JP2016055351A - 研磨材スラリー - Google Patents

研磨材スラリー Download PDF

Info

Publication number
JP2016055351A
JP2016055351A JP2013019998A JP2013019998A JP2016055351A JP 2016055351 A JP2016055351 A JP 2016055351A JP 2013019998 A JP2013019998 A JP 2013019998A JP 2013019998 A JP2013019998 A JP 2013019998A JP 2016055351 A JP2016055351 A JP 2016055351A
Authority
JP
Japan
Prior art keywords
core
shell
abrasive
oxide
abrasive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013019998A
Other languages
English (en)
Inventor
高橋 篤
Atsushi Takahashi
篤 高橋
前澤 明弘
Akihiro Maezawa
明弘 前澤
奈津紀 伊藤
Natsuki Ito
奈津紀 伊藤
啓介 溝口
Keisuke Mizoguchi
啓介 溝口
智恵 乾
Chie Inui
智恵 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013019998A priority Critical patent/JP2016055351A/ja
Priority to PCT/JP2014/051038 priority patent/WO2014122976A1/ja
Priority to TW103103207A priority patent/TW201501860A/zh
Publication of JP2016055351A publication Critical patent/JP2016055351A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate

Abstract

【課題】本発明の課題は、酸化セリウムの使用量を抑制し、優れた耐久性と高い研磨速度を得ることができる研磨材スラリーを提供することである。
【解決手段】本発明の研磨材スラリーは、少なくともコア・シェル型研磨材粒子と水とを含有する研磨材スラリーであって、該コア・シェル型研磨材粒子が、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有し、さらに、前記研磨材スラリーの温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする。
【選択図】図2

Description

本発明は研磨材スラリーに関する。より詳しくは酸化セリウムの使用量を抑制し、より高い耐久性及び研磨速度を得ることができる研磨材スラリーに関する。
光学ガラスや半導体デバイスを仕上工程で精密研磨する研磨材としては、従来、セリウムの酸化物(酸化セリウムともいう。)を主成分とし、これに酸化ランタン、酸化ネオジム、酸化プラセオジムなどが加わった希土類元素の酸化物が使用されている。この他の研磨材としては、ダイヤモンド、酸化鉄、酸化アルミニウム、酸化ジルコニウム、コロイダルシリカ等があげられるが、研磨速度、研磨後の被研磨物の表面粗さの観点から比較したときに、酸化セリウムが有効であることは公知であり、広範囲で用いられている。
しかし、酸化セリウムは、世界的に偏在しており、供給が安定するとはいえない。そこで、酸化セリウムの使用量を削減しつつ、高い精度でガラスの研磨を行うことができる研磨材の製造方法の確立が求められている。
光学ガラス等の仕上工程で精密研磨を行うことのできる、高純度の酸化セリウム系研磨材の製造方法としては、精製された硝酸第一セリウム、塩化第一セリウム、硫酸第一セリウム等の水溶液に炭酸、シュウ酸、酢酸等の塩を添加して炭酸第一セリウム、シュウ酸第一セリウム、酢酸第一セリウム等の生成物を沈殿させ、この沈殿物をろ過し、乾燥したのち、焼成して酸化セリウムを得る方法がある。
例えば、非特許文献1では、硝酸セリウム水溶液、硝酸イットリウム溶液、尿素を混合した水溶液を加熱撹拌し、粒子径分布の狭い粒子を得る方法が提案されている。
また、特許文献1には、酸化セリウムよりも比重が小さい無機材からなる基粒子により形成されたコアと当該基粒子よりも粒径が小さい酸化セリウムを含む微粒子が当該基粒子の外側に、バインダーにより結合されて形成されたシェルとを有する複合砥粒を含有している研磨材が記載されている。
この研磨材は、基粒子である酸化ケイ素粒子を分散させた分散液中にバインダーとなる酸化アルミニウムゾルを撹拌しつつ加えて第1混合液を調製する第1調製工程と、酸化セリウム粒子を分散させた分散液を第1混合液へ撹拌しつつ加えて第2混合液を調製する第2調製工程と、第2調製工程により基粒子(酸化ケイ素)と微粒子(酸化セリウム)がバインダー(酸化アルミニウム)を介して結合した固体を固液分離する分離工程と、分離された固体を700〜900℃で焼成する焼成工程と、得られた焼成物を乾式ジェットミルで粉砕する粉末化工程からなる製造方法により得られることが記載されている。
この方法では、粒子に、酸化ケイ素からなる基粒子と、基粒子の外側にバインダーにより結合されて形成された酸化セリウムを含むシェルと、を有するコア・シェル構造を採用することで、酸化セリウムの使用量を削減しながら、従来品と同程度の研磨精度と研磨速度を得ることができる。
しかしながら、非特許文献1の方法で製造された粒子を焼成し、研磨材としての効果を確認した結果、研磨速度が低かった。研磨速度を低下させる原因としては、粒子形状と粒子径分布を調整するために、セリウム以外の元素(イットリウム)が混合されていることが、粒子表面におけるセリウム濃度を低下させ、研磨速度を低下させている。
さらに、特許文献1では、このようなバインダーにより結合された酸化セリウムを含む研磨材は、研磨加工を行う際に、研磨組成物に圧力を加えて非研磨物に対して摩擦力を働かせるため、研磨材粒子に加えられている圧力により研磨材粒子自体が時間の経過とともに壊れてしまい、研磨速度の低下につながっていることがわかった。
特開2012−11525号公報
J.Am.Ceram.Soc.,71巻、10号、845〜853頁(1988年)
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、酸化セリウムの使用量を抑制し、優れた耐久性と高い研磨速度を得ることができる研磨材スラリーを提供することである。
本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、セリウムの酸化物を含有するシェルを有するコア・シェル型研磨材粒子の耐久性は、スラリーのpH値とコア・シェル型研磨材粒子のコア・シェル構造に大きく依存することを見出し本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。
1少なくともコア・シェル型研磨材粒子と水とを含有する研磨材スラリーであって、該コア・シェル型研磨材粒子が、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有し、さらに、前記研磨材スラリーの温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする研磨材スラリー。
2.前記研磨材スラリーの温度25℃換算のpH値が、4.00〜10.80の範囲内であることを特徴とする第1項に記載の研磨材スラリー。
3.前記コアに含まれる元素の酸化物が、Y(イットリウム)の酸化物であることを特徴とする第1項又は第2項に記載の研磨材スラリー。
4.前記コアと前記シェルの両方に含有される、前記少なくとも一種の酸化物の含有率が、前記コア及びシェルのそれぞれを構成する前記元素の酸化物の全量に対して、それぞれ10mol%以上であることを特徴とする第1項から第3項までのいずれか一項に記載の研磨材スラリー。
5.前記シェルを構成する前記元素の酸化物の全量に対するセリウムの酸化物の含有率が、60〜90mol%の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の研磨材スラリー。
6.前記コア・シェル型研磨材粒子の、下記式(1)で表される粒子径分布の変動係数が30%以下であることを特徴とする第1項から第5項までのいずれか一項に記載の研磨材スラリー。
式(1):粒子径分布の変動係数=(粒子径分布の標準偏差/平均粒子径)×100(%)
本発明の上記手段により、酸化セリウムの使用量を抑制し、優れた耐久性と高い研磨速度を得ることができる研磨材スラリーを提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
研磨材スラリーの耐久性と研磨速度の低下は、研磨材スラリーを強酸性又は強塩基性にして研磨加工を行うと、研磨材粒子の一部が溶解して粒子としての強度が下がり、研磨加工による圧力で研磨材粒子の一部が崩壊してしまうためであると推定している。さらに研磨材粒子を特定のコア・シェル型構造とすることで研磨加工における崩壊を防ぎ、優れた耐久性をと高い研磨速度を得ることができるものと考えられる。
コア・シェル型研磨材粒子の研磨加工前後の走査型顕微鏡写真の一例 コア・シェル型研磨材粒子の構造を示す模式図 本発明係る実施形態であるコア・シェル型研磨材粒子のプロファイルを模式的に示すグラフ 本発明係る実施形態であるコア・シェル型研磨材粒子の他のプロファイルを模式的に示すグラフ コア・シェル型研磨材粒子の元素分析結果の一例 本発明に係る一実施形態である研磨材粒子の製造工程を示す模式図 本発明に係る一実施形態である研磨材粒子の製造工程の他の一例を示す模式図
本発明の研磨材スラリーは、少なくともコア・シェル型研磨材粒子と水とを含有する研磨材スラリーであって、該コア・シェル型研磨材粒子が、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有し、さらに、前記研磨材スラリーの温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
本発明の実施態様としては、本発明の効果発現の観点から、前記研磨材スラリーの温度25℃換算のpH値が、4.00〜10.80の範囲内であることが好ましい。また、前記コアに含まれる元素の酸化物が、イットリウム(Y)の酸化物であることが好ましい。
さらに、本発明においては、前記コアと前記シェルの両方に含有される、前記少なくとも一種の酸化物の含有率が、前記コア及びシェルそれぞれを構成する前記元素の酸化物の全量に対して、それぞれ10mol%以上であることが好ましい。これにより、研磨加工時の研磨材粒子の耐久性を向上させることができる。また、前記シェルを構成する前記元素の酸化物の全量に対するセリウムの酸化物の含有率が、60〜90mol%の範囲内であることが研磨速度を良好にするために好ましい。さらに、前記コア・シェル型研磨材粒子の、前記式(1)で表される粒子径分布の変動係数が30%以下であることが研磨物の表面平滑性を高め、傷の発生を防止するため好ましい。
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
〈研磨材スラリーの概要〉
本発明の研磨材スラリーは、少なくともコア・シェル型研磨材粒子と水とを含有する研磨材スラリーであって、該コア・シェル型研磨材粒子が、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有し、さらに、前記研磨材スラリーの温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする。
本発明の研磨材スラリーは、半導体デバイスやガラスの研磨加工において、高精度に平坦性を維持しつつ、十分な研磨速度を得るために物理的な作用と化学的な作用の両方で研磨を行う化学機械研磨(CMP;Chemical Mechanical Polishing)に使用される。
本発明の研磨材スラリーは、少なくとも研磨材粒子と分散媒としての水を含有し、pH調整剤や必要に応じて他の分散媒、界面活性剤及び防カビ剤等の他の添加剤を含んでいても良い。
<コア・シェル型研磨材粒子の構造>
本発明に係るコア・シェル型研磨材粒子は、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有する。
本発明に係る「コア・シェル型研磨材粒子」とは、当該研磨材粒子の中心部を含む内部を構成するコアと当該研磨材粒子の外殻部を構成するシェルからなる結晶構造を持つ研磨材粒子をいう。
前述したように、研磨材スラリーに含まれる研磨材粒子のコアに酸化ケイ素を及びシェルに酸化セリウムを用いてコア・シェル構造の研磨材粒子とすることで、酸化セリウムの使用量を抑制することができるが、研磨材スラリーの耐久性と研磨速度の改善は大きくなかった。上記問題の原因等について検討した結果、酸化セリウムを主成分とするシェルを有するコア・シェル構造の研磨材の耐久性は、スラリーのpH値とコア・シェル型研磨材粒子のコア・シェル構造に大きく依存することを見出した。
すなわち、研磨材スラリーを強酸性又は強塩基性にして研磨加工を行うと、研磨材粒子の一部が溶解して粒子としての強度が下がり、研磨加工による圧力で研磨材粒子の一部が崩壊してしまうため、耐久性と研磨速度が低下するためであると推定している。
例えば、図1は、コア・シェル型研磨材粒子の研磨加工前後のSEM(走査型電子顕微鏡)像の一例である。研磨加工後の研磨材粒子(図1(A))は、研磨加工前の研磨材粒子の研磨材粒子(図1(B))と比べて、研磨材粒子が崩壊したり(図1 A−1)、さらに崩壊した粒子が破片になっている(図1 A−2)ことがわかる。
このような崩壊は、コア・シェル型研磨材粒子のコア・シェル構造において、シェルに含まれるセリウムとコアに含まれる前記8種元素の計9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有することで、大きく改善できることを見出した。
コアとシェルの両方に含有される、前記少なくとも一種の酸化物の含有率が、前記コア及びシェルそれぞれを構成する前記元素の酸化物の全量に対して、それぞれ10mol%以上であることが好ましい。これにより、研磨加工時の研磨材粒子の耐久性を向上させることができる。コアとシェルの両方に含有される、前記少なくとも一種の酸化物は、セリウムの酸化物であっても良いし、前記コアに含まれる元素であってもかまわない。好ましくは、コアとシェルの両方に含有される、前記少なくとも一種の酸化物はセリウム又はイットリウムの酸化物である。
このようなコア・シェル型研磨材粒子とすることで、研磨材スラリーの耐久性と研磨速度が改善する。これは、コアとシェルの両方に本発明に係る元素の酸化物がある場合や、さらに好ましい態様としてコア又はシェルの組成変化が緩やかであると、コアとシェルの界面となる境界線において格子欠陥が少なく、研磨時の応力が集中しにくくなるためであると考えられる。
なお、コアは、複数の層を有する構造であっても良い。また、当該コアとシェルとの界面となる境界線は明確であっても良いが、コアの構成成分とシェルの構成成分が境界付近で混じり合い境界線が不明確である場合が好ましい。
本発明に係る研磨材粒子のコア・シェル構造の組成を確認する方法としては、例えば集束イオンビームにより断面加工を行い、粒子中心付近を通る面を切り出した後、切断面より、日立ハイテクノロジーズ製 STEM−EDX(HD−2000)等を使用して元素分析を行い、コア・シェル構造の組成を確認することができる。
具体的には、本発明に係るコア・シェル型研磨材粒子Aとして、図2に示すように、中心を含むコア1と、コア1の外側にシェル2を有する2層構造の態様が好ましい。
コア1は、Ti、Sr、Y、Ba、Sm、Eu、Gd及びTbから選ばれる少なくとも一種の元素の酸化物を主成分(50%以上、好ましくは60%以上)として含有する。コア1に含まれる元素の酸化物が、イットリウム(Y)の酸化物であることが好ましい。なお、コア形成工程において形成された種結晶及びその外側に形成された塩基性炭酸塩を合わせてコア1とする。
また、コア1は、Ce、Al、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属からなる群から選ばれる少なくとも一種の元素の酸化物を併用して含んでもよい。
シェル2は、セリウムの酸化物を含有する。シェルを構成する前記元素の酸化物の全量に対するセリウムの酸化物の含有率が、60〜90mol%の範囲内であることが好ましい。この範囲内であると研磨速度が良好であり、セリウムの酸化物の使用量を削減できる。
なお、シェル2には、コアに含まれるTi、Sr、Y、Ba、Sm、Eu、Gd及びTbから選ばれる少なくとも一種の元素の酸化物の他にAl、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属からなる群から選ばれる少なくとも一種の元素の酸化物を併用して含んでもよい。
シェル2の濃度分布は、均一であってもよいが、コア・シェル型研磨材粒子の中心から表面に向かって酸化セリウムの組成が連続的に増加する態様が好ましい。具体的には、シェル2のうち、コア・シェル型研磨材粒子の中心側のコア1に近い部分の組成は、例えば、酸化イットリウムが多い割合を占めている。そして、コア・シェル型研磨材粒子の中心側から表面側に向かうにつれて、シェル2の組成は、酸化セリウムの占める割合が連続的に増加する。このような濃度分布にすることで、酸化セリウムの使用量を削減しても研磨速度の低下を少なくすることができる。
このような、コア・シェル型研磨材粒子の組成の制御は、後述するコア・シェル型研磨材粒子の製造方法において、コア及びシェルの結晶成長時の溶液中における、添加する上記元素の塩濃度及び添加速度をそれぞれ制御することにより可能である。
以下に研磨材粒子の元素組成のプロファイルを説明する。
〈粒子プロファイル〉
代表的な第一の粒子プロファイルは、コアが全領域で均一の組成で形成され、シェルが、コア界面からシェル表面領域に向けて、連続的に組成が変化する構成である。このような粒子プロファイルをタイプAと称す。
代表的な第二の粒子プロファイルは、コアは、タイプAと同様に全領域で均一の組成で形成され、シェルも同様に、全領域で均一の組成で形成され構成である。このような粒子プロファイルをタイプBと称す。
以下、研磨材粒子の代表的なプロファイルとして、元素群から選ばれる少なくとも一種の金属元素の酸化物とし酸化イットリウム、シェルを形成する主成分として酸化セリウムから構成される研磨材粒子を一例として説明する。
(タイプAの研磨材粒子)
シェルがコア界面からシェル表面領域に向けて連続的に組成が変化するタイプAは、その製造方法の詳細については後述するが、図6に示すように、コア形成工程、シェル形成工程、固液分離工程、及び焼成工程を経て製造される。
上記図6で示す製造フローで製造される研磨材粒子の代表的な元素プロファイルを図3(A)及び図3(B)に示す。
図3(A)は、本発明に係るコア・シェル型でシェルの組成が連続的に変化する構成の研磨材粒子で、研磨材粒子を形成させる過程での元素の組成比率のプロファイルである。3は、全元素濃度(イットリウム+セリウム)に対するイットリウム元素比率%(原子数%)であり、4は、全元素濃度(イットリウム+セリウム)に対するセリウム元素比率%(原子数%)である。この表示は、図3(B)、図4(A)及び図4(B)において共通である。
図3(A)に示す元素の組成比率のプロファイルとしては、コア形成工程では、セリウム元素の供給は行わずに、イットリウム元素のみを供給して、イットリウム元素比率3が100%からなるコアを形成する。次いで、連続してシェル形成工程でイットリウム元素:セリウム元素が30:70(モル比)で含む溶液を供給し、コアとシェルとの界面からイットリウム元素比率3(原子数%)が連続的に低下し、セリウム元素比率(原子数%)4が連続的に増加し、最終的には酸化イットリウムが30%、酸化セリウムが70%の表面組成を有する研磨材粒子が形成される。
図3(B)では、図3(A)に対し、コアの形成を、酸化イットリウム単独(100%)ではなく、イットリウム元素比率3が80%、セリウム元素比率4が20%の比率で形成した例を示してある。
図3(B)のプロファイルからなる研磨材粒子は、図3(A)のプロファイルからなる研磨材粒子に対し、粒子全体のセリウム元素の使用比率は高いが、コアとシェル間での組成変化幅が小さく、より安定した粒子形成と、粒子表面で受けた応力緩和をよりスムーズに行うことができる。
本発明に係る研磨材粒子においては、図3(A)及び図3(B)に示すように、コアとシェルが、同一の元素の酸化物(酸化セリウムを含む)を少なくとも一種含有している構成であることを特徴とする。すなわち、図3(A)では、酸化イットリウムが共通の酸化物であり、図3(B)においては、酸化イットリウム及び酸化セリウムが共通の酸化物である。
また、図3(B)に示すように、コアにおける平均含有比率(原子数%)が酸化イットリウム>酸化セリウムの関係にあり、かつシェルにおける平均含有比率(原子数%)が、酸化イットリウム<酸化セリウムの関係にあることが好ましい。
(タイプBの研磨材粒子)
コア及びシェルが全領域で均一の組成で形成されているタイプBは、その製造方法の詳細については後述するが、図7に示すように、コア形成工程、固液分離工程1、シェル形成工程、固液分離工程2、及び焼成工程を経て製造される。
上記図7で示す製造フローで製造される研磨材粒子の代表的な元素プロファイルを図4(A)及び図4(B)に示す。
図4(A)及び図4(B)は、本発明に係るコア・シェル型研磨材粒子で、コア及びシェルの組成が一定金属元素濃度から構成される研磨材粒子のプロファイルを示すグラフである。
図4(A)に示す元素の組成比率のプロファイルとしては、コア形成工程では、セリウム元素の供給は行わずに、イットリウム元素のみを供給して、酸化イットリウムがコア全域において100%からなるコアを形成する。次いで、一旦形成したコア(コア粒子)を固液分離工程1で分離し、過剰のイットリウム成分を除去した後に加水し、シェル形成工程でイットリウム元素:セリウム元素が30:70(モル比)で含む溶液を供給し、コアとシェルとの界面からシェル表面にかけて、イットリウム元素比率3(原子数%)が30%、セリウム元素比率4(原子数%)が70%の均一組成からなるシェルを形成する。
図4(B)では、図4(A)に対し、コアの形成を、酸化イットリウム単独(100%)ではなく、酸化イットリウムが80%、酸化セリウムが20%の全領域で、均一比率で形成した例を示してある。
本発明に係る研磨材粒子においては、図3(A)、図3(B)、図4(A)及び図4(B)に示すように、コアとシェルが、同一の元素の酸化物(酸化セリウムを含む)を少なくとも一種している構成であることを特徴とする。すなわち、図3(A)及び図4(A)では、酸化イットリウムが共通の酸化物であり、図3(B)及び図4(B)においては、酸化イットリウム及び酸化セリウムが共通の酸化物である。
また、これらの図に示すように、コアにおける平均含有比率(原子数%)が酸化イットリウム>酸化セリウムの関係にあり、かつシェル表層部における平均含有比率(原子数%)が、酸化イットリウム<酸化セリウムの関係にあることが好ましい。さらに図3(A)及び図3(B)に示すように、シェルの組成変化が緩やかであることが好ましい。
〈元素分析〉
粒子組成の分布は研磨材粒子に対し、例えば日立ハイテクノロジーズ製 集束イオンビーム(FB−2000A)により断面加工を行い、粒子中心付近を通る面を切り出し、切断面より、日立ハイテクノロジーズ製 STEM−EDX(HD−2000)を使用して元素分析を行って得ることができる。一例として、実施例5の研磨材粒子の元素分析結果を図5に示す。図5(A)に示す実施例5の研磨材粒子の断面について、研磨材粒子の表面に近い0.05μm付近及び0.6μm付近におけるセリウムの割合が高くなっていることが確認できる(図5(B)参照)。
<コア・シェル型研磨材粒子の形状等>
コア1の粒子径は、0.01〜0.9μmの範囲が好ましい。この範囲にすることで、研磨の際にかかる圧力に対して高い耐久性を維持することができる。
シェル2の厚さは、0.005〜0.55μmの範囲が好ましい。この範囲にすることで、単分散性を示す、研磨速度及び耐久性の優れたコア・シェル型研磨材粒子を作製することができる。
研磨材に含有される研磨材粒子は、その使用用途によって粒子径に対する要求レベルは異なるが、研磨後の仕上がり表面精度が高くなるにつれて、使用される研磨材に含まれる研磨材粒子の微粒子化が必要になる。例えば、半導体デバイスの製造工程で使用するには平均粒子径が2.0μm以下である必要がある。
研磨材の粒子径が小さくなるほど、研磨後の仕上がり表面精度が高くなるのに対して、研磨速度は粒子径が小さいほど遅くなる傾向があるので、0.02μm未満の粒子径では、セリウム系研磨材の研磨速度が、コロイダルシリカ等の研磨材に比べて速いという優位性が失われてしまう。
したがって、コア・シェル型研磨材粒子の平均粒子径としては、0.02〜2.0μmの範囲が好ましく、さらに0.05〜1.5μmの範囲がより好ましい。
また、研磨加工後の平面精度を高めるためには、できるだけ粒子径がそろっており、粒子径分布の変動係数が小さい研磨材を使用することが望ましい。本発明において、単分散粒子とは、粒子径分布の変動係数が30%以下である場合をいう。すなわち、コア・シェル型研磨材粒子の粒子径分布の変動係数が30%以下であることが好ましい。より好ましくは、粒子径分布の変動係数が2〜15%の範囲内である。粒子径分布の変動係数が、この範囲内であると研磨物の表面平滑性を高め、傷の発生を防止するため好ましい。
さらに、コア・シェル型研磨材粒子が、球状の単分散粒子であることが好ましい。この場合各研磨粒子の形状が均一化して安定した研磨が可能となる。
〈平均粒子径・粒子径分布の変動係数〉
研磨材粒子の平均粒子径及び粒子径分布の変動係数は、100個の走査型顕微鏡写真(SEM像)から求めることができる。
また、粒子径分布の変動係数は下記の式(1)で求めることができる。
式(1):粒子径分布の変動係数=(粒子径分布の標準偏差/平均粒子径)×100(%)
〈研磨材スラリーのpH〉
本発明の研磨材スラリーは、温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする。好ましくは温度25℃換算のpH値が、4.00〜10.80の範囲内である。この範囲内のpHであると、本発明に係るコア・シェル型研磨材粒子と特性とあいまって強酸性環境、あるいは強アルカリ性環境においても、優れた耐久性と高い研磨速度を得ることができる。
本発明に係るpH値の測定は、25℃において、例えば、ラコムテスター卓上型pH&導電率計メーター(アズワン(株)製 pH1500)等を使用して求めることができる。
本発明に係るpH値に調整するために用いられるpH調整剤としては、特に制限はないが、硝酸、水酸化カリウム、水酸化ナトリウム、モルホリン、アンモニア水等を、適宜選択して用いることができる。
〈研磨材スラリー分散媒及び添加剤〉
研磨材スラリーには分散媒や他の添加剤として、防かび剤、防錆剤、消泡剤、界面活性剤、キレート剤等を含有してもよい。これらは、スラリーの分散貯蔵安定性、研磨速度の向上等の目的で加えられる。
研磨材の分散媒としては、水単独、又は水を主成分(分散媒中、70〜99質量%)とし、アルコール、グリコール等の水溶性有機溶媒を副成分(1〜30質量%)として配合したものが使用できる。アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコールが、グリコール類としては、エチレングリコール、テトラメチレングリコール、ジエチレングリコール、プロピレングリコール、ポリエチレングリコール、等が挙げられる。
防錆剤としてはアルカノールアミン・アルカノールアミンホウ酸縮合物、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ホウ酸アルカノールアミン塩、ベンズイソチアゾリン類等の含窒素有機化合物が挙げられる。
消泡剤としては、流動パラフィン、ジメチルシリコンオイル、ステアリン酸モノ、ジ−グリセリド混合物、ソルビタンモノパルミチエート、等が挙げられる。
界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤、又はアニオン性界面活性剤とノニオン性界面活性剤との併用、アニオン性界面活性剤と両性界面活性剤との併用カチオン性界面活性剤とノニオン性界面活性剤との併用、カチオン性界面活性剤と両性界面活性剤との併用が挙げられる。防錆剤、消泡剤及び界面活性剤は、それぞれ0〜3質量%の範囲内で配合することができる。
<研磨材の使用方法と研磨材の劣化>
ガラス基板の研磨加工を例にとり、研磨材の使用方法を記載する。
1.研磨材スラリーの調製
コア・シェル型研磨材粒子を用いた研磨材の粉体を水等の溶媒に添加し、研磨材スラリーを作製する。研磨材スラリーには、分散剤等を添加することで、凝集を防止するとともに、撹拌機等を用いて常時撹拌し、分散状態を維持する。研磨材スラリーは供給用ポンプを利用して、研磨機に循環供給される。
2.研磨工程
研磨パット(研磨布)が貼られた研磨機の上下定盤にガラス基板を接触させ、接触面に対して研磨材スラリーを供給しながら、加圧条件下でパットとガラスを相対運動させることで研磨される。
3.研磨材の劣化
研磨材は、前記研磨工程にあるように、加圧条件下で使用される。このため、研磨材に含まれるコア・シェル型研磨材粒子は、研磨時間が経過するにつれて、徐々に崩壊し微小化してしまう。コア・シェル型研磨材粒子の微小化は研磨速度の減少を引き起こすので、研磨前後で粒子径分布の変化が小さいコア・シェル型研磨材粒子が望まれる。
<研磨材粒子の製造方法>
以下に、コア1及びシェル2からなるコア・シェル型研磨材粒子の製造方法を示す。
本発明の研磨材スラリーに含まれるコア・シェル型研磨材粒子の製造方法は、図6に示すように、コア形成工程、シェル形成工程、固液分離工程及び焼成工程の四つの工程からなる態様の製造方法であることが好ましい。
1.コア形成工程
コア形成工程は、Ti、Sr、Y、Ba、Sm、Eu、Gd及びTbの8種の元素から選ばれる少なくとも一種の元素の塩を形成させ、当該元素の塩を主成分とする研磨材粒子の前駆体のコア1を形成させる態様が好ましい。なお、Ce、Al、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属からなる群から選ばれる少なくとも一種の元素の塩を併用してコア1を形成させてもよい。
具体的には、コア形成工程は、例えば、前記8種から選ばれる少なくとも一種の元素の塩及び沈殿剤を水に溶解させ、所定の濃度の溶液を調製する。当該溶液を80℃以上で加熱撹拌することで、コア1の種結晶を作製する。コア形成工程は、調製された溶液にさらに前記8種から選ばれる少なくとも一種の元素の塩で調製した溶液を加えて80℃以上で加熱撹拌する。これにより、コア形成工程は、水に不溶な塩基性炭酸塩(例えば、イットリウムの場合は、イットリウム塩基性炭酸塩(Y(OH)CO又はY(OH)CO・xHO,x=1等)を形成させ、種結晶の外側に該塩基性炭酸塩を成長させることで研磨材粒子の前駆体のコア1となる。以下の説明においては、加熱撹拌を開始した溶液を反応溶液とする。
コア形成工程において、水に溶解させる前記8種から選ばれる少なくとも一種の元素の塩としては、硝酸塩、塩酸塩、硫酸塩等を用いることができるが、製品への不純物の混入が少ない硝酸塩を使用することが好ましい。
また、沈殿剤としては、前記元素の塩とともに水に混ぜて加熱した際に塩基性炭酸塩を生成する種類のアルカリ化合物であればよく、尿素系化合物、炭酸アンモニウム及び炭酸水素アンモニウム等が好ましい。
尿素系化合物としては、尿素の塩(例えば、硝酸塩及び塩酸塩等)、N,N′−ジメチルアセチル尿素、N,N′−ジベンゾイル尿素、ベンゼンスルホニル尿素、p−トルエンスルホニル尿素、トリメチル尿素、テトラエチル尿素、テトラメチル尿素、トリフェニル尿素、テトラフェニル尿素、N−ベンゾイル尿素、メチルイソ尿素及びエチルイソ尿素等が挙げられ、尿素も含むものとする。尿素系化合物の中で特に尿素は、徐々に加水分解することでゆっくり沈殿が生成し、均一な沈殿が得られる点で好ましい。
また、水に不溶な塩基性炭酸塩、例えば、イットリウムの塩基性炭酸塩を生成させることで、析出した沈殿を単分散の状態で分散させることができる。更に、後述するシェル形成工程においてもセリウムの塩基性炭酸塩を形成させるため、塩基性炭酸塩による連続的な層構造を形成させることができる。
なお、以下の実施例において、コア形成工程及びシェル形成工程において反応溶液に添加される水溶液は、前記本発明に係る元素を硝酸塩として水に溶解させ、調製される硝酸塩水溶液の場合を示す。また、尿素系化合物として、尿素を用いる場合について示すが、一例であって、これに限定されるものではない。
コア形成工程における前記硝酸塩を含有する水溶液の添加速度は、1分当たり0.003mol/Lから5.5mol/Lが好ましく、80℃以上で加熱撹拌しながら反応溶液に添加することが好ましい。添加速度を当該範囲とすることにより、単分散性の優れた、球状の研磨材粒子が形成されやすくなるためである。加熱する温度については、80℃以上で加熱撹拌すると、添加された尿素の分解が進みやすくなるためである。また、添加する尿素の濃度は、イットリウムのイオン濃度の5から50倍の濃度が好ましい。これは、イットリウムの水溶液中でのイオン濃度及び尿素の濃度を、当該範囲内とすることで、単分散性を示す球状の研磨材粒子を合成することができるためである。
なお、加熱撹拌の際には、十分な撹拌効率を得られれば、特に撹拌機の形状等は指定しないが、より高い撹拌効率を得るためには、ローター・ステータータイプの軸流撹拌機を使用することが好ましい。コアがイットリウムの塩ではなく、Ti、Sr、Ba、Sm、Eu、Gd及びTbの元素から選ばれる少なくとも一種の元素の塩であっても同様にコア形成工程に適用することができる。さらに、Ce、Al、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属からなる群から選ばれる少なくとも一種の元素の塩を併用してコア1を形成させてもよい。
2.シェル形成工程
コアがイットリウムを主成分とする場合の例を説明する。シェル形成工程は、コア形成工程により形成する、例えば、イットリウムの塩基性炭酸塩を分散させる反応溶液に、硝酸イットリウム及び硝酸セリウムから調製する水溶液を一定速度で所定時間添加して、コア1の外側にイットリウムの塩基性炭酸塩、例えば、イットリウム塩基性炭酸塩(Y(OH)CO又はY(OH)CO・xHO,x=1等)及びセリウムの塩基性炭酸塩、例えば、セリウム塩基性炭酸塩(Ce(OH)CO又はCe(OH)CO・xHO,x=1等)を含有する研磨材粒子の前駆体のシェル2を形成させる。コアがイットリウムの塩ではなく、Ti、Sr、Ba、Sm、Eu、Gd及びTbの元素から選ばれる少なくとも一種の元素の塩であっても同様にシェル形成工程に適用することができる。
さらに、Al、Sc、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、In、Sn、Dy、Ho、Er、Tm、Yb、Lu、W、Bi、Th及びアルカリ土類金属からなる群から選ばれる少なくとも一種の元素の塩を併用してシェル2を形成させてもよい。
また、水溶液の調製に用いるセリウムの塩として、製品への不純物の混入が少ない硝酸塩を使用することが好ましいため、硝酸セリウムを用いる場合を示したが、これに限定するものではなく、塩酸塩、硫酸塩等を用いることができる。
シェル形成工程で添加する水溶液の添加速度は、1分当たり0.003mol/Lから5.5mol/Lが好ましい。これは、添加速度を当該範囲とすることにより、単分散性の優れた、球状の研磨材粒子が形成されやすくなるためである。
また、添加する水溶液が含有するセリウムの濃度の割合が90%以下であることが好ましい。これは、添加する水溶液のセリウムの濃度の割合が90%以下である場合、形成される研磨材粒子が単分散性を示し、板状に凝集してしまうことがないためである。
また、反応溶液は、前記添加速度で水溶液を添加されながら、80℃以上で加熱撹拌されることが好ましい。これは、80℃以上で加熱撹拌されると、コア形成工程において添加された尿素の分解が進みやすくなるためである。
コアがイットリウムの塩ではなく、Ti、Sr、Ba、Sm、Eu、Gd及びTbの7種の元素から選ばれる少なくとも一種の元素の塩であっても同様にしてシェルを形成することができる。
3.固液分離工程
固液分離工程は、図6に示したように、シェル形成工程によりシェル2が形成されたコア・シェル型研磨材粒子の前駆体を反応溶液から固液分離するために用いることができる。固液分離工程においては、必要に応じて、得られたコア・シェル型研磨材粒子の前駆体を乾燥した後に、焼成工程へ移行してもよい。
なお、図7で示したように、固液分離工程を二つ設け、固液分離工程1でコア形成工程後に固液を分離し、その後シェル形成工程に移ることもできるが、コア形成工程とシェル形成工程は、上記のように液相中で連続して行うことが好ましい。連続して行うことによりコアとシェルの界面における組成変化が緩やかとなり好ましい。
4.焼成工程
焼成工程は、固液分離工程で得られたコア・シェル型研磨材粒子の前駆体を空気中若しくは酸化性雰囲気中、500〜1200℃の範囲内で1〜5時間の範囲内で焼成することが好ましい。コア・シェル型研磨材粒子の前駆体は、焼成されることにより二酸化炭素が脱離するため、塩基性炭酸塩から酸化物となり、目的のコア・シェル型研磨材粒子が得られる。
当該温度範囲及び当該時間の範囲内で焼成することにより、研磨材として適した結晶子径を持つ粒子が成長し、研磨の際に十分な硬さを持ったコア・シェル型研磨材粒子が得られるものと考えられる。ここで、結晶子とは、単結晶とみなせる最大の領域をいう。具体的には、一つの粒子は、複数の結晶子により形成されている。焼成の温度及び時間によって、結晶子の成長速度が変化するため、500〜1200℃の範囲内で1〜5時間の範囲内で焼成することで、研磨材として適した結晶子径を持つコア・シェル型研磨材粒子を含有する研磨材を製造することができるものと考えられる。
コア・シェル型研磨材粒子の前駆体を焼成する具体的な焼成装置としては、公知のローラーハースキルン又はロータリーキルンであることが好ましい。これにより、研磨材に含有されるコア・シェル型研磨材粒子の前駆体に対して均一に熱が加わることとなり好ましい。
一般的なローラーハースキルンとしては、例えば、炉内に複数のローラーが設置され、原料をローラーに載せて搬送するので、炉内の領域を仮焼成、焼成、冷却と温度に合わせてわけることもできる。また、一般的なロータリーキルンとしては、例えば、ほぼ円筒状で、キルン内では原料はゆっくり回転しながら徐々に送られる。
また、固液分離工程の後であって、焼成工程の前に仮焼成を行うことが好ましい。具体的には、仮焼成は、焼成温度が300〜490℃の範囲内で、1〜5時間の範囲内で行うことが好ましい。
さらに、焼成工程における温度を20〜50℃/minの範囲内の昇温速度で昇温することが好ましい。これにより、セリウムを多く含有するシェル2の結晶子が安定して成長すると考えられる。
また、焼成工程の後、500℃から室温までの温度を1〜20℃/minの範囲内の降温速度で降温することが好ましい。これにより、コア1とシェル2の間の微小なクラックの発生を抑制することができ、層間の結合がより強固になることで、研磨の際の圧力に強く、最表面の凹凸が少ないコア・シェル型研磨材粒子を形成させることができると考えられる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
〔実施例1〕
《研磨材1の作製》
(1)水10Lに対して、硝酸イットリウム(III)水溶液を0.01mol/L、尿素を0.25mol/Lになるように調整し、十分に撹拌したのち、90℃で加熱撹拌を開始した。
(2)前記(1)の水溶液に対して、1.0mol/Lの硝酸イットリウム(III)水溶液を毎分1.0mLの添加速度で60分間添加してコア1を形成した。
(3)前記(2)の反応液に対して、1.0mol/Lの硝酸イットリウム(III)水溶液を毎分0.30mLの添加速度で、及び1.0mol/Lの硝酸セリウム(III)水溶液を毎分0.70mLの添加速度で60分間添加してシェル2を形成した。
(4)前記(3)で得られた反応液から析出したコア・シェル型研研磨材粒子の前駆体をメンブランフィルターにて分離した。
(5)前記(4)で得られた前駆体を600℃まで昇温し、1時間焼成して本発明に係るコア・シェル型研磨材粒子を得た。
《研磨材2の作製》
(1)水10Lに対して、硝酸イットリウム(III)水溶液を0.01mol/L、尿素を0.25mol/Lになるように調整し、十分に撹拌したのち、90℃で加熱撹拌を開始した。
(2)前記(1)の水溶液に対して、1.0mol/Lの硝酸イットリウム(III)水溶液を毎分1.00mLの添加速度で110分間添加してコア1を形成した。
(3)前記(2)で得られた反応液から析出したコアの前駆体をメンブランフィルターにて分離した。
(4)水10Lに対して、尿素を0.25mol/Lになるように調整し、十分に撹拌し前記3で得られたコアの前駆体を加えたのち、90℃で加熱撹拌を開始した。
(5)前記(4)の反応液に対して、1.0mol/Lの硝酸セリウム(III)水溶液を毎分1.00mLの添加速度で10分間添加してシェル2を形成した。
(6)前記(5)で得られた反応液から析出したコア・シェル型研研磨材粒子の前駆体をメンブランフィルターにて分離した。
(7)前記(6)で得られた前駆体を600℃まで昇温し、1時間焼成してコア・シェル型研磨材粒子を得た。
〈研磨材粒子の分析〉
(元素分析)
研磨材粒子を日立ハイテクノロジーズ製 集束イオンビーム(FB−2000A)により断面加工を行い、粒子中心付近を通る面を切り出した。切断面より、日立ハイテクノロジーズ製 STEM−EDX(HD−2000)を使用して元素分析を行い、CeとYの酸化物の粒子組成の分布評価を行った。研磨材1に含まれるYとCe元素の組成比率は、コアはYが100mol%であり、シェルはCe71%、Y29%の組成比率であり、コアとシェルの両方にYの酸化物が含まれていることがわかった。
これに対し研磨材2ではコアはYが100%であり、シェルはCeが100%の組成比率でY又はCeをコアとシェルで共通に有していなかった。
(平均粒子径・粒子径分布の変動係数)
研磨材粒子100個の走査型顕微鏡写真(SEM像)(日立ハイテクノロジーズ製 SU−1510)から平均粒子径及び粒子径分布の変動係数を求めた。粒子径分布の変動係数は下記の式で求めた。
式(1):粒子径分布の変動係数=(粒子径分布の標準偏差/平均粒子径)×100(%)
研磨材1の平均粒子径は680nmであり、粒子径変動係数は8%であった。
研磨材2の平均粒子径は750nmであり、粒子径変動係数は19%であった。
〈研磨材スラリー1の調製〉
研磨材1で作製したコア・シェル型研磨材粒子を、研磨材粒子の濃度が5質量%となるように水に分散させた。さらに、5%硝酸水溶液を用いて25℃換算のpH値が3.10となるように調整し、研磨材スラリー1とした。
〈研磨材スラリー2〜12の調製〉
研磨材スラリー1の調製において、用いる研磨材粒子と研磨材スラリーの25℃換算のpH値とを、表1のように変えて研磨材スラリー2〜12を調製した。pHの調整には5%硝酸水溶液及び5%アンモニア水を用いた。
〈研磨材スラリーの研磨試験と評価〉
研磨試験においては、研磨材スラリーを5L/minの流量で循環供給させて研磨加工を行った。研磨対象物として、65mmφのガラスのガラス基板を使用し、研磨布は、ポリウレタン製の物を使用した。
研磨面に対する研磨時の圧力は、9.8kPa(100g/cm)とし、研磨試験機の回転速度は100min−1(rpm)に設定し、30分間研磨加工を行った。
(研磨速度の評価)
研磨加工前後のガラス基板の厚さをNikon Digimicro(MF501)にて測定し、厚さ変異から1分間当たりの研磨量(μm)を算出し、研磨開始時の研磨速度(μm/min)を求めた。30分間の研磨加工を連続5回繰り返し、初回から5回目までの研磨速度の平均値を調べ、これを研磨速度の尺度とし、下記の基準に従って研磨速度のランク付けを行った。
◎:0.60μm/min以上
○:0.60以上0.50μm/min未満
△:0.50以上0.40μm/min未満
×:0.40μm/min未満
(耐久性評価)
研磨加工前後のガラス基板の厚さをNikon Digimicro(MF501)にて測定し、厚さ変異から1分間当たりの研磨量(μm)を算出し、初回の研磨速度(μm/min)を求めた。30分間の研磨加工を連続5回繰り返し、初回と5回目での研磨速度の変化を調べた。ここで、初回の研磨速度を研磨速度1、5回目の研磨速度を研磨速度2として、(研磨速度2)/(研磨速度1)の値を耐久性の尺度とし、下記の基準に従って耐久性のランク付けを行った。この値の小さいほうが耐久性が劣ることを示している。
◎:0.80以上
○:0.60以上0.80未満
△:0.50以上0.60未満
×:0.50未満
表1から、本発明の研磨材スラリーは、優れた研磨速度と耐久性を示すことがわかる。
なお、傷の発生はすべての研磨材スラリーにおいて認められなかった。
〔実施例2〕
《研磨材3の作製》
研磨材1の作製において、(3)に記載のシェル2を形成する代わりに、1.0mol/Lの硝酸セリウム(III)水溶液を毎分0.50mLの添加速度で、及び1.0mol/Lの硝酸イットリウム(III)水溶液を毎分0.50mLの添加速度で各々60分間添加することのみ変えて研磨材3を作製した。元素分析の結果、研磨材3に含まれるYとCe元素の組成比率は、コアはYが100mol%であり、シェルはCe48%、Y52%の組成比率であった。研磨材3の平均粒子径は660nmであり、粒子径変動係数は7%であった。
《研磨材4の作製》
研磨材1の作製において、(3)に記載のシェル2を形成する代わりに、1.0mol/Lの硝酸セリウム(III)水溶液を毎分0.60mLの添加速度で、及び1.0mol/Lの硝酸イットリウム(III)水溶液を毎分0.40mLの添加速度で各々60分間添加することのみ変えて研磨材4を作製した。元素分析の結果、研磨材4に含まれるYとCe元素の組成比率は、コアはYが100mol%であり、シェルはCe60%、Y40%の組成比率であった。研磨材4の平均粒子径は710nmであり、粒子径変動係数は12%であった。
《研磨材5の作製》
研磨材1の作製において、(3)に記載のシェル2を形成する代わりに、1.0mol/Lの硝酸セリウム(III)水溶液を毎分0.90mLの添加速度で、及び1.0mol/Lの硝酸イットリウム(III)水溶液を毎分0.10mLの添加速度で各々60分間添加することのみ変えて研磨材5を作製した。元素分析の結果、研磨材5に含まれるYとCe元素の組成比率は、コアはYが100mol%であり、シェルはCe90%、Y10%の組成比率であった。研磨材5の平均粒子径は720nmであり、粒子径変動係数は15%であった。
《研磨材6の作製》
研磨材1の作製において、(3)に記載のシェル2を形成する代わりに、1.0mol/Lの硝酸セリウム(III)水溶液を毎分0.92mLの添加速度で、及び1.0mol/Lの硝酸イットリウム(III)水溶液を毎分0.08mLの添加速度で各々60分間添加することのみ変えて研磨材6を作製した。元素分析の結果、研磨材6に含まれるYとCe元素の組成比率は、コアはYが100mol%であり、シェルはCe93%、Y7%の組成比率であった。研磨材6の平均粒子径は700nmであり、粒子径変動係数は17%であった。
〈研磨材スラリーの作製と評価〉
次に研磨材1と研磨材3〜6を用いて、実施例1と同様にして25℃換算のpHを表2のように調整して、研磨材スラリー21〜25を調製し、実施例1と同様に研磨速度と耐久性を評価した。その結果を表2に示す。なお、表中、シェル中のCeとイットリウムの比率は、シェルを構成する酸化イットリウムと酸化セリウムの比率(mol%)を示す。
表2から、本発明内であってもシェル中のCeの比率が60〜90mol%の範囲内であると研磨速度が良好で、シェル中のイットリウムの比率が10mol%以上の場合、コアとシェルの両方にイットリウムが10mol%以上含まれ、耐久性が良好であることがわかる。
なお、傷の発生はすべての研磨材スラリーにおいて認められなかった。
〔実施例3〕
研磨材1の作製において、硝酸イットリウム(III)水溶液の代わりに、硝酸チタン(IV)、硝酸ストロンチウム(II)、硝酸バリウム(II)、硝酸サマリウム(III)、硝酸ユーロピウム(III)、硝酸ガドリニウム(III)及び硝酸テルビウム(III)のそれぞれの水溶液を用いて、研磨材1と同様にしてコア・シェル型研磨材粒子である研磨材31〜37を作製した。実施例1と同様にして25℃換算のpH値が8.10の研磨材スラリーを調整し、実施例1と同様に研磨速度と耐久性を評価したところ、いずれの研磨材スラリーも、研磨速度と耐久性とが、評価尺度○又は◎であり良好な結果を得ることができた。
1 コア
2 シェル
3 反応液中のイットリウムの元素比率
4 反応液中のセリウムの元素比率
A コア・シェル型研磨剤粒子

Claims (6)

  1. 少なくともコア・シェル型研磨材粒子と水とを含有する研磨材スラリーであって、該コア・シェル型研磨材粒子が、Ce(セリウム)の酸化物を含有するシェルと、Ti(チタン)、Sr(ストロンチウム)、Y(イットリウム)、Ba(バリウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリニウム)及びTb(テルビウム)から選ばれる少なくとも一種の元素の酸化物を主成分とするコアとを有し、かつ、前記9種の元素の酸化物のうちの少なくとも一種の酸化物を、前記コアと前記シェルの両方に含有し、さらに、前記研磨材スラリーの温度25℃換算のpH値が、3.50〜11.30の範囲内であることを特徴とする研磨材スラリー。
  2. 前記研磨材スラリーの温度25℃換算のpH値が、4.00〜10.80の範囲内であることを特徴とする請求項1に記載の研磨材スラリー。
  3. 前記コアに含まれる元素の酸化物が、Y(イットリウム)の酸化物であることを特徴とする請求項1又は請求項2に記載の研磨材スラリー。
  4. 前記コアと前記シェルの両方に含有される、前記少なくとも一種の酸化物の含有率が、前記コア及びシェルのそれぞれを構成する前記元素の酸化物の全量に対して、それぞれ10mol%以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の研磨材スラリー。
  5. 前記シェルを構成する前記元素の酸化物の全量に対するCe(セリウム)の酸化物の含有率が、60〜90mol%の範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の研磨材スラリー。
  6. 前記コア・シェル型研磨材粒子の、下記式(1)で表される粒子径分布の変動係数が30%以下であることを特徴とする請求項1から請求項5までのいずれか一項に記載の研磨材スラリー。
    式(1):粒子径分布の変動係数=(粒子径分布の標準偏差/平均粒子径)×100(%)
JP2013019998A 2013-02-05 2013-02-05 研磨材スラリー Pending JP2016055351A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013019998A JP2016055351A (ja) 2013-02-05 2013-02-05 研磨材スラリー
PCT/JP2014/051038 WO2014122976A1 (ja) 2013-02-05 2014-01-21 研磨材スラリー
TW103103207A TW201501860A (zh) 2013-02-05 2014-01-28 硏磨材泥漿

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013019998A JP2016055351A (ja) 2013-02-05 2013-02-05 研磨材スラリー

Publications (1)

Publication Number Publication Date
JP2016055351A true JP2016055351A (ja) 2016-04-21

Family

ID=51299573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013019998A Pending JP2016055351A (ja) 2013-02-05 2013-02-05 研磨材スラリー

Country Status (3)

Country Link
JP (1) JP2016055351A (ja)
TW (1) TW201501860A (ja)
WO (1) WO2014122976A1 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE399740T1 (de) * 2001-03-24 2008-07-15 Evonik Degussa Gmbh Mit einer hülle umgebene, dotierte oxidpartikeln
US6645265B1 (en) * 2002-07-19 2003-11-11 Saint-Gobain Ceramics And Plastics, Inc. Polishing formulations for SiO2-based substrates
KR100574225B1 (ko) * 2003-10-10 2006-04-26 요업기술원 실리카에 세리아/실리카가 코팅된 화학적 기계적 연마용연마재 및 그 제조방법
JP5012026B2 (ja) * 2004-11-08 2012-08-29 旭硝子株式会社 CeO2微粒子の製造方法
JP5077941B2 (ja) * 2006-10-10 2012-11-21 独立行政法人産業技術総合研究所 コアシェル型酸化セリウム微粒子又はそれを含有する分散液及びそれらの製造方法
JP2008182179A (ja) * 2006-12-27 2008-08-07 Hitachi Chem Co Ltd 研磨剤用添加剤、研磨剤、基板の研磨方法及び電子部品
EP2438133B1 (en) * 2009-06-05 2018-07-11 Basf Se Polishing slurry containing raspberry-type metal oxide nanostructures coated with CeO2
JP2012011526A (ja) * 2010-07-02 2012-01-19 Admatechs Co Ltd 研磨材およびその製造方法
MY159605A (en) * 2011-01-25 2017-01-13 Konica Minolta Inc Fine abrasive particles and method for producing same
JP6191608B2 (ja) * 2012-09-05 2017-09-06 コニカミノルタ株式会社 研磨材粒子の製造方法

Also Published As

Publication number Publication date
WO2014122976A1 (ja) 2014-08-14
TW201501860A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
JP6493207B2 (ja) 酸化セリウム研磨材の製造方法
JP6191608B2 (ja) 研磨材粒子の製造方法
TWI555832B (zh) Grinding material, grinding material and grinding method
JP5979340B1 (ja) 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
JP6102922B2 (ja) 研磨材粒子及びその製造方法
JP6225909B2 (ja) 研磨材粒子の製造方法
WO2014122982A1 (ja) 研磨材スラリー
JP6237650B2 (ja) コア・シェル型無機粒子
WO2014122976A1 (ja) 研磨材スラリー
JP2016178099A (ja) Cmp用研磨液
TWI558802B (zh) Abrasive and abrasive slurry
WO2015019848A1 (ja) Cmp用研磨液
WO2014122978A1 (ja) 研磨材の製造方法