JP6646206B2 - Joint structure of RC members - Google Patents

Joint structure of RC members Download PDF

Info

Publication number
JP6646206B2
JP6646206B2 JP2015198054A JP2015198054A JP6646206B2 JP 6646206 B2 JP6646206 B2 JP 6646206B2 JP 2015198054 A JP2015198054 A JP 2015198054A JP 2015198054 A JP2015198054 A JP 2015198054A JP 6646206 B2 JP6646206 B2 JP 6646206B2
Authority
JP
Japan
Prior art keywords
joint
column
strength
reinforcement
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015198054A
Other languages
Japanese (ja)
Other versions
JP2017071913A (en
Inventor
清臣 金本
清臣 金本
山野辺 宏治
宏治 山野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015198054A priority Critical patent/JP6646206B2/en
Priority to MYPI2018701336A priority patent/MY192067A/en
Priority to PCT/JP2016/079452 priority patent/WO2017061413A1/en
Priority to SG11201802768TA priority patent/SG11201802768TA/en
Publication of JP2017071913A publication Critical patent/JP2017071913A/en
Priority to PH12018500730A priority patent/PH12018500730A1/en
Application granted granted Critical
Publication of JP6646206B2 publication Critical patent/JP6646206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Reinforcement Elements For Buildings (AREA)

Description

本発明は、鉄筋コンクリート(RC)部材の接合構造に関する。   The present invention relates to a joint structure for reinforced concrete (RC) members.

従来、PCa化率を高め、現場打ちコンクリートを減らすことで工期短縮を図る技術の開発が進められ、実用化されている。   2. Description of the Related Art Conventionally, a technology for shortening the construction period by increasing the rate of conversion to PCa and reducing cast-in-place concrete has been developed and has been put to practical use.

例えば、スタブの上端部に機械式継手のスリーブ(シース管)を複数設け、下端部から下方に向けて複数の主筋を突出させたプレキャストコンクリート(PCa)柱をスタブ上に設置して接合する構法がある。   For example, a method in which a plurality of sleeves (sheath pipes) of a mechanical joint are provided at the upper end of a stub, and a precast concrete (PCa) column having a plurality of main bars projecting downward from the lower end is installed on the stub and joined. There is.

このとき、PCa柱の下方に突出した複数の主筋をそれぞれ、スタブの機械式継手のスリーブ内に差し込む。そして、スタブの複数の機械式継手のスリーブ内、上下に隣り合うPCa柱の間の目地部にグラウト材を注入し、スタブとPCa柱のPCa柱同士を一体に接合する(例えば、特許文献1参照)。   At this time, a plurality of main bars projecting below the PCa column are respectively inserted into the sleeves of the mechanical joints of the stub. Then, a grout material is injected into joints between the vertically adjacent PCa columns in the sleeves of the plurality of mechanical joints of the stub, and the stub and the PCa columns of the PCa column are integrally joined (for example, Patent Document 1). reference).

特開2012−77547号公報JP 2012-77547 A

一方、一対のRC部材の主筋同士を機械式継手で接続する構法はその設計手法が確立されているが、互いの主筋同士の間隔をあけつつ重ね合わせるあき重ね継手で接続する構法の設計手法は十分に確立されていない。   On the other hand, a design method has been established for a method of connecting the main reinforcing bars of a pair of RC members with a mechanical joint. Not well established.

本発明は、上記事情に鑑み、あき重ね継手を用いてRC部材同士を好適に接合することを可能にするRC部材の接合構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a joining structure of RC members that enables appropriate joining of RC members using a lap joint.

上記の目的を達するために、この発明は以下の手段を提供している。   To achieve the above object, the present invention provides the following means.

本発明のRC部材の接合構造は、一方のRC部材が主筋を接合端面から外側に延出して形成され、他方のRC部材が柱であり、主筋と並設し、接合端面に開口するようにシース管を埋設して形成され、前記一方のRC部材の主筋を前記シース管に挿入するとともに前記シース管内にグラウト材を充填し、前記一方のRC部材の主筋と前記他方のRC部材の主筋を間隔をあけて重ねるあき重ね継手で接続するRC部材の接合構造であって、前記あき重ね継手の必要継手長 が下記の式(1)〜式(6)によって設定されていることを特徴とする。 In the joint structure of the RC members of the present invention, one of the RC members is formed by extending the main reinforcement outward from the joint end face, and the other RC member is a column, and is arranged side by side with the main reinforcement and opens to the joint end face. A main tube of the one RC member is inserted into the sheath tube, and a grout material is filled into the sheath tube, and a main bar of the one RC member and a main bar of the other RC member are formed by embedding a sheath tube. characterized in that a joint structure RC members connected by perforated lap joint overlap at intervals, necessary coupling length L d of the perforated lap joint is set by equation (1) to formula (6) And

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

ここに、Lは継手長(mm)、dは柱主筋の呼び径(mm)である。Lは継手下部無効長さ(mm)であり、式(4)で求める。σyfは柱主筋の降伏強度(N/mm)である。 Here, L d is the joint length (mm), d b is the nominal diameter of the pillar main reinforcement (mm). Lb is an ineffective length (mm) at the lower part of the joint, which is obtained by equation (4). σ yf is the yield strength (N / mm 2 ) of the column main bar .

Hは柱のシアスパン(mm)である。hは目地厚さ(mm)である。Dはシース管外径(mm)である。τbmaxは柱主筋の付着強度(N/mm)であり、式(5)によって求める。τsbmaxはシース管の付着強度(N/mm)であり、式(6)によって求める。 H is the shear span (mm) of the column. h b is a joint thickness (mm). D s is the sheath outer diameter (mm). τ bmax is the adhesion strength (N / mm 2 ) of the column main bar, and is determined by equation (5). τ sbmax is the adhesive strength (N / mm 2 ) of the sheath tube, which is determined by equation (6).

γは継手上部無効長さの継手長に対する割合である。Rは設計限界部材角(%)である。Rは降伏部材角(%)である。dcyは柱の有効せい(mm)であり、柱脚部断面の圧縮応力縁より引張鉄筋(差筋)の重心位置までの距離である。 The gamma t is a ratio with respect to the joint length of the joint upper invalid length. R d is a design limit member angle (%). Ry is the yield member angle (%). d cy is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the column base section to the position of the center of gravity of the tensile reinforcing bar (rebar).

αは付着低減係数である。fはコンクリート設計基準強度(N/mm)である。 α is the adhesion reduction coefficient. f c is the concrete design strength (N / mm 2).

また、本発明のRC部材の接合構造においては、前記シース管の内側に配筋された前記他方のRC部材の主筋配置に基づく断面の曲げ降伏強度Mが、継手終了点における作用曲げモーメントMLEを上回り、下記の式(7)の条件を満たして前記あき重ね継手の継手終了点の断面において曲げ降伏しないように、必要継手長Lが設定されていることが望ましい。 In the joint structure of the RC member of the present invention, flexural yield strength M Y cross-section based on the main reinforcement arrangement of the other RC member which is Haisuji inside the sheath tube, bending moment M acts in the joint end point greater than LE, to bend surrender in the cross section of the joint end point of the perforated lap joint satisfies the condition of equation (7) below, it is desirable to require joint length L d is set.

Figure 0006646206
Figure 0006646206

ここで、Mは継手終了点の柱主筋による断面の曲げ降伏強度(kNm)であり、下記の式(8)によって求める。MLEは継手終了点に作用するモーメント(kNm)である。Mcyは柱脚部の断面の曲げ降伏強度(kNm)であり、下記の式(9)によって求める。φは曲げモーメントの係数であり、1.0とする。 Here, M Y is flexural yield strength of a section along a pillar main reinforcement of the joint end point (kNm), determined by the following equation (8). M LE is a moment (kNm) acting on the joint end point. M cy is the bending yield strength (kNm) of the cross section of the column base, and is calculated by the following equation (9). phi e is the coefficient of bending moment, and 1.0.

は引張鉄筋の断面積(mm)である。dは柱の有効せい(mm)であり、継手終了点断面の圧縮応力縁より引張鉄筋の重心位置までの距離である。aはコンクリートのストレスブロック長さ(mm)であり、断面のつり合いより式(10)によって算定する。 はコンクリート設計基準強度(N/mm)、fは柱主筋の規格降伏点強度(N/mm)、bは部材幅(mm)である。 A s is the cross-sectional area of the tensile reinforcement (mm 2). d Y is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the cross section at the joint end point to the position of the center of gravity of the tensile rebar. a is the length (mm) of the concrete stress block, which is calculated by equation (10) from the balance of the cross sections. f c is the concrete design strength (N / mm 2), f y standards yield strength of the column main reinforcement (N / mm 2), b is a member width (mm).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

さらに、本発明のRC部材の接合構造においては、継手区間の必要横補強筋量pwdが下記の式(11)〜式(12)によって設定されていることが望ましい。 Furthermore, in the joint structure of RC members of the present invention, it is desirable that the required lateral reinforcing bar amount p wd of the joint section is set by the following equations (11) to (12).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

ここで、Cはシース管同士のあき(mm)またはシース管の最小かぶり厚さ(mm)の2倍のうち小さい方の値である。Dはシース管外径(mm)、pwdは必要横補強筋比である。fwyは横補強筋の規格降伏点強度(N/mm)である。 Here, C s is the smaller value of the space between the sheath tubes (mm) or twice the minimum cover thickness (mm) of the sheath tubes. D s is the sheath tube outer diameter (mm), and p wd is the required lateral reinforcement ratio. f wy is the standard yield strength (N / mm 2 ) of the lateral reinforcement.

σtdは設計用割裂応力度(N/mm)である。σt0は基準割裂強度(N/mm)である。σtavはコンクリートの割裂破壊時において平均的に割裂面に作用する応力度(N/mm)であり、下記の式(13)によって求める。 σ td is the design splitting stress degree (N / mm 2 ). σ t0 is the standard splitting strength (N / mm 2 ). σ tv is the stress (N / mm 2 ) acting on the split surface on average at the time of split fracture of concrete, and is calculated by the following equation (13).

αは付着低減係数である。τは柱主筋の存在付着応力度(N/mm)であり、下記の式(14)によって求める。τsbはシース管の存在付着応力度(N/mm)であり、下記の式(15)によって求める。 α is the adhesion reduction coefficient. τ b is the existing adhesive stress (N / mm 2 ) of the column main bar, and is determined by the following equation (14). τ sb is the existing adhesive stress level (N / mm 2 ) of the sheath tube, and is determined by the following equation (15).

はコンクリートの引張強度(N/mm)であり、下記の式(17)によって求める。 ft is the tensile strength of concrete (N / mm 2 ), which is determined by the following equation (17).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

本発明のRC部材の接合構造においては、従来、その設計法が確立されていなかったあき重ね継手を用いて信頼性の高い接合部の構造を実現することが可能になる。   In the joint structure of RC members of the present invention, a highly reliable joint structure can be realized by using an open lap joint whose design method has not been established.

本発明の一実施形態に係るRC部材の接合構造を示す図である。It is a figure showing the joining structure of the RC member concerning one embodiment of the present invention. 図1のX1−X1線矢視図である。FIG. 2 is a view taken along line X1-X1 in FIG. 1. 図1のX2−X2線矢視図である。FIG. 2 is a view taken along line X2-X2 in FIG. 1. 図1のX3−X3線矢視図である。FIG. 2 is a view taken along line X3-X3 in FIG. 1. 本発明の一実施形態に係るRC部材の接合構造の継手部の鉄筋応力度分布を示す図である。It is a figure which shows the reinforcement stress distribution of the joint part of the joining structure of the RC member which concerns on one Embodiment of this invention. 本発明の一実施形態に係るRC部材の接合構造の必要横補強筋比算定時の寸法設定の一例を示す図である。It is a figure which shows an example of the dimension setting at the time of calculating the required lateral reinforcement ratio of the joining structure of RC member which concerns on one Embodiment of this invention. 本発明の一実施形態に係るRC部材の接合構造の継手終了点の断面強度判定位置を示す図である。It is a figure showing the section intensity judging position of the joint end point of the joining structure of the RC member concerning one embodiment of the present invention. ACI(アメリカコンクリート学会)318におけるストレスブロック法を示す図である。It is a figure which shows the stress block method in ACI (American Concrete Institute) 318. 試験体の寸法形状と配筋状態を示す図である。It is a figure which shows the dimension shape of a test body, and a reinforcement arrangement state.

以下、図1から図9を参照し、本発明の一実施形態に係るRC部材の接合構造について説明する。   Hereinafter, a joining structure of an RC member according to an embodiment of the present invention will be described with reference to FIGS. 1 to 9.

はじめに、本実施形態では、図1から図4に示すように、一方のRC部材であるスタブ1上に他方のRC部材であるPCa柱2を設置し、これらスタブ1とPCa柱2をそれぞれ接合してPCa柱2を立設する。   First, in the present embodiment, as shown in FIGS. 1 to 4, a PCa column 2 as another RC member is installed on a stub 1 as one RC member, and these stubs 1 and PCa columns 2 are respectively joined. The PCa column 2 is erected.

スタブ1は、その上端面(接合端面)から複数の主筋3をそれぞれ、所定の長さで上方に延出(突出)させて形成されている。   The stub 1 is formed by extending (projecting) a plurality of main reinforcements 3 upward by a predetermined length from the upper end surface (joining end surface).

PCa柱2は、その下端部側に、下端面(接合端面)に開口しつつ材軸に沿う上下方向に軸線方向を向けて複数の略有底円筒状のシース管4が一体に埋設されている。また、本実施形態のPCa柱2は、複数の主筋5の下端部側を中央側に1/6の勾配角度で屈曲させた絞り部6を備え、この絞り部6によって各シース管4に各主筋5を近接させ、所定の間隔をあけて平行に一対のシース管4と主筋5がコンクリートに埋設されている。   The PCa column 2 has a plurality of substantially bottomed cylindrical sheath tubes 4 integrally embedded at the lower end side thereof, opening in the lower end surface (joining end surface) and facing the axial direction in the vertical direction along the material axis. I have. Further, the PCa column 2 of the present embodiment is provided with a constricted portion 6 in which the lower ends of the plurality of main reinforcements 5 are bent toward the center at a gradient angle of 1/6. A pair of sheath pipes 4 and a pair of main reinforcements 5 are buried in concrete in parallel with a predetermined spacing between the main reinforcements 5.

そして、本実施形態のRC部材の接合構造Aでは、PCa柱2のシース管4内に、PCa柱2の主筋5と横方向に間隔をあけ、スタブ1の下方に突出した主筋3を差し込んで挿入し、各シース管4内及び目地部7にグラウト材を注入する。これにより、シース管4を介してスタブ1とPCa柱2の主筋3、5があき重ね継手8で接続され、スタブ1とPCa柱2が一体に接合される。   In the joint structure A of the RC member of the present embodiment, the main bar 3 protruding below the stub 1 is inserted into the sheath tube 4 of the PCa column 2 with a gap in the lateral direction from the main bar 5 of the PCa column 2. The grout material is injected into each sheath tube 4 and the joint portion 7. Thereby, the main reinforcements 3 and 5 of the stub 1 and the PCa column 2 are connected by the lap joint 8 via the sheath tube 4, and the stub 1 and the PCa column 2 are integrally joined.

ここで、上記のようにスタブ1とPCa柱2の主筋2、5の継手部をあき重ね継手8とする場合の設計法について説明する。   Here, a design method in the case where the joint portions of the main reinforcements 2 and 5 of the stub 1 and the PCa column 2 are formed as the lap joints 8 as described above will be described.

なお、この設計法が対象する接合部は、例えば、地震地域(米国UBC 1997 Section 1653において、Seismic zone2〜4に該当する地域)に建設され、以下の条件を満足する建築物に適用することが好ましい。   The joints covered by this design method may be applied, for example, to buildings constructed in an earthquake area (areas corresponding to Seismic zones 2 to 4 in UBC 1997 Section 1653 in the United States) and satisfying the following conditions. preferable.

(適用する柱の制限)
1−1)終局時の軸力NはA・f/10以下とする。
1−2)終局時のせん断スパン比M/(Q・D)は、5.0以上とする。
1−3)塑性変形を考慮した終局時の柱の設計限界部材角は、2.0%以下とする。
(Restrictions on applicable pillars)
1-1) axial force N U at ultimate is an A g · f c / 10 or less.
1-2) The shear span ratio M U / (Q U · D) at the end of the operation is 5.0 or more.
1-3) The design limit member angle of the column at the end of the operation considering plastic deformation is set to 2.0% or less.

ここに、Dは柱のせい(mm)、Nは終局時に柱に生じる軸力(kN)、Mは終局時に柱に生じる曲げモーメント(kN・m)、Qは終局時に柱に生じるせん断力(kN)、Aは柱の断面積(mm)、fはシリンダー試験体圧縮強度(N/mm)である。 Here, D is because of the pillar (mm), N U is the axial force generated in the pillar ultimate time (kN), M U bending occurs pillars ultimate time moment (kN · m), Q U is occurring pillar ultimate time shear force (kN), a g is the cross-sectional area of the column (mm 2), the f c is a cylindrical specimen compressive strength (N / mm 2).

(架構形式)
架構形式は、ラーメン構造または耐力壁併用ラーメン構造とする。
(Frame type)
The frame type shall be a rigid frame structure or a rigid frame structure with load-bearing walls.

(基本事項)
その他の基本事項として、
2−1)地震荷重は、当該国あるいは当該地域において適用される規準類による。
2−2)軸方向力、曲げおよびせん断に対する断面算定は、応力解析結果に対し、日本建築学会編「鉄筋コンクリート構造計算規準・同解説」(以下、RC規準)またはACI318に基づいて行う。ただし、当該国あるいは当該地域において適用される規準類に基づいてもよい。
2−3)継手の設計は、後述の(継手の設計)に基づいて行う。
(Basic matters)
As another basic matter,
2-1) The seismic load depends on the standards applied in the country or region concerned.
2-2) The cross-sectional calculation for the axial force, bending and shear is performed based on the stress analysis results based on “Standards for Calculation of Reinforced Concrete Structures and Explanations” (hereinafter referred to as RC standards) edited by the Architectural Institute of Japan or ACI318. However, it may be based on standards applicable in the country or region.
2-3) Design of the joint is performed based on (design of joint) described later.

(使用材料)
(コンクリート)
3−1)普通コンクリートとする。
3−2)設計基準強度は、f=21〜30N/mm(シリンダー強度)またはfcu=25〜40N/mm(立方体強度)以上とし、f=0.8fcuでシリンダー強度に換算する。換算係数は、適用規準による数値としてもよい。
(Material used)
(concrete)
3-1) Use ordinary concrete.
3-2) design strength is set to f c = 21~30N / mm 2 (cylinder strength) or f cu = 25~40N / mm 2 (cubic strength) above, the cylinder strength f c = 0.8f cu Convert. The conversion factor may be a numerical value according to the applicable standard.

(鉄筋)
4−1)異形鉄筋とし、径は25mm以下とする。
4−2)主筋の規格降伏点強度は、500N/mm以下とする。
(Rebar)
4-1) A deformed reinforcing bar having a diameter of 25 mm or less.
4-2) The standard yield point strength of the main reinforcement is 500 N / mm 2 or less.

(シース管)
JIS G3302溶融亜鉛メッキ鋼板および鋼帯あるいは同等の材料とする。
(Sheath tube)
JIS G3302 Hot-dip galvanized steel sheet and steel strip or equivalent material.

(グラウト材)
5−1)シース管内部およびPCa柱脚に適用する。
5−2)圧縮強度は、60N/mm以上(シリンダー強度)とする。
(Grout material)
5-1) Applies to the inside of the sheath tube and the PCa pedestal.
5-2) The compressive strength is 60 N / mm 2 or more (cylinder strength).

(PCa柱の設計)
次に、PCa柱の設計について説明する。
(PCa pillar design)
Next, the design of the PCa column will be described.

(軸方向力と曲げに対する算定)
まず、軸方向力と曲げに対しては、
6−1)RC規準またはACI318に基づいて断面内の応力度を算定し、許容曲げモーメント、または終局曲げ耐力を求める。ただし、当該国あるいは当該地域において適用される規準類に基づいてもよい。
6−2)柱の最小主筋量は、適用する設計基準の規定に従う。
(Calculation for axial force and bending)
First, for axial force and bending,
6-1) Calculate the stress in the cross section based on the RC standard or ACI 318 to obtain the allowable bending moment or ultimate bending strength. However, it may be based on standards applicable in the country or region.
6-2) The minimum main reinforcement of a column follows the rules of the applicable design standard.

(せん断に対する算定)
せん断に対する算定は、
7−1)RC規準またはACI318に基づいて、許容せん断力または終局せん断強度を求める。ただし、当該国あるいは当該地域において適用される規準類に基づいてもよい。
7−2)最小せん断補強筋比は、適用する設計基準の規定に従う。
7−3)せん断は、柱脚および継手終了点で算定する。
7−4)柱脚小口面において、グラウトとのせん断摩擦強度を検討する。
(Calculation for shear)
The calculation for shear is
7-1) Determine allowable shear force or ultimate shear strength based on RC standards or ACI 318. However, it may be based on standards applicable in the country or region.
7-2) The minimum shear reinforcement ratio follows the rules of the applicable design standards.
7-3) Shear is calculated at column base and joint end point.
7-4) The shear friction strength with the grout on the column base small face is examined.

(継手の設計)
次に、柱脚部の継手は、以下の手順(a)〜(c)によって設計する。
(a)付着による継手長Lの算定を行い、
(b)継手終了点の断面において曲げ降伏しないことの確認を行い、
(c)継手区間の必要横補強筋量pwdの算定を行う。
(Joint design)
Next, the joint of the column base is designed by the following procedures (a) to (c).
(A) is performed to calculate the joint length L d by adhesion,
(B) Confirm that bending yield does not occur at the section at the joint end point,
(C) The required lateral reinforcement bar amount p wd of the joint section is calculated.

(a)付着による継手長Lの算定
重ね継手部の必要継手長Lは下記の式(18)〜式(23)によって算出する。なお、式中の記号は図5を参照。
(A) have joint length L d of calculating lap joint part of the joint length L d by adhering calculated by the following equation (18) to (23). The symbols in the formulas are shown in FIG.

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

ここに、Lは継手長(mm)、dは柱主筋の呼び径(mm)である。Lは継手下部無効長さ(mm)であり、式(21)で求める。σyfは柱主筋の降伏強度(N/mm)であり、規格降伏点強度の1.1倍とする。 Here, L d is the joint length (mm), d b is the nominal diameter of the pillar main reinforcement (mm). Lb is the ineffective length at the lower part of the joint (mm), which is obtained by equation (21). σ yf is the yield strength (N / mm 2 ) of the column main bar, which is 1.1 times the standard yield point strength.

Hは柱のシアスパン(mm)である。hはプレキャスト目地厚さ(mm)であり、安全側の検討ではh=0とする。Dはシース管外径(mm)である。τbmaxは柱主筋の付着強度(N/mm)であり、式(22)によって求める。τsbmaxはシース管の付着強度(N/mm)であり、式(23)によって求める。 H is the shear span (mm) of the column. h b is the precast joint thickness (mm), and h b = 0 in the study of the safety side. D s is the sheath outer diameter (mm). τ bmax is the adhesion strength (N / mm 2 ) of the column main bar, and is determined by equation (22). τ sbmax is the adhesion strength of the sheath tube (N / mm 2 ), which is determined by equation (23).

γは継手上部無効長さの継手長に対する割合であり、0.13とする。Rは設計限界部材角(%)であり、2.0%とする。Rは降伏部材角(%)であり、0.75%とする。dcyは柱の有効せい(mm)であり、柱脚部断面の圧縮応力縁より引張鉄筋(差筋)の重心位置までの距離である。 gamma t is the fraction for the joint length of the joint upper invalid length, and 0.13. Rd is a design limit member angle (%), which is set to 2.0%. Ry is the yield member angle (%), which is 0.75%. d cy is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the column base section to the position of the center of gravity of the tensile reinforcing bar (rebar).

αは付着低減係数であり、平打ちによる柱製作時は0.8とし、その他は1.0とする。fはコンクリート設計基準強度(N/mm)である。 α is an adhesion reduction coefficient, which is set to 0.8 when manufacturing a pillar by flat striking, and set to 1.0 for others. f c is the concrete design strength (N / mm 2).

(b)継手終了点の断面において曲げ降伏しないことの確認
シース管の内側に配筋されたPCa柱主筋配置に基づく断面の曲げ降伏強度Mが、継手終了点における作用曲げモーメントMLEを上回っていることを下記の式(24)によって確認する。式(24)を満たさない場合は、継手終了点におけるひび割れが卓越することが予想されるため、式(24)を満足するように必要継手長Lを割り増しする。
(B) the cross-section based on PCa Columns main reinforcement arrangement is Haisuji inside the confirmation sheath tube of not bent yield in the cross section of the joint end point flexural yield strength M Y is greater than the effect bending moment M LE in the joint end point Is confirmed by the following equation (24). If not satisfy Expression (24), since the cracks in the joint end point is expected to excellence and extra required joint length L d so as to satisfy the equation (24).

ここで、Mは継手終了点の柱主筋による断面の曲げ降伏強度(kN・m)であり、下記の式(25)によって求める。MLEは継手終了点に作用するモーメント(kN・m)である。Mcyは柱脚部の断面の曲げ降伏強度(kN・m)であり、下記の式(26)によって求める。前述の通り、Hは柱のシアスパン長(mm)である。hはプレキャスト目地厚さ(mm)であり、安全側の検討ではh=0とする。Lは継手長(mm)である。Lは継手下部無効長さ(mm)であり、式(21)によって求める。φは曲げモーメントの係数であり、1.0とする。 Here, M Y is flexural yield strength of a section along a pillar main reinforcement of the joint end point (kN · m), determined by the following equation (25). M LE is a moment (kN · m) acting on the joint end point. M cy is the bending yield strength (kN · m) of the cross section of the column base, and is calculated by the following equation (26). As described above, H is the shear span length (mm) of the column. h b is the precast joint thickness (mm), and h b = 0 in the study of the safety side. L d is the joint length (mm). Lb is the ineffective length (mm) at the lower part of the joint, which is obtained by equation (21). phi e is the coefficient of bending moment, and 1.0.

また、Aは引張鉄筋の断面積(mm)である。dは柱の有効せい(mm)であり、継手終了点断面の圧縮応力縁より引張鉄筋の重心位置までの距離である。dcyは柱の有効せい(mm)であり、柱脚部断面の圧縮応力縁より引張鉄筋(差筋)の重心位置までの距離である。aはコンクリートのストレスブロック長さ(mm)であり、断面のつり合いより式(27)によって算定する。 はコンクリート設計基準強度(N/mm)、fは柱主筋の規格降伏点強度(N/mm)、bは部材幅(mm)である。
Also, A s is the cross-sectional area of the tensile reinforcement (mm 2). d Y is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the cross section at the joint end point to the position of the center of gravity of the tensile rebar. d cy is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the column base section to the position of the center of gravity of the tensile reinforcing bar (rebar). a is the length (mm) of the stress block of the concrete, which is calculated by equation (27) from the balance of the cross sections. f c is the concrete design strength (N / mm 2), f y standards yield strength of the column main reinforcement (N / mm 2), b is a member width (mm).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

(c)継手区間の必要横補強筋量pwdの算定
必要横補強筋量pwdは、下記の式(28)、式(29)によって算出する。
(C) Calculation required transverse reinforcement amount p wd necessary transverse reinforcement amount p wd joint section, the following equation (28), is calculated by equation (29).

ここで、Cはシース管同士のあき(mm)またはシース管の最小かぶり厚さ(mm)の2倍のうち小さい方の値である。Dはシース管外径(mm)、pwdは必要横補強筋比である。fwyは横補強筋の規格降伏点強度(N/mm)とし、390N/mm以下とする。 Here, C s is the smaller value of the space between the sheath tubes (mm) or twice the minimum cover thickness (mm) of the sheath tubes. D s is the sheath tube outer diameter (mm), and p wd is the required lateral reinforcement ratio. f wy is the standard yield point strength (N / mm 2 ) of the lateral reinforcement, and is 390 N / mm 2 or less.

σtdは設計用割裂応力度(N/mm)である。σt0は基準割裂強度(N/mm)であり、1.0とする。σtavはコンクリートの割裂破壊時において平均的に割裂面に作用する応力度(N/mm)であり、下記の式(30)によって求める。 σ td is the design splitting stress degree (N / mm 2 ). σ t0 is the standard splitting strength (N / mm 2 ) and is set to 1.0. σ tv is the average stress (N / mm 2 ) acting on the split surface at the time of concrete split fracture, and is determined by the following equation (30).

αは付着低減係数であり、平打ちによる柱製作時は0.8とし、その他は1.0とする。τは柱主筋の存在付着応力度(N/mm)であり、下記の式(31)によって求める。τsbはシース管の存在付着応力度(N/mm)であり、下記の式(32)によって求める。 α is an adhesion reduction coefficient, which is set to 0.8 when manufacturing a pillar by flat striking, and set to 1.0 for others. τ b is the existing adhesive stress level (N / mm 2 ) of the column main bar, and is determined by the following equation (31). τ sb is the existing adhesive stress level (N / mm 2 ) of the sheath tube, and is determined by the following equation (32).

は柱主筋の呼び径(mm)である。σは柱主筋の降伏強度(N/mm)であり、規格降伏点強度の1.1倍とする。Hは柱のシアスパン(mm)である。hはプレキャスト目地厚さ(mm)であり、安全側の検討ではh=0とする。Lは継手長(mm)である。Lは継手上部無効長さ(mm)であり、下記の式(33)によって求める。前述の通り、Lは継手下部無効長さ(mm)であり、式(21)によって求める。Dはシース管外径(mm)、fはコンクリート設計基準強度(N/mm)である。fはコンクリートの引張強度(N/mm)であり、下記の式(34)によって求める。 d b is the nominal diameter of the pillar main reinforcement (mm). σ y is the yield strength (N / mm 2 ) of the column main bar, which is 1.1 times the standard yield point strength. H is the shear span (mm) of the column. h b is the precast joint thickness (mm), and h b = 0 in the study of the safety side. L d is the joint length (mm). Lt is the joint ineffective length (mm), which is determined by the following equation (33). As described above, Lb is the ineffective length (mm) at the lower part of the joint, which is obtained by Expression (21). D S is a sheath outer diameter (mm), f c is the concrete design strength (N / mm 2). ft is the tensile strength (N / mm 2 ) of the concrete, which is determined by the following equation (34).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

そして、上記の設計法は、次の8−1)〜8−9)の条件のもとで適用する。
8−1)シース管内柱主筋とPCa内の柱主筋の径、本数、材質は同一とする。
8−2)PCa内の柱主筋の絞り部は、傾きが1/6以下となるように加工する。柱主筋の屈曲点においては、水平方向分力を負担できるように追加の横補強筋を配置する。
8−3)最小継手長さは、主筋径の40倍以上とする。
8−4)継手長さは、計算上必要な長さとともに施工誤差を考慮して定める。
8−5) 継手区間の横補強筋の径は10mm以上とし、間隔は100mm以下とする。継手区間上部の横補強筋は、適用する設計基準の規定に従う。
8−6)割裂破壊の防止のため、シース管は全数を横補強筋(中子筋)で拘束する。
8−7)フープおよび中子筋のフックは、余長6d以上の135度または180度フックとする。
8−8)継手を形成するシース管と柱主筋の組合せを除く、シース管および柱主筋のあきは、粗骨材径の4/3倍かつ主筋径以上とする。
8−9)あき重ね継手におけるスタブの主筋とPCa柱の主筋の間隔は、あき重ね継手長の1/5、且つ150mm以下と規定する。
The above design method is applied under the following conditions 8-1) to 8-9).
8-1) The diameter, the number, and the material of the sheath main column in the sheath tube and the column main bar in the PCa are the same.
8-2) The narrowed portion of the column main bar in PCa is processed so that the inclination is 1/6 or less. At the inflection point of the column main reinforcement, an additional lateral reinforcement is arranged so as to bear the horizontal component force.
8-3) The minimum joint length is 40 times or more the main bar diameter.
8-4) The joint length is determined in consideration of construction errors as well as lengths necessary for calculation.
8-5) The diameter of the lateral reinforcement in the joint section is 10 mm or more, and the interval is 100 mm or less. The horizontal reinforcement at the top of the joint section complies with the applicable design standards.
8-6) In order to prevent split fracture, all of the sheath tubes are restrained by lateral reinforcing bars (core bars).
8-7) The hook of the hoop and the core muscle is a 135-degree or 180-degree hook with a surplus length of 6d or more.
8-8) Except for the combination of the sheath tube and the column main bar that form the joint, the gap between the sheath tube and the column main bar is 4/3 times the coarse aggregate diameter and equal to or larger than the main bar diameter.
8-9) The interval between the main reinforcement of the stub and the main reinforcement of the PCa column in the open lap joint is specified to be 1/5 of the length of the open lap joint and 150 mm or less.

(本設計で想定する応力状態)
また、本設計で想定する応力状態は、柱端部で曲げ降伏モーメントに達した際の継手部の鉄筋の応力状態を、図5のように仮定する。
さらに、付着割裂破壊時の割裂線や各種寸法は図6のように仮定する。継手終了点が曲げ降伏しないことを確認する際には、図7に示す曲げモーメント分布を仮定する。なお、継手終了点の断面が曲げ降伏すると、図5に示す上部継手無効長さLが想定よりも長くなり、その結果、有効継手長が想定より短くなって継手部からの柱主筋の抜け出しが起こることが予想される。そのため、継手終了点の断面が曲げ降伏しないような計画とする。
(Stress condition assumed in this design)
As the stress state assumed in this design, the stress state of the reinforcing bar of the joint when the bending yield moment is reached at the column end is assumed as shown in FIG.
Further, the split line and various dimensions at the time of the adhesive split fracture are assumed as shown in FIG. When confirming that the joint end point does not yield bending, the bending moment distribution shown in FIG. 7 is assumed. Incidentally, the cross-section of the joint end point bending yields, longer than the upper joint invalid length L t is assumed as shown in FIG. 5, as a result, escape of pillar main reinforcement from the joint portion by effectively coupling length is shorter than expected Is expected to happen. Therefore, the plan is such that the cross section at the end point of the joint does not bend and yield.

(設計限界部材角Rの設定)
継手下部無効長さLの算出に用いる設計限界部材角Rは、米国ASCE 7−05における一般建物の層間変形角クライテリア2.0%に基づき設定した。本設計においては、設計限界部材角Rまで継手部を先行して破壊させない思想に基づく設計式となっている。建物の設計方針に従って適切に評価することにより、適宜Rの数値を変更することは可とする。ただし、Rの上限値は実験で確認のできている2.5%とする。Rの数値を小さくすると、継手下部無効長さLは長くなり、式(18)による必要継手長Lは短くなる。
(Setting of design limit member angle Rd )
Design limit member angle R d used for calculating the joint lower invalid length L b were set based on the story drift Criteria 2.0% of the general buildings in the United States ASCE 7-05. In this design, a design equation based on the idea not to destroy prior joint portion to the design limits member angle R d. By appropriately evaluated according to the design policy of the building, to change the value of the appropriate R d is a variable. However, the upper limit value of R d is 2.5% which is made of empirically confirmed. Smaller numbers of R d, fitting the lower invalid length L b is longer, requires joint length L b according to equation (18) becomes shorter.

(継手終了点において曲げ降伏しないことの検討用の降伏強度)
継手終了点の断面の降伏強度M及び柱脚部の断面の降伏強度Mcyは、ACI318に示されたコンクリートストレスブロック法(図8)を用いた終局耐力を求める下記の式(35)、式(36)をベースに算出している。降伏強度を簡易な計算で求める手法がACI318では示されていないため、ここでは本式をベースとし、強度低減係数φを1.0とした式(25)、式(26)を、継手終了点の断面において曲げ降伏しないことの検討用の降伏強度とした。
(Yield strength for studying that bending yield does not occur at the joint end point)
Yield strength M cy of the cross-section of the yield strength M Y and the column base portion of the cross-section of the joint end point, following obtaining the ultimate strength of using concrete stress block method shown in ACI318 (Figure 8) Equation (35), It is calculated based on equation (36). Since the method for obtaining the yield strength by simple calculation is not shown in ACI318, here, based on this equation, the equations (25) and (26) with the strength reduction coefficient φ of 1.0 are used as the joint end points. Yield strength for studying that bending yield does not occur in the cross section of.

ここで、Aは引張鉄筋の断面積(mm)、fは主筋の規格降伏点強度(N/mm)、dは柱の有効せい(圧縮応力縁より引張鉄筋の重心位置までの距離(mm)、aはコンクリートのストレスブロック長さ(mm)であり、断面のつり合いより式(36)によって求める。φは強度低減係数であり、0.9とする。f’はコンクリートの設計基準強度(N/mm)、bは部材幅(mm)である。 Here, A s is the tensile cross-sectional area of the reinforcing bars (mm 2), f y standards yield strength of main reinforcement (N / mm 2), d is blame effective pillar (up to the center of gravity of the tensile than the compressive stress edge reinforcement distance (mm), a is the stress block length of concrete (mm), .φ determined by equation (36) from the balance of the cross section is the intensity reduction factor, .f c 'is the concrete 0.9 Design reference strength (N / mm 2 ), b is the member width (mm).

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

(実験結果との照合)
ここで、前述の必要継手長の算定方法、付着強度、必要横補強筋量の算定方法によって柱部材試験体の破壊モードを正しく判定できるか否かを確認した。
図9に試験体の寸法形状と配筋を、表1及び表2に検討結果を示す。なお、正側はプレキャスト上端側、負側はプレキャスト下端側である。
(Collation with experimental results)
Here, it was confirmed whether or not the failure mode of the column member test piece can be correctly determined by the above-described calculation method of the necessary joint length, the adhesion strength, and the calculation method of the necessary lateral reinforcement.
FIG. 9 shows the dimensions, shapes and arrangements of the test pieces, and Tables 1 and 2 show the results of the study. The positive side is the upper side of the precast, and the negative side is the lower side of the precast.

Figure 0006646206
Figure 0006646206

Figure 0006646206
Figure 0006646206

試験体No.1では、正側では必要継手長、必要横補強筋量を満足しているが、負側は横補強筋量が不足するという判定結果となり、実験の結果、負側において付着割裂破壊が起きたことと合致している。   Specimen No. In No. 1, the positive side satisfies the required joint length and the required amount of lateral reinforcement, but the negative side resulted in a determination that the amount of lateral reinforcement was insufficient. Is consistent with that.

試験体No.2では、必要継手長、必要横補強筋量を満足しており、実験の結果、荷重低下のない曲げ靱性型となったことと一致した。   Specimen No. In No. 2, the required joint length and the required amount of lateral reinforcement were satisfied, and as a result of the experiment, it was consistent with the fact that the bending toughness type without load reduction was obtained.

試験体No.3及びNo.4では、継手長及び横補強筋量の両方が不足するという判定結果となった。実験の結果、試験体No.3及びNo.4は継手部から柱主筋が抜出す破壊となり判定結果と合致した。   Specimen No. 3 and No. 3 In No. 4, the determination result was that both the joint length and the amount of the lateral reinforcement were insufficient. As a result of the experiment, the specimen No. 3 and No. 3 In No. 4, the main column was pulled out from the joint, and the fracture was consistent with the judgment result.

このようにいずれの試験体においても、実験によって得られた破壊モードを正しく判定することができることが確認された。   As described above, it was confirmed that the fracture mode obtained by the experiment can be correctly determined in any of the test pieces.

したがって、本実施形態のRC部材の接合構造においては、従来、その設計法が確立されていなかったあき重ね継手を用いて信頼性の高い接合部の構造を実現することが可能になる。   Therefore, in the joint structure of the RC member of the present embodiment, it is possible to realize a highly reliable joint structure by using an open lap joint whose design method has not been established conventionally.

以上、本発明に係るRC部材の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   Although the embodiment of the RC member according to the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.

本発明に係る一方のRC部材は必ずしもスタブでなくてもよく、例えば柱部材であってもよい。また、他方のRC部材は、PCa柱でなく、現場打ちのRC柱であってもよい。   One RC member according to the present invention is not necessarily a stub, and may be, for example, a column member. Further, the other RC member may be a cast-in-place RC column instead of the PCa column.

1 スタブ(一方のRC部材)
2 PCa柱(他方のRC部材/柱)
3 主筋
4 シース管
5 主筋
6 絞り部
7 目地部
8 あき重ね継手
A RC部材の接合構造
1 stub (one RC member)
2 PCa pillar (the other RC member / pillar)
3 Main Bar 4 Sheath Tube 5 Main Bar 6 Restrictor 7 Joint 8 Opening Joint ARC Joint Structure of RC Member

Claims (3)

一方のRC部材が主筋を接合端面から外側に延出して形成され、
他方のRC部材が柱であり、主筋と並設し、接合端面に開口するようにシース管を埋設して形成され、
前記一方のRC部材の主筋を前記シース管に挿入するとともに前記シース管内にグラウト材を充填し、前記一方のRC部材の主筋と前記他方のRC部材の主筋を間隔をあけて重ねるあき重ね継手で接続するRC部材の接合構造であって、
前記あき重ね継手の必要継手長 が下記の式(1)〜式(6)によって設定されていることを特徴とするRC部材の接合構造。
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
ここに、Lは継手長(mm)、dは柱主筋の呼び径(mm)である。Lは継手下部無効長さ(mm)であり、式(4)で求める。σyfは柱主筋の降伏強度(N/mm)である。
Hは柱のシアスパン(mm)である。hは目地厚さ(mm)である。Dはシース管外径(mm)である。τbmaxは柱主筋の付着強度(N/mm)であり、式(5)によって求める。τsbmaxはシース管の付着強度(N/mm)であり、式(6)によって求める。
γは継手上部無効長さの継手長に対する割合である。Rは設計限界部材角(%)である。Rは降伏部材角(%)である。dcyは柱の有効せい(mm)であり、柱脚部断面の圧縮応力縁より引張鉄筋(差筋)の重心位置までの距離である。
αは付着低減係数である。fはコンクリート設計基準強度(N/mm)である。
One RC member is formed by extending the main reinforcement outward from the joint end face,
The other RC member is a pillar, is formed by embedding a sheath tube so as to be juxtaposed with the main reinforcement and opening at the joint end face,
An open lap joint that inserts the main reinforcement of the one RC member into the sheath tube, fills the sheath tube with a grout material, and overlaps the main reinforcement of the one RC member and the main reinforcement of the other RC member at intervals. A joining structure of connecting RC members,
Joint structure RC member, characterized in that the required joint length L d of the perforated lap joint is set by equation (1) to (6) below.
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Here, L d is the joint length (mm), d b is the nominal diameter of the pillar main reinforcement (mm). Lb is an ineffective length (mm) at the lower part of the joint, which is obtained by equation (4). σ yf is the yield strength (N / mm 2 ) of the column main bar .
H is the shear span (mm) of the column. h b is a joint thickness (mm). D s is the sheath outer diameter (mm). τ bmax is the adhesion strength (N / mm 2 ) of the column main bar, and is determined by equation (5). τ sbmax is the adhesive strength (N / mm 2 ) of the sheath tube, which is determined by equation (6).
The gamma t is a ratio with respect to the joint length of the joint upper invalid length. R d is a design limit member angle (%). Ry is the yield member angle (%). d cy is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the column base section to the position of the center of gravity of the tensile reinforcing bar (rebar).
α is the adhesion reduction coefficient. f c is the concrete design strength (N / mm 2).
請求項1記載のRC部材の接合構造において、
前記シース管の内側に配筋された前記他方のRC部材の主筋配置に基づく断面の曲げ降伏強度Mが、継手終了点における作用曲げモーメントMLEを上回り、下記の式(7)の条件を満たして前記あき重ね継手の継手終了点の断面において曲げ降伏しないように、必要継手長Lが設定されていることを特徴とするRC部材の接合構造。
Figure 0006646206
ここで、Mは継手終了点の柱主筋による断面の曲げ降伏強度(kNm)であり、下記の式(8)によって求める。MLEは継手終了点に作用するモーメント(kN・m)である。Mcyは柱脚部の断面の曲げ降伏強度(kN・m)であり、下記の式(9)によって求める。φは曲げモーメントの係数であり、1.0とする。
は引張鉄筋の断面積(mm)である。dは柱の有効せい(mm)であり、継手終了点断面の圧縮応力縁より引張鉄筋の重心位置までの距離である。aはコンクリートのストレスブロック長さ(mm)であり、断面のつり合いより式(10)によって算定する。 はコンクリート設計基準強度(N/mm)、fは柱主筋の規格降伏点強度(N/mm)、bは部材幅(mm)である。
Figure 0006646206
Figure 0006646206
Figure 0006646206
The joint structure of an RC member according to claim 1,
Flexural yield strength M Y cross-section based on the main reinforcement arrangement of the other RC member which is Haisuji inside the sheath tube, exceeds the effect bending moment M LE in the joint end point, the condition of the following formula (7) joint structure RC member characterized by satisfying to bend surrender in the cross section of the joint end point of the perforated lap joints, requires the joint length L d is set.
Figure 0006646206
Here, M Y is flexural yield strength of a section along a pillar main reinforcement of the joint end point (kNm), determined by the following equation (8). M LE is a moment (kN · m) acting on the joint end point. M cy is the bending yield strength (kN · m) of the cross section of the column base, and is calculated by the following equation (9). phi e is the coefficient of bending moment, and 1.0.
A s is the cross-sectional area of the tensile reinforcement (mm 2). d Y is the effective threshold (mm) of the column, and is the distance from the compressive stress edge of the cross section at the joint end point to the position of the center of gravity of the tensile rebar. a is the length (mm) of the concrete stress block, which is calculated by equation (10) from the balance of the cross sections. f c is the concrete design strength (N / mm 2), f y standards yield strength of the column main reinforcement (N / mm 2), b is a member width (mm).
Figure 0006646206
Figure 0006646206
Figure 0006646206
請求項1または請求項2に記載のRC部材の接合構造において、
継手区間の必要横補強筋量pwdが下記の式(11)〜式(12)によって設定されていることを特徴とするRC部材の接合構造。
Figure 0006646206
Figure 0006646206
ここで、Cはシース管同士のあき(mm)またはシース管の最小かぶり厚さ(mm)の2倍のうち小さい方の値である。Dはシース管外径(mm)、pwdは必要横補強筋比である。fwyは横補強筋の規格降伏点強度(N/mm)である。
σtdは設計用割裂応力度(N/mm)である。σt0は基準割裂強度(N/mm)である。σtavはコンクリートの割裂破壊時において平均的に割裂面に作用する応力度(N/mm)であり、下記の式(13)によって求める。
αは付着低減係数である。τは柱主筋の存在付着応力度(N/mm)であり、下記の式(14)によって求める。τsbはシース管の存在付着応力度(N/mm)であり、下記の式(15)によって求める。
はコンクリートの引張強度(N/mm)であり、下記の式(17)によって求める。
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
In the joining structure of the RC member according to claim 1 or 2,
The joint structure of RC members, wherein the required lateral reinforcement bar amount p wd of the joint section is set by the following equations (11) to (12).
Figure 0006646206
Figure 0006646206
Here, C S is the smaller value of twice the minimum head thickness Aki (mm) or sheath tube between the sheath tube (mm). D S sheath outer diameter (mm), p wd is necessary transverse reinforcement ratio. f wy is the standard yield strength (N / mm 2 ) of the lateral reinforcement.
σ td is the design splitting stress degree (N / mm 2 ). σ t0 is the standard splitting strength (N / mm 2 ). σ tv is the stress (N / mm 2 ) acting on the split surface on average at the time of split fracture of concrete, and is calculated by the following equation (13).
α is the adhesion reduction coefficient. τ b is the existing adhesive stress (N / mm 2 ) of the column main bar, and is determined by the following equation (14). τ sb is the existing adhesive stress level (N / mm 2 ) of the sheath tube, and is determined by the following equation (15).
ft is the tensile strength of concrete (N / mm 2 ), which is determined by the following equation (17).
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
Figure 0006646206
JP2015198054A 2015-10-05 2015-10-05 Joint structure of RC members Active JP6646206B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015198054A JP6646206B2 (en) 2015-10-05 2015-10-05 Joint structure of RC members
MYPI2018701336A MY192067A (en) 2015-10-05 2016-10-04 Rc member joining structure
PCT/JP2016/079452 WO2017061413A1 (en) 2015-10-05 2016-10-04 Rc member joining structure
SG11201802768TA SG11201802768TA (en) 2015-10-05 2016-10-04 Rc member joining structure
PH12018500730A PH12018500730A1 (en) 2015-10-05 2018-04-03 Rc member joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015198054A JP6646206B2 (en) 2015-10-05 2015-10-05 Joint structure of RC members

Publications (2)

Publication Number Publication Date
JP2017071913A JP2017071913A (en) 2017-04-13
JP6646206B2 true JP6646206B2 (en) 2020-02-14

Family

ID=58487697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015198054A Active JP6646206B2 (en) 2015-10-05 2015-10-05 Joint structure of RC members

Country Status (5)

Country Link
JP (1) JP6646206B2 (en)
MY (1) MY192067A (en)
PH (1) PH12018500730A1 (en)
SG (1) SG11201802768TA (en)
WO (1) WO2017061413A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109098352B (en) * 2018-10-24 2024-02-23 张云天 Prefabricated assembled steel pipe concrete column splicing structural member and construction method thereof
CN110441140B (en) * 2019-07-15 2022-04-15 郑州大学 Method for analyzing stress performance of stainless steel reinforced concrete column
JP6738954B1 (en) * 2019-12-23 2020-08-12 株式会社竹中工務店 Precast concrete parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216826A (en) * 1988-07-05 1990-01-19 Nec Corp Auxiliary signal transmission circuit
JP2761451B2 (en) * 1993-07-22 1998-06-04 黒沢建設株式会社 How to connect precast concrete columns
JPH07292860A (en) * 1994-04-27 1995-11-07 Ohbayashi Corp Irregular-shaped steel pipe for joint, pc member with irregular-shaped steel pipe for joint, and method for connecting pc member with irregular-shaped steel pipe for joint
JP4373392B2 (en) * 2005-11-25 2009-11-25 大成建設株式会社 PCa material

Also Published As

Publication number Publication date
PH12018500730A1 (en) 2018-10-15
WO2017061413A1 (en) 2017-04-13
JP2017071913A (en) 2017-04-13
SG11201802768TA (en) 2018-05-30
MY192067A (en) 2022-07-25

Similar Documents

Publication Publication Date Title
Moehle et al. Seismic design of reinforced concrete special moment frames: a guide for practicing engineers
JP5239190B2 (en) Reinforcing method for existing RC member and panel for reinforcing existing RC member
JP6646206B2 (en) Joint structure of RC members
Moehle et al. Seismic design of reinforced concrete special moment frames
JP2018141341A (en) Mounting structure of precast wall balustrade and mounting method thereof
KR101531626B1 (en) Shear reinforcement member for precast concrete composite slab
JP2016160617A (en) COMPOSITE BEAM AND PCa COMPOSITE BEAM MEMBER CONSTITUTING THE SAME, AND COMPOSITE RIGID-FRAME STRUCTURE
JP2015172299A (en) Opening reinforcement structure in rc beam
JP2015140635A (en) Rigid frame having wide flat beam, and building using the same
JP2006225894A (en) Method for calculating shear strength of reinforced concrete beam, design method using the same, reinforced concrete beam designed by the design method, and structure of reinforced concrete beam and floor
JP6573111B2 (en) Beam-column joint structure
JP6434767B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
KR20140110491A (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP2017095915A (en) Junction structure between column-beam joint part and column, rigid-frame viaduct, construction method for junction structure between column-beam joint part and column, and precast concrete member
JP2016142062A (en) Joining structure of reinforced concrete column and steel beam
KR101736594B1 (en) Connecting sturcture between column and beam
JP2014173223A (en) Reinforcement structure
US10577796B1 (en) Concrete shearwall and assemblies thereof, and related methods
JP6978901B2 (en) Joining structure and joining method of precast concrete beam members
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP6513754B2 (en) Reinforcement structure of reinforced concrete wall column
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
JP6733905B2 (en) Double pipe structure of pile head and its designing method
JP2006328798A (en) Composite structure frame
JPH0960194A (en) Precast concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R150 Certificate of patent or registration of utility model

Ref document number: 6646206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150