JP2016036683A - 光音響画像化装置用の穿刺針および光音響画像化装置 - Google Patents

光音響画像化装置用の穿刺針および光音響画像化装置 Download PDF

Info

Publication number
JP2016036683A
JP2016036683A JP2014163903A JP2014163903A JP2016036683A JP 2016036683 A JP2016036683 A JP 2016036683A JP 2014163903 A JP2014163903 A JP 2014163903A JP 2014163903 A JP2014163903 A JP 2014163903A JP 2016036683 A JP2016036683 A JP 2016036683A
Authority
JP
Japan
Prior art keywords
puncture needle
light emitting
light
imaging apparatus
photoacoustic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014163903A
Other languages
English (en)
Inventor
中塚 均
Hitoshi Nakatsuka
均 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prexion Corp
Original Assignee
Prexion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prexion Corp filed Critical Prexion Corp
Priority to JP2014163903A priority Critical patent/JP2016036683A/ja
Priority to US14/821,855 priority patent/US20160038034A1/en
Priority to EP15180462.2A priority patent/EP2984985A1/en
Publication of JP2016036683A publication Critical patent/JP2016036683A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/685Microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】LED素子(発光ダイオード素子)などの光放出半導体素子を光源として用いる場合にも、音響波をより効率的に発生させて、光音響画像上で穿刺針の位置を確認することが可能な光音響画像化装置用の穿刺針を提供する。【解決手段】この光音響画像化装置用の穿刺針50は、LED光源部10を備える光音響画像化装置用の穿刺針50であって、穿刺針本体51と、穿刺針本体51の外表面51dに形成され、穿刺針本体51よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層52とを備える。【選択図】図2

Description

この発明は、光音響画像化装置用の穿刺針および光音響画像化装置に関し、特に、穿刺針本体を備える光音響画像化装置用の穿刺針および光音響画像化装置に関する。
従来、穿刺針本体を備える光音響画像化装置が知られている(たとえば、特許文献1参照)。
上記特許文献1には、レーザ光源と、穿刺針本体とを備える光音響画像化装置が開示されている。この光音響画像化装置は、レーザ光源からのレーザ光を照射することにより穿刺針本体から発生する音響波信号(音響波)を検出して、被検体内の穿刺針本体の位置を音響波信号に基づく光音響画像上で確認可能なように構成されている。また、この光音響画像化装置では、穿刺針本体の表面には、光散乱材料コーティング部分と、光吸収材料コーティング部分とが設けられている。そして、この光音響画像化装置は、光散乱材料コーティング部分の面積を調整することにより、穿刺針本体から発生する音響波信号の信号強度を低下させるように構成されている。これにより、この光音響画像化装置では、穿刺針本体からの信号強度の高い音響波信号に起因して、画像アーティファクト(画像の乱れ)が起こるのを抑制している。その結果、光音響画像上で穿刺針本体の位置が確認可能になる。また、この光音響画像化装置では、光音響画像化装置の光源として一般的な固体レーザ光源が用いられていると考えられる。
特開2013−27513号公報
しかしながら、上記特許文献1に記載の光音響画像化装置に、光源としてLED素子などの光放出半導体素子を用いる光源を適用した場合には、固体レーザ光源を用いる場合に比べて、光の出力が小さくなる。この場合、LED光源から照射される光に起因して穿刺針本体から発生する音響波信号の信号強度が低下する。そして、上記特許文献1に記載の穿刺針本体では、光吸収材料コーティング部分が設けられる一方、光散乱材料コーティング部分により、発生する音響波信号の信号強度を積極的に低下させているため、LED素子などの光放出半導体素子を用いる光源を用いる場合には、光音響画像上で位置を確認するのに十分な信号強度の音響波信号を得ることができないという問題点が発生する。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、LED素子(発光ダイオード素子)などの光放出半導体素子を光源として用いる場合にも、音響波をより効率的に発生させて、光音響画像上で穿刺針の位置を確認することが可能な光音響画像化装置用の穿刺針および光音響画像化装置を提供することである。
この発明の第1の局面による光音響画像化装置用の穿刺針は、光放出半導体素子光源部を備える光音響画像化装置用の穿刺針であって、穿刺針本体と、穿刺針本体の表面に形成され、穿刺針本体よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを備える。
この発明の第1の局面による光音響画像化装置用の穿刺針では、上記のように、穿刺針本体の表面に、穿刺針本体よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層を設ける。これにより、光放出半導体素子光源部からの光を被覆層に照射することができるので、光吸収性が大きい材料に光放出半導体素子光源部からの光を効率的に吸収させることができることに加えて、吸収した光により発生した熱に対して線膨張係数が大きい樹脂材料を効率的に熱膨張させることができる。その結果、被覆層を設けることにより光の吸収に加えて吸収した光により発生した熱に対する熱膨張を効率的に行うことができるので、より効率的に音響波を発生させることができる。したがって、光放出半導体素子光源部を用いる場合にも、音響波をより効率的に発生させて、光音響画像上で穿刺針の位置を確認することができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、穿刺針本体よりも線膨張係数が大きい樹脂材料は、線膨張係数が穿刺針本体の線膨張係数の2倍以上である。このように構成すれば、穿刺針本体よりも線膨張係数が大きい樹脂材料を確実に大きく熱膨張させることができるので、より一層効率的に音響波を発生させることができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、穿刺針本体よりも光吸収性が大きい材料は、測定波長において光透過率が30%以下である。このように構成すれば、光透過率が30%以下の光吸収性が大きい材料に光放出半導体素子光源部からの光を確実に大きく吸収させることができるので、吸収した光により発生した熱に対して線膨張係数が大きい樹脂材料を確実に大きく熱膨張させることができる。その結果、吸収した光に対してより一層効率的に音響波を発生させることができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、穿刺針本体よりも線膨張係数が大きい樹脂材料は、アクリル樹脂材料、フッ素樹脂材料およびシリコン樹脂材料のうち少なくともいずれか1つを含む。このように構成すれば、穿刺針本体に一般的に用いられる金属材料(たとえば、SUS304)に比べて、線膨張係数が大きい樹脂材料を用いるので、穿刺針本体よりも線膨張係数が大きい樹脂材料を容易に大きく熱膨張させることができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、穿刺針本体よりも光吸収性が大きい材料は、黒色系材料である。このように構成すれば、黒色系材料を用いることによって、光放出半導体素子光源部からの光の波長特性に依存せず、広い波長範囲にわたって高い光吸収性を維持することができる。また、検出対象物に応じて測定波長を異ならせるのが一般的な光音響画像化装置において、上記のように広い波長範囲にわたって高い光吸収性を維持することができることは、実用上特に有効である。
この場合、好ましくは、穿刺針本体には、針先にカット面が設けられており、黒色系材料は、黒色系酸窒化チタンを含み、被覆層は、黒色系酸窒化チタンを含む被覆材料を熱により白色に変化させることにより形成され、穿刺針本体における針先のカット面側を視覚的に識別可能なマーキング部を含む。このように構成すれば、黒色系材料が黒色系酸窒化チタンを含む構成において、黒色系酸窒化チタンの熱による酸化により白色に変化する特性を利用して、カット面を視覚的に識別するためのマーキング部を容易に形成することができる。その結果、ユーザは、カット面を識別することができるので、穿刺針を被検体に穿刺する際に、穿刺針の進行方向に応じてカット面を定めた状態での被検体への穿刺を容易に行うことができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として発光ダイオード素子を含む。このように構成すれば、比較的消費電力の小さい発光ダイオード素子を用いることにより光音響画像化装置の消費電力を低減することができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として半導体レーザ素子を含む。このように構成すれば、発光ダイオード素子と比べて、比較的指向性の高いレーザ光を被検体に照射することができるので、半導体レーザ素子からの光の大部分を確実に被検体に照射することができる。
上記第1の局面による光音響画像化装置用の穿刺針において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として有機発光ダイオード素子を含む。このように構成すれば、薄型化容易な有機発光ダイオード素子を用いることにより、光放出半導体素子光源部を容易に小型化することができる。
この発明の第2の局面による光音響画像化装置は、光放出半導体素子光源部と、光放出半導体素子光源部から照射された光を吸収した被検体内の検出対象物から発生する音響波を検出するための検出部と、被検体内に穿刺される穿刺針と、を備え、穿刺針は、穿刺針本体と、穿刺針本体の表面に形成され、穿刺針本体よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを含む。
この発明の第2の局面による光音響画像化装置では、上記のように、穿刺針は、穿刺針本体と、穿刺針本体の表面に形成され、穿刺針本体よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを含む。これにより、第2の局面による光音響画像化装置においても、光放出半導体素子光源部を用いる場合にも、音響波をより効率的に発生させて、光音響画像上で穿刺針の位置を確認することができる。
上記第2の局面による光音響画像化装置において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として発光ダイオード素子を含む。このように構成すれば、比較的消費電力の小さい発光ダイオード素子を用いることにより光音響画像化装置の消費電力を低減することができる。
上記第2の局面による光音響画像化装置において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として半導体レーザ素子を含む。このように構成すれば、発光ダイオード素子と比べて、比較的指向性の高いレーザ光を被検体に照射することができるので、半導体レーザ素子からの光の大部分を確実に被検体に照射することができる。
上記第2の局面による光音響画像化装置において、好ましくは、光放出半導体素子光源部は、光放出半導体素子として有機発光ダイオード素子を含む。このように構成すれば、薄型化容易な有機発光ダイオード素子を用いることにより、光放出半導体素子光源部を容易に小型化することができる。
本発明によれば、上記のように、LED素子(発光ダイオード素子)などの光放出半導体素子を光源として用いる場合にも、音響波をより効率的に発生させて、光音響画像上で穿刺針の位置を確認することが可能な光音響画像化装置用の穿刺針および光音響画像化装置を提供することができる。
本発明の第1および第2実施形態による光音響画像化装置の全体構成を示す図である。 本発明の第1実施形態による光音響画像化装置の穿刺針の測定状態を示す模式図である。 本発明の第1実施形態による光音響画像化装置の穿刺針を示す模式的な断面図である。 本発明の第1実施形態による光音響画像化装置の穿刺針を示す平面図である。 本発明の第2実施形態による光音響画像化装置の穿刺針を示す平面図である。 本発明の第1実施形態による光音響画像化装置の第1および第2変形例における光源部を説明するための図である。
以下、本発明を具体化した実施形態を図面に基づいて説明する。
(第1実施形態)
まず、図1〜図4を参照して、本発明の第1実施形態による光音響画像化装置100の構成について説明する。
本発明の第1実施形態による光音響画像化装置100は、図1に示すように、LED光源部10と、検出部20と、制御部30と、表示部40と、穿刺針50とを備えている。なお、穿刺針50は、本発明の「光音響画像化装置用の穿刺針」の一例である。また、LED光源部10は、本発明の「光放出半導体素子光源部」の一例である。
図1および図2に示すように、LED光源部10は、2つのLED光源11を含み、2つのLED光源11のそれぞれから被検体Pに向けて測定のためのパルス光を照射するように構成されている。また、2つのLED光源11は、検出部20近傍において、検出部20に対して一方側および他方側に配置されるとともに、検出部20を挟むように配置されている。したがって、2つのLED光源11は、互いに異なる位置で被検体Pに向けてパルス光を照射するように構成されている。
また、2つのLED光源11は、共に、光源基板11aと、LED素子11bとを有している。光源基板11aには、下面側に複数のLED素子11bがアレイ状に実装されている。また、光源基板11aには、光源駆動回路が形成されており、制御部30から出力される制御信号に基づいて、LED素子11bをパルス発光させるように構成されている。なお、LED素子11bは、本発明の「光放出半導体素子」の一例である。
2つのLED素子11bは、共に、人体などの被検体Pの測定に適した赤外領域の測定波長の光(たとえば、約700nm〜約1000nmにピーク波長を有する光)を発生するように構成されている。なお、2つのLED素子11bは、互いに異なる測定波長の光を発生するように構成されてもよいし、略同一の測定波長の光を発生するように構成されてもよい。また、測定波長は、検出を所望する検出対象物に応じて適宜決定されればよい。
図1および図2に示すように、検出部20は、超音波振動子20aを有している。検出部20では、超音波振動子20aは、複数設けられるとともに、複数の超音波振動子20aは、アレイ状に配列されている。また、検出部20は、LED光源部10から照射された光を吸収した穿刺針50などの被検体P内の検出対象物から発生する音響波によって超音波振動子20aが振動されることにより、音響波(超音波)を検出するように構成されている。また、検出部20は、制御部30から出力される制御信号に基づいて、超音波振動子20aを振動させて、超音波を発生することが可能なように構成されている。その際、検出部20は、被検体P内で反射された超音波によって超音波振動子20aが振動されることにより、超音波も検出するように構成されている。また、検出部20は、検出された音響波または超音波に対応する検出信号を制御部30に出力するように構成されている。
なお、本明細書では、説明の都合上、被検体P内の穿刺針50などの検出対象物が光を吸収することにより発生する超音波を「音響波」として、超音波振動子20aにより発生されるとともに、被検体P内で反射される超音波を「超音波」として区別して記載する。
制御部30は、CPUと、ROMおよびRAMなどの記憶部とを含み、図1に示すように、検出部20から出力された検出信号に基づいて、被検体P内の画像化を行うように構成されている。具体的には、制御部30は、音響波に起因する検出信号に基づいて、光音響画像を生成するとともに、超音波に起因する検出信号に基づいて超音波画像を生成するように構成されている。また、制御部30は、光音響画像と超音波画像とを統合することにより、被検体P内の多様な情報を画像化することが可能なように構成されている。
図1に示すように、表示部40は、一般的な液晶パネルなどにより構成されており、制御部30により画像化された被検体P内の情報などを表示するように構成されている。
図1および図2に示すように、穿刺針50は、被検体Pの患部に薬液を注入する際や、被検体Pから検体(血液など)を採取する際などに用いられる注射針などの穿刺針である。なお、図2では、理解の容易のため、LED光源部10および検出部20に対する穿刺針50の大きさを誇張して示している。
ここで、第1実施形態では、穿刺針50は、穿刺針本体51と、被覆層52とを含んでいる。穿刺針本体51は、生体適合性の良好な金属材料(チタンまたはSUS304など)により構成されている。また、被覆層52は、穿刺針本体51の表面に形成されるとともに、光吸収性に優れる黒色に着色するための黒色系材料と、一般的に金属材料に比べて線膨張係数の大きい樹脂材料とを含む被覆材料により構成されている。
黒色系材料としては、着色容易な粒子状の黒色系材料を用いることが可能である。粒子状の黒色系材料としては、カーボンブラック、黒色系酸化鉄および黒色系酸窒化チタンのうち少なくとも1つを用いることが可能である。また、黒色系材料としては、生体適合性および分散性の良好な黒色系酸窒化チタンを用いることが好ましい。
また、黒色系材料は、一般的に光散乱性を有する金属材料により構成される穿刺針本体51よりも光吸収性が大きい(光透過率が小さい)。なお、黒色系材料の光透過率は、効率的に光を吸収する観点から、赤外領域の測定波長において約30%以下であるのが好ましく、約25%以下であるのがより好ましい。また、黒色系材料の光透過率は、約15%以下であるのがさらに好ましく、約10%以下であるのがより一層好ましい。
樹脂材料としては、アクリル樹脂材料、フッ素樹脂材料およびシリコン樹脂材料のうち少なくともいずれか1つを用いることが可能である。
また、樹脂材料は、穿刺針本体51の金属材料として一般的に広く使用されているSUS304の線膨張係数(約1.73×10−5−1)よりも線膨張係数が大きい。なお、樹脂材料の線膨張係数の一例として、アクリル樹脂材料の線膨張係数は、約5×10−5−1以上約9×10−5−1以下であり、フッ素樹脂材料の線膨張係数は、約6×10−5−1以上約16×10−5−1以下であり、シリコン樹脂材料の線膨張係数は、約25×10−5−1以上約30×10−5−1以下である。したがって、効率的に熱膨張させる観点からは、樹脂材料としては、線膨張係数の大きいシリコン樹脂材料を用いることが好ましい。
なお、樹脂材料の線膨張係数は、効率的に熱膨張させる観点から、穿刺針本体51の線膨張係数の約2倍以上が好ましく、約3倍以上がより好ましい。また、樹脂材料の線膨張係数は、約5倍以上がさらに好ましく、約10倍以上がより一層好ましい。
また、樹脂材料は、被覆層52と人体などの被検体Pの生体組織との境界面における光の反射を抑制する観点から、人体などの被検体Pの生体組織の屈折率(約1.3)と屈折率が近い方が好ましい。なお、樹脂材料の屈折率の一例として、アクリル樹脂材料の屈折率は、約1.5であり、フッ素樹脂材料の屈折率は、約1.35であり、シリコン樹脂材料の屈折率は、約1.43である。したがって、境界面における光の反射を抑制する観点からは、樹脂材料としては、被検体Pの生体組織の屈折率と屈折率が近いフッ素樹脂材料を用いることが好ましい。また、フッ素樹脂材料は、耐薬品性、非粘着性、すべり性および非濡れ性などの優れた特性を有する点からも、用いることが好ましい。なお、フッ素樹脂材料としては、PTFE、PFA、FEP、PCTFE、ETFE、ECTFEおよびPVDFなどを用いることが可能である。
また、平滑な被覆層52を形成する観点からは、樹脂材料としては、電着により平滑かつ均一な膜形成が可能なアクリル樹脂材料を用いることが好ましい。
また、被覆材料全体の重量に対する黒色系材料の重量比は、約1%以上約5%以下であるのが好ましい。また、被覆材料全体の重量に対する樹脂材料の重量比は、フッ素樹脂の場合には、約16%以上約30%以下であるのが好ましい。
図2および図3に示すように、穿刺針本体51は、パイプ状の針管51aと、針管51aの先端に形成される針先51bとを有している。また、針先51bには、針管51aの中心軸線AXと鋭角αをなすカット面(切断面)51cが形成されている。
被覆層52は、針管51aの外表面51dを被覆するとともに、穿刺容易な平滑な膜状に形成されている。また、被覆層52は、パイプ状の針管51aの外表面51dの全周を被覆しながら、針先51bから針先51bが形成されるのとは反対側の針管51aの端部に向けて、少なくとも穿刺の際に被検体Pの内部に差し込まれる所定の位置(針先51bから数cmの位置)まで形成されている。なお、被覆層52は、塗布などの方法により針管51aの外表面51dに膜状に形成することが可能である。また、図2〜図4では、理解の容易のため、穿刺針50の穴径に対する針管51aの厚みと、被覆層52の厚みとをやや誇張して示している。
また、被覆層52の膜厚tは、被覆層52に確実に光を吸収させる観点から、約10μm以上が好ましい。また、被覆層52の膜厚tは、製造容易の観点および穿刺の際の痛みを緩和する観点から、約50μm以下が好ましく、約30μm以下がより好ましい。
また、第1実施形態では、図4に示すように、被覆層52には、外部に露出する外表面52aにおける穿刺針本体51のカット面51c側(Z1側)に、カット面51cを視覚的に識別可能なマーキング部53(ハッチングで示す)が設けられている。また、マーキング部53は、針管51aの幅方向(Y方向)の略中央の位置で、針先51bから離間した位置から針管51aの延びる方向に向けて1本のライン状に形成されている。
また、マーキング部53は、黒色系材料として黒色系酸窒化チタンを含む被覆材料を用いる場合には、この黒色系酸窒化チタンをレーザ光の熱により酸化させて、白色の酸化チタンに変化させることにより形成される。ここで、黒色系酸窒化チタンは、300℃以上の熱により酸化されて、白色の酸化チタンに変化することが知られている。
すなわち、この方法によれば、被覆層52は、黒色系材料を用いることにより全体として黒色である一方、マーキング部53は、白色であるので、被覆層52に対してマーキング部53を明瞭なコントラストで形成することが可能である。したがって、ユーザは、マーキング部53を容易に視認することができるので、カット面51cを容易に識別することが可能である。
次に、図1および図2を参照して、穿刺針50の被検体Pへの穿刺と、被検体P内における穿刺針50からの音響波の発生について説明する。
まず、ユーザ(穿刺を行う者)は、穿刺針50のマーキング部53を視認することにより、カット面51cを識別する。穿刺の際、カット面51cが下向きの場合には、被検体P内で穿刺針50は上向きに進み易く、カット面51cが上向きの場合(図2の場合)には、被検体P内で穿刺針50は下向きに進み易い。したがって、穿刺針50の針先51bの到達を所望する位置に応じて、穿刺の際のカット面51cの上下が決定される。
そして、マーキング部53(図4参照)によりカット面51cを識別して、カット面51cの上下を決定した後、ユーザは、被検体Pに穿刺針50を穿刺する。そして、穿刺針50が被検体Pに穿刺された状態で、LED光源部10から測定のためのパルス光が照射される。
また、照射されたパルス光は、穿刺針本体51の外表面51d上に十分な厚みで形成された被覆層52により吸収される。この際、被覆層52において、光吸収性が大きい(光透過率が小さい)黒色系材料により光が効率的に吸収される。そして、光を吸収した黒色系材料により熱が発生する。そして、線膨張係数の大きい樹脂材料に黒色系材料により発生した熱が伝達されて、樹脂材料が熱膨張される。この結果、穿刺針本体51のみに光を吸収させる場合と比べて、被覆層52から効率的に音響波AWを発生させることが可能である。なお、被覆層52では、黒色系材料から伝達された熱に起因する樹脂材料の熱膨張だけではなく、光を吸収したことに起因する黒色系材料の熱膨張によっても音響波AWが発生する。また、被覆層52では、光を吸収したことに起因する樹脂材料の熱膨張によっても音響波AWが発生する。
その後、被検体P内を伝播した音響波AWが検出部20に到達して、検出部20により検出されるとともに、図1に示すように、この音響波AWに起因する検出信号が検出部20から制御部30に出力される。そして、この音響波AWに起因する検出信号に基づいて、制御部30により光音響画像の生成が行われて、生成された光音響画像が表示部40に表示される。この結果、ユーザは、光音響画像上で穿刺針50の被検体P内の位置を確認することが可能である。
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、穿刺針本体51の表面(外表面51d)に、穿刺針本体51よりも光吸収性が大きい黒色系材料と、穿刺針本体51よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層52を設ける。これにより、LED光源部10からの光を被覆層52に照射することができるので、光吸収性が大きい黒色系材料にLED光源部10からの光を効率的に吸収させることができることに加えて、吸収した光により発生した熱に対して線膨張係数が大きい樹脂材料を効率的に熱膨張させることができる。その結果、被覆層52を設けることにより光の吸収に加えて吸収した光により発生した熱に対する熱膨張を効率的に行うことができるので、より効率的に音響波AWを発生させることができる。したがって、LED光源部10を用いる場合にも、音響波AWをより効率的に発生させて、光音響画像上で穿刺針50の位置を確認することができる。
また、第1実施形態では、上記のように、穿刺針本体51よりも線膨張係数が大きい樹脂材料の線膨張係数が、穿刺針本体51の線膨張係数の約2倍以上である。これにより、穿刺針本体51よりも線膨張係数が大きい樹脂材料を確実に大きく熱膨張させることができるので、より一層効率的に音響波AWを発生させることができる。
また、第1実施形態では、上記のように、穿刺針本体51よりも光吸収性が大きい黒色系材料の光透過率が測定波長において約30%以下である。これにより、光透過率が約30%以下の光吸収性が大きい黒色系材料にLED光源部10からの光を確実に大きく吸収させることができるので、吸収した光により発生した熱に対して線膨張係数が大きい樹脂材料を確実に大きく熱膨張させることができる。その結果、吸収した光に対してより一層効率的に音響波AWを発生させることができる。
また、第1実施形態では、上記のように、穿刺針本体51よりも線膨張係数が大きい樹脂材料は、アクリル樹脂材料、フッ素樹脂材料およびシリコン樹脂材料のうち少なくともいずれか1つを含む。これにより、穿刺針本体51に一般的に用いられる金属材料(たとえば、SUS304)に比べて、線膨張係数が大きい樹脂材料を用いるので、穿刺針本体51よりも線膨張係数が大きい樹脂材料を容易に大きく熱膨張させることができる。
また、第1実施形態では、上記のように、穿刺針本体51よりも光吸収性が大きい材料が黒色系材料である。これにより、黒色系材料を用いることによって、LED光源部10からの光の波長特性に依存せず、広い波長範囲にわたって高い光吸収性を維持することができる。また、検出対象物に応じて測定波長を異ならせるのが一般的な光音響画像化装置100において、上記のように広い波長範囲にわたって高い光吸収性を維持することができることは、実用上特に有効である。
また、第1実施形態では、上記のように、黒色系酸窒化チタンを含む被覆材料を熱により白色に変化させることにより形成され、穿刺針本体51における針先51bのカット面51c側を視覚的に識別可能なマーキング部53を被覆層52に設ける。これにより、黒色系材料が黒色系酸窒化チタンを含む構成において、黒色系酸窒化チタンの熱による酸化により白色に変化する特性を利用して、カット面51cを視覚的に識別するためのマーキング部53を容易に形成することができる。その結果、ユーザは、カット面51cを識別することができるので、穿刺針50を被検体Pに穿刺する際に、穿刺針50の進行方向に応じてカット面51cを定めた状態での被検体Pへの穿刺を容易に行うことができる。
また、第1実施形態では、上記のように、LED光源部10に、光放出半導体素子として発光ダイオード素子(LED素子)11bを設ける。これにより、比較的消費電力の小さいLED素子11bを用いることにより光音響画像化装置100の消費電力を低減することができる。
(第2実施形態)
次に、図1および図5を参照して、第2実施形態について説明する。この第2実施形態では、マーキング部53を針管51aの延びる方向に向けて1本のライン状に形成した上記第1実施形態の構成とは異なり、複数(5つ)のマーキング部153を目盛状に形成する例について説明する。なお、上記第1実施形態と同一の構成については、同じ符号を付してその説明を省略する。
本発明の第2実施形態による光音響画像化装置200は、図1に示すように、穿刺針150を備えている。穿刺針150は、マーキング部153が第1実施形態のマーキング部53と異なること以外は、上記第1実施形態と略同一の構成である。すなわち、穿刺針150では、穿刺針本体51の外表面51dに被覆層52が設けられるとともに、被覆層52にマーキング部153(ハッチングで示す)が設けられている。なお、穿刺針150は、本発明の「光音響画像化装置用の穿刺針」の一例である。
第2実施形態では、マーキング部153は、外部に露出する外表面52aにおける穿刺針本体51のカット面51c側(Z1側)において、複数(5つ)設けられている。また、複数のマーキング部153は、それぞれ、針管51aの幅方向(Y方向)に延びるライン状に形成されるとともに、所定の離間間隔Dだけ互いに離れた位置に形成されている。すなわち、第2実施形態では、マーキング部153は、カット面51cを視覚的に識別可能にするための機能に加えて、穿刺針150を被検体Pに穿刺した際に穿刺針150の挿入深度を図るための目盛としての機能を有している。なお、目盛としての機能を有するマーキング部153は、5つ以外の複数設けられてもよい。
また、第2実施形態では、複数のマーキング部153は、それぞれ、被覆層52の外表面52aの半周よりも長く、かつ、全周よりも短い範囲でライン状に形成されている。すなわち、複数のマーキング部153は、カット面51c側(Z1側)では、連続的に形成されているとともに、カット面51cとは反対側(Z2側)では、分断されている。これらの結果、カット面51cを容易に識別可能であるとともに、マーキング部153の形成範囲が広範囲にわたるので、カット面51cを上下いずれの向きで被検体Pに穿刺する場合にも、目盛状のマーキング部153を視認して、挿入深度を図ることが可能である。
なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、上記のように、マーキング部153を目盛状に形成する。これにより、穿刺針150の穿刺の際に、穿刺針150の挿入深度を容易に知ることができる。その結果、穿刺針150を所望の挿入深度まで容易に穿刺することができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および第2実施形態では、被覆層52が穿刺針本体51の外表面51dの全周を被覆した例を示したが、本発明はこれに限られない。本発明では、被覆層が穿刺針本体の外表面の全周を被覆していなくともよい。本発明では、測定可能であれば、被覆層が穿刺針本体の一部のみを被覆していてもよい。また、被覆層が穿刺針本体の内表面を被覆していてもよい。
また、上記第1および第2実施形態では、穿刺針本体51よりも線膨張係数が大きい樹脂材料の線膨張係数が、穿刺針本体51の線膨張係数の約2倍以上である例を示したが、本発明はこれに限られない。本発明では、穿刺針本体よりも線膨張係数が大きければ、樹脂材料の線膨張係数は、穿刺針本体の線膨張係数の約2倍よりも小さくてもよい。
また、上記第1および第2実施形態では、穿刺針本体51よりも光吸収性が大きい黒色系材料の光透過率が、測定波長において約30%以下である例を示したが、本発明はこれに限られない。本発明では、黒色系材料の光透過率が測定波長において約30%よりも大きくてもよい。
また、上記第1および第2実施形態では、穿刺針本体51よりも光吸収性が大きい材料として、カーボンブラックなどの黒色系材料を用いた例を示したが、本発明はこれに限られない。本発明では、赤外領域の測定波長において光吸収性が大きい(光透過率が小さい)材料であれば、黒色系材料以外の材料を用いてもよい。
また、上記第1および第2実施形態では、マーキング部53(153)を、カット面51c側に設けた例を示したが、本発明はこれに限られない。本発明では、カット面側を視覚的に識別可能であれば、マーキング部をカット面側に設けなくともよい。たとえば、カット面とは反対側にのみマーキング部を設けることにより、カット面を識別する構成や、カット面側とカット面とは反対側とにおいて異なる形状のマーキング部を設けることにより、カット面を識別する構成を採用してもよい。
また、上記第1実施形態では、黒色系酸窒化チタンを含む被覆材料を用いる場合に、レーザ光の熱により黒色系酸窒化チタンを白色の酸化チタンに変化させることにより、マーキング部53を形成した例を示したが、本発明はこれに限られない。本発明では、上記の方法以外によって、マーキング部を形成してもよい。たとえば、被覆層の一部に塗料を塗布することにより、マーキング部を形成してもよいし、穿刺針本体の一部に被覆層を設けないことにより、その部分をマーキング部としてもよい。
また、上記第1および第2実施形態では、光放出半導体素子として、LED素子11bを用いた例を示したが、本発明はこれに限られない。本発明では、光放出半導体素子として、LED素子以外の光放出半導体素子を用いてもよい。たとえば、図6に示す第1変形例のように、光放出半導体素子として半導体レーザ素子211bを、光放出半導体素子光源部210に設けてもよい。これにより、発光ダイオード素子と比べて、比較的指向性の高いレーザ光を被検体に照射することができるので、半導体レーザ素子211bからの光の大部分を確実に被検体に照射することができる。また、図6に示す第2変形例のように、光放出半導体素子として有機発光ダイオード素子311bを、光放出半導体素子光源部310に設けてもよい。これにより、薄型化容易な有機発光ダイオード素子311bを用いることにより、有機発光ダイオード素子311bが設けられる光放出半導体素子光源部310を容易に小型化することができる。なお、半導体レーザ素子211bおよび有機発光ダイオード素子311bは、共に、本発明の「光放出半導体素子」の一例である。
10 LED光源部(光放出半導体素子光源部)
11b LED素子(光放出半導体素子)
20 検出部
50、150 穿刺針(光音響画像化装置用の穿刺針)
51 穿刺針本体
51b 針先
51c カット面
52 被覆層
53、153 マーキング部
100、200 光音響画像化装置
210、310 光放出半導体素子光源部
211b 半導体レーザ素子(光放出半導体素子)
311b 有機発光ダイオード素子(光放出半導体素子)
この発明は、光音響画像化装置用の穿刺針およびこの穿刺針を用いる光音響画像化装置に関する。
この発明の第2の局面による光音響画像化装置は、被検体内に穿刺される穿刺針を用いる光音響画像化装置であって、光放出半導体素子光源部と、少なくとも光放出半導体素子光源部から照射された光を吸収した被検体内の穿刺針から発生する音響波を検出するための検出部と、を備え、穿刺針は、穿刺針本体と、穿刺針本体の表面に形成され、穿刺針本体よりも光吸収性が大きい材料と、穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを含む。

Claims (13)

  1. 光放出半導体素子光源部を備える光音響画像化装置用の穿刺針であって、
    穿刺針本体と、
    前記穿刺針本体の表面に形成され、前記穿刺針本体よりも光吸収性が大きい材料と、前記穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを備える、光音響画像化装置用の穿刺針。
  2. 前記穿刺針本体よりも線膨張係数が大きい樹脂材料は、線膨張係数が前記穿刺針本体の線膨張係数の2倍以上である、請求項1に記載の光音響画像化装置用の穿刺針。
  3. 前記穿刺針本体よりも光吸収性が大きい材料は、測定波長において光透過率が30%以下である、請求項1または2に記載の光音響画像化装置用の穿刺針。
  4. 前記穿刺針本体よりも線膨張係数が大きい樹脂材料は、アクリル樹脂材料、フッ素樹脂材料およびシリコン樹脂材料のうち少なくともいずれか1つを含む、請求項1〜3のいずれか1項に記載の光音響画像化装置用の穿刺針。
  5. 前記穿刺針本体よりも光吸収性が大きい材料は、黒色系材料である、請求項1〜4のいずれか1項に記載の光音響画像化装置用の穿刺針。
  6. 前記穿刺針本体には、針先にカット面が設けられており、
    前記黒色系材料は、黒色系酸窒化チタンを含み、
    前記被覆層は、前記黒色系酸窒化チタンを含む前記被覆材料を熱により白色に変化させることにより形成され、前記穿刺針本体における前記針先の前記カット面側を視覚的に識別可能なマーキング部を含む、請求項5に記載の光音響画像化装置用の穿刺針。
  7. 前記光放出半導体素子光源部は、光放出半導体素子として発光ダイオード素子を含む、請求項1〜6のいずれか1項に記載の光音響画像化装置用の穿刺針。
  8. 前記光放出半導体素子光源部は、光放出半導体素子として半導体レーザ素子を含む、請求項1〜6のいずれか1項に記載の光音響画像化装置用の穿刺針。
  9. 前記光放出半導体素子光源部は、光放出半導体素子として有機発光ダイオード素子を含む、請求項1〜6のいずれか1項に記載の光音響画像化装置用の穿刺針。
  10. 光放出半導体素子光源部と、
    前記光放出半導体素子光源部から照射された光を吸収した被検体内の検出対象物から発生する音響波を検出するための検出部と、
    前記被検体内に穿刺される穿刺針と、を備え、
    前記穿刺針は、
    穿刺針本体と、
    前記穿刺針本体の表面に形成され、前記穿刺針本体よりも光吸収性が大きい材料と、前記穿刺針本体よりも線膨張係数が大きい樹脂材料とを含む被覆材料により構成される被覆層とを含む、光音響画像化装置。
  11. 前記光放出半導体素子光源部は、光放出半導体素子として発光ダイオード素子を含む、請求項10に記載の光音響画像化装置。
  12. 前記光放出半導体素子光源部は、光放出半導体素子として半導体レーザ素子を含む、請求項10に記載の光音響画像化装置。
  13. 前記光放出半導体素子光源部は、光放出半導体素子として有機発光ダイオード素子を含む、請求項10に記載の光音響画像化装置。
JP2014163903A 2014-08-11 2014-08-11 光音響画像化装置用の穿刺針および光音響画像化装置 Pending JP2016036683A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014163903A JP2016036683A (ja) 2014-08-11 2014-08-11 光音響画像化装置用の穿刺針および光音響画像化装置
US14/821,855 US20160038034A1 (en) 2014-08-11 2015-08-10 Puncture Needle for Photoacoustic Imager and Photoacoustic Imager
EP15180462.2A EP2984985A1 (en) 2014-08-11 2015-08-11 Puncture needle for photoacoustic imager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014163903A JP2016036683A (ja) 2014-08-11 2014-08-11 光音響画像化装置用の穿刺針および光音響画像化装置

Publications (1)

Publication Number Publication Date
JP2016036683A true JP2016036683A (ja) 2016-03-22

Family

ID=53886894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163903A Pending JP2016036683A (ja) 2014-08-11 2014-08-11 光音響画像化装置用の穿刺針および光音響画像化装置

Country Status (3)

Country Link
US (1) US20160038034A1 (ja)
EP (1) EP2984985A1 (ja)
JP (1) JP2016036683A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106137342B (zh) * 2016-08-08 2019-02-01 哈尔滨理工大学 一种超声振动穿刺软组织装置
US10429152B2 (en) * 2016-09-29 2019-10-01 Aadg, Inc. Fiber reinforced plastic door with polycarbonate ballistic core and method of making same
US11064970B2 (en) * 2016-12-05 2021-07-20 Fujifilm Sonosite, Inc. Method and apparatus for visualizing a medical instrument under ultrasound guidance
CN107224317A (zh) * 2017-06-13 2017-10-03 北京品驰医疗设备有限公司 一种用于超声引导的穿刺针及超声引导的植入***
CN107884434B (zh) * 2017-11-10 2019-10-18 哈尔滨学院 一种基于超声波的智能金属线胀系数测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081726A (ja) * 1998-06-30 2000-03-21 Canon Inc 画像形成方法
JP2002188016A (ja) * 2000-12-21 2002-07-05 Mitsubishi Materials Corp レーザマーキング用樹脂組成物
US20050255044A1 (en) * 2004-05-14 2005-11-17 Lomnes Stephen J Contrast agent for combined modality imaging and methods and systems thereof
JP2013027513A (ja) * 2011-07-28 2013-02-07 Fujifilm Corp 光音響用穿刺針及び光音響画像生成装置
WO2014109148A1 (ja) * 2013-01-09 2014-07-17 富士フイルム株式会社 光音響画像生成装置及び挿入物
JP2014140716A (ja) * 2012-12-28 2014-08-07 Canon Inc 被検体情報取得装置、被検体情報取得装置の制御方法、およびプログラム
WO2014148379A1 (ja) * 2013-03-22 2014-09-25 富士フイルム株式会社 光音響計測装置及び穿刺針

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081726A (ja) * 1998-06-30 2000-03-21 Canon Inc 画像形成方法
JP2002188016A (ja) * 2000-12-21 2002-07-05 Mitsubishi Materials Corp レーザマーキング用樹脂組成物
US20050255044A1 (en) * 2004-05-14 2005-11-17 Lomnes Stephen J Contrast agent for combined modality imaging and methods and systems thereof
JP2005325115A (ja) * 2004-05-14 2005-11-24 General Electric Co <Ge> モダリティ結合型撮像用の造影剤、並びにモダリティ結合型撮像方法及びイメージング・システム
JP2013027513A (ja) * 2011-07-28 2013-02-07 Fujifilm Corp 光音響用穿刺針及び光音響画像生成装置
JP2014140716A (ja) * 2012-12-28 2014-08-07 Canon Inc 被検体情報取得装置、被検体情報取得装置の制御方法、およびプログラム
US20150351639A1 (en) * 2012-12-28 2015-12-10 Canon Kabushiki Kaisha Subject information obtaining apparatus, method for controlling subject information obtaining apparatus, and program
WO2014109148A1 (ja) * 2013-01-09 2014-07-17 富士フイルム株式会社 光音響画像生成装置及び挿入物
WO2014148379A1 (ja) * 2013-03-22 2014-09-25 富士フイルム株式会社 光音響計測装置及び穿刺針
JP2014207971A (ja) * 2013-03-22 2014-11-06 富士フイルム株式会社 光音響計測装置及び穿刺針

Also Published As

Publication number Publication date
US20160038034A1 (en) 2016-02-11
EP2984985A1 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP2016036683A (ja) 光音響画像化装置用の穿刺針および光音響画像化装置
JP2010125260A (ja) 生体検査装置
JP6374012B2 (ja) 光音響画像生成装置
JP2013078463A (ja) 音響波取得装置
US20180110417A1 (en) Fiber optic temperature measurement system
JP2011092631A (ja) 生体情報処理装置及び生体情報処理方法
US10470666B2 (en) Photoacoustic apparatus, information acquiring apparatus, information acquiring method, and storage medium
US10607366B2 (en) Information processing apparatus, information processing method, and non-transitory storage medium
JP2017196026A (ja) 被検体情報取得装置
JP6598528B2 (ja) 被検体情報取得装置および被検体情報取得方法
JP6780105B2 (ja) 挿入物およびその挿入物を備えた光音響計測装置
US20200163554A1 (en) Image generating apparatus, image generating method, and non-transitory computer-readable medium
JP6250510B2 (ja) 光音響画像生成装置
JP2017077411A (ja) 被検体情報取得装置
WO2019107391A1 (ja) 画像情報処理装置および表示方法
JP7277212B2 (ja) 画像処理装置、画像処理方法及びプログラム
WO2018003647A1 (en) Information obtaining apparatus and control method for signal processing apparatus
JP6808034B2 (ja) 挿入物およびその挿入物を備えた光音響計測装置
JP5885768B2 (ja) 生体検査装置
JP6444462B2 (ja) 生体検査装置
KR101781481B1 (ko) 레이저 조사를 이용한 문신 시술 장치 및 그 방법
JP6745888B2 (ja) 光音響計測装置
JP2016073887A (ja) 生体検査装置
JP6929204B2 (ja) 情報処理装置、情報処理方法、およびプログラム
US11599992B2 (en) Display control apparatus, display method, and non-transitory storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170809

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106