JP2016056051A - MnZn-BASED FERRITE AND MnZn-BASED FERRITE LARGE SIZE CORE - Google Patents

MnZn-BASED FERRITE AND MnZn-BASED FERRITE LARGE SIZE CORE Download PDF

Info

Publication number
JP2016056051A
JP2016056051A JP2014182822A JP2014182822A JP2016056051A JP 2016056051 A JP2016056051 A JP 2016056051A JP 2014182822 A JP2014182822 A JP 2014182822A JP 2014182822 A JP2014182822 A JP 2014182822A JP 2016056051 A JP2016056051 A JP 2016056051A
Authority
JP
Japan
Prior art keywords
mass
terms
mnzn
oxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014182822A
Other languages
Japanese (ja)
Other versions
JP6314758B2 (en
Inventor
篤 財田
Atsushi Saita
篤 財田
昌司 須佐
Shoji Susa
昌司 須佐
青木 卓也
Takuya Aoki
卓也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014182822A priority Critical patent/JP6314758B2/en
Publication of JP2016056051A publication Critical patent/JP2016056051A/en
Application granted granted Critical
Publication of JP6314758B2 publication Critical patent/JP6314758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MnZn-based ferrite having high saturation magnetic flux density Bs and low magnetic loss Pcv at high temperature (120°C).SOLUTION: There is provided a MnZn-based ferrite containing a main component consisting of iron oxide of 65 to 75 mol% in terms of FeO, zinc oxide of 5 to 20 mol% in terms of ZnO, nickel oxide of 0.4 to 2 mol% in terms of NiO and the balance practically MnO and both of tin oxide and chrome oxide as accessory components with sum total content of both in a range of 0.1 to 0.4 pts.mass in terms of SnOand in terms of CrObased on 100 pts.mass of total mass of the above described oxides of the main component and tin oxide of 0.05 to 0.35 pts.mass in terms of SnOand chromium oxide of 0.005 to 0.05 pts.mass in terms of CrO.SELECTED DRAWING: Figure 1

Description

本発明はFe、Mn、Znを含むフェライト及びフェライトコア、及びこれらを用いたトランス、チョークコイルに関する。 The present invention relates to a ferrite and a ferrite core containing Fe, Mn, and Zn, and a transformer and choke coil using these.

近年、電子機器の小型化、多機能化が急速に進展するのに伴い、各種部品の高集積化、高周波化も進み、供給される電流も大電流化が進んでいる。大電流化に伴い、各種部品からの発熱は増大し、電子機器の駆動時の発熱による温度上昇も考慮して、トランス、チョークコイルといった回路部品に用いられるコア材料は、室温から120℃程度の高温まで高い飽和磁束密度Bsを確保することが求められており、各種部品の高温での安定且つ確実な駆動が求められている。 In recent years, along with rapid progress in downsizing and multifunctionalization of electronic devices, various components have been highly integrated and high-frequency has been increased, and the current supplied has also been increased. With the increase in current, the heat generated from various components increases, and the core material used for circuit components such as transformers and choke coils is from room temperature to about 120 ° C, taking into account the temperature rise due to heat generated when driving electronic equipment. It is required to secure a high saturation magnetic flux density Bs up to a high temperature, and stable and reliable driving of various parts at a high temperature is required.

MnZn系フェライトは、一般にトランス及びチョークコイルのコア材料として使用されている。上記のような要望に応じるべく、トランスやチョークコイルに用いられるMnZn系フェライトは、動作温度において高い飽和磁束密度Bs、及び低い磁気損失Pcvを有することが求められている。 MnZn-based ferrite is generally used as a core material for transformers and choke coils. In order to meet the above demand, the MnZn-based ferrite used for the transformer and choke coil is required to have a high saturation magnetic flux density Bs and a low magnetic loss Pcv at the operating temperature.

MnZn系フェライトコアの飽和磁束密度Bsは、一般的に基本成分であるFe含有量に依存しており、Fe含有量を増加させることで飽和磁束密度Bsが向上することが知られている。しかし、60mol%を超える多量のFeを含有する組成においては、単結晶では高い最大磁束密度を有するMn−Zn系フェライトが得られても、粉末冶金的な方法では十分な焼結密度が得難いため、高い飽和磁束密度Bsが得ることが困難であった。また、磁気損失Pcvの増大を招くという不具合があり、高い飽和磁束密度Bsと低い磁気損失Pcvを実現することは困難であった。 The saturation magnetic flux density Bs of the MnZn-based ferrite core generally depends on the Fe 2 O 3 content, which is a basic component, and the saturation magnetic flux density Bs can be improved by increasing the Fe 2 O 3 content. Are known. However, in a composition containing a large amount of Fe 2 O 3 exceeding 60 mol%, even if Mn—Zn-based ferrite having a high maximum magnetic flux density is obtained with a single crystal, the powder metallurgical method has a sufficient sintering density. Therefore, it is difficult to obtain a high saturation magnetic flux density Bs. Further, there is a problem that the magnetic loss Pcv is increased, and it is difficult to realize a high saturation magnetic flux density Bs and a low magnetic loss Pcv.

高飽和磁束密度化及び低磁気損失化を実現させる技術として、従来から種々の提案がなされている。 Conventionally, various proposals have been made as techniques for realizing high saturation magnetic flux density and low magnetic loss.

特開2005−272229号公報(特許文献1)では、Fe57〜68mol%の組成においてNiOを3〜12mol%含有せしめ、気孔率を少なくし、かつ気孔の大きさを小さくすることによって、100℃における高飽和磁束密度特性を維持したまま、磁気損失の低減がなされている。 SUMMARY OF THE INVENTION In 2005-272229 (Patent Document 1), by the additional inclusion 3~12Mol% of NiO in the composition of Fe 2 O 3 57~68mol%, to reduce the porosity, and to reduce the size of the pores The magnetic loss is reduced while maintaining the high saturation magnetic flux density characteristics at 100 ° C.

また、特開2005−187232号公報(特許文献2)では、Fe63〜80mol%の組成において焼結密度を高くし、且つFe2+量を制御することによって100℃近傍における高飽和磁束密度化を図っている。 In JP 2005-187232 A (Patent Document 2), a high saturation magnetic flux in the vicinity of 100 ° C. is obtained by increasing the sintering density and controlling the amount of Fe 2+ in the composition of Fe 2 O 3 63-80 mol%. We are trying to increase the density.

特開2005−272229号公報JP 2005-272229 A 特開2005−187232号公報JP 2005-187232 A

特許文献1では、NiOを3〜12mol%含有せしめ、気孔率を少なくし、かつ気孔の大きさを小さくすることによって、100℃における高飽和磁束密度特性を得ているが、NiOを増やした分Feが減ってしまい飽和磁束密度が低くなる傾向となり、高温の120℃で500mT以上の高い飽和磁束密度Bsを得ることが難しい。 In Patent Document 1, high saturation magnetic flux density characteristics at 100 ° C. are obtained by adding 3 to 12 mol% of NiO, reducing the porosity, and reducing the size of the pores. Fe 2 O 3 tends to decrease and the saturation magnetic flux density tends to be low, and it is difficult to obtain a high saturation magnetic flux density Bs of 500 mT or higher at a high temperature of 120 ° C.

特許文献2では、Fe63〜80mol%の組成において焼結密度を高くし、且つFe2+量を制御することによって100℃近傍における高飽和磁束密度化が為されているが、Fe、MnO、ZnOの主成分組成や全Fe量(Fe2++Fe3+)中のFe2+の割合の制御では、高温の120℃における低損失化は十分とはいえず、またNiOを主成分として含有していないことから、この組成領域で特有の高い磁気損失Pcvを低減することが難しい。 In Patent Document 2, to increase the sintered density in the composition of Fe 2 O 3 63~80mol%, the high saturation magnetic flux density is made at 100 ° C. vicinity by and controlling the amount of Fe 2+, Fe 2 In the control of the main component composition of O 3 , MnO, and ZnO and the ratio of Fe 2+ in the total Fe amount (Fe 2+ + Fe 3+ ), it cannot be said that the loss reduction at a high temperature of 120 ° C. is sufficient, and NiO is the main component. Therefore, it is difficult to reduce the high magnetic loss Pcv peculiar to this composition region.

上記のように、従来技術では120℃程度の高温下において高飽和磁束密度Bsと低い磁気損失Pcvを有するMnZn系フェライトを得ることは困難であった。 As described above, it has been difficult to obtain MnZn-based ferrite having a high saturation magnetic flux density Bs and a low magnetic loss Pcv at a high temperature of about 120 ° C. in the prior art.

本願に係る技術分野においては、部品の小型化及び大電流化の要請は依然として強く、コア材料については高温下で高い飽和磁束密度化が図れ、且つ低磁気損失化が図れ、バランスのとれた良好な特性に対する要望に際限はなくなお一層、磁気特性が改善されたMnZn系フェライトの提案が望まれている。 In the technical field according to the present application, there is still a strong demand for component miniaturization and large current, and the core material can achieve high saturation magnetic flux density at high temperature and low magnetic loss, which is well balanced. There is no limit to the demand for such characteristics, and a proposal of a MnZn-based ferrite with improved magnetic characteristics is desired.

本発明はこのような実状のもとに創案されたものであって、その目的は高温下(120℃)において高い飽和磁束密度Bsと低い磁気損失Pcvを有するMnZn系フェライトを提案することである。 The present invention was created based on such a situation, and its purpose is to propose a MnZn-based ferrite having a high saturation magnetic flux density Bs and a low magnetic loss Pcv at a high temperature (120 ° C.). .

上記目的を達成するために、本発明者らが鋭意研究を行った結果、MnZn系フェライトの主成分組成を適正範囲に制御するとともに、副成分として酸化錫と酸化クロムの双方を適正範囲で含有することが重要であることを見出した。本発明は掛かる知見に基づいて完成されたものである。 In order to achieve the above object, the present inventors conducted extensive research, and as a result, the main component composition of the MnZn-based ferrite is controlled within an appropriate range, and both tin oxide and chromium oxide are contained within an appropriate range as subcomponents. I found it important to do. The present invention has been completed based on such knowledge.

すなわち、第1の手段に係るMnZn系フェライトは、酸化鉄がFe換算で65〜75mol%、酸化亜鉛をZnO換算で5〜20mol%、酸化ニッケルをNiO換算で0.4〜2mol%、残部が実質的にMnOの組成となる主成分からなり、副成分として酸化錫と酸化クロムの双方を含み、当該双方の総和含有量が、主成分の上記酸化物の合計質量100質量部に対し、SnO換算及びCr換算で0.1〜0.4質量部の範囲であり、且つ、酸化錫をSnO換算で0.05〜0.35質量部、酸化クロムをCr換算で0.005〜0.05質量部含有することを特徴とする。 That is, in the MnZn-based ferrite according to the first means, iron oxide is 65 to 75 mol% in terms of Fe 2 O 3 , zinc oxide is 5 to 20 mol% in terms of ZnO, and nickel oxide is 0.4 to 2 mol% in terms of NiO. , The balance is essentially composed of MnO and contains both tin oxide and chromium oxide as subcomponents. The total content of both is 100 parts by mass of the total mass of the oxide as the main component. On the other hand, it is in the range of 0.1 to 0.4 parts by mass in terms of SnO 2 and Cr 2 O 3 , and 0.05 to 0.35 parts by mass of tin oxide in terms of SnO 2 and chromium oxide in Cr 2. It is characterized by containing 0.005 to 0.05 parts by mass in terms of O 3 .

第2の手段に係るMnZn系フェライトは、前記第1の手段に係るMnZn系フェライトにおいて、120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下であるように構成される。 The MnZn-based ferrite according to the second means is the same as the MnZn-based ferrite according to the first means, the saturation magnetic flux density Bs (measured magnetic field: 1194 A / m) at 120 ° C. is 500 mT or more, and the magnetic loss Pcv (measurement condition: 100 kHz, 200 mT) is configured to be 2000 kW / m 3 or less.

第3の手段に係るMnZn系フェライトは、前記第1の手段に係るMnZn系フェライトにおいて、相対密度≧95%であることを特徴とする。 The MnZn-based ferrite according to the third means is characterized in that the relative density ≧ 95% of the MnZn-based ferrite according to the first means.

第4の手段に係るMnZn系フェライト大型コアは、酸化鉄がFe換算で65〜75mol%、酸化亜鉛をZnO換算で5〜20mol%、酸化ニッケルをNiO換算で0.4〜2mol%、残部が実質的にMnOの組成となる主成分からなり、副成分として酸化錫と酸化クロムの双方を含み、当該双方の総和含有量が、主成分の上記酸化物の合計質量100質量部に対し、SnO換算及びCr換算で0.1〜0.4質量部の範囲であり、且つ、酸化錫をSnO換算で0.05〜0.35質量部、酸化クロムをCr換算で0.005〜0.05質量部含有することを特徴とする。 MnZn ferrite large core according to the fourth means, 65~75mol% in iron oxide in terms of Fe 2 O 3, 5 to 20 mol% of zinc oxide calculated as ZnO, 0.4~2mol% nickel oxide in terms of NiO , The balance is essentially composed of MnO and contains both tin oxide and chromium oxide as subcomponents. The total content of both is 100 parts by mass of the total mass of the oxide as the main component. On the other hand, it is in the range of 0.1 to 0.4 parts by mass in terms of SnO 2 and Cr 2 O 3 , and 0.05 to 0.35 parts by mass of tin oxide in terms of SnO 2 and chromium oxide in Cr 2. It is characterized by containing 0.005 to 0.05 parts by mass in terms of O 3 .

第5の手段に係るMnZn系フェライト大型コアは、前記第4の手段に係るMnZn系フェライトにおいて、120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下であるように構成される。 The MnZn-based ferrite large core according to the fifth means is the same as the MnZn-based ferrite according to the fourth means, the saturation magnetic flux density Bs (measured magnetic field: 1194 A / m) at 120 ° C. is 500 mT or more, and the magnetic loss Pcv (measured). (Condition: 100 kHz, 200 mT) is configured to be 2000 kW / m 3 or less.

第6の手段に係るMnZn系フェライト大型コアは、前記第4の手段に係るMnZn系フェライトにおいて、相対密度≧95%であることを特徴とする。 The MnZn-based ferrite large core according to the sixth means is characterized in that the relative density ≧ 95% in the MnZn-based ferrite according to the fourth means.

本発明によれば、高温下において高い飽和磁束密度Bsを有し、磁気損失Pcvが低いMnZn系フェライトが得られ、スイッチング電源等のトランス用コア、チョークコイル用コア等として用いることができる。 According to the present invention, an MnZn-based ferrite having a high saturation magnetic flux density Bs at a high temperature and a low magnetic loss Pcv can be obtained, and can be used as a transformer core, a choke coil core, or the like.

図1は、E字型フェライトコアを示す斜視図である。100 フェライトコア(磁心)101(中脚部)102(コイル)FIG. 1 is a perspective view showing an E-shaped ferrite core. 100 Ferrite core (magnetic core) 101 (middle leg) 102 (coil)

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本実施形態のMnZn系フェライトは、主成分として酸化鉄をFe換算で65〜75mol%、(好ましくは、65.5〜69mol%、より好ましくは、66〜68mol%)、酸化亜鉛をZnO換算で5〜20mol%(好ましくは10〜20mol%、より好ましくは、14.5〜17mol%)、酸化ニッケルをNiO換算で0.4〜2mol%、残部が酸化マンガン(MnO)を含有している。 MnZn ferrite of the present embodiment, 65~75Mol% iron oxide calculated as Fe 2 O 3 as a main component, (preferably, 65.5~69Mol%, more preferably, 66~68mol%), zinc oxide 5 to 20 mol% (preferably 10 to 20 mol%, more preferably 14.5 to 17 mol%) in terms of ZnO, nickel oxide to 0.4 to 2 mol% in terms of NiO, and the balance containing manganese oxide (MnO) ing.

上記の主組成において、Fe量を増やすと飽和磁束密度Bsを高める効果があるが、Fe量が75mol%を超えると磁気損失Pcvが増加するという不都合が生じる傾向にある。また、Fe量が65mol%未満になると飽和磁束密度Bsが低下するという不都合が生じる傾向にある。 In the above main composition, increasing the amount of Fe 2 O 3 has the effect of increasing the saturation magnetic flux density Bs. However, if the amount of Fe 2 O 3 exceeds 75 mol%, there is a tendency that the magnetic loss Pcv increases. Further, when the amount of Fe 2 O 3 is less than 65 mol%, there is a tendency that a disadvantage that the saturation magnetic flux density Bs decreases.

上記の主成分組成において、ZnO量が20mol%を超えると飽和磁束密度Bsが低下し磁気損失Pcvが高くなるという不都合が生じる傾向にある。ZnO量が5mol%未満になると、磁気損失Pcvが高くなるという不都合が生じる傾向にある。 In the above main component composition, when the ZnO amount exceeds 20 mol%, there is a tendency that the saturation magnetic flux density Bs decreases and the magnetic loss Pcv increases. When the amount of ZnO is less than 5 mol%, there is a tendency that the magnetic loss Pcv is increased.

NiOは、フェライトの磁気異方性を下げる作用を有すると共に、適量のNiOを含有せしめることで、低磁気損失を図ることができる。上記主成分組成において、NiO量が2mol%を超えると飽和磁束密度Bsが低下するという不都合が生じる傾向にある。また、NiO量が0.4mol%未満になると磁気損失Pcvの低減効果が小さい。 NiO has the effect of lowering the magnetic anisotropy of ferrite, and can contain a suitable amount of NiO to achieve low magnetic loss. In the main component composition, if the amount of NiO exceeds 2 mol%, there is a tendency that the saturation magnetic flux density Bs decreases. Further, when the amount of NiO is less than 0.4 mol%, the effect of reducing the magnetic loss Pcv is small.

上記主成分組成において、残部としているMnO量が29.6mol%を超えると飽和磁束密度Bsが低下するという不都合が生じる傾向にある。MnO量が3mol%未満になると、磁気損失Pcvが高くなるという不都合が生じる傾向にある。 In the main component composition, when the remaining amount of MnO exceeds 29.6 mol%, there is a tendency that the saturation magnetic flux density Bs decreases. When the amount of MnO is less than 3 mol%, there is a tendency that the magnetic loss Pcv is increased.

本実施形態のMnZn系フェライトは上記の主成分に加えて、副成分として酸化錫と酸化クロムの双方を含有している。 The MnZn-based ferrite of the present embodiment contains both tin oxide and chromium oxide as subcomponents in addition to the above main components.

副成分の一つである酸化クロムは、従来、高周波における磁気損失を低減する効果がある一方、異常粒成長を引き起こしやすく、初透磁率及び直流磁界印加の下での増分透磁率の低下を招くという問題があった。そのため、Crの含有量を極微量(フェライトのCrの含有量(Cr換算)が、主成分の酸化物の合計100質量部に対し、0.002質量部以下)に制限することにより上記透磁率の向上が図られてきた。しかしながら、本発明における主成分組成の範囲において、もう一つの副成分である酸化錫が本発明の効果を逸脱しない範囲で適量含有している場合、フェライト中に固溶したSn4+が、Crによる異常粒成長を抑制することによって、異常粒成長を伴うことなくCrによる焼結促進効果が現れ、高飽和磁束密度特性及び低磁気損失特性が同時に得られることを本発明者らは見出した。 Chromium oxide, which is one of the subcomponents, has been effective in reducing magnetic loss at high frequencies. However, it tends to cause abnormal grain growth, leading to a decrease in initial permeability and incremental permeability under application of a DC magnetic field. There was a problem. Therefore, by limiting the Cr content to a very small amount (the Cr content of ferrite (in terms of Cr 2 O 3 ) is 0.002 parts by mass or less with respect to a total of 100 parts by mass of the main component oxide). Improvement of the magnetic permeability has been attempted. However, in the range of the main component composition in the present invention, when an appropriate amount of tin oxide, which is another subcomponent, is contained within a range not departing from the effects of the present invention, Sn 4+ dissolved in the ferrite is caused by Cr. By suppressing the abnormal grain growth, the present inventors have found that the sintering promotion effect by Cr appears without accompanying the abnormal grain growth, and a high saturation magnetic flux density characteristic and a low magnetic loss characteristic can be obtained at the same time.

本実施形態のMnZn系フェライトのSnの含有量(SnO換算)は、主成分の酸化物の合計100質量部に対し、0.05〜0.35質量部、より好ましくは0.1〜0.3質量部である。Snは4価の陽イオンであるSn4+としてフェライト結晶内に固溶する。固溶したSn4+はフェライト結晶粒子の高抵抗化、及び電荷補償によるFe2+生成(スピネル化)を促進するとともに、Crによる異常粒成長を抑制する効果がある。Snの含有量(SnO換算)が0.05質量部未満であると、高抵抗化、及びスピネル化の促進作用が不十分になるとともに、Crによる異常粒成長を抑制する効果が不十分となり、磁気損失Pcvが高くなる傾向がある。他方、Snの含有量(SnO換算)が0.35質量部を超えると、結晶組織の不均一性を助長する傾向があり、磁気損失Pcvが高くなるという不都合が生じる。 The Sn content (in terms of SnO 2 ) of the MnZn-based ferrite of the present embodiment is 0.05 to 0.35 parts by mass, more preferably 0.1 to 0, based on 100 parts by mass of the main component oxides. 3 parts by mass. Sn is dissolved in the ferrite crystal as Sn 4+ which is a tetravalent cation. The solid solution Sn 4+ has the effect of increasing the resistance of ferrite crystal particles and promoting Fe 2+ formation (spineling) by charge compensation and suppressing abnormal grain growth due to Cr. When the Sn content (in terms of SnO 2 ) is less than 0.05 parts by mass, the effects of increasing resistance and promoting spinel become insufficient, and the effect of suppressing abnormal grain growth due to Cr becomes insufficient. The magnetic loss Pcv tends to increase. On the other hand, if the Sn content (SnO 2 equivalent) exceeds 0.35 parts by mass, there is a tendency to promote non-uniformity of the crystal structure, resulting in a disadvantage that the magnetic loss Pcv is increased.

本実施形態のMnZn系フェライトのCrの含有量(Cr換算)は、主成分の酸化物の合計100質量部に対し、0.005〜0.05質量部、より好ましくは0.02〜0.04質量部である。Crは焼結を促進し、飽和磁束密度Bsを高める効果がある。フェライトのCrの含有量(Cr換算)が0.005質量部未満であると高飽和磁束密度化が不十分になる傾向がある。他方、Crの含有量(Cr換算)が0.05質量部を超えると、異常粒成長を助長し、磁気損失Pcvの低減が不十分になる傾向がある。 The Cr content of the MnZn-based ferrite of the present embodiment (in terms of Cr 2 O 3 ) is 0.005 to 0.05 parts by mass, more preferably 0.02 with respect to 100 parts by mass in total of the main component oxides. -0.04 mass part. Cr has an effect of promoting sintering and increasing the saturation magnetic flux density Bs. When the content of Cr in the ferrite (in terms of Cr 2 O 3 ) is less than 0.005 parts by mass, high saturation magnetic flux density tends to be insufficient. On the other hand, when the Cr content (Cr 2 O 3 conversion) exceeds 0.05 parts by mass, abnormal grain growth is promoted, and the magnetic loss Pcv tends to be insufficiently reduced.

本実施形態のMnZn系フェライトにおけるSnとCrの総和含有量は、主成分の酸化物の合計質量100質量部に対し、SnO換算及びCr換算で0.1〜0.4質量部、より好ましくは0.15〜0.34質量部である。この総和量が、0.1質量部未満であると、高飽和磁束密度化及び低磁気損失化が不十分になる傾向があり、一方、この総和量が0.4質量部を超えると、焼成密度や飽和磁束密度Bsが低下するとともに、異常粒成長を助長し、磁気損失Pcvが高くなるという傾向がある。 The total content of Sn and Cr in the MnZn-based ferrite of the present embodiment is 0.1 to 0.4 parts by mass in terms of SnO 2 and Cr 2 O 3 with respect to 100 parts by mass as the total mass of the main component oxide. More preferably, it is 0.15-0.34 mass part. If this total amount is less than 0.1 parts by mass, high saturation magnetic flux density and low magnetic loss tend to be insufficient. On the other hand, if this total amount exceeds 0.4 parts by mass, firing As the density and saturation magnetic flux density Bs decrease, abnormal grain growth is promoted and the magnetic loss Pcv tends to increase.

なお、前述のように酸化錫及び酸化クロムが単独で含有されている場合では上記の効果は十分に得られない。すなわち、上記の効果は、酸化錫及び酸化クロムの双方が含有され、さらに酸化錫と酸化クロムの含有量及び双方の総和含有量が本発明の範囲内に制御された場合に初めて得られる複合的な効果である。 In addition, when the tin oxide and the chromium oxide are contained alone as described above, the above effect cannot be obtained sufficiently. That is, the above-mentioned effect is a composite obtained only when both tin oxide and chromium oxide are contained, and the content of tin oxide and chromium oxide and the total content of both are controlled within the scope of the present invention. Effect.

また、本実施形態に係るMnZn系フェライトは、本発明の作用効果を逸脱しない範囲で、上記の酸化錫、酸化クロムに加えて他の副成分を添加してもよい。他の副成分は、Li、Si、Ca、Zr、Nb、Ta、V、Bi、Mo、Co、In、Ti等の少なくとも1種以上である。これらの他の副成分は、酸化物あるいは加熱により酸化物となる化合物の粉末が用いられる。これらの副成分は、LiCO、SiO、CaCO、ZrO、Nb、Ta、V、Bi、MoO、Co、In、TiO等の形態で添加時に用いることができる。これらの中でも、SiO、CaCO、ZrO、Nbが特に好ましい。LiO0.5は、0.1mol%以上2.0mol%以下で含有してもよい。フェライト主成分の酸化物の合計100質量部に対し、SiOは、0.005質量部以上0.03質量部以下で含有してもよい。CaCOは、0.002質量部以上0.15質量部以下で含有してもよい。ZrOは、0.005質量部以上0.04質量部以下で含有してもよい。Nbは、0.01質量部以上0.1質量部以下で含有してもよい。Taは、0.005質量部以上0.04質量部以下で含有してもよい。Vは、0.005質量部以上0.04質量部以下で含有してもよい。Biは、0.005質量部以上0.04質量部以下で含有してもよい。MoOは、0.005質量部以上0.04質量部以下で含有してもよい。Coは0.005質量部以上0.04質量部以下で含有してもよい。Inは0.005質量部以上0.04質量部以下で含有してもよい。TiOは0.05質量部以上0.5質量部以下で含有してもよい。 In addition, the MnZn-based ferrite according to the present embodiment may contain other subcomponents in addition to the above tin oxide and chromium oxide without departing from the operational effects of the present invention. Other subcomponents are at least one or more of Li, Si, Ca, Zr, Nb, Ta, V, Bi, Mo, Co, In, Ti and the like. As these other subcomponents, oxides or powders of compounds that become oxides upon heating are used. These subcomponents are Li 2 CO 3 , SiO 2 , CaCO 3 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 , Co 3 O 4 , In 2. It can be used at the time of addition in the form of O 5 , TiO 2 or the like. Among these, SiO 2, CaCO 3, ZrO 2, Nb 2 O 5 is particularly preferred. LiO 0.5 may be contained in an amount of 0.1 mol% to 2.0 mol%. SiO 2 may be contained in an amount of 0.005 parts by mass or more and 0.03 parts by mass or less with respect to 100 parts by mass of the total ferrite oxide. CaCO 3 may be contained at 0.002 parts by mass or more and 0.15 parts by mass or less. ZrO 2 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. Nb 2 O 5 may be contained in an amount of 0.01 parts by mass or more and 0.1 parts by mass or less. Ta 2 O 5 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. V 2 O 5 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. Bi 2 O 3 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. MoO 3 may be contained at 0.005 parts by mass or more and 0.04 parts by mass or less. Co 3 O 4 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. In 2 O 5 may be contained in an amount of 0.005 parts by mass or more and 0.04 parts by mass or less. TiO 2 may be contained at 0.05 parts by mass or more and 0.5 parts by mass or less.

本実施形態に係るMnZn系フェライトは、上述した成分及び成分量を適宜選択することにより、120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下という特性を得ることができる。 The MnZn-based ferrite according to this embodiment has a saturation magnetic flux density Bs (measured magnetic field: 1194 A / m) at 120 ° C. of 500 mT or more and a magnetic loss Pcv (measurement condition: measurement conditions) by appropriately selecting the components and component amounts described above. The characteristic that 100 kHz, 200 mT) is 2000 kW / m 3 or less can be obtained.

本実施形態に係るMnZn系フェライトは、上述した成分及び成分量を適宜選択することにより、相対密度≧95%を得ることができる。ただし、相対密度が95%未満であった場合、飽和磁束密度Bsが低下し、磁気損失Pcvが高くなる傾向がある。 The MnZn-based ferrite according to the present embodiment can obtain a relative density ≧ 95% by appropriately selecting the above-described components and component amounts. However, when the relative density is less than 95%, the saturation magnetic flux density Bs tends to decrease and the magnetic loss Pcv tends to increase.

本実施形態に係るMnZn系フェライトは、大型コア形状(30〜150g)においても、上述した成分及び成分量を適宜選択することによって焼成時におけるスピネル化及び焼結が促進されるため、高い飽和磁束密度Bs及び低い磁気損失Pcvを得ることが可能となる。その結果、120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下という特性を得ることができる。また、本実施形態に係るMnZn系フェライト大型コアは、上述した成分及び成分量を適宜選択することにより、相対密度≧95%を得ることができる。ただし、相対密度が95%未満であった場合、飽和磁束密度Bsが低下し、磁気損失Pcvが高くなる傾向がある。 The MnZn-based ferrite according to the present embodiment, even in a large core shape (30 to 150 g), promotes spinelization and sintering at the time of firing by appropriately selecting the components and component amounts described above, and therefore has a high saturation magnetic flux. It becomes possible to obtain the density Bs and the low magnetic loss Pcv. As a result, the saturation magnetic flux density Bs (measurement magnetic field: 1194 A / m) at 120 ° C. is 500 mT or more and the magnetic loss Pcv (measurement conditions: 100 kHz, 200 mT) is 2000 kW / m 3 or less. In addition, the MnZn-based ferrite large core according to the present embodiment can obtain a relative density ≧ 95% by appropriately selecting the above-described components and component amounts. However, when the relative density is less than 95%, the saturation magnetic flux density Bs tends to decrease and the magnetic loss Pcv tends to increase.

次にMnZn系フェライトの製造方法について説明する。 Next, a method for producing MnZn ferrite will be described.

はじめに、主成分をなす酸化鉄Fe、酸化マンガンMn、酸化亜鉛ZnO及び酸化ニッケルNiOを原料として用意し、これら酸化物を混合して混合物を得る。この混合工程ではボールミル等を用いて湿式混合されることが好ましいが、乾式混合を利用してもよい。湿式混合の場合はスプレー乾燥等の乾燥工程を経て混合物を得る。なお、最終的に得られる混合物中の各酸化物成分の構成比が所定の範囲内となるように上記酸化物とともに他の化合物を混合してもよい。 First, iron oxide Fe 2 O 3 , manganese oxide Mn 3 O 4 , zinc oxide ZnO and nickel oxide NiO which are main components are prepared as raw materials, and these oxides are mixed to obtain a mixture. In this mixing step, wet mixing is preferably performed using a ball mill or the like, but dry mixing may be used. In the case of wet mixing, a mixture is obtained through a drying process such as spray drying. In addition, you may mix another compound with the said oxide so that the structural ratio of each oxide component in the mixture finally obtained may become in a predetermined range.

次いで、上記主成分の混合物を仮焼成して仮焼成物を得る(仮焼工程)。仮焼きは、ロータリキルンやトンネル炉、バッチ炉等を用いて、窒素中、アルゴン等の不活性ガス中または大気雰囲気中で行われる。仮焼温度は700℃以上1100℃以下とすることが好ましい。仮焼きの仮焼時間は10分間以上5時間以下とすることが好ましい。仮焼時間は特に上記時間に限定されるものではなく、適宜調整する。 Next, the mixture of the main components is temporarily fired to obtain a temporarily fired product (a calcining step). The calcination is performed in an inert gas such as nitrogen, argon, or the atmosphere using a rotary kiln, tunnel furnace, batch furnace, or the like. The calcination temperature is preferably 700 ° C. or higher and 1100 ° C. or lower. The calcination time for calcination is preferably 10 minutes or more and 5 hours or less. The calcining time is not particularly limited to the above time, and is appropriately adjusted.

その後、得られた仮焼成物を、例えば、平均粒径0.5〜5.0μm程度まで粉砕して粉砕粉を得る。粗粉砕は、例えば、ジョークラッシャー、ブラウンミル、スタンプミル等の粗粉砕機を用いて仮焼成物を粉砕する。微粉砕は、粉砕時間等の条件を適宜調整しながら、ジェットミル、ボールミル、振動ミル、ビーズミル、乾式または湿式アトライター等の微粉砕機を用いて粗粉砕した粉末を更に粉砕する。仮焼成物が大きい塊を形成している場合には、粗粉砕を行ってから微粉砕を行うことが好ましい。 Thereafter, the obtained calcined product is pulverized to, for example, an average particle size of about 0.5 to 5.0 μm to obtain a pulverized powder. In the coarse pulverization, the calcined product is pulverized using a coarse pulverizer such as a jaw crusher, a brown mill, or a stamp mill. In the fine pulverization, the coarsely pulverized powder is further pulverized using a fine pulverizer such as a jet mill, a ball mill, a vibration mill, a bead mill, a dry type or a wet attritor while appropriately adjusting conditions such as a pulverization time. When the calcined product forms a large lump, it is preferable to perform fine pulverization after coarse pulverization.

上述の主成分原料の仮焼成物を粉砕する際、副成分であるSnO、Cr、及びその他の副成分としてLiCO、SiO、CaCO等を添加する。ただし、副成分の添加は上述の主成分の混合工程で行ってもよい。なお、最終的に得られる混合物中の各副成分の含有量が上記範囲内となるように、上記化合物の代わりに他の化合物を用いてもよい。 When pulverizing the calcined product of the above-mentioned main component raw materials, SnO 2 , Cr 2 O 3 as subcomponents, and Li 2 CO 3 , SiO 2 , CaCO 3, etc. are added as other subcomponents. However, the addition of subcomponents may be performed in the above-described main component mixing step. In addition, you may use another compound instead of the said compound so that content of each subcomponent in the mixture finally obtained may become in the said range.

続いて、上記のようにして得られた粉砕粉にバインダを添加、混合し、スプレー乾燥等によって造粒する。バインダとしては、例えばポリビニルアルコール(PVA)が望ましい。造粒により得られる顆粒の粒径は80〜300μm程度とすることが望ましい。その後、得られた顆粒を金型に充填し、加圧成形してMnZn系フェライトの成形体を得る。 Subsequently, a binder is added to and mixed with the pulverized powder obtained as described above, and granulated by spray drying or the like. As the binder, for example, polyvinyl alcohol (PVA) is desirable. The particle size of the granules obtained by granulation is desirably about 80 to 300 μm. Thereafter, the obtained granule is filled in a mold and pressure-molded to obtain a molded body of MnZn-based ferrite.

次に、成形体を加熱炉内において焼成する(本焼成工程)。本焼成工程においては、焼成温度と焼成雰囲気を制御する必要がある。焼成温度は1150〜1500℃の範囲から適宜選択することができるが、本発明のフェライトコアの効果を十分引き出すには、1200〜1400℃の範囲で焼成することが好ましい。焼成雰囲気は、窒素、アルゴン等の不活性ガスと酸素の混合雰囲気において、酸素分圧を適宜調整すればよい。 Next, the compact is fired in a heating furnace (main firing step). In the main firing step, it is necessary to control the firing temperature and firing atmosphere. The firing temperature can be appropriately selected from the range of 1150 to 1500 ° C., but it is preferably fired in the range of 1200 to 1400 ° C. in order to sufficiently bring out the effects of the ferrite core of the present invention. The firing atmosphere may be adjusted as appropriate in the oxygen partial pressure in a mixed atmosphere of an inert gas such as nitrogen or argon and oxygen.

図1(a)は、本実施形態に係るE字型フェライトコア(磁心)を示す斜視図である。図1(a)に示すように、E字型のフェライトコア100は、E型コアなどと呼ばれ、トランスやチョークコイルなどに使用される。フェライトコア101のようなE型コアが採用されたトランス及びチョークコイルとしては、図1(b)に示すような、内部に2つのE型コアが対向配置されたものが知られている。 FIG. 1A is a perspective view showing an E-shaped ferrite core (magnetic core) according to this embodiment. As shown in FIG. 1A, an E-shaped ferrite core 100 is called an E-type core and is used for a transformer, a choke coil, and the like. As a transformer and a choke coil in which an E-type core such as the ferrite core 101 is adopted, there is known a transformer in which two E-type cores are opposed to each other as shown in FIG.

以下、本発明をさらに詳細な実施例に基づいて説明するが本発明は、これらの実施例に限定されない。
<実験例1>
Hereinafter, the present invention will be described based on further detailed examples, but the present invention is not limited to these examples.
<Experimental example 1>

各成分原料を最終的に表1に示した組成になるように秤量し、これに500mLのイオン交換水を溶媒として加えて、鋼鉄製ボールミルを用いて16時間湿式混合した。原材料混合物を乾燥させた後、大気雰囲気中において、900℃の温度で1時間仮焼きした。得られた仮焼き粉及び副成分(SnO、Cr、SiO、CaCO、Nb、ZrO)を秤量し、これに500mLのイオン交換水を溶媒として加えて、鋼鉄製ボールミルを用いて3時間湿式粉砕を行った。なお、SnO及びCrの含有量は表1に記載した通りであり、その他の副成分の含有量は、SiO:0.01質量部、CaCO:0.1質量部、Nb:0.04質量部、ZrO:0.03質量部とした。 Each component raw material was weighed so as to finally have the composition shown in Table 1, 500 mL of ion-exchanged water was added as a solvent, and wet-mixed for 16 hours using a steel ball mill. After the raw material mixture was dried, it was calcined for 1 hour at a temperature of 900 ° C. in an air atmosphere. The obtained calcined powder and subcomponents (SnO 2 , Cr 2 O 3 , SiO 2 , CaCO 3 , Nb 2 O 5 , ZrO 2 ) were weighed, and 500 mL of ion-exchanged water was added as a solvent to the steel. Wet pulverization was performed for 3 hours using a ball mill. The content of SnO 2 and Cr 2 O 3 are as described in Table 1, the content of other subcomponents, SiO 2: 0.01 parts by weight, CaCO 3: 0.1 parts by mass, Nb 2 O 5 : 0.04 parts by mass and ZrO 2 : 0.03 parts by mass.

得られた粉砕物スラリーを乾燥し、この粉砕粉にバインダを加えて造粒した後、得られた顆粒を外径48mm×内径30mm×高さ10mmのトロイダル形状に加圧成形した。 The obtained pulverized product slurry was dried and granulated by adding a binder to the pulverized powder, and then the obtained granules were pressure-molded into a toroidal shape having an outer diameter of 48 mm, an inner diameter of 30 mm and a height of 10 mm.

得られた成形体を酸素分圧制御下において、温度1300℃(温度保持時間:5時間、温度保持時の酸素分圧:1体積%)で焼成することにより、フェライトコアを得た。 The obtained molded body was fired at a temperature of 1300 ° C. (temperature holding time: 5 hours, oxygen partial pressure during temperature holding: 1% by volume) under oxygen partial pressure control to obtain a ferrite core.

フェライトコアの磁気損失Pcvを次のようにして測定した。すなわち、B−Hアナライザー(型式:SY−8217,岩通計測製)を用い、磁束密度200mT、周波数100kHzの条件で温度25〜150℃の範囲の磁気損失を測定し、120℃における磁気損失Pcvの値を求めた。 The magnetic loss Pcv of the ferrite core was measured as follows. That is, using a BH analyzer (model: SY-8217, manufactured by Iwatatsu Measurement Co., Ltd.), the magnetic loss in the temperature range of 25 to 150 ° C. is measured under the conditions of a magnetic flux density of 200 mT and a frequency of 100 kHz, and the magnetic loss Pcv at 120 ° C. The value of was obtained.

フェライトコアの飽和磁束密度Bsを次のように測定した。すなわち、直流BHトレーサー(型式SK110,メトロン技研製)を用い、磁界1194A/mの条件で温度25〜150℃の範囲の飽和磁束密度Bsを測定し、120℃における飽和磁束密度Bsの値を得た。 The saturation magnetic flux density Bs of the ferrite core was measured as follows. That is, using a DC BH tracer (model SK110, manufactured by Metron Giken), the saturation magnetic flux density Bs in the temperature range of 25 to 150 ° C. is measured under the condition of a magnetic field of 1194 A / m, and the value of the saturation magnetic flux density Bs at 120 ° C. is obtained. It was.

フェライトコアの焼結密度D(g/cm)はアルキメデス法で水を用いて測定した。理論密度D(g/cm)は下記式(1)を用いて算出し、相対密度D(%)は下記式(2)を用いて算出した。 The sintered density D a (g / cm 3 ) of the ferrite core was measured using water by the Archimedes method. The theoretical density D c (g / cm 3 ) was calculated using the following formula (1), and the relative density D r (%) was calculated using the following formula (2).

MnZn系フェライトの主組成がFe:MnFe:ZnFe:NiFe=a:b:c:d(単位:mol%)において、
=0.0521×a+0.05×b+0.0536×c+0.0538×d …式(1)
=D/D×100 …式(2)
When the main composition of the MnZn-based ferrite is Fe 3 O 4 : MnFe 2 O 4 : ZnFe 2 O 4 : NiFe 2 O 4 = a: b: c: d (unit: mol%),
D c = 0.0521 × a + 0.05 × b + 0.0536 × c + 0.0538 × d ... expression (1)
D r = D a / D c × 100 (2)

表1に測定結果を示す。この表1から、MnZn系フェライトの主成分の組成、及び副成分の含有量を適切に制御した試料においては、120℃における高飽和磁束密度特性(Bs≧500mT)及び低磁気損失特性(Pcv≦2000kW/m)に優れたMnZn系フェライトが得られていることがわかる。 Table 1 shows the measurement results. From Table 1, in the sample in which the composition of the main component of MnZn-based ferrite and the content of subcomponents are appropriately controlled, the high saturation magnetic flux density characteristics (Bs ≧ 500 mT) and the low magnetic loss characteristics (Pcv ≦ It can be seen that an MnZn-based ferrite excellent in 2000 kW / m 3 ) is obtained.

Figure 2016056051

<実験例2>
Figure 2016056051

<Experimental example 2>

表2及び表3に示した組成からなる顆粒を実験例1と同様の手順により作製し、得られた顆粒から大きさの異なるトロイダルコア(成形体)を作製した。外径24mm×内径15mm×高さ5mmのトロイダル形状(形状1)、外径48mm×内径30mm×高さ10mmのトロイダル形状(形状2)、外径61mm×内径37mm×高さ12mmのトロイダル形状(形状3)、外径77mm×内径48mm×高さ15mmのトロイダル形状(形状4)、外径80mm×内径50mm×高さ16mmのトロイダル形状(形状5)、外径80mm×内径50mm×高さ17.5mmのトロイダル形状(形状6)にそれぞれ加圧成形した。これらの成形体を実験例1と同様に焼成し、MnZn系フェライトコアを得た。得られた形状1〜6のMnZn系フェライトコアのコア質量は、それぞれ5、34、63,120、147、159gである。これらの測定結果を表2及び表3に示す。なお、表3における比較例22−1〜22−6は特許文献1に記載される試料No.23、比較例23−1〜23〜6は、特許文献2に記載される試料No.9の組成から作製したMnZn系フェライトコアである。 Granules having the compositions shown in Table 2 and Table 3 were produced in the same procedure as in Experimental Example 1, and toroidal cores (molded bodies) having different sizes were produced from the obtained granules. Toroidal shape (shape 1) of outer diameter 24 mm × inner diameter 15 mm × height 5 mm, outer diameter 48 mm × inner diameter 30 mm × height 10 mm toroidal shape (shape 2), outer diameter 61 mm × inner diameter 37 mm × height 12 mm toroidal shape (shape 1) Shape 3), outer diameter 77 mm × inner diameter 48 mm × height 15 mm toroidal shape (shape 4), outer diameter 80 mm × inner diameter 50 mm × height 16 mm toroidal shape (shape 5), outer diameter 80 mm × inner diameter 50 mm × height 17 Each was pressed into a 5 mm toroidal shape (shape 6). These molded bodies were fired in the same manner as in Experimental Example 1 to obtain MnZn-based ferrite cores. The core masses of the obtained MnZn-based ferrite cores having shapes 1 to 6 are 5, 34, 63, 120, 147, and 159 g, respectively. These measurement results are shown in Tables 2 and 3. In addition, Comparative Examples 22-1 to 22-6 in Table 3 are sample Nos. Described in Patent Document 1. 23 and Comparative Examples 23-1 to 23-6 are sample Nos. Described in Patent Document 2. 9 is a MnZn-based ferrite core produced from the composition of No. 9.

Figure 2016056051
Figure 2016056051

Figure 2016056051
Figure 2016056051

表2及び表3から、本発明の実施例においては小型コア(形状1)だけでなく、大型コア(形状2〜5)においても高い相対密度(相対密度≧95%)を有し、且つ飽和磁束密度Bsが500mT以上と高く、且つ磁気損失Pcvが2000kW/m以下に低減されたMnZn系フェライトコアが得られていることがわかる。 From Tables 2 and 3, in the examples of the present invention, not only the small core (shape 1) but also the large core (shapes 2 to 5) have a high relative density (relative density ≧ 95%) and are saturated. It can be seen that a MnZn-based ferrite core having a high magnetic flux density Bs of 500 mT or more and a magnetic loss Pcv reduced to 2000 kW / m 3 or less is obtained.

一方、比較例22−1〜22−6はNiO量が多いためにいずれのコア形状においても飽和磁束密度Bsが500mT未満と低い。比較例23−1〜23−6は磁気損失Pcvが2000kW/mを超える高い水準にあり、コアの大型化に伴う飽和磁束密度Bsの悪化が顕著である。 On the other hand, since Comparative Examples 22-1 to 22-6 have a large amount of NiO, the saturation magnetic flux density Bs is low at less than 500 mT in any core shape. In Comparative Examples 23-1 to 23-6, the magnetic loss Pcv is at a high level exceeding 2000 kW / m 3 , and the deterioration of the saturation magnetic flux density Bs accompanying the increase in the size of the core is remarkable.

これらの結果から、本発明はMnZn系フェライトの主成分の組成、及び副成分の含有量を適切に制御することによって、高温下で飽和磁束密度Bsが高く、且つ磁気損失Pcvが低いMnZn系フェライト大型コアが得られていることがわかる。 From these results, the present invention appropriately controls the composition of the main component of MnZn-based ferrite and the content of subcomponents, so that the MnZn-based ferrite has high saturation magnetic flux density Bs and low magnetic loss Pcv at high temperatures. It can be seen that a large core is obtained.

以上のように、本発明に係るMnZn系フェライトは、高い飽和磁束密度Bsと低い磁気損失Pcvを有するので、トランス、チョークコイルといった部品に好適に用いることができる。また、本発明に係るMnZn系フェライトは大型コアとした場合においても高い飽和磁束密度Bsと低い磁気損失Pcvを有するので、大型のトランス、チョークコイルのような部品に好適に用いることができる。 As described above, since the MnZn ferrite according to the present invention has a high saturation magnetic flux density Bs and a low magnetic loss Pcv, it can be suitably used for components such as transformers and choke coils. In addition, since the MnZn ferrite according to the present invention has a high saturation magnetic flux density Bs and a low magnetic loss Pcv even when a large core is used, it can be suitably used for components such as large transformers and choke coils.

Claims (6)

酸化鉄がFe換算で65〜75mol%、酸化亜鉛をZnO換算で5〜20mol%、酸化ニッケルをNiO換算で0.4〜2mol%、残部が実質的にMnOの組成となる主成分からなり、副成分として酸化錫と酸化クロムの双方を含み、当該双方の総和含有量が、主成分の上記酸化物の合計質量100質量部に対し、SnO換算及びCr換算で0.1〜0.4質量部の範囲であり、且つ、酸化錫をSnO換算で0.05〜0.35質量部、酸化クロムをCr換算で0.005〜0.05質量部含有することを特徴とするMnZn系フェライト。 65~75Mol% in iron oxide in terms of Fe 2 O 3, 5 to 20 mol% of zinc oxide calculated as ZnO, 0.4~2Mol% nickel oxide in terms of NiO, the main component and the balance being substantially the composition of MnO It contains both tin oxide and chromium oxide as subcomponents, and the total content of both is 0 in terms of SnO 2 and Cr 2 O 3 with respect to 100 parts by mass of the total mass of the main oxide. 0.1 to 0.4 parts by mass, and tin oxide is 0.05 to 0.35 parts by mass in terms of SnO 2 , and chromium oxide is 0.005 to 0.05 parts by mass in terms of Cr 2 O 3. A MnZn-based ferrite characterized by containing. 120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下であることを特徴とする請求項1に記載のMnZn系フェライト。 The saturation magnetic flux density Bs (measurement magnetic field: 1194 A / m) at 120 ° C. is 500 mT or more, and the magnetic loss Pcv (measurement conditions: 100 kHz, 200 mT) is 2000 kW / m 3 or less. MnZn based ferrite. 相対密度≧95%であることを特徴とする請求項1に記載のMnZn系フェライト。 2. The MnZn ferrite according to claim 1, wherein the relative density is ≧ 95%. 酸化鉄がFe換算で65〜75mol%、酸化亜鉛をZnO換算で5〜20mol%、酸化ニッケルをNiO換算で0.4〜2mol%、残部が実質的にMnOの組成となる主成分からなり、副成分として酸化錫と酸化クロムの双方を含み、当該双方の総和含有量が、主成分の上記酸化物の合計質量100質量部に対し、SnO換算及びCr換算で0.1〜0.4質量部の範囲であり、且つ、酸化錫をSnO換算で0.05〜0.35質量部、酸化クロムをCr換算で0.005〜0.05質量部含有することを特徴とするMnZn系フェライト大型コア。 65~75Mol% in iron oxide in terms of Fe 2 O 3, 5 to 20 mol% of zinc oxide calculated as ZnO, 0.4~2Mol% nickel oxide in terms of NiO, the main component and the balance being substantially the composition of MnO It contains both tin oxide and chromium oxide as subcomponents, and the total content of both is 0 in terms of SnO 2 and Cr 2 O 3 with respect to 100 parts by mass of the total mass of the main oxide. 0.1 to 0.4 parts by mass, and tin oxide is 0.05 to 0.35 parts by mass in terms of SnO 2 , and chromium oxide is 0.005 to 0.05 parts by mass in terms of Cr 2 O 3. A large MnZn-based ferrite core characterized by containing. 120℃における飽和磁束密度Bs(測定磁界:1194A/m)が500mT以上、且つ磁気損失Pcv(測定条件:100kHz、200mT)が2000kW/m以下であることを特徴とする請求項4に記載のMnZn系フェライト大型コア。 5. The saturation magnetic flux density Bs (measurement magnetic field: 1194 A / m) at 120 ° C. is 500 mT or more, and the magnetic loss Pcv (measurement conditions: 100 kHz, 200 mT) is 2000 kW / m 3 or less. MnZn ferrite large core. 相対密度≧95%であることを特徴とする請求項4に記載のMnZn系フェライト大型コア。 5. The MnZn-based ferrite large core according to claim 4, wherein the relative density is ≧ 95%.
JP2014182822A 2014-09-09 2014-09-09 MnZn ferrite and MnZn ferrite large core Active JP6314758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182822A JP6314758B2 (en) 2014-09-09 2014-09-09 MnZn ferrite and MnZn ferrite large core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182822A JP6314758B2 (en) 2014-09-09 2014-09-09 MnZn ferrite and MnZn ferrite large core

Publications (2)

Publication Number Publication Date
JP2016056051A true JP2016056051A (en) 2016-04-21
JP6314758B2 JP6314758B2 (en) 2018-04-25

Family

ID=55757390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182822A Active JP6314758B2 (en) 2014-09-09 2014-09-09 MnZn ferrite and MnZn ferrite large core

Country Status (1)

Country Link
JP (1) JP6314758B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112456994A (en) * 2020-11-27 2021-03-09 天通控股股份有限公司 Low-temperature sintered high-frequency low-loss MnZn soft magnetic ferrite and preparation method thereof
CN114206805A (en) * 2020-07-14 2022-03-18 杰富意化学株式会社 MnZn ferrite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830914A (en) * 2017-02-16 2017-06-13 珠海乾牌环保科技有限公司 A kind of Bs high intensity soft magnetic ferrite high and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120022A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Oxide magnetic material
JP2004161593A (en) * 2002-09-26 2004-06-10 Tdk Corp Ferritic material
JP2005029417A (en) * 2003-07-10 2005-02-03 Tdk Corp Ferrite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120022A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Oxide magnetic material
JP2004161593A (en) * 2002-09-26 2004-06-10 Tdk Corp Ferritic material
JP2005029417A (en) * 2003-07-10 2005-02-03 Tdk Corp Ferrite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114206805A (en) * 2020-07-14 2022-03-18 杰富意化学株式会社 MnZn ferrite
CN112456994A (en) * 2020-11-27 2021-03-09 天通控股股份有限公司 Low-temperature sintered high-frequency low-loss MnZn soft magnetic ferrite and preparation method thereof

Also Published As

Publication number Publication date
JP6314758B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
KR100639770B1 (en) Method for producing Mn-Zn ferrite
US8512589B2 (en) Mn—Zn ferrite core and method for producing the same
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
JP3584438B2 (en) Mn-Zn ferrite and method for producing the same
JP2004217452A (en) Ferrite material and method of manufacturing the same
JP6314758B2 (en) MnZn ferrite and MnZn ferrite large core
JP2012180258A (en) MnZn-BASED FERRITE POWDER, MnZn-BASED FERRITE GRANULES, METHOD OF MANUFACTURING MnZn-BASED FERRITE CORE AND MnZn-BASED FERRITE CORE
JP2007031240A (en) METHOD FOR MANUFACTURING MnZn FERRITE AND MnZn FERRITE
KR102414450B1 (en) Ferrite composition, electronic component, and power supply device
JP2011195415A (en) MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JP2010120808A (en) MnZn FERRITE AND METHOD OF PRODUCING THE SAME
JP2007297232A (en) Method for producing oxide magnetic material
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2008169072A (en) Mn-Zn FERRITE
JP5845137B2 (en) Method for producing Mn-Zn ferrite
JP2007031210A (en) Mn-Zn FERRITE
WO2013002143A1 (en) Ferrite material and noise absorption part
JP3654303B2 (en) Low loss magnetic material
JP5716538B2 (en) Ferrite composition and electronic component
JP5929119B2 (en) Ferrite composition and electronic component
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
TWI663127B (en) Low magnetic-loss nickel-copper-zinc ferrite soft magnetic powder material and transformer having magnetic core made thereof
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
WO2023182133A1 (en) MnZn-BASED FERRITE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150