JP2016027599A - Carbon porous electrode and method for manufacturing the same - Google Patents

Carbon porous electrode and method for manufacturing the same Download PDF

Info

Publication number
JP2016027599A
JP2016027599A JP2015004518A JP2015004518A JP2016027599A JP 2016027599 A JP2016027599 A JP 2016027599A JP 2015004518 A JP2015004518 A JP 2015004518A JP 2015004518 A JP2015004518 A JP 2015004518A JP 2016027599 A JP2016027599 A JP 2016027599A
Authority
JP
Japan
Prior art keywords
carbon
porous electrode
containing resin
electrode according
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015004518A
Other languages
Japanese (ja)
Inventor
鈴木 健
Takeshi Suzuki
健 鈴木
山田 邦生
Kunio Yamada
邦生 山田
厚則 佐竹
Atsunori Satake
厚則 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2015004518A priority Critical patent/JP2016027599A/en
Publication of JP2016027599A publication Critical patent/JP2016027599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a carbon porous electrode including no binder and having a low specific resistance value (specific volume resistance), which can be obtained by a relatively simple process.SOLUTION: A method for manufacturing a carbon porous electrode comprises the steps of: blending a carbon-containing resin with carbon powder of graphite or the like and PMMA particles which disappear and form pores in the course of carbonization of the resin (step 100); dispersing the resultant blend by a mixer and kneading the resultant mixture by a kneader sufficiently (step 102); molding the resultant blend into a sheet-like form by an extrusion machine equipped with a die having a slit-like section (step 104); performing a thermal treatment on the sheet-like form in a nitrogen atmosphere, thereby carbonizing the resin and in parallel, causing the PMMA particles to disappear to form macro pores (step 106); and subsequently, performing an activating process, thereby forming micropores (step 108).SELECTED DRAWING: Figure 1

Description

本発明は、電気二重層キャパシタ、リチウムイオンキャパシタ等の蓄電デバイスの電極として用いられる炭素多孔質電極およびその製造方法に関する。   The present invention relates to a carbon porous electrode used as an electrode of an electric storage device such as an electric double layer capacitor and a lithium ion capacitor, and a method for producing the same.

電気二重層キャパシタの電極としては、1gあたりに1000〜2000m2という非常に広い表面積を有する活性炭の粒子をバインダで固めたものが使用されている。 As an electrode of the electric double layer capacitor, an activated carbon particle having a very large surface area of 1000 to 2000 m 2 per 1 g is used, which is hardened with a binder.

また、下記特許文献1,2には、気孔形成剤を用いて多孔質とした樹脂を窒素雰囲気下で熱処理して炭素化することによりマクロ孔を有する炭素多孔体とし、その後、水蒸気または二酸化炭素の存在下での熱処理による賦活処理を施してミクロ孔を形成することにより得られる、バインダを含まない炭素多孔質電極が提案されている。   Further, in Patent Documents 1 and 2 below, a porous resin using a pore forming agent is heat-treated in a nitrogen atmosphere and carbonized to obtain a carbon porous body having macropores, and then water vapor or carbon dioxide. There has been proposed a carbon porous electrode that does not contain a binder, which is obtained by applying an activation treatment by heat treatment in the presence of a micropore to form micropores.

特開平5−217803号公報JP-A-5-217803 特開2013−201170号公報JP 2013-201170 A

前述のマクロ孔の形成に関して、特許文献1においては気孔形成剤として液体で蒸発型の発泡剤が使用されているので([0038]−[0040])、孔径の制御が困難であり、孔径が不均一となる、という課題がある。特許文献2においては、樹脂に予め混入され、樹脂の硬化後に水洗して除去される米澱粉が用いられているので(実施例1)、工程が煩雑になるという課題がある。   Regarding the formation of the above-mentioned macropores, in Patent Document 1, since a liquid and evaporating foaming agent is used as a pore-forming agent ([0038]-[0040]), it is difficult to control the pore diameter, and the pore diameter is There is a problem of non-uniformity. In patent document 2, since the rice starch previously mixed with resin and washed and removed after hardening of resin is used (Example 1), there exists a subject that a process becomes complicated.

また、特許文献1,2においては、電極の厚みを薄くするためには、硬化後の樹脂成形体のブロックを薄く切り出す工程を必要とするが、これもまた工程を煩雑化する。   Further, in Patent Documents 1 and 2, in order to reduce the thickness of the electrode, a process of cutting out the block of the resin molded body after curing is required, but this also complicates the process.

さらに、キャパシタの内部抵抗を低くするためには、電極の材料そのものの固有抵抗値(体積抵抗率)が低いことが望ましい。   Furthermore, in order to reduce the internal resistance of the capacitor, it is desirable that the specific resistance value (volume resistivity) of the electrode material itself be low.

したがって本発明の目的は、比較的簡潔な工程により、バインダを含まない炭素多孔質電極を得ることにある。   Accordingly, an object of the present invention is to obtain a carbon porous electrode containing no binder by a relatively simple process.

本発明のさらなる目的は、固有抵抗値の低い材料が用いられた炭素多孔質電極を提供することにある。   A further object of the present invention is to provide a carbon porous electrode using a material having a low specific resistance value.

本発明によれば、アモルファス炭素を含み、平均孔径0.1μm以上のマクロ孔および平均孔径10nm以下のミクロ孔を有し、固有抵抗値が1Ω・cm以下である炭素多孔質電極が提供される。   According to the present invention, there is provided a carbon porous electrode containing amorphous carbon, having macropores having an average pore diameter of 0.1 μm or more and micropores having an average pore diameter of 10 nm or less and having a specific resistance value of 1 Ω · cm or less. .

本発明の炭素多孔質電極は、密度が略均一であることができる。ここで、本明細書において、略均一であるとは、ばらつきが10%以内、8%以内、又は7%以内であることを言うものである。   The carbon porous electrode of the present invention can have a substantially uniform density. Here, in this specification, being substantially uniform means that the variation is within 10%, within 8%, or within 7%.

前述の固有抵抗値は0.1Ω・cm以下であることが望ましい。   The above-mentioned specific resistance value is desirably 0.1 Ω · cm or less.

この炭素多孔質電極は、例えば、前記アモルファス炭素中に均一に分散した炭素粉末をさらに含んでいる。   The carbon porous electrode further includes, for example, carbon powder uniformly dispersed in the amorphous carbon.

前記アモルファス炭素は、例えば、炭素含有樹脂の炭素化により得られたものであり、前記マクロ孔は前記炭素含有樹脂中に均一に分散し前記炭素化の過程で消失して気孔を形成する穴開け材粒子により形成されたものである。   The amorphous carbon is obtained, for example, by carbonization of a carbon-containing resin, and the macropores are uniformly dispersed in the carbon-containing resin and disappear in the carbonization process to form pores. It is formed by material particles.

前述の炭素多孔質電極は、炭素含有樹脂に穴開け材粒子を均一に分散させ、前記穴開け材粒子を分散させた前記炭素含有樹脂を非酸化雰囲気中で熱処理することにより前記炭素含有樹脂を炭素化するとともに前記穴開け材粒子を消失させて平均孔径0.1μm以上のマクロ孔を形成し、前記マクロ孔が形成された炭素化物に賦活処理を施すことにより平均孔径10nm以下のミクロ孔を形成することを含む方法により製造される。   The carbon porous electrode described above is obtained by uniformly dispersing the hole-forming material particles in the carbon-containing resin and heat-treating the carbon-containing resin in which the hole-forming material particles are dispersed in a non-oxidizing atmosphere. Carbonization and disappearance of the perforating material particles to form macropores having an average pore diameter of 0.1 μm or more, and by applying an activation treatment to the carbonized material in which the macropores are formed, micropores having an average pore diameter of 10 nm or less Manufactured by a method comprising forming.

炭素含有樹脂としては、残炭率7%以上、10%以上、又は15%以上の樹脂を使用することができる。炭素含有樹脂としては、例えばポリ塩化ビニル樹脂、フェノール樹脂、エポキシ樹脂、ポリアクリロニトリル樹脂等が挙げられる。   As the carbon-containing resin, a resin having a residual carbon ratio of 7% or more, 10% or more, or 15% or more can be used. Examples of the carbon-containing resin include polyvinyl chloride resin, phenol resin, epoxy resin, and polyacrylonitrile resin.

ここで、本明細書において、残炭率とは、炭素化前の樹脂中の炭素に対する、炭素化後に得られるアモルファス炭素の割合を言うものである。   Here, in this specification, the residual carbon ratio refers to the ratio of amorphous carbon obtained after carbonization to carbon in the resin before carbonization.

穴開け材粒子としては、残炭率5%以下、3%以下、又は1%以下の樹脂から成る粒子が挙げられる。この樹脂としては、例えばポリエチレン、ポリスチレン、及びポリテトラフルオロエチレン等のポリオレフィン、ポリアセタール等のポリアルデヒド、並びにポリメチルメタクリレート(PMMA)等のアクリル樹脂等が挙げられる。   Examples of the drilling material particles include particles made of a resin having a residual carbon ratio of 5% or less, 3% or less, or 1% or less. Examples of this resin include polyolefins such as polyethylene, polystyrene, and polytetrafluoroethylene, polyaldehydes such as polyacetal, and acrylic resins such as polymethyl methacrylate (PMMA).

この方法は、前記炭素化の前において、前記穴開け材粒子が分散した炭素含有樹脂を押出成形によりシート状に成形することをさらに含むことが好ましい。   Preferably, this method further includes forming the carbon-containing resin in which the perforating material particles are dispersed into a sheet by extrusion molding before the carbonization.

この方法は、前記炭素含有樹脂にさらに炭素粉末を均一に分散させることをさらに含むことがさらに好ましい。   More preferably, the method further includes uniformly dispersing carbon powder in the carbon-containing resin.

前述の炭素粉末は、例えば、黒鉛粉末、カーボンナノチューブ、活性炭粉末、非晶性炭素粉末および炭素繊維からなる群から選択される。   The aforementioned carbon powder is selected from the group consisting of, for example, graphite powder, carbon nanotube, activated carbon powder, amorphous carbon powder, and carbon fiber.

前述の炭素多孔質電極には、随意の金属層を積層させてもよい。金属層を構成する金属としては、アルミニウム、金、白金、銀、クロム、ニッケル、チタン、鉄、錫、パラジウム等、及びこれらの合金が挙げられる。   An optional metal layer may be laminated on the aforementioned carbon porous electrode. Examples of the metal constituting the metal layer include aluminum, gold, platinum, silver, chromium, nickel, titanium, iron, tin, palladium, and alloys thereof.

例えば、本発明の炭素多孔質電極を電気二重層キャパシタの分極性電極として使用する場合、金属層を積層することによりこの金属を集電極として機能させることができるため、電気二重層キャパシタを構成する部品の数を減らすことができる等の利点を有する。   For example, when the carbon porous electrode of the present invention is used as a polarizable electrode of an electric double layer capacitor, the metal can be made to function as a collecting electrode by stacking metal layers, so that an electric double layer capacitor is configured. The advantage is that the number of parts can be reduced.

炭素含有樹脂に、炭素含有樹脂の炭素化の過程で消失して気孔を形成する穴開け材の粒子を予め均一に分散させて炭素化することにより、簡潔な工程で、マクロ孔を有する炭素多孔体を得ることができる。この場合に、穴開け材粒子の形状と大きさに応じた形状と大きさの気孔が形成されるので、穴開け材粒子の平均粒径および粒径分布を適切に選択することでマクロ孔の平均孔径および孔径分布を任意に制御することができる。また、炭素化の前において押出成形によりシート状に成形することで、樹脂ブロックを薄く切り出す工程が不要となり、要求される厚みの電極を容易に得ることができる。   A carbon porous resin having macropores in a simple process by carbonizing the carbon containing resin by uniformly dispersing in advance the particles of the drilling material that disappears in the process of carbonization of the carbon containing resin to form pores. You can get a body. In this case, since pores having a shape and size corresponding to the shape and size of the drilling material particles are formed, the macropores can be formed by appropriately selecting the average particle size and the particle size distribution of the drilling material particles. The average pore size and the pore size distribution can be arbitrarily controlled. Further, by forming into a sheet form by extrusion before carbonization, a step of cutting out the resin block is unnecessary, and an electrode having a required thickness can be easily obtained.

電極材料の固有抵抗値を1Ω・cm以下、望ましくは0.1Ω・cm以下とすることで、キャパシタの内部抵抗を低くすることができる。電極に含まれるアモルファス炭素中に炭素粉末、例えば、黒鉛粉末、カーボンナノチューブ、活性炭素粉末、非晶性炭素粉末および炭素繊維からなる群から選択される炭素粉末を分散させることで、電極材料の固有抵抗値を低くすることができる。この炭素粉末は炭素化前の樹脂の成形を容易にするフィラーとしての役割も果たす。   By setting the specific resistance value of the electrode material to 1 Ω · cm or less, preferably 0.1 Ω · cm or less, the internal resistance of the capacitor can be lowered. By dispersing carbon powder selected from the group consisting of, for example, graphite powder, carbon nanotubes, activated carbon powder, amorphous carbon powder, and carbon fiber in amorphous carbon contained in the electrode, the electrode material is unique. The resistance value can be lowered. This carbon powder also serves as a filler that facilitates molding of the resin before carbonization.

本発明の一実施形態に係る炭素多孔質電極の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the carbon porous electrode which concerns on one Embodiment of this invention. 実施例5において得られた電極の断面写真である。6 is a cross-sectional photograph of an electrode obtained in Example 5. 実施例2において得られた電極の細孔分布の測定結果を示すグラフである。6 is a graph showing the measurement results of the pore distribution of the electrode obtained in Example 2. 実施例1〜5において得られた電極の賦活重量収率と比表面積との関係を示すグラフである。It is a graph which shows the relationship between the activation weight yield and specific surface area of the electrode obtained in Examples 1-5. 実施例1において得られた電極の表面写真である。2 is a surface photograph of an electrode obtained in Example 1. FIG. 実施例10において得られた電極の表面写真である。2 is a surface photograph of an electrode obtained in Example 10. FIG. 実施例11において得られた電極の断面写真である。2 is a cross-sectional photograph of an electrode obtained in Example 11.

図1に、本発明の炭素多孔質電極の製造方法の一実施形態に係る製造工程の概略を示す。   In FIG. 1, the outline of the manufacturing process which concerns on one Embodiment of the manufacturing method of the carbon porous electrode of this invention is shown.

図1において、アモルファス炭素源である炭素含有樹脂、例えば塩化ビニル樹脂に、フィラーとしての炭素粉末、例えば黒鉛粉末、カーボンナノチューブ活性炭粉末、非晶性炭素粉末または炭素繊維を混合し、さらに穴開け材としての例えばPMMA粒子を混合する(ステップ100)。この混合物をミキサーにかけて炭素粉末と穴開け材粒子を炭素含有樹脂中に分散させ、混練機で充分に混練する(ステップ102)。これを、スリット状の断面を有するダイが装着された押出成形機でシート状に成形し(ステップ104)、180℃程度に加熱して不融化処理を行った後に、非酸化雰囲気中、例えば窒素雰囲気中で熱処理をして炭素含有樹脂を炭素化すると同時に穴開け材粒子を消失させて気孔を形成させる(ステップ106)。このようにしてマクロ孔が形成された炭素シートに対して、二酸化炭素または水蒸気の存在下で炭素化の温度よりも高い温度で熱処理をしてミクロ孔を形成させる賦活処理を行って、所望の厚みの炭素多孔質電極を得る(ステップ108)。   In FIG. 1, a carbon-containing resin as an amorphous carbon source, such as a vinyl chloride resin, is mixed with a carbon powder as a filler, such as graphite powder, carbon nanotube activated carbon powder, amorphous carbon powder or carbon fiber, and further a perforating material. For example, PMMA particles are mixed (step 100). This mixture is put into a mixer to disperse the carbon powder and the hole-opening material particles in the carbon-containing resin and sufficiently kneaded with a kneader (step 102). This is formed into a sheet by an extruder equipped with a die having a slit-like cross section (step 104), heated to about 180 ° C. and infusibilized, and then in a non-oxidizing atmosphere such as nitrogen. Heat treatment is performed in an atmosphere to carbonize the carbon-containing resin, and at the same time, the perforating material particles are lost to form pores (step 106). The carbon sheet with the macropores formed in this manner is subjected to an activation process in which micropores are formed by heat treatment at a temperature higher than the carbonization temperature in the presence of carbon dioxide or water vapor. A carbon porous electrode having a thickness is obtained (step 108).

(実施例1)アモルファス炭素源としての塩化ビニル樹脂45部と平均粒径5μmの黒鉛3部に、気孔形成のための穴開け材としての平均粒径5μmのPMMAを53部配合した組成物に対して可塑剤としてジアリルフタレートモノマーを添加して、ヘンシェルミキサーを用いて分散させた後、加圧ニーダーを用いて十分に混練を繰り返して組成物を得、ペレタイザーによってペレット化し成形用組成物を得た。この成型用組成物のパレットを押出成形で厚さ400μmのシート状の成型物とした。このシート状成形物を180℃のエアオーブン中で2時間処理しプリカーサー(炭素前駆体)とした。その後、窒素ガス中で20℃/hの昇温速度で昇温し、800℃で3時間保持し自然冷却して焼成・炭素化を完了した。その後、二酸化炭素雰囲気中で900℃で4.5時間保持した後、自然冷却して賦活処理を完了した。 Example 1 A composition comprising 45 parts of vinyl chloride resin as an amorphous carbon source and 3 parts of graphite having an average particle diameter of 5 μm and 53 parts of PMMA having an average particle diameter of 5 μm as a hole forming material for pore formation. In contrast, after adding a diallyl phthalate monomer as a plasticizer and dispersing it using a Henschel mixer, the composition is obtained by repeatedly kneading sufficiently using a pressure kneader, and pelletized by a pelletizer to obtain a molding composition. It was. The pallet of this molding composition was formed into a sheet-like molded product having a thickness of 400 μm by extrusion molding. This sheet-like molded product was treated in an air oven at 180 ° C. for 2 hours to obtain a precursor (carbon precursor). Thereafter, the temperature was raised in nitrogen gas at a rate of 20 ° C./h, held at 800 ° C. for 3 hours, and naturally cooled to complete firing and carbonization. Then, after hold | maintaining at 900 degreeC in a carbon dioxide atmosphere for 4.5 hours, it naturally cooled and completed the activation process.

このようにして得られた電極の気孔率(気孔を含む全体の体積、質量および炭素の密度1.5g/cm3から計算される気孔率)は76%、PMMA粒子の消失により形成された気孔の平均気孔径は3μmであった。電極の厚みは約200μm、曲げ強度7.4MPa、ヤング率1.3GPa、密度0.36g/cm3、窒素吸着法で測定した1点BET比表面積は867m2/g、窒素吸着法で測定した細孔分布のピークは2nm(20オングストローム)、4端子法で測定した固有抵抗値は0.06Ω・cm、と優れた物性を有するものであった。 The porosity of the electrode thus obtained (the porosity calculated from the total volume including pores, mass and carbon density of 1.5 g / cm 3 ) is 76%, and the porosity formed by the disappearance of the PMMA particles The average pore diameter of was 3 μm. The electrode thickness was about 200 μm, the bending strength was 7.4 MPa, the Young's modulus was 1.3 GPa, the density was 0.36 g / cm 3 , the one-point BET specific surface area measured by the nitrogen adsorption method was 867 m 2 / g, and the nitrogen adsorption method was used. The peak of the pore distribution was 2 nm (20 angstroms), and the specific resistance value measured by the 4-terminal method was 0.06 Ω · cm.

(実施例2〜5)
塩化ビニル樹脂に対する黒鉛およびPMMAの配合比と賦活処理の時間を変え、それ以外の条件は実施例1と同じにして電極を作成し、特性を測定した。
(Examples 2 to 5)
An electrode was prepared under the same conditions as in Example 1 except that the mixing ratio of graphite and PMMA to the vinyl chloride resin and the activation treatment time were changed, and the characteristics were measured.

図2に、一例として、実施例5において得られた電極の断面写真を示す。図2中、10はアモルファス炭素、12は黒鉛、14はPMMAの消失により形成されたマクロ孔である。図3に、一例として、実施例2において得られた電極の細孔(ミクロ孔)分布の測定結果を示す。   FIG. 2 shows a cross-sectional photograph of the electrode obtained in Example 5 as an example. In FIG. 2, 10 is amorphous carbon, 12 is graphite, and 14 is macropores formed by disappearance of PMMA. FIG. 3 shows, as an example, the measurement results of the pore (micropore) distribution of the electrode obtained in Example 2.

表1に実施例1〜5の条件を示し、表2に特性の測定結果を示す。なお、平均気孔径はいずれも3μmであり、電極の厚みはいずれも200μmであり、細孔分布のピークはいずれも2nm(20オングストローム)であった。   Table 1 shows the conditions of Examples 1 to 5, and Table 2 shows the measurement results of the characteristics. The average pore diameter was 3 μm, the electrode thickness was 200 μm, and the pore distribution peak was 2 nm (20 Å).

図4には実施例1〜5で得られた電極の賦活重量収率と比表面積との関係を示す。横軸の賦活重量収率が減少することは賦活処理により重量が減少することを意味し、それとともに、たて軸の比表面積が増加している。   FIG. 4 shows the relationship between the activation weight yield of the electrodes obtained in Examples 1 to 5 and the specific surface area. Decreasing the activated weight yield on the horizontal axis means that the weight is reduced by the activation treatment, and at the same time, the specific surface area of the vertical axis is increased.

(実施例6〜8)
配合する黒鉛の量を増やして電極に含まれる黒鉛の量と固有抵抗値との関係を調べた。表3に各実施例の条件を示す。実施例6〜8では、炭素含有樹脂として塩素化ビニル樹脂が使われている。これら以外の条件は実施例1と同じである。表4には、炭素化後の炭素複合体中に含まれる黒鉛の割合と、賦活後の密度と固有抵抗値を示す。なお、炭素化後の黒鉛の割合は、炭素化の条件により定まる既知の塩素化ビニル樹脂の残炭率(炭素化前の樹脂に対する炭素化後に得られるアモルファス炭素の割合)と、使用された塩素化ビニル樹脂および黒鉛の量から計算した。表4より、炭素化後にアモルファス炭素と黒鉛が等量になる程度まで黒鉛を配合すれば、電極の固有抵抗値を0.0087Ω・cmまで下げることが可能であることがわかる。
(Examples 6 to 8)
The relationship between the amount of graphite contained in the electrode and the specific resistance value was investigated by increasing the amount of graphite to be blended. Table 3 shows the conditions for each example. In Examples 6 to 8, a chlorinated vinyl resin is used as the carbon-containing resin. Conditions other than these are the same as in Example 1. Table 4 shows the ratio of graphite contained in the carbon composite after carbonization, the density after activation, and the specific resistance value. In addition, the ratio of graphite after carbonization is the residual carbon ratio of the known chlorinated vinyl resin (the ratio of amorphous carbon obtained after carbonization to the resin before carbonization) determined by the carbonization conditions and the chlorine used. It was calculated from the amount of vinyl chloride resin and graphite. From Table 4, it can be seen that the specific resistance of the electrode can be lowered to 0.0087 Ω · cm if graphite is blended to an extent that amorphous carbon and graphite are equivalent after carbonization.

(実施例9)
電極の厚み加工の前後の密度を測定して電極の密度の均一性を評価した。実施例9では、厚みが444μmであり、これら以外の条件は実施例1と同じである。まず、実施例9で得られた電極の密度を測定した。次いで、この電極を表5に示す厚みまで削り取る厚み加工を施し、厚み加工後の電極の密度を測定した。表5には、厚み加工の前後における厚みと密度との関係を示す。表5より、本発明の電極は、部位による密度のばらつきが少ないことが理解される。
Example 9
The density before and after the electrode thickness processing was measured to evaluate the uniformity of the electrode density. In Example 9, the thickness is 444 μm, and conditions other than these are the same as in Example 1. First, the density of the electrode obtained in Example 9 was measured. Next, the electrode was subjected to thickness processing for scraping the electrode to the thickness shown in Table 5, and the density of the electrode after thickness processing was measured. Table 5 shows the relationship between the thickness and the density before and after the thickness processing. From Table 5, it is understood that the electrode of the present invention has little variation in density depending on the part.

(実施例10)
アルミニウムを蒸着させる前後の表面抵抗を測定した。実施例10では、実施例1で得られた電極にアルミニウムを蒸着させた。テスターを用い、間隔12mmにて実施例1及び実施例10で得られた電極の表面抵抗を測定した。実施例1及び10で得られた電極の表面抵抗はそれぞれ35Ω及び11Ωであった。実施例1及び10で得られた電極の表面写真をそれぞれ図5及び図6に示す。
(Example 10)
The surface resistance before and after depositing aluminum was measured. In Example 10, aluminum was vapor-deposited on the electrode obtained in Example 1. Using a tester, the surface resistance of the electrodes obtained in Example 1 and Example 10 was measured at an interval of 12 mm. The surface resistances of the electrodes obtained in Examples 1 and 10 were 35Ω and 11Ω, respectively. The surface photographs of the electrodes obtained in Examples 1 and 10 are shown in FIGS. 5 and 6, respectively.

(実施例11)
実施例11では、実施例1で得られた電極に白金及びパラジウムの合金を蒸着させた。実施例11で得られた電極の断面写真を図7に示す。
(Example 11)
In Example 11, an alloy of platinum and palladium was deposited on the electrode obtained in Example 1. A cross-sectional photograph of the electrode obtained in Example 11 is shown in FIG.

Claims (14)

アモルファス炭素を含み、平均孔径0.1μm以上のマクロ孔および平均孔径10nm以下のミクロ孔を有し、固有抵抗値が1Ω・cm以下である炭素多孔質電極。   A porous carbon electrode comprising amorphous carbon, having macropores having an average pore diameter of 0.1 μm or more and micropores having an average pore diameter of 10 nm or less and having a specific resistance of 1 Ω · cm or less. 密度が略均一である、請求項1記載の炭素多孔質電極。   The carbon porous electrode according to claim 1, wherein the density is substantially uniform. 表面の少なくとも1面に金属層が積層されている、請求項1または2記載の炭素多孔質電極。   The carbon porous electrode according to claim 1 or 2, wherein a metal layer is laminated on at least one surface. 前記金属層が、アルミニウム、金、白金、銀、クロム、ニッケル、チタン、鉄、錫、パラジウム、又はこれらの合金から成る、請求項1〜3のいずれか1項記載の炭素多孔質電極。   The carbon porous electrode according to any one of claims 1 to 3, wherein the metal layer is made of aluminum, gold, platinum, silver, chromium, nickel, titanium, iron, tin, palladium, or an alloy thereof. 前記固有抵抗値が0.1Ω・cm以下である請求項1〜4のいずれか1項記載の炭素多孔質電極。   The carbon porous electrode according to claim 1, wherein the specific resistance value is 0.1 Ω · cm or less. 前記アモルファス炭素中に均一に分散した炭素粉末をさらに含む請求項1〜5のいずれか1項記載の炭素多孔質電極。   The carbon porous electrode according to any one of claims 1 to 5, further comprising carbon powder uniformly dispersed in the amorphous carbon. 前記炭素粉末は、黒鉛粉末、カーボンナノチューブ、活性炭粉末、非晶性炭素粉末および炭素繊維からなる群から選択される請求項6記載の炭素多孔質電極。   The carbon porous electrode according to claim 6, wherein the carbon powder is selected from the group consisting of graphite powder, carbon nanotube, activated carbon powder, amorphous carbon powder, and carbon fiber. 前記アモルファス炭素は炭素含有樹脂の炭素化により得られたものであり、前記マクロ孔は前記炭素含有樹脂中に均一に分散し前記炭素化の過程で消失して気孔を形成する穴開け材粒子により形成されたものである請求項1〜7のいずれか1項記載の炭素多孔質電極。   The amorphous carbon is obtained by carbonization of a carbon-containing resin, and the macropores are uniformly dispersed in the carbon-containing resin and disappear by the carbonization process to form pores. The carbon porous electrode according to claim 1, which is formed. 前記炭素含有樹脂の残炭率が15%超であり、かつ前記穴開け材粒子の残炭率が5%以下である、請求項1〜8のいずれか1項記載の炭素多孔質電極。   The carbon porous electrode according to any one of claims 1 to 8, wherein a carbon residue of the carbon-containing resin is more than 15%, and a carbon residue of the drilling material particles is 5% or less. 炭素含有樹脂に穴開け材粒子を均一に分散させ、
前記穴開け材粒子を分散させた前記炭素含有樹脂を非酸化雰囲気中で熱処理することにより前記炭素含有樹脂を炭素化するとともに前記穴開け材粒子を消失させて平均孔径0.1μm以上のマクロ孔を形成し、
前記マクロ孔が形成された炭素化物に賦活処理を施すことにより平均孔径10nm以下のミクロ孔を形成することを含む炭素多孔質電極の製造方法。
Disperse the drilling material particles uniformly in the carbon-containing resin,
The carbon-containing resin in which the perforating material particles are dispersed is heat-treated in a non-oxidizing atmosphere to carbonize the carbon-containing resin and disappear the perforating material particles to obtain macropores having an average pore diameter of 0.1 μm or more. Form the
A method for producing a carbon porous electrode, comprising forming micropores having an average pore diameter of 10 nm or less by subjecting a carbonized material having macropores to activation treatment.
前記炭素化の前において、前記穴開け材粒子が分散した炭素含有樹脂を押出成形によりシート状に成形することをさらに含む請求項6記載の炭素多孔質電極の製造方法。   The method for producing a carbon porous electrode according to claim 6, further comprising forming a carbon-containing resin in which the perforating material particles are dispersed into a sheet by extrusion molding before the carbonization. 前記炭素含有樹脂にさらに炭素粉末を均一に分散させることをさらに含む請求項6または7記載の炭素多孔質電極の製造方法。   The method for producing a carbon porous electrode according to claim 6 or 7, further comprising uniformly dispersing carbon powder in the carbon-containing resin. 前記炭素粉末は、黒鉛粉末、カーボンナノチューブ、活性炭粉末、非晶性炭素粉末および炭素繊維からなる群から選択される請求項8記載の炭素多孔質電極の製造方法。   The method for producing a carbon porous electrode according to claim 8, wherein the carbon powder is selected from the group consisting of graphite powder, carbon nanotube, activated carbon powder, amorphous carbon powder, and carbon fiber. 前記炭素含有樹脂の残炭率が15%超であり、かつ前記穴開け材粒子の残炭率が5%以下である、請求項10〜13のいずれか1項記載の炭素多孔質電極の製造方法。   The carbon porous electrode production according to any one of claims 10 to 13, wherein the carbon-containing resin has a carbon residue ratio of more than 15%, and the drilling material particles have a carbon residue ratio of 5% or less. Method.
JP2015004518A 2014-07-03 2015-01-13 Carbon porous electrode and method for manufacturing the same Pending JP2016027599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004518A JP2016027599A (en) 2014-07-03 2015-01-13 Carbon porous electrode and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014137780 2014-07-03
JP2014137780 2014-07-03
JP2015004518A JP2016027599A (en) 2014-07-03 2015-01-13 Carbon porous electrode and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016027599A true JP2016027599A (en) 2016-02-18

Family

ID=55352862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004518A Pending JP2016027599A (en) 2014-07-03 2015-01-13 Carbon porous electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016027599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164667A (en) * 2016-03-14 2017-09-21 三菱鉛筆株式会社 Carbon carrier for catalysts
CN107256806A (en) * 2017-06-23 2017-10-17 中国科学院宁波材料技术与工程研究所 A kind of electrode material and ultracapacitor
KR20190087679A (en) * 2017-11-13 2019-07-25 (주) 비비비 Porous carbon electrode manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446913A (en) * 1987-08-17 1989-02-21 Kanebo Ltd Electric double layer capacitor
JPH01167396A (en) * 1987-12-24 1989-07-03 Nisshin Steel Co Ltd Lubricant for hot-rolling stainless steel
JPH10208985A (en) * 1997-01-24 1998-08-07 Takeda Chem Ind Ltd Activated-carbon electrode and its manufacture
JP2002117860A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Electrode and lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6446913A (en) * 1987-08-17 1989-02-21 Kanebo Ltd Electric double layer capacitor
JPH01167396A (en) * 1987-12-24 1989-07-03 Nisshin Steel Co Ltd Lubricant for hot-rolling stainless steel
JPH10208985A (en) * 1997-01-24 1998-08-07 Takeda Chem Ind Ltd Activated-carbon electrode and its manufacture
JP2002117860A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Electrode and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164667A (en) * 2016-03-14 2017-09-21 三菱鉛筆株式会社 Carbon carrier for catalysts
CN107256806A (en) * 2017-06-23 2017-10-17 中国科学院宁波材料技术与工程研究所 A kind of electrode material and ultracapacitor
CN107256806B (en) * 2017-06-23 2019-09-24 中国科学院宁波材料技术与工程研究所 A kind of electrode material and supercapacitor
KR20190087679A (en) * 2017-11-13 2019-07-25 (주) 비비비 Porous carbon electrode manufacturing method
KR102055654B1 (en) 2017-11-13 2020-01-22 (주) 비비비 Method of manufacturing porous carbon electrode

Similar Documents

Publication Publication Date Title
EP2528879B1 (en) Method for the production of a porous carbon product
JP6878407B2 (en) Manufacturing method for artificial graphite electrodes
DE102013114628B4 (en) Process for producing near net shape shaped silicon carbide ceramics
JPH0136670B2 (en)
JP2016027599A (en) Carbon porous electrode and method for manufacturing the same
CN108947533B (en) Preparation method of porous carbon material and application of obtained porous carbon material
JP2016531818A5 (en)
JP2012188309A (en) Porous carbon, and method for producing the same
US20170283909A1 (en) Titanium-based compositions, methods of manufacture and uses thereof
CN103350994A (en) Preparation method of mesoporous carbon material with controllable specific surface area and pore volume, and mesoporous carbon material
JP2016130188A (en) Porous carbon molded article
WO2019063831A2 (en) Method for producing complex geometric components containing carbon or silicon carbide
EP2982492B1 (en) Sintering method, sintered product, filtration module and use
US8703027B2 (en) Making carbon articles from coated particles
JP2015105205A (en) Surface-treated carbon nanotube and dispersion liquid thereof, and self-supporting film and composite material
JP2017164667A (en) Carbon carrier for catalysts
Su et al. Preparation of ultra‐thin PAN‐based activated carbon fibers with physical activation
JPH1045483A (en) Porous carbon compact and its production
KR102338183B1 (en) Adsorbent including a polyvinylidene fluoride based activated carbon, method of preparing the same, and adsorption method of methane or carbon dioxide using the same
JPS5921511A (en) Manufacture of porous carbon body
WO2017093869A1 (en) Method for fast shaping carbon supported metal catalyst powders into flexible plates via subsequent cold and hot compression moulding
JP3774777B2 (en) Pencil lead
JPH11251197A (en) Method for manufacturing carbon electrode for electric double layer capacitor
JPS58172210A (en) Manufacture of carbon body for electrode
TWI545082B (en) Manufacturing method of carbon nanotubes with rigid structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190815

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190920