KR102414450B1 - Ferrite composition, electronic component, and power supply device - Google Patents

Ferrite composition, electronic component, and power supply device Download PDF

Info

Publication number
KR102414450B1
KR102414450B1 KR1020210038808A KR20210038808A KR102414450B1 KR 102414450 B1 KR102414450 B1 KR 102414450B1 KR 1020210038808 A KR1020210038808 A KR 1020210038808A KR 20210038808 A KR20210038808 A KR 20210038808A KR 102414450 B1 KR102414450 B1 KR 102414450B1
Authority
KR
South Korea
Prior art keywords
weight
terms
parts
ferrite composition
main component
Prior art date
Application number
KR1020210038808A
Other languages
Korean (ko)
Other versions
KR20210123213A (en
Inventor
도루 우지이에
겐타로 모리
히로카쓰 사사키
요시토 오카
Original Assignee
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티디케이가부시기가이샤 filed Critical 티디케이가부시기가이샤
Publication of KR20210123213A publication Critical patent/KR20210123213A/en
Application granted granted Critical
Publication of KR102414450B1 publication Critical patent/KR102414450B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air

Abstract

주성분과 부성분을 갖는 페라이트 조성물이다. 주성분은, Fe2O3 환산으로 51.2~54.9몰%의 산화철과, ZnO 환산으로 12~18몰%의 산화아연과, 잔부인 산화망간으로 구성되어 있다. 그리고, 당해 페라이트 조성물은, 주성분 100중량부에 대해서, 부성분으로서, 코발트를 CoO 환산으로 0.09~0.38중량부, 티탄을 TiO2 환산으로 0.1~0.6중량부, 바나듐을 V2O5 환산으로 0.005~0.04중량부, 칼슘을 CaCO3 환산으로 0.05~0.25중량부 함유한다.It is a ferrite composition having a main component and a minor component. The main component is composed of 51.2 to 54.9 mol% of iron oxide in terms of Fe 2 O 3 , 12 to 18 mol% of zinc oxide in terms of ZnO, and the balance manganese oxide. In addition, the ferrite composition contains 0.09 to 0.38 parts by weight of cobalt in terms of CoO, 0.1 to 0.6 parts by weight of titanium in terms of TiO 2 and 0.005 to 0.005 parts by weight of vanadium in terms of V 2 O 5 as subcomponents with respect to 100 parts by weight of the main component. 0.04 parts by weight, containing 0.05 to 0.25 parts by weight of calcium in terms of CaCO 3 .

Description

페라이트 조성물, 전자 부품, 및, 전원 장치{FERRITE COMPOSITION, ELECTRONIC COMPONENT, AND POWER SUPPLY DEVICE}A ferrite composition, an electronic component, and a power supply device TECHNICAL FIELD

본 발명은, 자심 재료로서 바람직한 페라이트 조성물과, 당해 페라이트 조성물을 포함하는 전자 부품 그리고 전원 장치에 관한 것이다.The present invention relates to a ferrite composition suitable as a magnetic core material, an electronic component containing the ferrite composition, and a power supply device.

각종 전자 부품에 이용되는 자심 재료로서, Mn 및 Zn을 포함하는 Mn-Zn계의 페라이트 조성물이 알려져 있다. 최근, 전자 기기의 소형화와 고효율화가 진행되고 있는 것에 수반하여, 상기와 같은 페라이트 조성물에는, 자기 손실을 저감하는 것이 요구되고 있다.As a magnetic core material used for various electronic components, a Mn-Zn-based ferrite composition containing Mn and Zn is known. In recent years, with the progress of miniaturization and high efficiency of electronic devices, reduction in magnetic loss is required for such ferrite compositions as described above.

특허문헌 1에서는, Mn-Zn계 페라이트의 조성을 조제함으로써, 자기 손실이 극소값을 나타내는 온도(이하, 바텀 온도라고 칭한다)를 120℃ 이상으로 높이는 기술이 개시되어 있다. 이와 같이 바텀 온도를 높임으로써, 기기의 열 폭주를 방지하는 것을 기대할 수 있다. 단, 특허문헌 1의 기술에서는, 바텀 온도를 높인 결과, 실온(25℃) 부근에서의 자기 손실을 충분히 저감할 수 없을 가능성이 있다. 실제로, 전원 장치 등의 기기에 있어서, 가장 동작 시간이 긴 온도대는, 실온이며, 실온에서의 자기 손실을 보다 작게 하는 것이 요구되고 있다.Patent Document 1 discloses a technique for raising the temperature at which the magnetic loss exhibits a minimum value (hereinafter referred to as bottom temperature) to 120° C. or higher by preparing the composition of Mn-Zn ferrite. By raising the bottom temperature in this way, it can be expected to prevent thermal runaway of the device. However, in the technique of Patent Document 1, as a result of raising the bottom temperature, there is a possibility that the magnetic loss in the vicinity of room temperature (25°C) cannot be sufficiently reduced. Actually, in equipment such as a power supply device, the temperature range for the longest operating time is room temperature, and it is required to further reduce the magnetic loss at room temperature.

일본국 특허공개 2009-227554호 공보Japanese Patent Laid-Open No. 2009-227554

본 발명은, 이러한 실정을 감안하여 이루어지고, 그 목적은, 실온에서의 자기 손실을 저감한 페라이트 조성물과, 당해 페라이트 조성물을 포함하는 전자 부품 그리고 전원 장치를 제공하는 것이다.The present invention has been made in view of such a situation, and an object thereof is to provide a ferrite composition with reduced magnetic loss at room temperature, an electronic component containing the ferrite composition, and a power supply device.

상기의 목적을 달성하기 위해서, 본 발명에 따르는 페라이트 조성물은,In order to achieve the above object, the ferrite composition according to the present invention,

주성분과 부성분을 갖고,It has a main component and a minor component,

상기 주성분은, Fe2O3 환산으로 51.2~54.9몰%의 산화철과, ZnO 환산으로 12~18몰%의 산화아연과, 잔부인 산화망간으로 구성되고,The main component is composed of 51.2 to 54.9 mol% of iron oxide in terms of Fe 2 O 3 , 12 to 18 mol% of zinc oxide in terms of ZnO, and the balance manganese oxide,

상기 주성분 100중량부에 대해서, 상기 부성분으로서, 코발트를 CoO 환산으로 0.09~0.38중량부, 티탄을 TiO2 환산으로 0.1~0.6중량부, 바나듐을 V2O5 환산으로 0.005~0.04중량부, 칼슘을 CaCO3 환산으로 0.05~0.25중량부 함유하고 있다.With respect to 100 parts by weight of the main component, as the subcomponent, 0.09 to 0.38 parts by weight of cobalt in terms of CoO, 0.1 to 0.6 parts by weight of titanium in terms of TiO 2 , 0.005 to 0.04 parts by weight of vanadium in terms of V 2 O 5 , calcium It contains 0.05 to 0.25 parts by weight in terms of CaCO 3 .

본 발명의 페라이트 조성물은, 상기의 구성을 가짐으로써, 실온(25℃) 부근에서의 자기 손실을 저감할 수 있다. 특히, 자기 손실은, 자로(磁路) 단면적이 커질수록 증가하는 경향이 있는데, 본 발명의 페라이트 조성물에서는, 자로 단면적이 큰 경우에도, 실온 부근에서의 자기 손실을 저감할 수 있다.The ferrite composition of the present invention can reduce magnetic loss in the vicinity of room temperature (25°C) by having the above structure. In particular, the magnetic loss tends to increase as the cross-sectional area of the magnetic path increases. In the ferrite composition of the present invention, even when the cross-sectional area of the magnetic path is large, the magnetic loss in the vicinity of room temperature can be reduced.

또, 본 발명의 페라이트 조성물에는, 지르코늄(Zr)이 실질적으로 포함되지 않는 것이 바람직하다. 본 발명에 있어서, 「Zr이 실질적으로 포함되지 않는다」란, 주성분 100중량부에 대한 Zr의 함유율이, ZrO2 환산으로 0.009중량부 이하인 것을 의미한다. 종래는, Zr을 소정량 첨가하는 편이, 자기 손실이 저감된다고 생각되어 왔다. 본 발명의 페라이트 조성물에서는, 종래와는 반대로, Zr이 실질적으로 포함되지 않음으로써, 실온 부근에서의 자기 손실을 보다 저감할 수 있다.Moreover, it is preferable that zirconium (Zr) is not contained substantially in the ferrite composition of this invention. In this invention, "Zr is not contained substantially" means that the content rate of Zr with respect to 100 weight part of main components is 0.009 weight part or less in conversion of ZrO2. Conventionally, it has been thought that adding a predetermined amount of Zr reduces magnetic loss. Contrary to the prior art, in the ferrite composition of the present invention, since Zr is substantially absent, magnetic loss in the vicinity of room temperature can be further reduced.

본 발명의 페라이트 조성물은, 인덕터, 트랜스, 초크 코일, 리액터, 안테나, 비접촉 급전용 코일 등의 각종 전자 부품에 있어서, 당해 전자 부품에 포함되는 자심이나 자성 시트(비접촉 급전용, 전자파 흡수체, 노이즈 필터 등)로서 이용할 수 있다. 특히, 본 발명의 페라이트 조성물은, 전원용 트랜스의 자심으로서 이용하는 것이 바람직하고, 이 전원용 트랜스는, 예를 들어, EV(Electric Vehicle:전동 수송 기기), PHV(Plug-in Hybrid Vehicle:플러그인 하이브리드 자동차), 혹은 커뮤터(차량) 등에서 이용되는 차재용의 스위칭 전원 장치, 가정용 또는 산업용의 전기 기기의 전원 장치, 혹은 컴퓨터 기기의 전원 장치 등에 장착하여 이용할 수 있다.The ferrite composition of the present invention is used in various electronic components such as inductors, transformers, choke coils, reactors, antennas, and non-contact power feeding coils. etc.) can be used. In particular, the ferrite composition of the present invention is preferably used as a magnetic core of a transformer for power supply, and the transformer for power supply is, for example, EV (Electric Vehicle: Electric Transport Equipment), PHV (Plug-in Hybrid Vehicle: Plug-in Hybrid Vehicle) , or a vehicle-mounted switching power supply device used in a commuter (vehicle), etc., a power supply device for household or industrial electric devices, or a power supply device for a computer device.

이하, 본 발명의 실시 형태에 대해 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail.

본 실시 형태에 따르는 페라이트 조성물은, 소결체 등의 벌크형의 형태, 분말형의 형태, 혹은 박막형의 형태여도 되고, 그 형태는 특별히 한정되지 않는다. 그리고, 본 실시 형태의 페라이트 조성물은, 주성분과 부성분을 갖는다. 주성분은, 산화철과, 산화아연과, 산화망간으로 구성된다. 한편, 부성분으로는, 적어도, 코발트(Co), 티탄(Ti), 바나듐(V), 칼슘(Ca)을 포함한다.The ferrite composition according to the present embodiment may be in the form of a bulk, such as a sintered body, a powder, or a thin film, and the form is not particularly limited. And the ferrite composition of this embodiment has a main component and a subcomponent. The main component is composed of iron oxide, zinc oxide, and manganese oxide. On the other hand, as an auxiliary component, at least cobalt (Co), titanium (Ti), vanadium (V), and calcium (Ca) are included.

우선, 주성분의 조성에 대해 설명한다. 주성분 전체를 100몰%로 하면, 산화철의 함유율은, 기준이 되는 범위가 Fe2O3 환산으로 51.2~54.9몰%이며, 바람직하게는 51.5~54.9몰%, 보다 바람직하게는 51.8~54몰%이다. 산화아연의 함유율은, 기준이 되는 범위가 ZnO 환산으로 12~18몰%이며, 바람직하게는 12.2~18몰%, 보다 바람직하게는 14~16몰%이다. 또, 산화망간의 함유율은, 다른 주성분인 산화철의 함유율 및 산화아연의 함유율을 정함으로써, 주성분 중 잔부로서 정해진다. 산화아연의 함유율에 대한 산화망간의 함유율의 비(MnO/ZnO)는, 1.50 이상, 3.00 미만인 것이 바람직하고, 2.60 이하인 것이 보다 바람직하다.First, the composition of the main component will be described. When the whole main component is 100 mol%, the content rate of iron oxide is 51.2 to 54.9 mol% in terms of Fe 2 O 3 in the standard range, preferably 51.5 to 54.9 mol%, more preferably 51.8 to 54 mol% to be. As for the content rate of zinc oxide, the range used as a reference is 12-18 mol% in conversion of ZnO, Preferably it is 12.2-18 mol%, More preferably, it is 14-16 mol%. Moreover, the content rate of manganese oxide is determined as the remainder among the main components by determining the content rate of iron oxide which is another main component, and the content rate of zinc oxide. It is preferable that it is 1.50 or more and less than 3.00, and, as for ratio (MnO/ZnO) of the content rate of manganese oxide with respect to the content rate of zinc oxide, it is more preferable that it is 2.60 or less.

상기의 주성분은, 페라이트 조성물의 단면에 있어서, 스피넬형의 결정 구조를 갖는 주상 입자를 구성하고 있다. 여기서, 스피넬형의 결정 구조는, 화학량론 조성식 AB2O3로 표기되며, A사이트에는, Mn 및 Zn이 들어가고, B사이트에는, Fe가 들어간다. 본 실시 형태에 있어서, 스피넬 구조의 주상 입자는, 원상당 직경에서의 평균 입경이, 10μm~18μm인 것이 바람직하다. 또한, 주상 입자의 평균 입경은, 페라이트 조성물의 단면을 SEM(주사형 전자현미경) 혹은 STEM(주사 투과형 전자현미경) 등으로 관찰하여, 얻어지는 단면 사진을 화상 해석함으로써 측정할 수 있다.The above main component constitutes columnar particles having a spinel crystal structure in the cross section of the ferrite composition. Here, the spinel crystal structure is expressed by the stoichiometric compositional formula AB 2 O 3 , Mn and Zn enter the A site, and Fe enters the B site. In this embodiment, it is preferable that the columnar particle|grains of a spinel structure have an average particle diameter in an equivalent circle diameter of 10 micrometers - 18 micrometers. In addition, the average particle diameter of the columnar particles can be measured by observing the cross section of the ferrite composition with a SEM (scanning electron microscope) or STEM (scanning transmission electron microscope) or the like, and image analysis of the obtained cross-sectional photograph.

한편, 부성분의 함유율에 대해서는, 상기의 주성분 100중량부에 대한 비율, 즉 바깥 범위량으로서 나타내진다. 본 실시 형태에 있어서, Co의 함유율은, 기준이 되는 범위가 CoO 환산으로 0.09~0.38중량부이며, 바람직하게는 0.19~0.38중량부, 보다 바람직하게는 0.21~0.38중량부, 더 바람직하게는 0.210~0.350중량부이다. 또, Ti의 함유율은, 기준이 되는 범위가 TiO2 환산으로 0.1~0.6중량부이며, 보다 바람직하게는 0.2~0.45중량부이다. 또, V의 함유율은, 기준이 되는 범위가 V2O5 환산으로 0.005~0.04중량부이며, 보다 바람직하게는 0.01~0.04중량부이다. 또한, Ca의 함유율은, 기준이 되는 범위가 CaCO3 환산으로 0.05~0.25중량부이며, 보다 바람직하게는 0.07~0.20중량부이다.In addition, about the content rate of a subcomponent, it is expressed as a ratio with respect to 100 weight part of said main components, ie, an amount outside the range. In the present embodiment, the content of Co is 0.09 to 0.38 parts by weight in terms of CoO in the reference range, preferably 0.19 to 0.38 parts by weight, more preferably 0.21 to 0.38 parts by weight, still more preferably 0.210 ~0.350 parts by weight. Moreover, as for content rate of Ti, the range used as a reference|standard is 0.1-0.6 weight part in conversion of TiO2, More preferably, it is 0.2-0.45 weight part. Moreover, as for the content rate of V , the range used as a reference is 0.005-0.04 weight part in conversion of V2O5, More preferably, it is 0.01-0.04 weight part. Moreover, as for content rate of Ca, the range used as a reference is 0.05-0.25 weight part in conversion of CaCO3, More preferably, it is 0.07-0.20 weight part.

본 실시 형태에서는, 주성분의 조성이 상기의 기준이 되는 범위를 만족함과 더불어, 모든 부성분의 함유율이 상기의 기준이 되는 범위를 만족함으로써, 페라이트 조성물의 실온(25℃) 부근에서의 자기 손실을 저감할 수 있다. 상술한 주성분과 부성분 중 1종에서도, 함유율의 기준 범위를 만족하지 않는 경우에는, 실온 부근에 있어서의 자기 손실이 증대하는 경향이 있다.In the present embodiment, the magnetic loss of the ferrite composition is reduced near room temperature (25° C.) by the composition of the main component satisfies the above reference range and the content of all subcomponents satisfies the above reference range. can do. In the case where even one of the above-mentioned main component and subcomponent does not satisfy the reference range of the content, the magnetic loss tends to increase around room temperature.

페라이트 조성물의 내부에 있어서의 각 부성분의 존재 형태는, 특별히 한정되지 않는다. 예를 들어, 각 부성분은, 주상 입자에 고용되어 있어도 되고, 주상 입자의 입계에 있어서 산화물, 복합 산화물, 탄산염 등의 각종 화합물로서 존재하고 있어도 된다. The existence form of each subcomponent in the inside of the ferrite composition is not particularly limited. For example, each of the subcomponents may be dissolved in the columnar particles or may exist as various compounds such as oxides, complex oxides and carbonates at the grain boundaries of the columnar particles.

보다 구체적으로는, Co 및 Ti는, 주로 주상 입자에 고용되어, 스피넬 격자 중의 Fe의 일부가, 고용된 Co 또는 Ti로 치환된다고 생각된다. 특히, Co와 Ti를 동시에 첨가함으로써, 스피넬 격자의 A사이트가 아닌, B사이트인 Fe가 Co 또는 Ti로 치환되기 쉬워진다고 생각된다. 스피넬 격자의 Fe가 Co 또는 Ti로 치환되면, 자기 이방성 상수의 온도 의존성이 작아지고, 그 결과, 자기 손실의 온도 의존성도 작아진다고 생각된다. 또, Co 또는 Ti에 의한 Fe의 치환은, 특히, 바텀 온도를 저하시키고, 실온 등의 저온역에 있어서의 자기 손실의 저감에 공헌한다고 생각된다.More specifically, it is considered that Co and Ti are mainly dissolved in the columnar particles, and a part of Fe in the spinel lattice is replaced by the dissolved Co or Ti. In particular, it is thought that by simultaneously adding Co and Ti, Fe, which is not the A site but the B site of the spinel lattice, is easily substituted with Co or Ti. When Fe of the spinel lattice is substituted with Co or Ti, it is considered that the temperature dependence of the magnetic anisotropy constant becomes smaller, and as a result, the temperature dependence of the magnetic loss also becomes smaller. Moreover, it is thought that substitution of Fe with Co or Ti especially reduces a bottom temperature and contributes to the reduction of the magnetic loss in low-temperature range, such as room temperature.

한편, V는, 주로, 주상 입자의 입계에 있어서 화합물로서 존재한다고 생각되고, 입계 저항을 높이는 작용을 한다고 생각된다. 또, Ca에 대해서는, 주로, 주상 입자의 입계에 있어서 화합물로서 존재함과 더불어, 주상 입자의 입계 근방에 고용되어 있다고 생각된다. Ca가 상기의 형태로 존재함으로써, 페라이트 조성물의 소결성이 향상함과 더불어, 입계 저항이 높아진다고 생각된다.On the other hand, V is considered to exist as a compound mainly in the grain boundary of columnar particle|grains, and it is thought that it acts to raise the grain boundary resistance. Further, it is considered that Ca mainly exists as a compound at the grain boundaries of the columnar particles and is dissolved in the vicinity of the grain boundaries of the columnar particles. When Ca exists in said form, while sintering property of a ferrite composition improves, it is thought that grain boundary resistance becomes high.

또, 본 실시 형태의 페라이트 조성물에는, Zr이 실질적으로 포함되지 않는 것이 바람직하다. 본 실시 형태에 있어서, 「Zr이 실질적으로 포함되지 않는다」란, Zr의 함유율이, 주성분 100중량부에 대해서, ZrO2 환산으로 0.009중량부 이하인 것을 의미한다. 또한, Zr의 함유율은, 보다 바람직하게는 0~0.005중량부 미만이다.Moreover, it is preferable that Zr is not contained substantially in the ferrite composition of this embodiment. In this embodiment, "Zr is not contained substantially" means that the content rate of Zr is 0.009 weight part or less in conversion of ZrO2 with respect to 100 weight part of main components. Moreover, the content rate of Zr becomes like this. More preferably, it is 0 - less than 0.005 weight part.

종래, Zr은, 부성분으로서 첨가함으로써, 자기 손실의 저감에 기여한다고 생각되어 왔다. 본 발명자들의 새로운 지견에 의하면, 주성분과 부성분의 조성이 상술한 기준 범위인 경우에는, Zr이 상기의 기준값을 초과하여 포함되면, 실온 부근에서의 자기 손실이 증가하는 경향이 있다.Conventionally, it has been thought that adding Zr as a subcomponent contributes to the reduction of magnetic loss. According to the new findings of the present inventors, when the composition of the main component and the subcomponent is within the above-mentioned reference range, when Zr exceeds the above-mentioned reference value, the magnetic loss tends to increase in the vicinity of room temperature.

또한, 본 실시 형태의 페라이트 조성물에는, 상술한 부성분 이외에, Si, Nb, P 등의 다른 부성분이나 불가피 불순물이 포함되어 있어도 된다. 다른 부성분이나 불가피 불순물의 함유율은, 실온 부근에서의 자기 손실의 저감을 방해하지 않는 양으로 한다. 예를 들어, 불가피 불순물의 총 함유율은, 주성분 100중량부에 대해서 0~0.001중량부 정도로 하는 것이 바람직하다. 또, 다른 부성분으로는, Si 또는/및 Nb를 선택하는 것이 바람직하다. 이 경우, 주성분 100중량부에 대해서, Si의 함유율이 SiO2 환산으로 0.005~0.02중량부인 것이 바람직하고, Nb의 함유율이 Nb2O5 환산으로 0.005~0.05중량부인 것이 바람직하다. Si는, 페라이트 조성물의 소결성의 향상에 공헌하고, Nb는, 페라이트 조성물의 결정 조직의 균일화에 기여한다고 생각된다.In addition to the subcomponents described above, the ferrite composition of the present embodiment may contain other subcomponents such as Si, Nb, and P and unavoidable impurities. The content of other subcomponents and unavoidable impurities is such that the reduction in magnetic loss in the vicinity of room temperature is not prevented. For example, it is preferable that the total content rate of an unavoidable impurity sets it as about 0-0.001 weight part with respect to 100 weight part of main components. Moreover, as another subcomponent, it is preferable to select Si or/and Nb. In this case, with respect to 100 parts by weight of the main component, the content of Si is preferably 0.005 to 0.02 parts by weight in terms of SiO 2 , and the content of Nb is preferably 0.005 to 0.05 parts by weight in terms of Nb 2 O 5 . It is thought that Si contributes to the improvement of the sinterability of a ferrite composition, and Nb contributes to uniformity of the crystal structure of a ferrite composition.

상술한 바와 같은 주성분의 함유율, 및, 부성분의 함유율은, 형광 X선 분석 장치(XRF)를 이용하여 성분 분석함으로써 측정할 수 있다. 또, SEM이나 STEM에서의 단면 관찰시에, 전자선 마이크로 애널라이저(EPMA)에 의해 성분 분석함으로써 측정해도 되고, X선 회절(XRD)을 이용하여 측정할 수도 있다.The content of the main component and the content of the subcomponent as described above can be measured by component analysis using a fluorescence X-ray analyzer (XRF). Moreover, at the time of cross-sectional observation by SEM or STEM, you may measure by performing component analysis with an electron beam microanalyzer (EPMA), and it can also measure using X-ray diffraction (XRD).

다음으로, 본 실시 형태에 따르는 페라이트 조성물의 제조 방법의 일례에 대해 설명한다.Next, an example of the manufacturing method of the ferrite composition which concerns on this embodiment is demonstrated.

우선, 주성분의 출발 원료를 준비하고, 소성 후에 소정의 조성이 되도록 칭량한다. 주성분의 출발 원료로는, 산화물의 분말, 또는, 가열에 의해 산화물이 되는 화합물의 분말(탄산염의 분말 등)을 이용할 수 있고, 구체적으로는, α-Fe2O3 분말, Mn3O4 분말, ZnO 분말을 이용하는 것이 바람직하다. 또, 2종 이상의 금속을 포함하는 복합 산화물의 분말을, 주성분의 출발 원료로서 이용해도 된다. 예를 들어, 염화철 및 염화망간을 함유하는 수용액을 산화 배소(焙燒)함으로써, Fe 및 Mn을 포함하는 복합 산화물의 분말을 얻는다. 그리고, 이 복합 산화물의 분말에 ZnO 분말을 더하고 혼합함으로써, 주성분의 원료로 해도 된다. 또한, 상술한 각 출발 원료의 평균 입경은, 0.1~3.0μm로 하는 것이 바람직하다.First, the starting material of the main component is prepared, and after firing, it is weighed so as to have a predetermined composition. As a starting raw material for the main component, an oxide powder or a powder of a compound that becomes an oxide upon heating (such as a carbonate powder) can be used, and specifically, α-Fe 2 O 3 powder, Mn 3 O 4 powder , it is preferable to use ZnO powder. Moreover, you may use the powder of the complex oxide containing 2 or more types of metals as a starting raw material of a main component. For example, an aqueous solution containing iron chloride and manganese chloride is oxidized and roasted to obtain a powder of a complex oxide containing Fe and Mn. In addition, it is good also as a raw material of a main component by adding and mixing ZnO powder to the powder of this complex oxide. In addition, it is preferable that the average particle diameter of each starting raw material mentioned above shall be 0.1-3.0 micrometers.

다음으로, 칭량한 주성분의 출발 원료를, 볼 밀 등의 혼합기로 혼합하고, 그 후, 가소(假燒) 처리한다. 이때, 혼합은, 습식 혼합이어도 건식 혼합이어도 되고, 습식 혼합을 선택한 경우에는, 혼합 후에 적절히 건조하고 나서, 가소 처리한다. 또, 가소 처리의 조건은, 유지 온도를 800~1100℃로 하는 것이 바람직하고, 온도 유지 시간(온도 안정 시간)을 0.5~5시간으로 하는 것이 바람직하다. 이러한 조건에서 가소하여 얻어진 가소재에 대해서는, 각종 분쇄기를 이용하여, 평균 입경이 0.5~3.0μm 정도가 될 때까지 분쇄한다. 또한, 주성분의 출발 원료로서, Fe 및 Mn을 포함하는 복합 산화물의 분말을 이용하는 경우에는, 가소 처리를 생략해도 된다.Next, the weighed starting material of the main component is mixed with a mixer such as a ball mill, and then calcined. At this time, wet mixing or dry mixing may be sufficient as mixing, and when wet mixing is selected, after mixing, it dries suitably and plasticizes. Moreover, as for the conditions of a calcination process, it is preferable to make a holding temperature into 800-1100 degreeC, and it is preferable to make temperature holding time (temperature stabilization time) into 0.5 to 5 hours. The plasticizer obtained by calcining under these conditions is pulverized using various pulverizers until the average particle size is about 0.5 to 3.0 µm. In addition, when using the powder of the complex oxide containing Fe and Mn as a starting material of a main component, you may abbreviate|omit a calcination process.

다음으로, 가소 후의 원료에, 부성분의 출발 원료를 첨가하여 혼합한다. 부성분의 출발 원료로는, 주성분의 경우와 마찬가지로, 산화물의 분말, 또는, 가열에 의해 산화물이 되는 화합물의 분말을 이용할 수 있다. 구체적으로는, CoO 분말, TiO2 분말, V2O5 분말, CaCO3 분말을 이용할 수 있다. 부성분의 출발 원료의 평균 입경에 대해서도, 0.1~3.0μm로 하는 것이 바람직하다. 또한, 부성분의 출발 원료는, 가소 처리 후에 첨가하고, 그 후, 상기의 분쇄 처리를 행함으로써, 주성분과 부성분을 혼합하면서 가소재를 분쇄해도 된다. 또, 부성분의 출발 원료는, 가소재의 분쇄 후에 첨가하고, 혼합해도 된다. 또한, CoO 분말 및 TiO2 분말에 대해서는, 미리 주성분의 출발 원료와 함께 혼합하고, 가소 처리에 제공해도 된다.Next, to the raw material after calcination, the starting raw material of an auxiliary component is added and mixed. As a starting material for the subcomponent, as in the case of the main component, an oxide powder or a powder of a compound that becomes an oxide by heating can be used. Specifically, CoO powder, TiO 2 powder, V 2 O 5 powder, and CaCO 3 powder can be used. Also about the average particle diameter of the starting material of a subcomponent, it is preferable to set it as 0.1-3.0 micrometers. Further, the starting material of the subcomponent may be added after the calcination treatment and then the pulverizing treatment is performed to pulverize the calcined material while mixing the main component and the subcomponent. Moreover, you may add and mix the starting raw material of an auxiliary component after grinding|pulverization of a plasticizer. In addition, about the CoO powder and TiO2 powder, you may mix previously with the starting raw material of a main component, and may provide for a calcination process.

다음으로, 상기에서 얻어진 주성분과 부성분의 혼합 분말에, 폴리비닐알코올 등의 적당한 결합재(바인더)를 더하고 혼련하여, 복합재를 얻는다. 그리고, 이 복합재를, 사출 성형이나 기계 프레스 성형 등의 수법에 의해 소정의 형상으로 성형하여, 성형체를 얻는다. 예를 들어, 사출 성형에서는, 상기의 복합재를 슬러리화하고 금형으로 흘려 넣음으로써 성형체를 얻는다. 또, 기계 프레스 성형에서는, 과립형상의 복합재를 금형에 충전하여 가압함으로써 성형체를 얻는다. Next, a suitable binder (binder) such as polyvinyl alcohol is added to the mixed powder of the main component and the subcomponent obtained above and kneaded to obtain a composite material. Then, the composite material is molded into a predetermined shape by a method such as injection molding or mechanical press molding to obtain a molded product. For example, in injection molding, a molded object is obtained by making the said composite material into a slurry and pouring it into a metal mold|die. Moreover, in mechanical press molding, a molded object is obtained by filling and pressurizing a granular composite material in a metal mold|die.

다음으로, 상기에서 얻어진 성형체를 소성한다. 소성의 조건은, 유지 온도를 1250℃~1500℃, 보다 바람직하게는 1300℃~1400℃로 하고, 온도 유지 시간을 1~10시간, 보다 바람직하게는 2~6시간으로 한다. 또, 가열 개시부터 유지 온도까지의 승온 과정에서는, 승온 속도를 50~300℃/시간으로 하는 것이 바람직하고, 유지 온도로부터 900℃까지의 강온 과정에서는, 냉각 속도를 50~200℃/시간으로 하는 것이 바람직하다. 또, 소성시의 분위기는, 산소와 질소의 혼합 분위기로 하고, 승온 과정 및 온도 유지 과정에서의 산소 분압을 0.1~5.0vol%로 하는 것이 바람직하다. 또한, 유지 온도로부터 1000℃까지의 강온 과정에서는, 산소 분압을 서서히 저하시키고, 1000℃ 이하에서는, 산소 분압을 0.02vol% 이하로 하는 것이 바람직하다.Next, the molded body obtained above is fired. The firing conditions are 1250° C. to 1500° C., more preferably 1300° C. to 1400° C., and 1 to 10 hours, more preferably 2 to 6 hours. In addition, in the temperature increase process from the start of heating to the holding temperature, the temperature increase rate is preferably 50 to 300 ° C./hour, and in the temperature decrease process from the holding temperature to 900 ° C., the cooling rate is 50 to 200 ° C / hour it is preferable Moreover, it is preferable to make the atmosphere at the time of baking into a mixed atmosphere of oxygen and nitrogen, and to make the oxygen partial pressure in a temperature raising process and a temperature holding process 0.1-5.0 vol%. Moreover, in the temperature-fall process from a holding temperature to 1000 degreeC, it is preferable to reduce oxygen partial pressure gradually, and to make oxygen partial pressure into 0.02 vol% or less at 1000 degrees C or less.

상기와 같은 조건에서 소성함으로써, 소결체로서의 페라이트 조성물이 얻어진다. 또한, 당해 소결체는, 각종 전자 부품에 있어서, 자심이나 자성 시트로서 이용할 수 있다. 이 경우, 소결체의 형상은, 특별히 한정되지 않으며, 예를 들어, E자형, F자형, I자형, T자형, U자형, 드럼형, 토로이달형, 포트형, 컵형, 혹은 단순한 판형, 각기둥형의 형상으로 할 수 있다.By firing under the conditions described above, a ferrite composition as a sintered body is obtained. In addition, the said sintered compact can be utilized as a magnetic core or a magnetic sheet in various electronic components. In this case, the shape of the sintered body is not particularly limited, and for example, an E-shape, an F-shape, an I-shape, a T-shape, a U-shape, a drum shape, a toroidal shape, a pot shape, a cup shape, or a simple plate shape or a prismatic shape. shape can be made.

또, 소결체(자심)의 치수도, 특별히 한정되지 않는다. 여기서, 자기 손실은, 자심의 자로 단면적이 커질수록 증가하는 경향이 있다. 본 실시 형태의 페라이트 조성물로 자심을 구성한 경우, 자로 단면적이 100mm2 이상으로 커도, 실온 부근에 있어서의 자기 손실을 충분히 저감할 수 있다.Moreover, the dimension of a sintered compact (magnetic core) is also not specifically limited, either. Here, the magnetic loss tends to increase as the magnetic path cross-sectional area of the magnetic core increases. When a magnetic core is constituted by the ferrite composition of the present embodiment, even if the magnetic path cross-sectional area is as large as 100 mm 2 or more, the magnetic loss in the vicinity of room temperature can be sufficiently reduced.

또한, 소성 후에 얻어진 소결체를 분쇄하여, 분말형상의 페라이트 조성물을 얻어도 된다. 이 경우, 추가로, 얻어진 소결체 분말에 바인더나 용매를 첨가하여 페이스트화할 수 있다. 그리고, 이 페이스트를 시트법이나 압출법 등의 수법에 의해 시트화하고, 그 후, 적절히 건조나 열처리를 실시함으로써, 박막형상의 페라이트 조성물이 얻어진다. 이러한 박막형상의 페라이트 조성물은, 예를 들어, 박막 인덕터의 자심이나, 안테나나 비접촉 급전용 등의 자성 시트(비접촉 급전용, 전자파 흡수체, 노이즈 필터)로서 이용할 수 있다.Moreover, the sintered compact obtained after baking may be grind|pulverized and a powdery ferrite composition may be obtained. In this case, it is possible to further add a binder or a solvent to the obtained sintered compact powder to form a paste. Then, the paste is formed into a sheet by a method such as a sheet method or an extrusion method, and thereafter, drying or heat treatment is performed appropriately to obtain a thin-film ferrite composition. Such a thin-film ferrite composition can be used, for example, as a magnetic core of a thin-film inductor, or as a magnetic sheet (for non-contact power supply, electromagnetic wave absorber, noise filter) for antennas and non-contact power feeding and the like.

본 실시 형태의 페라이트 조성물은, 전술한 바와 같이, 자심 재료나 자성 시트로서 바람직하고, 트랜스, 인덕터, 초크 코일, 리액터, 안테나, 비접촉 급전용 코일 등의 전자 부품에 이용할 수 있다. 상기의 전자 부품 중에서도, 특히 트랜스로서의 응용이 바람직하다. 본 실시 형태의 페라이트 조성물을 포함하는 트랜스는, 특히 전원 장치에 장착하여 이용하는 것이 바람직하다. 전원 장치로는, 예를 들어, 상기의 트랜스에, 입력 필터나, 스위칭 회로, 정류 회로, 평활 회로 등을 조합한 스위칭 전원 장치를 들 수 있다. 이러한 전원 장치에, 본 실시 형태의 페라이트 조성물을 포함하는 트랜스를 장착한 경우, 실온 부근에서의 자기 손실이 저감되어 있기 때문에, 당해 전원 장치의 경부하에서의 효율을 향상시킬 수 있다.As described above, the ferrite composition of the present embodiment is suitable as a magnetic core material or a magnetic sheet, and can be used for electronic components such as transformers, inductors, choke coils, reactors, antennas, and non-contact power supply coils. Among the electronic components described above, application as a transformer is particularly preferable. The transformer containing the ferrite composition of the present embodiment is particularly preferably attached to and used in a power supply device. As a power supply device, the switching power supply device which combined the said transformer with an input filter, a switching circuit, a rectification circuit, a smoothing circuit, etc. is mentioned, for example. When the transformer containing the ferrite composition of the present embodiment is attached to such a power supply device, the magnetic loss around room temperature is reduced, so that the efficiency of the power supply device at light load can be improved.

이상, 본 발명의 실시 형태에 대해 설명해 왔는데, 본 발명은 상술한 실시 형태에 한정되는 것이 아니며, 본 발명의 범위 내에서 여러 가지로 개변할 수 있다.As mentioned above, although embodiment of this invention has been described, this invention is not limited to embodiment mentioned above, It can change variously within the scope of the present invention.

[실시예][Example]

이하, 실시예 및 비교예를 이용하여, 본 발명을 더 상세하게 설명한다. 단, 본 발명은, 이하의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples. However, the present invention is not limited to the following examples.

본 실험에서는, 표 1~표 6에 기재한 조성을 갖는 실시예 1~53 및 비교예 1~22의 페라이트 코어를 작성하여, 그 자기 손실 Pcv를 측정했다. 각 실시예 및 각 비교예의 페라이트 코어는, 이하에 개시하는 순서로 제작했다.In this experiment, the ferrite cores of Examples 1-53 and Comparative Examples 1-22 having the compositions shown in Tables 1 to 6 were prepared, and the magnetic loss Pcv was measured. The ferrite core of each Example and each comparative example was produced in the procedure shown below.

우선, 주성분의 출발 원료로서, α-Fe2O3 분말, Mn3O4 분말, ZnO 분말을 준비하고, 소성 후에 소정의 비율이 되도록 칭량했다. 그리고, 칭량한 각 분말을, 볼 밀로 습식 혼합하여, 원료 혼합물을 얻었다. 또한, 이 원료 혼합물을 건조시킨 후, 대기 분위기에 있어서, 900℃에서 3시간, 가소하여, 가소재를 얻었다.First, α-Fe 2 O 3 powder, Mn 3 O 4 powder, and ZnO powder were prepared as starting materials for the main component, and were weighed so as to have a predetermined ratio after firing. Then, each weighed powder was wet-mixed with a ball mill to obtain a raw material mixture. Furthermore, after drying this raw material mixture, it calcined in air atmosphere at 900 degreeC for 3 hours, and obtained the plasticizing material.

다음으로, 상기의 가소재를, 철강제 볼을 충전한 볼 밀에 투입하여, 16시간 분쇄함으로써, 평균 입경이 1~2μm인 분쇄 분말을 얻었다. 그리고, 이 분쇄 분말과 부성분의 출발 원료를 습식 혼합하고, 그 후 건조시킴으로써, 혼합 분말을 얻었다. 이때, 부성분의 출발 원료로는, CoO 분말, TiO2 분말, V2O5 분말, CaCO3 분말을 준비하고, 소성 후에 소정의 비율이 되도록 칭량했다. 또, 각 실시예 및 각 비교예에서는, 상기 이외에 부성분으로서 SiO2 분말 및 Nb2O5 분말도 소정량 첨가했다. 게다가, 실시예 51, 53, 비교예 11, 14, 21, 22에 있어서는, 부성분으로서 ZrO2 분말도 첨가했다.Next, the above-mentioned plasticizer was put into a ball mill filled with steel balls, and pulverized for 16 hours to obtain a pulverized powder having an average particle size of 1 to 2 µm. Then, this pulverized powder and the starting raw materials of the subcomponents were wet-mixed and then dried to obtain a mixed powder. At this time, as starting materials for the subcomponents, CoO powder, TiO 2 powder, V 2 O 5 powder, and CaCO 3 powder were prepared, and were weighed so as to have a predetermined ratio after firing. Moreover, in each Example and each comparative example, SiO2 powder and Nb2O5 powder were also added in predetermined amounts as subcomponents other than the above. In addition, in Examples 51 and 53 and Comparative Examples 11, 14, 21 and 22, ZrO 2 powder was also added as an auxiliary component.

다음으로, 상기의 혼합 분말 100중량부에 대해서, 폴리비닐알코올을 0.8중량부 첨가하고, 이것을 스프레이 드라이어로 분무, 건조함으로써 과립으로 조립(造立)했다. 그리고, 얻어진 과립을, 금형에 충전하고, 100MPa의 압력으로 가압 성형함으로써, 토로이달 형상의 성형체를 얻었다.Next, 0.8 weight part of polyvinyl alcohol was added with respect to 100 weight part of said mixed powders, and it was granulated into granules by spraying and drying this with a spray dryer. And the obtained granules were filled in a metal mold|die, and the toroidal-shaped molded object was obtained by press-molding at the pressure of 100 MPa.

다음으로, 상기의 성형체를 이하의 조건에서 소성했다. 소성의 조건은, 유지 온도를 1350℃로 하고, 유지 시간을 5시간으로 하며, 소성 분위기를 산소와 질소의 혼합 분위기로 했다. 또한, 온도 유지 과정에서의 산소 분압은, 4vol%로 하고, 강온 과정에 있어서는, 1350℃~1000℃의 온도대에서 산소 분압을 단조 감소시키고, 1000℃ 이하의 온도대에서 산소 분압이 0.02vol%가 되도록 제어했다. 또, 승온 속도는 200℃/시간으로 하고, 냉각 속도는 100℃/시간으로 했다. 이러한 조건에서 소성함으로써, 소결체로서의 페라이트 코어가 얻어졌다.Next, the said molded object was baked under the following conditions. The firing conditions were a holding temperature of 1350°C, a holding time of 5 hours, and a firing atmosphere of a mixed atmosphere of oxygen and nitrogen. In addition, the oxygen partial pressure in the temperature holding process is 4 vol%, and in the temperature lowering process, the oxygen partial pressure is monotonically decreased in the temperature range of 1350° C. to 1000° C., and the oxygen partial pressure is 0.02 vol% in the temperature range of 1000° C. or less. was controlled to become In addition, the rate of temperature increase was 200°C/hour, and the cooling rate was 100°C/hour. By firing under these conditions, a ferrite core as a sintered body was obtained.

또한, 얻어진 페라이트 코어의 형상은, 상술한 바와 같이 토로이달 형상인데, 본 실험에서는, 전원용 트랜스의 자심을 상정하여, 굳이 자기 손실이 커지기 쉽도록, 코어의 치수를 크게 했다. 구체적으로, 제작한 페라이트 코어의 치수는, 외경이 50mm, 내경이 10mm, 높이가 20mm였다.In addition, the shape of the obtained ferrite core is a toroidal shape as mentioned above, but in this experiment, the magnetic core of the transformer for power supply was assumed, and the dimension of the core was enlarged so that a magnetic loss might become large easily. Specifically, the dimensions of the produced ferrite core were an outer diameter of 50 mm, an inner diameter of 10 mm, and a height of 20 mm.

또, 제작한 페라이트 코어에 대해서는, 그 조성을 XRF에 의해 분석했다. 측정한 결과를 표 1~표 6에 기재한다. 또한, 표 1~표 6에서는 기재를 생략하고 있는데, 모든 실시예 및 비교예에 있어서, Si의 함유율은, 주성분 100중량부에 대해서 SiO2 환산으로 0.01중량부이며, Nb의 함유율은, 주성분 100중량부에 대해서 Nb2O5 환산으로 0.025중량부였다.Moreover, about the produced ferrite core, the composition was analyzed by XRF. The measured results are described in Tables 1 to 6. In addition, although description is abbreviate|omitted in Tables 1 - 6, in all the Examples and Comparative Examples, the content rate of Si is 0.01 weight part in conversion of SiO2 with respect to 100 weight part of main components, The content rate of Nb is 100 weight part of main components It was 0.025 weight part with respect to a weight part in conversion of Nb2O5.

또, 각 실시예 및 각 비교예의 페라이트 코어에 대해서, 주파수 100kHz, 자속 밀도 150mT의 조건에서, 25℃에서의 자기 손실 Pcv를 측정했다. 자기 손실 Pcv는, 값이 낮을수록 좋고, 본 실험에서는, 자기 손실 Pcv의 기준값을 290kW/m3 이하로 하며, 270kW/m3 이하가 양호, 250kW/m3 이하가 더욱 양호라고 판단한다. 또한, 자기 손실 Pcv는, 각 실시예 및 각 비교예에 대해서, 각각 2개 측정하여, 그 평균값으로서 산출했다. 측정 결과를 표 1~표 6에 기재한다.Moreover, about the ferrite core of each Example and each comparative example, the magnetic loss Pcv at 25 degreeC was measured under the conditions of a frequency of 100 kHz and a magnetic flux density of 150 mT. The lower the value, the better the magnetic loss Pcv. In this experiment, the reference value of the magnetic loss Pcv is set to 290 kW/m 3 or less, 270 kW/m 3 or less is good, and 250 kW/m 3 or less is judged to be more favorable. In addition, about each Example and each comparative example, the magnetic loss Pcv measured two, respectively, and computed it as the average value. The measurement results are shown in Tables 1 to 6.

Figure 112021035189812-pat00001
Figure 112021035189812-pat00001

표 1에서는, 주로, 부성분의 함유율을 고정하고, 주성분의 조성을 변경한 실험 결과를 기재하고 있다. 표 1에 기재한 바와 같이, 비교예 1~6에서는, 부성분으로서 Co, Ti, V, Ca가 첨가되어 있지만, 25℃에서의 자기 손실 Pcv가 높고, 자기 손실 Pcv의 기준값을 만족할 수 없었다. 한편, 실시예 1~12에서는, 각 비교예보다 25℃에서의 자기 손실 Pcv가 저감되어 있어, 기준값을 만족하는 결과가 되었다. 이들 실시예 1~12에서는, 소정량의 부성분이 첨가된 데다가, 산화철의 함유율이 51.2~54.9몰%의 범위 내로 되어 있고, 또한, 산화아연의 함유율이 12~18몰%의 범위내로 되어 있다. 상기의 결과로부터, 주성분이 소정의 조성을 가짐으로써, 실온 부근에서의 자기 손실이 저감되는 것을 알 수 있었다.Table 1 mainly describes the experimental results in which the content of the subcomponent was fixed and the composition of the main component was changed. As shown in Table 1, in Comparative Examples 1 to 6, Co, Ti, V, and Ca were added as subcomponents, but the magnetic loss Pcv at 25°C was high, and the reference value of the magnetic loss Pcv could not be satisfied. On the other hand, in Examples 1-12, the magnetic loss Pcv in 25 degreeC was reduced compared with each comparative example, and the result which satisfied the reference value was brought. In these Examples 1 to 12, a predetermined amount of subcomponent was added, the content of iron oxide was within the range of 51.2 to 54.9 mol%, and the content of zinc oxide was within the range of 12 to 18 mol%. From the above results, it was found that when the main component has a predetermined composition, the magnetic loss in the vicinity of room temperature is reduced.

또, 실시예 1~12를 비교하면, 산화아연의 함유율이 14~16몰%인 경우, 특히, 25℃에서의 자기 손실 Pcv가 낮아, 양호한 결과가 되는 것을 알았다. 또, 실시예 1~12를 비교하면, 산화아연의 함유율에 대한 산화망간의 함유율의 비(MnO/ZnO)는, 3.00 미만인 것이 바람직하고, 2.60 이하인 것이 보다 바람직한 것을 알 수 있다.Moreover, when Examples 1-12 were compared, when the content rate of zinc oxide was 14-16 mol%, especially, the magnetic loss Pcv in 25 degreeC was low, and it turned out that it becomes a favorable result. Moreover, when Examples 1-12 are compared, it turns out that it is preferable that it is less than 3.00, and, as for the ratio (MnO/ZnO) of the content rate of manganese oxide with respect to the content rate of zinc oxide, it is more preferable that it is 2.60 or less.

Figure 112021035189812-pat00002
Figure 112021035189812-pat00002

표 2에서는, 부성분인 Co의 함유율을 변경한 경우의 실험 결과를 기재하고 있다. 표 2에 기재한 바와 같이, 실시예 13~17에서는, 비교예 7 및 8보다, 25℃에서의 자기 손실 Pcv가 저감되어 있어, 양호한 결과가 되었다. 이 결과로부터, 주성분 100중량부에 대해서 Co의 함유율이 0.090중량부~0.380중량부의 범위 내임으로써, 실온 부근에서의 자기 손실이 저감되는 것을 알 수 있었다. 또, 실시예 13~17의 결과를 비교하면, Co의 함유율은, 0.190중량부 이상인 것이 바람직하고, 0.210중량부 이상인 것이 보다 바람직한 것을 알 수 있다.In Table 2, the experimental results in the case of changing the content rate of Co, which is a subcomponent, are described. As shown in Table 2, in Examples 13-17, the magnetic loss Pcv in 25 degreeC was reduced compared with Comparative Examples 7 and 8, and it became a favorable result. From this result, it turned out that the magnetic loss in room temperature vicinity is reduced when the content rate of Co is in the range of 0.090 weight part - 0.380 weight part with respect to 100 weight part of main components. Moreover, when the results of Examples 13-17 are compared, it turns out that it is preferable that it is 0.190 weight part or more, and, as for the content rate of Co, it is more preferable that it is 0.210 weight part or more.

또, 표 2에는 기재되어 있지 않으나, 표 2에 기재한 각 실시예 및 각 비교예에 대해서, 자기 손실 Pcv가 극소값이 되는 바텀 온도를 측정했다. 그 결과, 본 실시예의 조성 범위에서는, 부성분으로서 Co를 첨가함으로써, 바텀 온도가 저온역측으로 시프트하는 경향을 확인할 수 있었다.In addition, although not described in Table 2, the bottom temperature at which the magnetic loss Pcv becomes the minimum value was measured for each Example and each comparative example described in Table 2. As a result, in the composition range of this Example, it was confirmed that the tendency of the bottom temperature to shift toward the low temperature side by adding Co as a subcomponent was confirmed.

Figure 112021035189812-pat00003
Figure 112021035189812-pat00003

표 3에서는, 부성분인 Ti의 함유율을 변경한 경우의 실험 결과를 기재하고 있다. 표 3에 기재한 바와 같이, 실시예 18~23에서는, 비교예 9 및 10보다, 25℃에서의 자기 손실 Pcv가 저감되어 있어, 양호한 결과가 되었다. 이 결과로부터, 주성분 100중량부에 대해서, Ti의 함유율이 0.100~0.600중량부의 범위 내임으로써, 실온 부근에서의 자기 손실이 저감되는 것을 알 수 있었다. 또, 실시예 18~23을 비교하면, Ti의 함유율은, 0.200중량부~0.450중량부의 범위 내인 것이 보다 바람직한 것을 알 수 있다.In Table 3, the experimental results in the case of changing the content rate of Ti, which is a subcomponent, are described. As shown in Table 3, in Examples 18-23, the magnetic loss Pcv in 25 degreeC was reduced compared with Comparative Examples 9 and 10, and it became a favorable result. From this result, it turned out that the magnetic loss in room temperature vicinity is reduced when the content rate of Ti is in the range of 0.100-0.600 weight part with respect to 100 weight part of main components. Moreover, when Examples 18-23 are compared, it turns out that it is more preferable that the content rate of Ti exists in the range of 0.200 weight part - 0.450 weight part.

또, 표 3에는 기재되어 있지 않으나, 표 3에 기재한 각 실시예 및 각 비교예에 대해서, 자기 손실 Pcv가 극소값이 되는 바텀 온도를 측정했다. 그 결과, 본 실시예의 조성 범위에서는, 부성분으로서 Ti를 첨가함으로써, 바텀 온도가 저온역측으로 시프트하는 경향을 확인할 수 있었다.In addition, although not described in Table 3, the bottom temperature at which the magnetic loss Pcv becomes the minimum value was measured for each Example and each comparative example described in Table 3. As a result, in the composition range of the present Example, it was confirmed that the tendency of the bottom temperature to shift toward the low temperature region by adding Ti as a subcomponent.

Figure 112021035189812-pat00004
Figure 112021035189812-pat00004

표 4에서는, 부성분인 V의 함유율을 변경한 경우의 실험 결과를 기재하고 있다. 표 4에 기재한 바와 같이, 실시예 24~27 및 실시예 28~31에서는, 비교예 11~13 및 비교예 14~16보다, 25℃에서의 자기 손실 Pcv가 저감되어 있어, 양호한 결과가 되었다. 이 결과로부터, 주성분 100중량부에 대해서, V의 함유량이 0.005~0.040중량부의 범위 내임으로써, 실온 부근에서의 자기 손실이 저감되는 것을 알 수 있었다. 또, 비교예 11 및 비교예 14의 결과로부터, 부성분으로서 V를 대신하여 Zr을 첨가해도, 25℃에서의 자기 손실 Pcv는 저감되지 않으며, 기준값을 만족하지 않는 것을 알 수 있었다.In Table 4, the experimental results in the case of changing the content rate of V, which is a subcomponent, are described. As shown in Table 4, in Examples 24-27 and Examples 28-31, the magnetic loss Pcv at 25 degreeC was reduced compared with Comparative Examples 11-13 and Comparative Examples 14-16, and it became a favorable result . From this result, it turned out that the magnetic loss in room temperature vicinity is reduced when content of V is in the range of 0.005-0.040 weight part with respect to 100 weight part of main components. Further, from the results of Comparative Examples 11 and 14, it was found that even if Zr was added in place of V as a subcomponent, the magnetic loss Pcv at 25°C was not reduced and the reference value was not satisfied.

Figure 112021035189812-pat00005
Figure 112021035189812-pat00005

표 5에서는, 부성분인 Ca의 함유율을 변경한 경우의 실험 결과를 기재하고 있다. 표 5에 기재한 바와 같이, 실시예 32~40 및 실시예 41~49에서는, 비교예 17~18 및 비교예 19~20보다, 25℃에서의 자기 손실 Pcv가 저감되어 있어, 양호한 결과가 되었다. 이 결과로부터, 주성분 100중량부에 대해서, Ca의 함유율이 0.05~0.25중량부의 범위 내임으로써, 실온 부근에서의 자기 손실이 저감되는 것을 알 수 있었다. 또, 실시예 32~40을 비교하면, Ca의 함유율은, 0.07~0.20중량부의 범위 내인 것이 보다 바람직한 것을 알 수 있다.In Table 5, the experimental results in the case of changing the content rate of Ca, which is a subcomponent, are described. As shown in Table 5, in Examples 32-40 and Examples 41-49, the magnetic loss Pcv at 25 degreeC was reduced compared with Comparative Examples 17-18 and Comparative Examples 19-20, and favorable results were obtained. . From this result, it turned out that the magnetic loss in room temperature vicinity is reduced when the content rate of Ca is in the range of 0.05-0.25 weight part with respect to 100 weight part of main components. Moreover, when Examples 32-40 are compared, it turns out that it is more preferable that the content rate of Ca exists in the range of 0.07-0.20 weight part.

Figure 112021035189812-pat00006
Figure 112021035189812-pat00006

표 6에서는, Zr의 함유율을 변경한 경우의 실험 결과를 기재하고 있다. 표 6에 기재한 바와 같이, 비교예 21 및 22에서는, 실시예 50~53보다, 25℃에서의 자기 손실이 크고, 기준값을 만족하지 않았다. 이 결과로부터, Zr은 실질적으로 포함되지 않는 것이 바람직한 것을 알 수 있었다. 또한, Zr은 불가피 불순물로서 포함되는 경우도 있을 수 있다. 이러한 경우에도, 실시예 50~53의 결과로부터 명백하듯이, Zr의 함유율이 0.009중량부 이하이면, 실온 부근에서의 자기 손실에 큰 영향을 주지 않아, 실온 부근에서의 자기 손실을 충분히 저감할 수 있다.In Table 6, the experimental result at the time of changing the content rate of Zr is described. As shown in Table 6, in Comparative Examples 21 and 22, the magnetic loss at 25°C was larger than in Examples 50 to 53, and the reference value was not satisfied. From this result, it turned out that it is preferable that Zr is not contained substantially. In addition, Zr may be contained as an unavoidable impurity in some cases. Even in this case, as is evident from the results of Examples 50 to 53, when the Zr content is 0.009 parts by weight or less, it does not significantly affect the magnetic loss around room temperature, and the magnetic loss around room temperature can be sufficiently reduced. have.

표 1~표 6의 결과를 종합하면, 주성분의 조성과, 각 부성분(Co, Ti, V, Ca)의 함유율이, 모두 본 발명의 기준이 되는 범위를 만족함으로써, 실온 부근에서의 자기 손실 Pcv의 저감이 도모되는 것을 알 수 있었다. 또, 주성분과 부성분 중 1종에서도, 기준이 되는 범위를 만족하지 않는 경우에는, 실온 부근에서의 자기 손실이 증대하는 것을 확인할 수 있었다.Combining the results of Tables 1 to 6, the composition of the main component and the content of each sub-component (Co, Ti, V, Ca) all satisfy the criteria of the present invention, so that the magnetic loss Pcv near room temperature It was found that the reduction of In addition, it was confirmed that magnetic loss in the vicinity of room temperature increased when even one of the main component and the subcomponent did not satisfy the standard range.

또한, 상기의 실시예와는 별도로, 페라이트 코어의 치수를 변경한 실험도 행했다. 구체적으로, 페라이트 코어를, 외경이 20mm, 내경이 10mm, 높이가 5mm인 토로이달 형상으로 했다. 그 결과, 자로 단면적을 상기의 실시예보다 작게 함으로써, 실온 부근에서의 자기 손실이 더 낮아지는 것을 확인할 수 있었다. 또, 페라이트 코어의 치수를 변경한 경우에도, 상기의 실시예 및 비교예와 동일한 경향을 확인할 수 있었다.In addition, experiments in which the dimensions of the ferrite core were changed were also conducted separately from the above examples. Specifically, the ferrite core had an outer diameter of 20 mm, an inner diameter of 10 mm, and a toroidal shape with a height of 5 mm. As a result, it was confirmed that the magnetic loss in the vicinity of room temperature was further lowered by making the cross-sectional area of the magnetic path smaller than in the above example. In addition, even when the dimensions of the ferrite core were changed, the same tendency as in the above Examples and Comparative Examples was confirmed.

Claims (4)

주성분과 부성분을 갖는 페라이트 조성물로서,
상기 주성분은, Fe2O3 환산으로 51.2~54.9몰%의 산화철과, ZnO 환산으로 14.1~18몰%의 산화아연과, 잔부인 산화망간으로 구성되고,
상기 주성분 100중량부에 대해서, 상기 부성분으로서, 코발트를 CoO 환산으로 0.09~0.38중량부, 티탄을 TiO2 환산으로 0.1~0.6중량부, 바나듐을 V2O5 환산으로 0.005~0.04중량부, 칼슘을 CaCO3 환산으로 0.05~0.25중량부 함유하는, 페라이트 조성물.
A ferrite composition having a main component and a minor component, comprising:
The main component is composed of 51.2 to 54.9 mol% of iron oxide in terms of Fe 2 O 3 , 14.1 to 18 mol% of zinc oxide in terms of ZnO, and the balance manganese oxide,
With respect to 100 parts by weight of the main component, as the subcomponent, 0.09 to 0.38 parts by weight of cobalt in terms of CoO, 0.1 to 0.6 parts by weight of titanium in terms of TiO 2 , 0.005 to 0.04 parts by weight of vanadium in terms of V 2 O 5 , calcium A ferrite composition containing 0.05 to 0.25 parts by weight in terms of CaCO 3 .
청구항 1에 있어서,
지르코늄이 실질적으로 포함되지 않고,
지르코늄의 함유율이, 상기 주성분 100중량부에 대해서, ZrO2 환산으로 0.009중량부 이하인, 페라이트 조성물.
The method according to claim 1,
Zirconium is substantially free,
The ferrite composition, wherein the zirconium content is 0.009 parts by weight or less in terms of ZrO 2 with respect to 100 parts by weight of the main component.
청구항 1 또는 청구항 2에 기재된 페라이트 조성물로 구성된 소결체를 포함하는, 전자 부품.An electronic component comprising a sintered body composed of the ferrite composition according to claim 1 or 2. 청구항 3에 기재된 전자 부품을 구비하는, 전원 장치.
A power supply device comprising the electronic component according to claim 3 .
KR1020210038808A 2020-04-02 2021-03-25 Ferrite composition, electronic component, and power supply device KR102414450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2020-066679 2020-04-02
JP2020066679A JP7092160B2 (en) 2020-04-02 2020-04-02 Ferrite compositions, electronic components, and power supplies.

Publications (2)

Publication Number Publication Date
KR20210123213A KR20210123213A (en) 2021-10-13
KR102414450B1 true KR102414450B1 (en) 2022-06-29

Family

ID=77997432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210038808A KR102414450B1 (en) 2020-04-02 2021-03-25 Ferrite composition, electronic component, and power supply device

Country Status (3)

Country Link
JP (1) JP7092160B2 (en)
KR (1) KR102414450B1 (en)
CN (1) CN113493343A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120048A (en) * 2023-01-17 2023-05-16 领胜城科技(江苏)有限公司 Feed for ferrite injection molding and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056044A (en) * 2014-09-08 2016-04-21 Tdk株式会社 Ferrite core, electronic component and electric power supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228729B (en) * 2002-09-02 2005-03-01 Tdk Corp Mn-Zn ferrite, transformer magnetic core and transformer
JP5332254B2 (en) 2008-03-25 2013-11-06 Tdk株式会社 Ferrite sintered body
CN101560091A (en) * 2009-05-08 2009-10-21 海宁市联丰磁业有限公司 Manganese-zinc ferrite material and preparation method thereof
CN102219487B (en) * 2011-04-16 2013-02-20 江门安磁电子有限公司 Wide-temperature low-loss MnZn ferrite material and preparation method thereof
CN103077807B (en) * 2011-10-26 2016-05-18 Tdk株式会社 ferrite iron core and transformer
JP5828308B2 (en) * 2011-10-26 2015-12-02 Tdk株式会社 Ferrite core and transformer
JP6551057B2 (en) * 2015-08-26 2019-07-31 Tdk株式会社 Ferrite core, electronic component, and power supply device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056044A (en) * 2014-09-08 2016-04-21 Tdk株式会社 Ferrite core, electronic component and electric power supply

Also Published As

Publication number Publication date
KR20210123213A (en) 2021-10-13
CN113493343A (en) 2021-10-12
JP2021161007A (en) 2021-10-11
JP7092160B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
JP2010285310A (en) Ferrite composition, ferrite core and electronic component
KR102414450B1 (en) Ferrite composition, electronic component, and power supply device
CN115215642B (en) Ferrite composition, electronic component, and power supply device
JP5699540B2 (en) Ferrite composition, ferrite core and electronic component
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP5510273B2 (en) Ferrite composition, ferrite core and electronic component
JP5526612B2 (en) Ferrite composition, ferrite core and electronic component
WO2022070634A1 (en) MnZn-BASED FERRITE AND METHOD OF MANUFACTURING SAME
JP6064526B2 (en) Ferrite composition, ferrite core and electronic component
JP3584437B2 (en) Method for producing Mn-Zn ferrite
JP2022156993A (en) Ferrite composition, electronic component and power supply
JP5716538B2 (en) Ferrite composition and electronic component
JP6323042B2 (en) Ferrite composition, ferrite core and electronic component
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component
JP2013155056A (en) Ferrite composition, ferrite core and electronic part
JP5811816B2 (en) Ferrite composition, ferrite core and electronic component
JP6323043B2 (en) Ferrite composition, ferrite core and electronic component
JP2015174782A (en) Ferrite composition, ferrite core, and electronic component
JP5742504B2 (en) Ferrite composition and electronic component
JP5812069B2 (en) Ferrite composition, ferrite core and electronic component
JP6311298B2 (en) Ferrite composition, ferrite core and electronic component
JP5811817B2 (en) Ferrite composition, ferrite core and electronic component
JP5733100B2 (en) Ferrite composition and electronic component

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right