の原因となる自船前方の暗礁等を探知可能な前方探知ソナーとして設けられている。以下では、上記実施形態と異なる点について主に説明し、その他については説明を省略する。なお、本変形例に係る水中探知装置1aは、上記実施形態に係る水中探知装置1と比べて、探知可能な範囲が大きく異なり、その構成については、図1に示すものと概ね同様である。
本変形例に係る水中探知装置1aは、上記実施形態と同様の構成の送波部2を備えている。しかし、本変形例では、送波部2は、送波面が鉛直方向に対して自船の前方へ傾くように、自船の前側に固定されている。これにより、本変形例に係る水中探知装置1aでは、ボリュームビーム状に形成された送信ビームVBが、海中における自船前方へ向かって延びるように形成される。この送信ビームVBの形状は、例えば一例として、上下方向については、水平方向を0度、鉛直下方を90度とした場合において、0度から45度の範囲をカバー可能であるとともに、左右方向については、右舷45度から左舷45度までの範囲をカバー可能な錐状に形成される。
また、本変形例に係る水中探知装置1aは、上記実施形態と同様の構成の受波部3を備えており、2つの超音波振動子31a,31bが自船の左右方向に沿って配列されている。しかし、本変形例では、受波部3は、送波部2の場合と同様、受波面が鉛直方向に対して自船の前方へ傾くように、自船の前側に配置されている。これにより、本変形例に係る水中探知装置1aでは、受信ビームFB,FBが海中における自船前方へ向かって延びるように形成される。例えば一例として、本変形例における受信ビームFBの形状は、上下方向の厚みが6度程度と比較的薄い2次元状であって、前方を0度とした場合における右舷45度から0度付近までの範囲に亘っている。一方、受信ビームFBの形状は、上下方向の厚みが6度程度と比較的薄い2次元状であって、前方を0度とした場合における0度付近から左舷45度までの範囲に亘っている。
そして、本変形例の受波部3は、上下方向に往復動するように、モータ4によって上方側又は下方側へ傾けられる。これにより、受信ビームFB,FBを上下方向に往復動させることができるため、自船前方を3次元的に探知できる。
以上、本変形例のように受信ビームFB,FBを往復動させることによっても、上記実施形態に係る水中探知装置1の場合と同様、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供できる。
また、本変形例の水中探知装置では、受波部3が往復動されるため、比較的簡易な構成で、所定方向(自船前方)に延びる探知領域を適切に探知可能な探知装置を構成することができる。なお、本変形例において、2つの超音波振動子31a,31bの配列方向を自船の前後方向(船首・船尾方向)とし、受信ビームFB,FBの駆動方向を左右方向としてもよい。
(2)上述した実施形態では、送信ビームVBの形状が円錐状となるように送波面2aの形状を円形状に形成したが、これに限らない。具体的には、例えば、送波ビームの形状が楕円錐状、或いは錐状となるように、送波面の形状を、所定の縦横比を有する長方形状に形成してもよい。
(3)図9は、変形例に係る水中探知装置1bによって形成される送信ビームVB及び受信ビームFBを、当該水中探知装置1bが搭載される自船Sとともに示す模式図であって、上方から視た図である。本変形例に係る水中探知装置1bでは、受信ビームFBだけでなく、送信ビームVBもモータ4によって回転する。なお、図9では、各超音波振動子31a,31bによって形成される受信ビームFB,FBを、まとめて受信ビームFBとして図示している。
図9に示すように、本変形例に係る水中探知装置1bで形成される送信ビームVBは、受信ビームFBよりも厚み方向の幅が広いボリュームビーム状(具体的には、楕円錐状)に形成される。このような形状のボリュームビームVBは、例えば一例として、送波面の形状を長方形状にすることで形成することができる。本変形例の場合、送波面の縦横比は、受波素子の受波面の縦横比よりも1に近い。そして、この送信ビームVBは、モータによって図9の矢印で示す方向に受信ビームFBと同じ回転速度で回転する。送信ビームVBの厚み方向の幅は、超音波パルスが探知レンジを往復伝搬するのに必要な時間に対する、本変形例に係る水中探知装置1bで設定する受信ゲート区間の時間の比、から決めることができる。例えば、この比率が1/3であれば、送信ビームVBの厚み方向の幅は、受信ビームFBが3ステップ旋回する範囲より広く設定しておけば(図9参照)、所定の回転角における反射波の帰来を待つことなく受波部を回転しても回転後の角度で反射波を受波することができる。従って、本変形例の場合でも、上記実施形態の場合と同様、3次元的な拡がりを有する空間に含まれる物標を短時間で探知可能な探知装置を、低コストで提供できる。
更に、本変形例によれば、送信ビームVBを形成する送波部から送波される超音波が不要な方位に送波されず、送信波が、受波部でのエコーの受波に必要とされる方位に絞って送信される。これにより、所望の方向にエネルギーを集中して送信波を送波できるため、送信波を送波するために必要な電力を低減することができる。これにより、省エネの観点において優れた探知装置を提供できる。
(4)図10は、変形例に係る水中探知装置1cによって形成される送信ビームVB及び受信ビームFBを、当該水中探知装置1cが搭載される自船Sとともに示す模式図であって、上方から視た図である。本変形例に係る水中探知装置1cは、図9に示す水中探知装置1bと比べて、2つの超音波振動子31a,31bのうちの一方が省略された構成となっている。すなわち、本変形例に係る水中探知装置1cは、受波素子を1つ、有している。
そして、本変形例に係る水中探知装置1cでも、図9に示す水中探知装置1bの場合と同様、送信ビームVBが、モータによって図10の矢印で示す方向に受信ビームFBと同じ回転速度で回転する。このように、受波素子を1つのみ有する水中探知装置1cであっても、図9に係る水中探知装置1bの場合と同様の効果を得ることができる。
(5)上記実施形態の送受信処理部11は、窓関数記憶部15及び第2乗算部16を有しているが、これに限らず、送受信処理部の構成として、窓関数記憶部及び第2乗算部が省略されていてもよい。これにより、メインローブの分解能の劣化を抑制することができる。
(6)上記実施形態の送受信処理部11の第1乗算部12では、送信信号生成部10aで生成された送信信号と、超音波振動子31a,31bによって受波された超音波波形に対応する受信信号とを混合(ミキシング、乗算)することによりビート信号を生成したが、これに限らず、送信信号に基づく信号と受信信号に基づく信号とを混合してもよい。例えば、送信信号に周波数オフセットを与えた信号と受信信号とを混合してビート信号を生成してもよい。こうすると、受信部7のA/D変換で発生しうる直流オフセットの影響を軽減したエコーデータを、送受信処理部11の出力として得ることができる。
(7)上記実施形態では、送信信号と受信信号との混合をデジタル信号処理として実施しているが、これに限らず、アナログ信号処理として実施してもよい。この場合、第1乗算部12は、送受信処理部11ではなく送受信装置5に配置され、受信信号が受信部7でA/D変換される前に上述した混合処理を行うことになる。
(8)上記実施形態では、周波数掃引された連続波を送波部2から送信したが、これに限らず、超音波が探査レンジを往復伝播する時間よりも長い時間をパルス幅とする周波数掃引されたパルス波を送波部から送波してもよい。
(9)上記実施形態及び変形例では、探知装置として水中探知装置を例に挙げて説明したが、これに限らず、探知装置として、レーダ等を挙げることもできる。
1,1a,1b,1c 水中探知装置
2 送波部
4 モータ(駆動機構)
31a,31b,31c 超音波振動子(受波素子)
11 送受信処理部(受信処理部)
18 探知映像生成部(物標情報生成部)

Claims (12)

  1. CTFM方式を用いる探知装置であって、
    周波数掃引された送信波を送波し、3次元状の送信ビームを形成する送波部と、
    前記送信波の反射波を受信波として受波する受波素子と、
    前記受波素子を動かして、該受波素子によって形成される受信ビームを前記送信ビームの3次元範囲内で走査させる駆動機構と、
    前記送波部から送波された前記送信波と、前記受波素子で受波された前記受信波とに基づいて生成されるビート信号に基づき、前記3次元範囲内の物標に関する情報を生成する物標情報生成部と
    を備えていることを特徴とする、探知装置。
  2. 請求項1に記載の探知装置において、
    前記受波素子は、2次元状の前記受信ビームを形成し、
    前記駆動機構は、2次元状の前記受信ビームが拡がる方向に交わる方向に向かって前記受波素子を動かすことを特徴とする、探知装置。
  3. 請求項2に記載の探知装置において、
    前記駆動機構は、2次元状の前記受信ビームが拡がる前記方向に垂直な方向に向かって前記受波素子を動かすことを特徴とする、探知装置。
  4. 請求項2又は請求項3に記載の探知装置において、
    前記受波素子は、扇状の前記受信ビームを形成することを特徴とする、探知装置。
  5. 請求項4に記載の探知装置において、
    前記受波素子において前記受信波が受波される部分である受波面は、長方形状に形成されていることを特徴とする、探知装置。
  6. 請求項1から請求項5のいずれか1項に記載の探知装置において、
    前記送波部は、錐状の前記送信ビームを形成し、
    前記受信ビームは、前記駆動機構によって動かされることにより、前記送信ビームの範囲内に含まれる錐状の範囲を走査することを特徴とする、探知装置。
  7. 請求項6に記載の探知装置において、
    前記送波部において前記送信波が送波される部分である送波面は、円形状に形成されていることを特徴とする、探知装置。
  8. 請求項1から請求項7のいずれか1項に記載の探知装置において、
    前記駆動機構は、前記受波素子を回転させることを特徴とする、探知装置。
  9. 請求項8に記載の探知装置において、
    前記受波素子の回転軸と前記受信ビームのビーム軸とによって形成される角度は、鋭角又は鈍角であることを特徴とする、探知装置。
  10. 請求項1から請求項7のいずれか1項に記載の探知装置において、
    前記駆動機構は、前記受波素子を往復動させることを特徴とする、探知装置。
  11. 請求項1から請求項10のいずれか1項に記載の探知装置において、
    複数の前記受波素子を更に備え、
    各前記受波素子において前記受信波が受波される部分である受波面は、互いに異なる方向に向かって配置されていることを特徴とする、探知装置。
  12. 請求項1から請求項11のいずれか1項に記載の探知装置としての水中探知装置。
JP2014226659A 2014-11-07 2014-11-07 探知装置及び水中探知装置 Pending JP2016090453A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014226659A JP2016090453A (ja) 2014-11-07 2014-11-07 探知装置及び水中探知装置
EP15193062.5A EP3018494A1 (en) 2014-11-07 2015-11-04 Ctfm detection apparatus and underwater detection apparatus
US14/933,496 US20160131760A1 (en) 2014-11-07 2015-11-05 Ctfm detection apparatus and underwater detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226659A JP2016090453A (ja) 2014-11-07 2014-11-07 探知装置及び水中探知装置

Publications (1)

Publication Number Publication Date
JP2016090453A true JP2016090453A (ja) 2016-05-23

Family

ID=54366152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226659A Pending JP2016090453A (ja) 2014-11-07 2014-11-07 探知装置及び水中探知装置

Country Status (3)

Country Link
US (1) US20160131760A1 (ja)
EP (1) EP3018494A1 (ja)
JP (1) JP2016090453A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544071A (zh) * 2016-06-23 2018-01-05 古野电气株式会社 水中探测***
WO2018163844A1 (ja) * 2017-03-10 2018-09-13 古野電気株式会社 超音波探知装置及び超音波探知方法
WO2019167563A1 (ja) * 2018-03-02 2019-09-06 古野電気株式会社 水中探知装置、および、水中探知方法
JP2020190451A (ja) * 2019-05-21 2020-11-26 古野電気株式会社 水中探知装置、および、水中探知方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724593B2 (ja) * 2016-06-22 2020-07-15 日本電気株式会社 アクティブソーナーおよびアクティブソーナーの制御方法
JP7051625B2 (ja) * 2018-07-12 2022-04-11 古野電気株式会社 水中探知装置及び水中探知方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939463A (en) * 1964-02-05 1976-02-17 The United States Of America As Represented By The Secretary Of The Navy Acoustic transponder navigation system
EP0199571A1 (en) * 1985-04-20 1986-10-29 Peter Travis Gough Continuous transmission synthetic aperture sonar
US4862427A (en) * 1987-12-22 1989-08-29 Ketema, Inc. Sonar system with area moving target indicator
WO2005008272A2 (en) * 2003-07-11 2005-01-27 Blue View Technologies, Inc. Systems and methods implementing frequency-steered acoutic arrays for 2d and 3d imaging
WO2013126761A1 (en) 2012-02-22 2013-08-29 Johnson Outdoors Inc. 360 degree imaging sonar and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544071A (zh) * 2016-06-23 2018-01-05 古野电气株式会社 水中探测***
WO2018163844A1 (ja) * 2017-03-10 2018-09-13 古野電気株式会社 超音波探知装置及び超音波探知方法
JPWO2018163844A1 (ja) * 2017-03-10 2019-12-26 古野電気株式会社 超音波探知装置及び超音波探知方法
US11320534B2 (en) 2017-03-10 2022-05-03 Furuno Electric Company Limited Ultrasonic detecting device and ultrasonic detecting method
WO2019167563A1 (ja) * 2018-03-02 2019-09-06 古野電気株式会社 水中探知装置、および、水中探知方法
JPWO2019167563A1 (ja) * 2018-03-02 2021-02-12 古野電気株式会社 水中探知装置、および、水中探知方法
JP2020190451A (ja) * 2019-05-21 2020-11-26 古野電気株式会社 水中探知装置、および、水中探知方法
JP7246251B2 (ja) 2019-05-21 2023-03-27 古野電気株式会社 水中探知装置、および、水中探知方法
US11668822B2 (en) 2019-05-21 2023-06-06 Furuno Electric Company Limited Underwater detection apparatus and underwater detection method

Also Published As

Publication number Publication date
EP3018494A1 (en) 2016-05-11
US20160131760A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP2016090452A (ja) 探知装置及び水中探知装置
EP3096159B1 (en) Sonar systems and methods using interferometry and beamforming for 3d imaging
EP3144700B1 (en) Adaptive beamformer for sonar imaging
JP2016090453A (ja) 探知装置及び水中探知装置
US10247822B2 (en) Sonar transducer assembly
US9335412B2 (en) Sonar transducer assembly
US20130083628A1 (en) Imaging system and method
JP5550092B2 (ja) 水中画像全方位表示処理装置及び方法
US11320534B2 (en) Ultrasonic detecting device and ultrasonic detecting method
US10215849B2 (en) CTFM detection apparatus and underwater detection apparatus
US20220026570A1 (en) Techniques for sonar data processing
JP7262298B2 (ja) 水中探知装置、および、水中探知方法
EP3570069A1 (en) Method of compressing beamformed sonar data
Wei et al. Theoretical and experimental study on multibeam synthetic aperture sonar
JP2016206152A (ja) 波浪レーダ装置
JP2014020907A (ja) 水中探知装置、水中探知方法、及びプログラム
WO2011058527A1 (en) Method and apparatus for processing sonar signals
JP2012112922A (ja) 探知装置、水中探知装置、探知方法及びプログラム
WO2022137932A1 (ja) 物標検出装置および物標検出方法
JP2859916B2 (ja) エコー信号処理装置及び該装置を含む水中探知装置
JP2021076384A (ja) ソーナー装置、方法、及びプログラム
JP2020180927A (ja) 探知装置、探知方法、およびプログラム