JP2016011235A - ガラス基板の製造方法 - Google Patents

ガラス基板の製造方法 Download PDF

Info

Publication number
JP2016011235A
JP2016011235A JP2014134564A JP2014134564A JP2016011235A JP 2016011235 A JP2016011235 A JP 2016011235A JP 2014134564 A JP2014134564 A JP 2014134564A JP 2014134564 A JP2014134564 A JP 2014134564A JP 2016011235 A JP2016011235 A JP 2016011235A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
heat treatment
heat
glass substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014134564A
Other languages
English (en)
Inventor
永太 朴
Eita Boku
永太 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Avanstrate Asia Pte Ltd
Original Assignee
Avanstrate Inc
Avanstrate Asia Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc, Avanstrate Asia Pte Ltd filed Critical Avanstrate Inc
Priority to JP2014134564A priority Critical patent/JP2016011235A/ja
Publication of JP2016011235A publication Critical patent/JP2016011235A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

【課題】ダウンドロー法により成形された複数のガラス基板の積層体に熱処理を行って、複数のガラス基板の熱収縮率を低減する場合に、ガラス基板の歪分布を改善できるガラス基板の製造方法を提供する。
【解決手段】本発明のガラス板の製造方法は、ダウンドロー法により成形した複数のガラス基板をそれぞれシート体の間に挟んだ状態で厚さ方向に積層してガラス基板の積層体を作製し、前記ガラス基板の積層体を梱包体に梱包する梱包工程と、前記梱包工程で梱包された前記ガラス基板の積層体を熱処理することにより、前記複数のガラス基板の熱収縮率を低下させる熱処理工程と、を備え、前記熱処理工程では、前記ガラス基板の端部領域から前記端部領域により囲まれた中央領域にかけて、歪の発生を低減し、歪分布が一様になるよう前記ガラス基板の積層体を熱処理することを特徴とする。
【選択図】図1

Description

本発明は、ガラス基板の製造方法に関する。
近年、ディスプレイパネルの分野では、画質の向上のために画素の高精細化が進展している。この高精細化の進展に伴って、ディスプレイパネルに用いるガラス基板にも寸法精度が高いことが望まれている。例えば、ディスプレイパネルの製造工程中に、ガラス基板が高温で熱処理されても寸法が変化しにくいように、熱収縮率の小さいガラス基板が好ましい。
一般に、ガラス基板の熱収縮率は、ガラスの歪点が高いほど小さくなる。また、ガラス基板の熱収縮率は、ガラス基板の製造工程中の徐冷速度を小さくするほど小さくなることが知られている。しかし、徐冷速度を小さくするとガラス基板の徐冷工程を行う徐冷炉を長くする必要があるが、製造ライン上の徐冷装置を長くすることは困難である。
そこで、製造ラインで作製された複数のガラス基板に対し、オフラインにおいて時間をかけて熱処理を施すことで、熱収縮率をより低くすることが行われる。例えば、複数のガラス板の間に紙を挟んだ状態で積層した積層体を所定の温度で所要時間保持することで熱収縮率を低減するガラス板の処理方法が知られている(特許文献1)。
特開平8−151224号公報
上記ガラス基板の処理方法では、複数のガラス基板の積層体に対して熱処理を行うので、複数のガラス基板に対して同時に熱収縮率を低減することはできるが、各ガラス基板において、熱処理によって受ける熱履歴がガラス基板の主表面の場所によって異なり、ガラス板の熱収縮の程度が上記場所によって異なり易い。この場合、ガラス板の熱収縮率は低減するものの、ガラス基板の熱収縮の程度の差異によってガラス基板に歪が発生し易い。熱処理開始時、例えば、ガラス基板の縁を含む端部領域は、高温の雰囲気から熱の伝導を受けて、ガラス板の端部領域に囲まれた中央領域に比べて早く昇温する。また、熱処理終了前、例えば、雰囲気を降温し、低温となった雰囲気に高温状態のガラス基板の端部領域は晒されて放熱し、ガラス板の中央領域に比べて速く降温する。このようなガラス基板につくられる歪は、ガラス基板に反りやゆがみを生じさせるため、好ましくない。
ところで、従来より、ダウンドロー法を用いたガラス基板の製造が行われている。ダウンドロー法では、長尺状のシートガラスが搬送される際に、その搬送方向と直交する幅方向の両端部がローラ対に挟持され、下方向に引き込まれる。このとき、シートガラスはローラ対に挟持されることで冷却される。ローラ対に挟持されるのはシートガラスの幅方向の端部だけであるため、シートガラスの幅方向の端部と中央部とでは冷却速度に差が生じる。したがって、フロート法等の他の方法で製造されたガラス基板と比べ、熱収縮の程度の差が生じやすい。シートガラスの冷却は、通常、上記ローラ対によって搬送された後、さらに下流側の徐冷炉でも行われるものの、ローラ対による冷却によって生じた熱収縮の程度の差が十分に解消されない場合が起きやすい。このため、ガラス基板に歪みが発生しやすい。
なお、熱処理の上記開始時及び上記終了前の熱履歴の影響を抑えてガラス基板の上記歪の発生を低減するために、雰囲気を最高温度に維持する時間を長時間にして、ガラス基板を熱処理することも考えられるが、熱処理に多大の時間を要し、ガラス基板の生産効率の点から好ましくない。
そこで、本発明は、ダウンドロー法により成形された複数のガラス基板の積層体に熱処理を行って、複数のガラス基板の熱収縮率を低減する場合に、ガラス基板の歪分布を改善できるガラス基板の製造方法を提供することを目的とする。
本発明の一態様は、ガラス板の製造方法であって、
ダウンドロー法によりガラス基板を成形し、成形したガラス基板を所定のサイズに切断する成形工程と、
前記成形工程で得られた複数のガラス基板をそれぞれシート体の間に挟んだ状態で厚さ方向に積層してガラス基板の積層体を作製し、前記ガラス基板の積層体を梱包体に梱包する梱包工程と、
前記梱包工程で梱包された前記ガラス基板の積層体を熱処理することにより、前記複数のガラス基板の熱収縮率を低下させる熱処理工程と、を備え、
前記熱処理工程では、前記ガラス基板の端部領域から前記端部領域により囲まれた中央領域にかけて、歪の発生を低減し、歪分布が一様になるよう前記ガラス基板の積層体を熱処理することを特徴とする。
前記熱処理工程では、前記ガラス基板の積層体において、前記厚さ方向の一端から他端にかけて、積層された前記ガラス基板の歪の発生を低減し、歪分布が一様になるよう前記ガラス基板の積層体を熱処理することが好ましい。
前記歪は9 kgf/cm2以下であることが好ましい。
前記シート体は、カーボングラファイト、アルミナ繊維、シリカ繊維、ガラス繊維、及び、多孔質セラミックスから選ばれた一種、又は、それらの組合せからなることが好ましい。
前記熱処理工程で低減されるガラス基板の歪は、前記成形工程において低減されるガラス基板の歪より小さいことが好ましい。
本発明によれば、ダウンドロー法により成形された複数のガラス基板の積層体に熱処理を行って、複数のガラス基板の熱収縮率を低減する場合に、ガラス基板の歪分布を改善できることができる。
本実施形態のガラス板の製造方法の流れを示すフローチャートである。 本実施形態で行なわれる熱処理においてガラス基板の積層体が載せられたパレットを示す側面図である。 (a)は、ガラス基板上での位置を示した図であり、(b)は、ガラス基板上の各位置における熱履歴を示す図である。 熱履歴の差を示す面積と歪との関係を示すグラフである。
以下、本発明のガラス基板の製造方法について詳細に説明する。
図1は、本実施形態のガラス基板の製造方法の流れを示すフローチャートである。製造されるガラス基板は、特に制限されないが、例えば縦寸法及び横寸法のそれぞれが500mm〜3500mmであることが好ましい。ガラス基板の厚さは、0.1〜1.1mmの極めて薄い矩形形状の板であることが好ましい。
本実施形態における熔融ガラスからシートガラスを成形する方法として、フロート法やフュージョン法(オーバーフローダウンドロー法)等のダウンドロー法が用いられるが、本実施形態のガラス基板のオフラインにおける熱処理を含むガラス基板の製造方法では、ダウンドロー法において製造ライン上の徐冷装置を長くすることが困難である点から、ダウンドロー法に適しており、特にフュージョン法に適している。
まず、熔融されたガラスが、例えばフュージョン法やフロート法等の公知の方法により、所定の厚さの帯状ガラスであるシートガラスが成形される(ステップS1)。
次に、成形されたシートガラスが所定の長さの素板であるガラス基板に順次採板される(ステップS2)。ステップS2では、シートガラスのうち、耳部と呼ばれる、シートガラスの幅方向の端部を切断した後、所定のサイズごとに採板する。そして、採板により順次得られる複数のガラス基板をそれぞれシート体の間に挟み、ガラス基板をガラス基板の厚さ方向に積層した構成のガラス基板の積層体(ガラス基板の束)を作製する(積層体作製工程:ステップS3)。次に、このガラス基板の積層体に対して作製されたガラス基板の積層体を、加熱する熱処理を行なう(熱処理工程:ステップS4)。ステップS3の処理およびステップS4の処理が、本実施形態のアニール工程である。アニール工程の詳細については後述する。
熱処理後のガラス基板は切断工程に搬送され、製品のサイズに切断され、ガラス基板が得られる(ステップS5)。得られたガラス基板には、端面の研削、研磨およびコーナカットを含む端面加工が行われた後、ガラス基板は洗浄される(ステップS6)。洗浄されたガラス基板はキズ、塵、汚れあるいは光学欠陥を含む傷が無いか、光学的検査が行われる(ステップS7)。検査により品質の適合したガラス基板は、ガラス基板を保護する紙と交互に積層された積層体としてパレットに積載されて梱包される(ステップS8)。梱包されたガラス基板は納入先業者に出荷される。
本実施形態で製造されるガラス基板は、ディスプレイパネルに用いるガラス基板、例えば、液晶ディスプレイ用ガラス基板あるいは、有機ELディスプレイ用のガラス基板として好適である。さらに、本実施形態で製造されるガラス基板は、高精細ディスプレイに用いるLTPS(Low-temperature poly silicon)・TFTディスプレイ用ガラス基板、あるいは、酸化物半導体・TFTディスプレイ用のガラス基板として特に好適である。
本実施形態のガラス基板は、熱収縮率は10ppm以下であることが、高精細なディスプレイパネル用のガラス基板に用いられる点から好ましく、熱収縮率は6ppm以下であることがより好ましい。ガラス基板の歪は、9 kgf/cm2以下であることが反りを発生させず、歪による光学特性の変化、例えば屈折率の変化を抑える点から好ましく、4 kgf/cm2以下であることが好ましい。歪の下限は特に制限されないが、実質的には2 kgf/cm2である。本実施形態では、熱処理工程で低減されるガラス基板の歪は、ステップS1で成形されたシートガラスにおいて低減される歪より小さいことが好ましい。言い換えると、ガラス基板の歪は熱処理工程によって小さくなることが好ましい。熱処理工程前のガラス基板の熱収縮率は、1000ppm以下であることが好ましく、50ppm以下であることがより好ましい。熱処理工程を行うことにより、ガラス基板の熱収縮率を低減させつつ、歪が許容値以下になる。
ガラス基板の歪点は、高精細ディスプレイ用ガラス基板とするために、600℃〜760℃であることが好ましい。例えば、歪点は、661℃である。
このようなガラス基板として、以下のガラス組成のガラス基板が例示される。つまり、以下のガラス組成のガラス基板が製造されるように、熔融ガラスの原料が調合される。
SiO2 55〜80モル%、
Al23 8〜20モル%、
23 0〜12モル%、
RO 0〜17モル%(ROはMgO、CaO、SrO及びBaOの合量)。
SiO2は60〜75モル%、さらには、63〜72モル%であることが、熱収縮率を小さくするという観点から好ましい。
ROのうち、MgOが0〜10モル%、CaOが0〜10モル%、SrOが0〜10%、BaOが0〜10%であることが好ましい。
また、SiO2、Al23、B23、及びROを少なくとも含み、モル比((2×SiO2)+Al23)/((2×B23)+RO)は4.5以上であるガラスであってもよい。また、MgO、CaO、SrO、及びBaOの少なくともいずれか含み、モル比(BaO+SrO)/ROは0.1以上であることが好ましい。
また、モル%表示のB23の含有率の2倍とモル%表示のROの含有率の合計は、30モル%以下、好ましくは10〜30モル%であることが好ましい。
また、上記ガラス組成のガラス基板におけるアルカリ金属酸化物の含有率は、0モル%以上0.4モル%以下であってもよい。
また、ガラス中で価数変動する金属の酸化物(酸化スズ、酸化鉄)を合計で0.05〜1.5モル%含み、As、Sb及びPbOを実質的に含まないということは必須ではなく任意である。
[積層体作製工程]
図2は、ステップS3の積層体積層工程で用いる、ガラス基板11の積層体10(以下、積層体10という)を載せるパレット(梱包体)20を示す側面図である。ここで、図2の左側をパレット20の前側、図2の右側をパレット20の後側とする。パレット20には、積層体10が積層方向をほぼ前後方向として載置される。ここで、積層体10の積層方向は前後方向と完全に一致している必要はない。例えば、図2に示すように、ガラス基板11を斜めに立てかける場合、積層方向と前後方向とのなす角はガラス基板11の上下方向とのなす角となる。
パレット20は、基台部21と、載置部22と、背面板23と、等を備える。
基台部21、載置部22および背面板23は、例えば鋼鉄等の金属からなり、溶接等により一体に形成されている。
基台部21は略長方形の板状であり、端面にフォークリフトの爪を挿入するための開口21aが設けられている。
載置部22は基台部21の上部に固定されており、載置部22の上部にガラス基板の積層体10が載せられる。ここで、載置部22の上面は完全に水平である必要はない。例えば、図2に示すように、ガラス基板11を斜めに立てかける場合、ガラス基板11の立てかけ角度に応じて載置部22の上面を傾斜させておいてもよい。
背面板23は略長方形の板状であり、基台部21の上部において、載置部22の後端に載置部22とほぼ垂直に固定されている。背面板23は載置部22の上部に載せられる積層体10の積層方向の後端部を支持する。ここで、背面板23は完全に垂直である必要はない。例えば、図2に示すように、ガラス基板11を斜めに立てかける場合、ガラス基板11の立てかけ角度に応じて背面板23を傾斜させておいてもよい。
次に、積層体10について説明する。積層体10は、複数のガラス基板11と、複数のシート体12と、を有する。
シート体12は、ガラス基板11同士の間に挟まれる。積層体10では、シート体12、ガラス基板11、シート体12、ガラス基板11、・・・シート体12の順番に積まれる。
シート体12は積層されるガラス基板11同士の密着を防ぐ役割を果たす。シート体12には、積層体10を熱処理する際の温度(熱処理温度)よりも耐熱温度が高い材料が用いられる。例えば、耐熱温度が500℃以上の材料が用いられる。このようなシート体12を用いて熱処理を行うことで熱分布が均一になり、ガラス基板の面内方向における熱収縮率のばらつきを低減させることができる。
シート体12は、ガラス基板11よりも高い熱伝導率を有することが、後述する熱処理工程において、複数のガラス基板11の熱処理の程度を揃えることができる点から好ましい。シート体12の熱伝導率は、具体的には、面方向において1W/mKを超え、好ましくは2〜2000W/mK、より好ましくは50〜1000W/mKである。上限値は、特に制限されないが、例えば2000W/mKである。このようなシート体12の材料は、例えば、カーボングラファイト、アルミナ繊維、シリカ繊維、ガラス繊維、及び、多孔質セラミックスから選ばれた一種、又は、それらの組合せからなることが好ましい。これらの材料のうち、例えば、カーボングラファイトは、シート状のカーボングラファイトシートとして用いることができ、アルミナ繊維、シリカ繊維、ガラス繊維は、それぞれを主成分として含む布、編み物等として用いることができる。また、多孔質セラミックスは、例えば、アルミナ、シリカ、ジルコニア、SiC等の粉末セラミックスを焼結して成形した薄型プレートとして用いることができる。シート体12の材料および形態は、これらに制限されず、ほかに、例えば、ガラス繊維を主に含む布、編み物等であってもよく、ガラス繊維またはセラミック繊維を主成分として含む抄紙された紙であってもよい。また、シート体12には、ガラス基板11の熱伝導率と同程度以下の熱伝導率を有するものが用いられてもよい。例えば、イソウールペーパーのような断熱材が用いられてもよい。
シート体12は、熱処理の前後で密度が変化しない材質からなり、引張弾性率が500GPa以下であることが好ましい。熱処理の前後で密度が変化しない材質は、熱処理によって変質しない材質ともいえる。また、熱処理の前後で密度が変化しない材質として、熱処理の前後でガラス基板11との接触面積が変わらない材質を用いてもよい。シート体12の密度は、特に制限されず、例えば1〜5g/cmである。なお、シート体12を繰り返し熱処理に使用する場合に、初回の熱処理では収縮し、次回以降の熱処理では収縮しない材料も、熱処理の前後において密度が変化しない材質として用いられる。この場合の収縮の程度は、例えば、5%以内の収縮率である。引張弾性率が上記範囲にあるシート体12として、例えば、上記したカーボングラファイトを好ましく用いることができる。なお、引張弾性率は、JIS K7161またはJIS K7113に準拠して測定される値である。
シート体12の厚さは、ガラス基板11の面内方向の熱伝導性を高める点では、厚いことが好ましい。一方、面外方向の熱伝導性を高め、また、積層体10の体積を低減するためにシート体12の厚さは薄いことが好ましい。このため、シート体12の厚さは、0.02mm〜3mm程度であることが好ましく、例えば0.25mm程度である。シート体12の面積は、ガラス基板11と同程度またはそれ以上であることが好ましい。
なお、シート体12は、積層体10の厚み方向に隣り合うもの同士の、ガラス基板11の端部よりも外側に位置する部分が、例えばシート体12と同じ材質の緩衝材で接続されてもよい。これにより、積層体10の厚み方向の熱分布をより均一に近づけることができる。
[熱処理工程]
次に、ステップS4の熱処理について説明する。
積層体作製工程で作製された積層体10に対して、製造ラインから外れたオフラインで熱処理が行われる。この熱処理では、ガラス基板11の積層体を所定の温度の雰囲気下に所定時間放置する。
具体的には、熱処理を行う炉に上記の積層体10が載せられたパレット20を搬入し、炉内の空気を加熱して雰囲気の温度を室温から昇温したのち、温度を一定に維持して(最高温度に維持して)所定時間放置した後、雰囲気の温度を降温して室温に戻すことによりガラス基板11を熱処理する。本実施形態では、最高温度を一定に維持するが、熱処理における雰囲気の温度プロファイルは、特に制限されない。しかし、熱処理における雰囲気の温度は、少なくとも、ガラス基板11の歪点−400℃の温度から歪点の温度範囲であることが、熱収縮率を低減させる点から好ましい。雰囲気の温度が上記温度範囲にある時間は、例えば1〜120時間である。雰囲気の温度が上記温度範囲にある時間が1時間未満であると、熱収縮率が十分に低下せず、120時間より長いと、熱収縮率は十分低減するが、ガラス基板11の生産効率が低下する。
なお、歪点はガラスの種類によって異なるが、ガラス基板11は、熱収縮を小さくするために、歪点が高いガラス組成を有することが好ましく、例えばガラス基板11のガラスの歪点は、600℃〜760℃であることが好ましく、655℃以上であることがより一層好ましい。例えば、歪点は、661℃である。歪点が低いガラス基板であっても、熱処理することにより、歪点が高いガラス基板と同程度の熱収縮率を実現することができる。この場合、熱処理温度の最低温度は、200℃(=600℃―400℃)以上である。
ガラス基板11の積層体10が晒される高温の雰囲気は、特に制限されず、酸素含率が5〜50%である雰囲気であってもよく、例えば空気からなる大気雰囲気であってもよい。
図3(a)、(b)は、ガラス基板11上の点A、Bの各位置における熱履歴を示す図である。ここで、熱履歴とは、熱処理によって変化するガラス基板11の温度の履歴を示すものである。ガラス基板11の積層体10を積層方向に挟んだ状態で、積層体10を熱処理を行う炉に搬入し、炉内の雰囲気の温度を上昇させると、雰囲気の熱が積層体10の積層方向の外側からガラス基板11に伝わる。ガラス基板11の縁を含む縁領域11aは、高温の雰囲気から熱の伝導を受けて、ガラス基板11の縁領域11aに囲まれた中央領域11bに比べて早く昇温する。また、雰囲気を降温し、低温となった雰囲気に高温状態のガラス基板11の縁領域11aは晒されて放熱し、ガラス基板11の中央領域11bに比べて早く降温する。このため、図3(b)に示すように、ガラス基板11上では、点A周辺は、点B周辺より早く昇温、降温する。このように熱履歴に差が生じると、縁領域11aから中央領域11bにかけて(点A周辺から点B周辺にかけて)、熱収縮率が異なり、引っ張りと圧縮応力が生じるために歪が発生する。ガラス基板11面内での熱収縮率を均一して、歪の発生を抑制するためには、ガラス基板11の縁領域11aから中央領域11bかけての温度変化の差をなくす、つまり、熱履歴の差を小さくする必要がある。
ここで、LTPS、IGZOから構成される半導体層をガラス基板11に形成する温度は、400℃〜600℃(歪点が661℃である場合、歪点より60℃〜260℃低い温度)であるため、この温度範囲におけるガラス基板11の熱収縮率を低減できればよい。このため本実施形態では、ガラス基板11の点A及び点Bの周辺の温度が、400℃〜500℃の温度範囲になるよう熱処理を行う。熱収縮率は、ガラス基板11を熱処理した時の最高温度だけでなく、熱履歴によっても変化する。特に、図3(b)に示すように、熱処理温度の最高温度(例えば、500℃)から、最高温度より50℃〜300℃低い温度(例えば、450℃〜200℃)までの熱履歴が、熱収縮率に大きく影響する。熱収縮率は、熱収縮率を評価する温度、ここでは、LTPS、IGZOから構成される半導体層をガラス基板11に形成する温度である例えば400℃〜500℃で熱処理することにより、この温度領域において熱収縮率が低減する。また、この温度領域400℃〜500℃以下の温度領域においても熱収縮が低減する。つまり、熱収縮率を評価する温度に近い温度では、熱収縮率に大きく影響し、熱収縮率を評価する温度から離れた温度であるほど、熱収縮率への影響は小さくなる。このため本実施形態では、熱処理温度の最高温度から50℃〜300℃低い温度になるまでの温度領域において、ガラス基板11の面方向での熱履歴の差が抑制されるよう熱処理を行う。図3(b)では、300℃〜500℃の温度範囲における熱履歴の差を示している。ガラス基板11の縁領域11a(点A周辺)と中央領域11b(点B周辺)との熱履歴の差(図3(b)における面積S)を小さくすることにより、ガラス基板11面上の熱収縮率のばらつきが抑制され、歪の発生を抑制することができる。
点Aの熱履歴と点Bの熱履歴との差によって形成される面積Sが小さいほど、歪の値は小さくなる。図4は、熱履歴の差を示す面積と歪との関係を示すグラフである。同図に示すように、歪を2 kgf/cm2以下にする場合には、面積がS1以下になるように、ガラス基板11を熱処理する。また、歪を4 kgf/cm2以下にする場合には面積をS2以下に、歪を9 kgf/cm2以下にする場合には面積をS3以下になるように、ガラス基板11を熱処理する。面積S1〜S3の値は、時間×温度、つまり、熱量である。面積S1〜S3の値は、ガラス基板11の大きさ、厚さ、組成等によって任意に変更できる。これにより、高精細ディスプレイのパネル製造時に求められる歪の許容値に応じて、ガラス基板11の熱処理における温度、時間を適宜変更することもできる。
また、ガラス基板11の中央領域11b(点B周辺)の温度が、縁領域11a(点A周辺)の温度と同様の最高温度に達するように熱処理する。ガラス基板11の中央領域11b(点B周辺)の温度が最高温度に達することにより、縁領域11a(点A周辺)と中央領域11b(点B周辺)との熱収縮率の差が小さくなり、歪の発生を低減することができる。中央領域11b(点B周辺)の温度が最高温度を継続(保持)する時間は、任意であり、例えば、1時間〜4時間であり、より好ましくは、1時間〜2時間である。所定の熱収縮率を達成するために、縁領域11a(点A周辺)から中央領域11b(点B周辺)にかけてのガラス基板11の温度が、最高温度に到達するように熱処理し、歪の発生を抑制するために、ガラス基板11での面方向での熱履歴の差が小さくなるように熱処理する。
このような熱処理により、ガラス基板11の熱収縮率を0〜12ppmとすることができる。ガラス基板11の熱収縮率は、0〜6ppmとすることが好ましく、0〜3ppmとすることがより好ましい。このような熱収縮率を、ガラス基板のガラス組成と、熱処理の温度と熱処理時間を調整することにより達成することができる。
熱処理では、ガラス基板の積層体において、厚さ方向の一端から他端にかけて、積層されたガラス基板の熱収縮率を低減し、熱収縮率の分布が一様になるようガラス基板の積層体を熱処理することが好ましい。このような熱処理は、例えば、積層体のガラス基板の間に加熱板を介在させること、ガラス基板を断熱板で挟むこと等によって行うことができる。
上記加熱板は、積層体10を加熱するためのものであり、例えば、電流が流されることで発熱する電極板を用いることができる。この場合、電極板の抵抗値が電極板の温度に応じて変化するため、電極板の温度に応じて電極板を流れる電流量が変化する。このため、電極板を流れる電流量に基づいて加熱板の温度を制御することができる。これにより、厚み方向の熱分布が等しくなるよう、積層体は加熱される。
ガラス基板を断熱板で挟む場合は、1対の断熱板を積層体10の積層方向の両端部に配置することが好ましく、図2に示される積層体10の場合、積層体10の前端部および後端部に断熱板を配置する。これにより、積層体10の前方の端(前端部)に位置するガラス基板11は、雰囲気からこのガラス基板11の主表面を介してガラス基板11に流れる熱を抑え、ガラス基板11の積層方向の中央部がガラス基板11の主表面の面方向の外側から流れる熱伝導の形態と同様の形態にすることができる。この結果、積層体を、厚さ方向で熱分布を等しくすることができる。
本実施形態のガラス基板の製造方法によれば、上記したシート体12を用いて熱処理を行うことで、ガラス基板の面内方向における熱収縮率を低減することができる。これにより、ガラス基板における熱収縮率の分布が一様になり、ガラス基板に反りやゆがみが生じにくくなる。また、熱収縮率の分布が一様になるため、歪の発生が抑制され、歪分布も一様になる。特に、ダウンドロー法により成形されたガラス基板は、端部領域と中央領域との間で熱収縮の程度に差が十分に解消されない場合があるが、そのようなガラス基板であっても、上記シート体12を用いた熱処理によって、熱収縮率が低減されるため、ガラス基板における熱収縮率の分布及び歪分布が一様になる。
[実験例]
以下に示すガラス組成を有するガラス基板をオーバフローダウンドロー法により複数作製した。ガラス基板の歪点は660℃であった。
(ガラス組成)
SiO2 67.0モル%、
Al23 10.6モル%、
23 11.0モル%、
RO 11.4モル%(ROはMgO、CaO、SrO及びBaOの合量)。
実施例及び従来例では、それぞれシート体を用いてガラス基板を積層して積層体を形成し、熱処理を行なった。シート体には、実施例ではカーボングラファイトシートを用い、従来例では紙を用いた。カーボングラファイトシートには、耐熱温度550℃、密度1.5g/cm、引張弾性率4MPa以上、厚み0.08mm、熱伝導率400〜450W/mKのものを用いた。一方、紙には、樹脂成分0.3%の再生紙を用いた。熱処理は、実施例及び従来例ともに同じ条件とし雰囲気温度を500℃とし、放置時間を8時間とした。
熱処理後、実施例及び従来例で作製されたガラス基板の熱収縮率、歪測定した。
〔熱収縮率の測定〕
熱処理前に所定のサイズの長方形にガラス基板を切りだし、長辺両端部にケガキ線を入れ、短辺中央部で半分に切断し、2つのガラスサンプルを得る。このうちの一方のガラスサンプルを、熱処理(昇温速度が10℃/分、450℃で1時間放置)する。熱処理をしない他方のガラスサンプルの長さを計測する。さらに、熱処理したガラスサンプルと未処理のガラスサンプルとをつき合わせてケガキ線のずれ量を、レーザ顕微鏡等で測定して、ガラスサンプルの長さの差分を求めることでサンプルの熱収縮量を求めることができる。この熱収縮量である差分と、熱処理前のガラスサンプルの長さを用いて、以下の式により熱収縮率が求められる。このガラスサンプルの熱収縮率をガラス基板の熱収縮率とした。
熱収縮率(ppm)=(差分)/(熱処理前のガラスサンプルの長さ)×10
[歪の測定]
ガラス基板は、歪によってガラス基板の屈折率が変化することから、ガラス基板の複屈折率に起因するリターデーション値を測定した。リターデーション値が大きいほど、歪が大きいことを表す。リターデーション値の測定には、ユニオプト社製の複屈折率測定器ABR−10Aを使用した。
ガラス基板の表面の10以上の異なる位置で歪を測定し、測定された歪の値のうちの最大値を、歪値とした。
実施例及び従来例のガラス基板の熱収縮率は、それぞれ6ppm,20ppmであり、実施例の熱収縮率は極めて低かった。
また、実施例及び従来例のガラス基板のリターデーション値については、実施例のガラス基板の最大測定値は2kgf/cm2であり、従来例のガラス基板の最大測定値は15kgf/cm2であった。これより、実施例のガラス基板は歪が小さいことがわかる。
これより、本実施形態のガラス基板の製造方法の効果は明らかである。
以上、本発明のガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更してもよいのはもちろんである。
10 積層体
11 ガラス基板
12 シート体
20 パレット(梱包体)
21 基台部
22 載置部
23 背面板

Claims (5)

  1. ダウンドロー法によりガラス基板を成形し、成形したガラス基板を所定のサイズに切断する成形工程と、
    前記成形工程で得られた複数のガラス基板をそれぞれシート体の間に挟んだ状態で厚さ方向に積層してガラス基板の積層体を作製し、前記ガラス基板の積層体を梱包体に梱包する梱包工程と、
    前記梱包工程で梱包された前記ガラス基板の積層体を熱処理することにより、前記複数のガラス基板の熱収縮率を低下させる熱処理工程と、を備え、
    前記熱処理工程では、前記ガラス基板の端部領域から前記端部領域により囲まれた中央領域にかけて、歪の発生を低減し、歪分布が一様になるよう前記ガラス基板の積層体を熱処理することを特徴とするガラス基板の製造方法。
  2. 前記熱処理工程では、前記ガラス基板の積層体において、前記厚さ方向の一端から他端にかけて、積層された前記ガラス基板の歪の発生を低減し、歪分布が一様になるよう前記ガラス基板の積層体を熱処理する、請求項1に記載のガラス基板の製造方法。
  3. 前記歪は10ppm以下である、請求項1又は2に記載のガラス基板の製造方法。
  4. 前記シート体は、カーボングラファイト、アルミナ繊維、シリカ繊維、ガラス繊維、及び、多孔質セラミックスから選ばれた一種、又は、それらの組合せからなる、請求項1から3のいずれか一項に記載のガラス基板の製造方法。
  5. 前記熱処理工程で低減されるガラス基板の歪は、前記成形工程において低減されるガラス基板の歪より小さい、請求項1から4のいずれか一項に記載のガラス基板の製造方法。
JP2014134564A 2014-06-30 2014-06-30 ガラス基板の製造方法 Pending JP2016011235A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134564A JP2016011235A (ja) 2014-06-30 2014-06-30 ガラス基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134564A JP2016011235A (ja) 2014-06-30 2014-06-30 ガラス基板の製造方法

Publications (1)

Publication Number Publication Date
JP2016011235A true JP2016011235A (ja) 2016-01-21

Family

ID=55228190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134564A Pending JP2016011235A (ja) 2014-06-30 2014-06-30 ガラス基板の製造方法

Country Status (1)

Country Link
JP (1) JP2016011235A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255625A1 (ja) * 2019-06-18 2020-12-24 日本電気硝子株式会社 ガラス基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255625A1 (ja) * 2019-06-18 2020-12-24 日本電気硝子株式会社 ガラス基板の製造方法

Similar Documents

Publication Publication Date Title
JP5428288B2 (ja) ガラス板の製造方法及び製造設備
JP5428287B2 (ja) ガラス板の製造方法及び製造設備
TWI716561B (zh) 無鹼玻璃基板及無鹼玻璃基板之製造方法
KR20160137603A (ko) 화학 강화 처리에 의해 유리판에 발생하는 휨을 저감하는 방법, 화학 강화용 유리판의 제조 방법 및 화학 강화 유리판의 제조 방법
TW201446667A (zh) 玻璃基板以及其緩冷方法
TWI600622B (zh) Method of manufacturing glass plate and glass plate manufacturing apparatus
JP2011219361A (ja) 板ガラス及びその成形方法
JP2016011235A (ja) ガラス基板の製造方法
JP6082434B2 (ja) ガラス基板の製造方法及びガラス基板
JP6454188B2 (ja) ガラス基板の製造方法
JP6379678B2 (ja) ガラス基板の製造方法
JP6552839B2 (ja) ガラス基板の製造方法
JP2016011232A (ja) ガラス基板の製造方法
JP6403458B2 (ja) ガラス基板の製造方法
JP2016011233A (ja) ガラス基板の製造方法
JP2016011234A (ja) ガラス基板の製造方法
US20240132399A1 (en) Glass sheet for chemical strengthening, manufacturing method of strengthened glass sheet, and glass sheet
TWI580650B (zh) Glass substrate manufacturing method and glass substrate
WO2016068069A1 (ja) ガラス基板の熱処理方法およびガラス基板の製造方法
JP2016011237A (ja) ガラス基板の製造方法
JP2022098453A (ja) フロートガラス製造装置、フロートガラス製造方法、及びフロートガラス
TWI679174B (zh) 玻璃基板的熱處理方法以及玻璃基板的製造方法
TW202335983A (zh) 玻璃基板
JP6587844B2 (ja) ディスプレイ用ガラス板の製造方法、および、ディスプレイ用ガラス板製造装置
CN114644446A (zh) 浮法玻璃制造装置、浮法玻璃制造方法以及浮法玻璃