JP2016001722A - 半導体装置及び該半導体装置を含む電子機器 - Google Patents

半導体装置及び該半導体装置を含む電子機器 Download PDF

Info

Publication number
JP2016001722A
JP2016001722A JP2015075589A JP2015075589A JP2016001722A JP 2016001722 A JP2016001722 A JP 2016001722A JP 2015075589 A JP2015075589 A JP 2015075589A JP 2015075589 A JP2015075589 A JP 2015075589A JP 2016001722 A JP2016001722 A JP 2016001722A
Authority
JP
Japan
Prior art keywords
film
transistor
oxide semiconductor
oxide
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015075589A
Other languages
English (en)
Other versions
JP2016001722A5 (ja
Inventor
哲弘 田中
Tetsuhiro Tanaka
哲弘 田中
勇二郎 櫻田
Yujiro Sakurada
勇二郎 櫻田
岡崎 豊
Yutaka Okazaki
豊 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015075589A priority Critical patent/JP2016001722A/ja
Publication of JP2016001722A publication Critical patent/JP2016001722A/ja
Publication of JP2016001722A5 publication Critical patent/JP2016001722A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

【課題】半導体装置に良好な電気特性を付与する。または、オン電流の高い半導体装置を提供する。または、微細化に適した半導体装置を提供する。
【解決手段】酸化物半導体膜と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極と、絶縁膜と、を有する半導体装置であって、ソース電極は、酸化物半導体膜と接する領域を有し、ドレイン電極は、酸化物半導体膜と接する領域を有し、ゲート絶縁膜は、酸化物半導体膜と、ゲート電極との間に設けられ、絶縁膜は、ゲート電極上と、ゲート絶縁膜上と、に設けられ、絶縁膜は、第1の部分と、第2の部分と、を有し、第1の部分は、段差状になっている部分を有し、第2の部分は、段差状になっていない部分を有し、第1の部分は、第1の膜厚である部分を有し、第2の部分は、第2の膜厚である部分を有し、第2の膜厚は、第1の膜厚の1.0倍以上2.0倍以下である。
【選択図】図1

Description

本発明の一態様は、半導体装置およびその作製方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、電子機器は、半導体装置を有する場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。当該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
例えば、酸化物半導体として酸化亜鉛、またはIn−Ga−Zn系酸化物半導体を用いてトランジスタを作製する技術が開示されている(特許文献1および特許文献2参照)。
また、近年では電子機器の高性能化、小型化、または軽量化に伴い、微細化されたトランジスタなどの半導体素子を高密度に集積した集積回路の要求が高まっている。
特開2007−123861号公報 特開2007−96055号公報
回路の高集積化に伴い、トランジスタのサイズも微細化している。トランジスタを微細化すると、オン電流、オフ電流、しきい値電圧、S値(サブスレッショルドスイング値)などのトランジスタの電気特性が悪化する場合がある。一般に、チャネル長を縮小すると、オフ電流の増大、しきい値電圧の変動の増大、S値の増大が起こる。また、チャネル幅を縮小すると、オン電流が小さくなる。
本発明の一態様は、半導体装置に良好な電気特性を付与することを課題の一つとする。または、オン電流の高い半導体装置を提供することを目的の一つとする。または、微細化に適した半導体装置を提供することを課題の一つとする。または、集積度の高い半導体装置を提供することを目的の一つとする。または、低消費電力の半導体装置を提供することを目的の一つとする。または、信頼性の高い半導体装置を提供することを目的の一つとする。または、電源が遮断されてもデータが保持される半導体装置を提供することを目的の一つとする。または、新規な半導体装置を提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、酸化物半導体膜と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極と、絶縁膜と、を有する半導体装置であって、ソース電極は、酸化物半導体膜と接する領域を有し、ドレイン電極は、酸化物半導体膜と接する領域を有し、ゲート絶縁膜は、酸化物半導体膜と、ゲート電極との間に設けられ、絶縁膜は、ゲート電極上と、ゲート絶縁膜上と、に設けられ、絶縁膜は、第1の部分と、第2の部分と、を有し、第1の部分は、段差状になっている部分を有し、第2の部分は、段差状になっていない部分を有し、第1の部分は、第1の膜厚である部分を有し、第2の部分は、第2の膜厚である部分を有し、第2の膜厚は、第1の膜厚の1.0倍以上2.0倍以下であることを特徴とする半導体装置である。
また、上記構成において、絶縁膜は、酸素と、アルミニウムと、を有することが好ましい。
また、上記構成において、絶縁膜は、原子層成膜法により形成されている。
また、上記構成において、第1の膜厚である部分は、ゲート電極と互いに重なる第1の領域と、ソース電極及びドレイン電極と互いに重なる第2の領域と、を有していてもよい。
また、上記構成の半導体装置を含むことを特徴とする電子機器である。
本発明の一態様を用いることにより、半導体装置に良好な電気特性を付与することができる。または、微細化に適した半導体装置を提供することができる。または、オン電流の高い半導体装置を提供することができる。または、集積度の高い半導体装置を提供することができる。または、低消費電力の半導体装置を提供することができる。または、信頼性の高い半導体装置を提供することができる。または、電源が遮断されてもデータが保持される半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
トランジスタの上面図及び断面図を説明する図。 トランジスタの断面図の拡大図。 トランジスタの作製方法を説明する図。 トランジスタの作製方法を説明する図。 トランジスタの上面図及び断面図を説明する図。 トランジスタの上面図及び断面図を説明する図。 トランジスタの断面図を説明する図。 トランジスタの断面図を説明する図。 トランジスタの断面図を説明する図。 半導体装置の断面図及び回路図。 記憶装置の回路図及び断面図。 RFタグの構成例を説明する図。 CPUの構成例を説明する図。 記憶素子の回路図。 表示装置の構成例を説明する図及び画素の回路図。 表示モジュールを説明する図。 電子機器を説明する図。 RFデバイスの使用例を説明する図。 トランジスタの断面STEM写真。 トランジスタの断面STEM写真。 トランジスタの電気特性を説明する図。 TDS測定結果を説明する図。 TDS測定結果を説明する図。 トランジスタの電気特性を説明する図。 シート抵抗の測定結果を説明する図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、本明細書にて用いる第1、第2、第3などの用語は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。
また、「ソース」や「ドレイン」の機能は、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。
また、電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。ただし、一般的に、ある一点における電位と基準となる電位(例えば接地電位)との電位差のことを単に電位もしくは電圧と呼び、電位と電圧が同義語として用いられることが多い。このため、本明細書では特に指定する場合を除き、電位を電圧と読み替えてもよいし、電圧を電位と読み替えてもよいこととする。
また、酸化物半導体膜を有するトランジスタはnチャネル型トランジスタであるため、本明細書において、ゲート電圧が0Vの場合、ドレイン電流が流れていないとみなすことができるトランジスタを、ノーマリーオフ特性を有するトランジスタと定義する。また、ゲート電圧が0Vの場合、ドレイン電流が流れているとみなすことができるトランジスタを、ノーマリーオン特性を有するトランジスタと定義する。
(実施の形態1)
本実施の形態では、本発明の一態様である半導体装置、及びその作製方法について図面を参照して説明する。半導体装置の一例としてトランジスタを用いて説明する。
本発明の一態様のトランジスタは、シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、有機半導体、または酸化物半導体などをチャネル形成領域に用いることができる。特に、シリコンよりもバンドギャップの大きい酸化物半導体を含んでチャネル形成領域を形成することが好ましい。
例えば、上記酸化物半導体として、少なくともインジウム(In)もしくは亜鉛(Zn)を含むことが好ましい。より好ましくはIn−M−Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む構成とする。
以下では、特に断りのない限り、一例として、チャネル形成領域に酸化物半導体を含むトランジスタについて説明する。
図1(A)乃至図1(C)に、半導体装置が有するトランジスタ150の上面図及び断面図を示す。図1(A)はトランジスタ150の上面図であり、図1(B)は、図1(A)の一点鎖線A1−A2間の断面図、図1(C)は、図1(A)の一点鎖線B1−B2間の断面図である。また、図1(A)乃至図1(C)では、図の明瞭化のために一部の要素を拡大、縮小、または省略して図示している。また、一点鎖線A1−A2方向をチャネル長方向、一点鎖線B1−B2方向をチャネル幅方向と呼称する場合がある。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
また、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースまたはドレインの幅をいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示されるチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる領域における、ソースまたはドレインの幅である見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
図1(A)乃至図1(C)に示すトランジスタ150は、基板100上の下地絶縁膜102と、下地絶縁膜102上の酸化物半導体膜101aと、酸化物半導体膜101a上の酸化物半導体膜101bと、下地絶縁膜102及び酸化物半導体膜101bに接するソース電極103a、ドレイン電極103bと、ソース電極103a、ドレイン電極103b上の酸化物半導体膜101cと、酸化物半導体膜101c上のゲート絶縁膜104と、ゲート絶縁膜104を介して、酸化物半導体膜101bと互いに重なるゲート電極105と、を有する。また、ゲート絶縁膜104及びゲート電極105上に絶縁膜107が設けられている。
なお、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)に設けられている。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)と、接触している。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の少なくとも一部(または全部)と、接触している。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)と、電気的に接続されている。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の一部(または全部)と、電気的に接続されている。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)に、近接して配置されている。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の一部(または全部)に、近接して配置されている。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)の横側に配置されている。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の一部(または全部)の横側に配置されている。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)の斜め上側に配置されている。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の一部(または全部)の斜め上側に配置されている。
または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の、表面、側面、および/または、下面の少なくとも一部(または全部)の上側に配置されている。または、ソース電極103a(および/または、ドレイン電極103b)の、少なくとも一部(または全部)は、酸化物半導体膜101a(および/または、酸化物半導体膜101b)などの半導体膜の一部(または全部)の上側に配置されている。
絶縁膜107はバリア膜として機能し、酸素、水素、水などをブロックする。したがって、絶縁膜107を設けることによって、水素や水が外部から酸化物半導体膜101bに混入すること、及び酸化物半導体膜101b中の酸素が外部へ放出されることを防ぐことができる。なお、絶縁膜107は水素や水などを出来る限り低減させておくことが好ましい、または、水素や水などの放出を出来る限り低減させておくことが好ましい。
また、絶縁膜107に、酸素、水素、水等のブロッキング効果を有する絶縁膜を適用することで酸化物半導体膜からの酸素の外部への拡散と、外部から酸化物半導体膜への水素、水等の侵入を防ぐことができる。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ガリウム膜、酸化窒化ガリウム膜、酸化イットリウム膜、酸化窒化イットリウム膜、酸化ハフニウム膜、酸化窒化ハフニウム膜等がある。
絶縁膜107の厚さは、150nm以上400nm以下とするとよい。
なお、絶縁膜107は成膜方法により膜の被覆性が異なる場合がある。なお、図2に図1(B)の絶縁膜107周辺の拡大図を示す。たとえば、スパッタ法で形成される膜は被覆性が低く、図中の丸く囲んだ段差状になっている部分(図2では、ゲート電極の側面及びゲート絶縁膜の上面が交差する部分及びその周辺)においてその他の領域と比較して局所的に膜厚が小さくなるため段差部分で段切れが生じる可能性があり、段切れによるトランジスタの電気特性の不良につながる恐れがある。なお、段差状になっている部分で段切れしなくても均一な膜厚で膜全体を成膜することは困難である。また、原子層成膜(ALD)法で形成される膜は原子レベルの薄膜層を積み重ねるため被覆性が良好であり、均一な膜厚で膜全体を成膜することが可能となる。
上記の理由により、絶縁膜107はALD法を用いて成膜することが好ましい。ALD法で成膜した膜は被覆性が良好であるため、段差の大きい箇所(たとえば、ゲート電極105とゲート絶縁膜104でできる段差など)においても良好に被覆することができ、トランジスタ150の特性を安定化させることができる。
なお、絶縁膜107は、段差状になっている部分と段差状になっていない部分とで膜厚が異なることがある。段差状になっている部分は、第1の膜厚である部分を有し、段差状になっていない部分は、第2の膜厚である部分を有する。なお、第2の膜厚は、第1の膜厚の1.0倍以上2.0倍以下であることが好ましく、1.3倍以上1.5倍以下であることがさらに好ましい。なお、ここで述べた膜厚は、被形成面から形成された膜の上面までの最短の距離とする。
また、第1の膜厚である部分には、ソース電極及びドレイン電極と互いに重なる第1の領域と、第1の領域と異なる第2の領域とがある。第1の領域はチャネル長方向の断面において観察され、第2の領域はチャネル幅方向の断面において観察される(たとえば図1(C)の丸で囲まれた領域)。第1の領域は、第2の領域より膜厚が小さい部分を有していてもよいし、第2の領域より膜厚が大きい部分を有していてもよいし、第2の領域と膜厚が同じ部分を有していてもよい。なお、第1の領域の膜厚と第2の領域の膜厚との大小関係は、絶縁膜107以外の構成(たとえば、酸化物半導体膜、ソース電極、ドレイン電極等)の膜厚により決まる。
以下に、トランジスタ150の他の構成の詳細について説明する。
また、本実施の形態において、酸化物半導体膜101bと近接する膜、代表的には、下地絶縁膜102やゲート絶縁膜104が、酸化物絶縁膜であり、該酸化物絶縁膜は、窒素を含み、且つ欠陥量の少ないことが好ましい。
窒素を含み、且つ欠陥量の少ない酸化物絶縁膜の代表例としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜等がある。なお、酸化窒化シリコン膜、酸化窒化アルミニウムなどの「酸化窒化膜」とは、その組成として、窒素よりも酸素の含有量が多い膜を指し、窒化酸化シリコン膜、窒化酸化アルミニウムなどの「窒化酸化膜」とは、その組成として、酸素よりも窒素の含有量が多い膜を指す。
欠陥の少ない酸化物絶縁膜は、100K以下のESRで測定して得られたスペクトルにおいてg値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグナルが観測される。なお、本実施の形態では、「シグナルが観測される」とは、規定のg値において4.7×1015spins/cm以上のスピン密度を有することを示す。なお、第1のシグナル及び第2のシグナルのスプリット幅、並びに第2のシグナル及び第3のシグナルのスプリット幅は、XバンドのESR測定において約5mTである。また、第1のシグナル乃至第3のシグナルのスピンの密度の合計が4×1018spins/cm未満であり、代表的には2.4×1018spins/cm以上4×1018spins/cm未満である。
なお、100K以下のESRスペクトルにおいてg値が2.037以上2.039以下の第1シグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグナルは、窒素酸化物(NOx、xは0より大きく2以下、好ましくは1以上2以下)起因のシグナルに相当する。窒素酸化物の代表例としては、一酸化窒素、二酸化窒素等がある。即ち、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピンの密度の合計が小さいほど、酸化物絶縁膜に含まれる窒素酸化物の含有量が少ないといえる。
また、窒素を含み、且つ欠陥量の少ない酸化物絶縁膜は、成膜時の温度が高いほど窒素濃度及び水素濃度が低減する。上記酸化物絶縁膜の代表的な成膜温度は、500℃以上、好ましくは500℃以上550℃以下である。窒素濃度を低減した後に酸素を添加することで窒素酸化物の発生を抑制することができ、かつ酸化物絶縁膜に酸素を添加することができるため、その酸素を酸化物半導体膜101bに供給することが可能になる。
酸化物半導体膜101bに近接する下地絶縁膜102やゲート絶縁膜104が、上記のように、窒素酸化物の含有量が少ないと、下地絶縁膜102またはゲート絶縁膜104と、酸化物半導体膜との界面におけるキャリアのトラップを低減することが可能である。この結果、半導体装置に含まれるトランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
また、下地絶縁膜102及びゲート絶縁膜104は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)で測定される窒素濃度が1×1020atoms/cm未満である部分を有することが好ましい。この結果、下地絶縁膜102やゲート絶縁膜104において、窒素酸化物が生成されにくくなり、下地絶縁膜102またはゲート絶縁膜104と、酸化物半導体膜との界面におけるキャリアのトラップを低減することが可能である。また、半導体装置に含まれるトランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
また、下地絶縁膜102やゲート絶縁膜104は、SIMSで測定される水素濃度が5×1020atoms/cm未満である部分を有することが好ましい。下地絶縁膜102及びゲート絶縁膜104の水素濃度を低減することで、酸化物半導体膜への水素の混入を抑制することができる。
基板100の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板100として用いてもよい。また、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI(Silicon On Insulator)基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、基板100として用いてもよい。
また、基板100として、可撓性基板を用い、可撓性基板上に直接、トランジスタ150を形成してもよい。または、基板100とトランジスタ150の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板100より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ150は耐熱性の劣る基板や可撓性の基板にも転載できる。
下地絶縁膜102としては、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜、酸化ガリウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化アルミニウム膜、酸化窒化アルミニウム膜等がある。なお、下地絶縁膜として、上記の材料を用いることで、基板100側から不純物、代表的にはアルカリ金属、水、水素等の酸化物半導体膜への拡散を抑制することができる。
下地絶縁膜102が窒素を含み、且つ欠陥量の少ない酸化物絶縁膜で形成される場合、ゲート絶縁膜104は、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸化物などを用いればよく、積層または単層で設ける。なお、酸化物半導体膜との界面特性を向上させるため、ゲート絶縁膜104において少なくとも酸化物半導体膜と近接する領域は酸化物絶縁膜で形成することが好ましい。
また、ゲート絶縁膜104として、酸素、水素、水等のブロッキング効果を有する絶縁膜を設けることで、酸化物半導体膜からの酸素の外部への拡散と、外部から酸化物半導体膜への水素、水等の侵入を防ぐことができる。酸素、水素、水等のブロッキング効果を有する絶縁膜としては、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ガリウム膜、酸化窒化ガリウム膜、酸化イットリウム膜、酸化窒化イットリウム膜、酸化ハフニウム膜、酸化窒化ハフニウム膜等がある。
また、ゲート絶縁膜104として、ハフニウムシリケート(HfSi)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−k材料を用いることでトランジスタのゲートリークを低減できる。
酸化物半導体膜(酸化物半導体膜101a乃至酸化物半導体膜101c)は、少なくともIn若しくはZnを含む金属酸化物で形成され、代表的には、In−Ga酸化物、In−Zn酸化物、In−Mg酸化物、Zn−Mg酸化物、In−M−Zn酸化物(MはAl、Ga、Y、Zr、La、Ce、Mg、またはNd)等で形成される。
なお、酸化物半導体膜がIn−M−Zn酸化物であるとき、Zn及びOを除いてのIn及びMの原子数比率は、好ましくはInが25atomic%以上、Mが75atomic%未満、さらに好ましくはInが34atomic%以上、Mが66atomic%未満とする。
酸化物半導体膜は、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることでトランジスタ150のオフ電流を低減することができる。
酸化物半導体膜の厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
酸化物半導体膜がIn−M−Zn酸化物(MはAl、Ga、Y、Zr、La、Ce、Mg、またはNd)の場合、In−M−Zn酸化物を成膜するために用いるスパッタターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2が好ましい。なお、成膜される酸化物半導体膜の原子数比はそれぞれ、誤差として上記のスパッタターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
酸化物半導体膜に含まれる水素は、金属原子と結合する酸素と反応して水になると共に、酸素が脱離した格子(または酸素が脱離した部分)に酸素欠損を形成する。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合することで、キャリアである電子を生成する場合がある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。
このため、酸化物半導体膜は、酸素欠損と共に、水素ができる限り低減されていることが好ましい。具体的には、酸化物半導体膜において、SIMSにより得られる水素濃度が、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、5×1018atoms/cm以下、好ましくは1×1018atoms/cm以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm以下である部分を有する。この結果、トランジスタ150は、しきい値電圧がプラスとなる電気特性(ノーマリーオフ特性ともいう)を有する。
また、酸化物半導体膜において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体膜において酸素欠損が増加し、n型化してしまう。このため、酸化物半導体膜におけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)が、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下である部分を有する。この結果、トランジスタ150は、ノーマリーオフ特性を有する。
また、酸化物半導体膜において、二次イオン質量分析法により得られるアルカリ金属またはアルカリ土類金属の濃度が、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下である部分を有する。アルカリ金属及びアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、酸化物半導体膜のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。この結果、トランジスタ150は、ノーマリーオフ特性を有する。
また、酸化物半導体膜に窒素が含まれていると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。従って、当該酸化物半導体膜において、窒素はできる限り低減されていることが好ましい。例えば、二次イオン質量分析法により得られる窒素濃度は、5×1018atoms/cm以下である部分を有することが好ましい。
酸化物半導体膜の不純物を低減することで、酸化物半導体膜のキャリア密度を低減することができる。このため、酸化物半導体膜は、キャリア密度が1×1017個/cm以下、好ましくは1×1015個/cm以下、さらに好ましくは1×1013個/cm以下、より好ましくは1×1011個/cm以下である部分を有することが好ましい。
酸化物半導体膜として、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を用いることで、さらに優れた電気特性を有するトランジスタを作製することができる。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に高純度真性とよぶ。高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、ノーマリーオフ特性になりやすい。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく小さく、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13A以下という特性を得ることができる。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる場合がある。
また、酸化物半導体膜は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
なお、酸化物半導体膜が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上を有する混合膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の単層構造を有する場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の積層構造を有する場合がある。
ソース電極103a及びドレイン電極103bは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
ゲート電極105は、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、ゲート電極105は、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、ゲート電極105は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを含むインジウム錫酸化物、酸化マグネシウムを含む酸化インジウム化合物、酸化ガリウムを含む酸化亜鉛、酸化アルミニウムを含む酸化亜鉛、酸化マグネシウムを含む酸化亜鉛、フッ素を含む酸化スズ等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
次に、図1に示すトランジスタ150の作製方法について、図3及び図4を用いて説明する。なお、図3及び図4において、図1(A)の一点破線A1−A2に示すチャネル長方向の断面図、及び一点破線B1−B2に示すチャネル幅方向の断面図を用いて、トランジスタ150の作製方法を説明する。
トランジスタ150を構成する膜(絶縁膜、酸化物半導体膜、金属酸化物膜、導電膜等)は、スパッタ法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PLD)法を用いて形成することができる。あるいは、塗布法や印刷法で形成することができる。成膜方法としては、スパッタ法、プラズマ化学気相堆積(PECVD)法が代表的であるが、熱CVD法でもよい。熱CVD法の例として、有機金属化学堆積(MOCVD:Metal Organic Chemical Vapor Deposition)法や原子層成膜(ALD)法を使ってもよい。
熱CVD法は、チャンバー内を大気圧または減圧下とし、原料ガスと酸化剤を同時にチャンバー内に送り、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行う。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行う。例えば、それぞれのスイッチングバルブ(高速バルブともよぶ)を切り替えて2種類以上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の単原子層を成膜し、後から導入される第2の原料ガスと反応して、第2の単原子層が第1の単原子層上に積層されて薄膜が形成される。
このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なトランジスタを作製する場合に適している。
まず、基板100上に下地絶縁膜102を形成する(図3(A)参照)。
基板100には、ガラス基板、セラミック基板、石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムからなる化合物半導体基板、SOI(Silicon On Insulator)基板などを用いることも可能であり、これらの基板上に半導体素子が設けられたものを用いてもよい。
下地絶縁膜102は、プラズマCVD法またはスパッタ法等により、酸化アルミニウム膜、酸化マグネシウム膜、酸化シリコン膜、酸化窒化シリコン膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜および酸化タンタル膜などの酸化物絶縁膜、窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、窒化酸化アルミニウム膜などの窒化物絶縁膜、またはこれらの混合材料を用いて形成することができる。また、上記材料の積層であってもよく、少なくとも酸化物半導体膜と接する上層は、加熱処理などにより酸化物半導体膜への酸素の供給源となりえる過剰な酸素を含む材料で形成することが好ましい。
また、下地絶縁膜102にイオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いて酸素を添加してもよい。酸素を添加することによって、下地絶縁膜102から酸化物半導体膜への酸素の供給をさらに容易にすることができる。
下地絶縁膜102として酸化シリコン膜または酸化窒化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、下地絶縁膜102として酸化ガリウム膜を形成する場合、MOCVD法を用いて形成することができる。
また、下地絶縁膜102として、MOCVD法やALD法などの熱CVD法を用いて、酸化ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハフニウム(TDMAH)などのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CHである。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。
また、下地絶縁膜102として、MOCVD法やALD法などの熱CVD法を用いて、酸化アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウムTMAなど)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
また、下地絶縁膜102として、MOCVD法やALD法などの熱CVD法を用いて、酸化シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
ここでは、下地絶縁膜102として、PECVD法により酸化窒化シリコン膜を形成する。
なお、基板100の表面が絶縁体であり、後に設ける酸化物半導体膜への不純物拡散の影響が無い場合は、下地絶縁膜102を設けない構成とすることができる。
次に、下地絶縁膜102上に酸化物半導体膜101a、酸化物半導体膜101bをスパッタ法、CVD法、MBE法、ALD法またはPLD法などを用いて形成する(図3(B)参照)。このとき、図示するように下地絶縁膜102を若干過度にエッチングしてもよい。下地絶縁膜102を過度にエッチングすることで、後に形成するゲート電極105で酸化物半導体膜101bを覆いやすくすることができる。
なお、酸化物半導体膜101a、酸化物半導体膜101bを島状に形成する際に、まず、酸化物半導体膜101b上にハードマスクとなる膜(たとえばタングステン膜)およびレジストマスクを設け、ハードマスクとなる膜をエッチングしてハードマスクを形成し、その後、レジストマスクを除去し、ハードマスクをマスクとして酸化物半導体膜101a、酸化物半導体膜101bをエッチングする。その後、ハードマスクを除去する。この時、エッチングするにつれて徐々にハードマスクが縮小していくため、自然にハードマスクの端部が丸みを帯び、曲面を有する。これに伴い、酸化物半導体膜101bの形状も端部が丸みを帯び、曲面を有する。このような構成になることで、酸化物半導体膜101b上に形成される、酸化物半導体膜101c、ゲート絶縁膜104、ゲート電極105、絶縁膜107の被覆性が向上し、段切れ等の形状不良の発生を防ぐことができる。
また、酸化物半導体膜101a、酸化物半導体膜101bの積層、および後の工程で形成する酸化物半導体膜101cを含めた積層において連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(例えばスパッタ装置)を用いて各層を大気に触れさせることなく連続して積層することが必要となる。スパッタ装置における各チャンバーは、酸化物半導体にとって不純物となる水等を可能な限り除去すべく、クライオポンプのような吸着式の真空排気ポンプを用いて高真空排気(5×10−7Pa乃至1×10−4Pa程度まで)できること、かつ、成膜される基板を100℃以上、好ましくは500℃以上に加熱できることが好ましい。または、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に炭素成分や水分等を含む気体が逆流しないようにしておくことが好ましい。
高純度真性の酸化物半導体を得るためには、チャンバー内を高真空排気するのみならずスパッタガスの高純度化も必要である。スパッタガスとして用いる酸素ガスやアルゴンガスは、露点が−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下にまで高純度化したガスを用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる。
高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定となる場合がある。
酸化物半導体膜101a、酸化物半導体膜101bおよび後の工程で形成される酸化物半導体膜101cは、上述した材料を用いることができる。例えば、酸化物半導体膜101aにIn:Ga:Zn=1:3:4または1:3:2[原子数比]のIn−Ga−Zn酸化物、酸化物半導体膜101bにIn:Ga:Zn=1:1:1[原子数比]のIn−Ga−Zn酸化物、酸化物半導体膜101cにIn:Ga:Zn=1:3:4または1:3:2[原子数比]のIn−Ga−Zn酸化物を用いることができる。
また、酸化物半導体膜101a、酸化物半導体膜101b、酸化物半導体膜101cとして用いることのできる酸化物は、少なくともインジウム(In)もしくは亜鉛(Zn)を含むことが好ましい。または、InとZnの双方を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを含むことが好ましい。
スタビライザーとしては、ガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、アルミニウム(Al)、またはジルコニウム(Zr)等がある。また、他のスタビライザーとしては、ランタノイドである、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等がある。
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、In−Zn酸化物、Sn−Zn酸化物、Al−Zn酸化物、Zn−Mg酸化物、Sn−Mg酸化物、In−Mg酸化物、In−Ga酸化物、In−Ga−Zn酸化物、In−Al−Zn酸化物、In−Sn−Zn酸化物、Sn−Ga−Zn酸化物、Al−Ga−Zn酸化物、Sn−Al−Zn酸化物、In−Hf−Zn酸化物、In−La−Zn酸化物、In−Ce−Zn酸化物、In−Pr−Zn酸化物、In−Nd−Zn酸化物、In−Sm−Zn酸化物、In−Eu−Zn酸化物、In−Gd−Zn酸化物、In−Tb−Zn酸化物、In−Dy−Zn酸化物、In−Ho−Zn酸化物、In−Er−Zn酸化物、In−Tm−Zn酸化物、In−Yb−Zn酸化物、In−Lu−Zn酸化物、In−Sn−Ga−Zn酸化物、In−Hf−Ga−Zn酸化物、In−Al−Ga−Zn酸化物、In−Sn−Al−Zn酸化物、In−Sn−Hf−Zn酸化物、In−Hf−Al−Zn酸化物を用いることができる。
なお、ここで、例えば、In−Ga−Zn酸化物とは、InとGaとZnを主成分として有する酸化物という意味である。また、InとGaとZn以外の金属元素が入っていてもよい。また、本明細書においては、In−Ga−Zn酸化物で構成した膜をIGZO膜とも呼ぶ。
また、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、MnおよびCoから選ばれた一つの金属元素または複数の金属元素を示す。また、InSnO(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
また、酸化物半導体膜101aおよび酸化物半導体膜101cは、酸化物半導体膜101bよりも電子親和力が小さくなるように材料を選択する。
なお、酸化物半導体膜の成膜には、スパッタ法を用いることが好ましい。スパッタ法としては、RFスパッタ法、DCスパッタ法、ACスパッタ法等を用いることができる。特に、成膜時に発生するゴミを低減でき、かつ膜厚分布も均一とすることからDCスパッタ法を用いることが好ましい。
スパッタガスは、希ガス(代表的にはアルゴン)、酸素、希ガス及び酸素の混合ガスを適宜用いる。なお、希ガス及び酸素の混合ガスの場合、希ガスに対して酸素のガス比を高めることが好ましい。
また、ターゲットは、形成する酸化物半導体膜の組成にあわせて、適宜選択すればよい。
なお、酸化物半導体膜を形成する際に、例えば、スパッタ法を用いる場合、基板温度を150℃以上750℃以下、好ましくは150℃以上450℃以下、さらに好ましくは200℃以上350℃以下として、酸化物半導体膜を成膜することで、CAAC−OS膜を形成することができる。
また、CAAC−OS膜を成膜するために、以下の条件を適用することが好ましい。
成膜時の不純物混入を抑制することで、不純物によって結晶状態が崩れることを抑制できる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素及び窒素など)を低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
また、スパッタガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメージを軽減すると好ましい。スパッタガス中の酸素割合は、30体積%以上、好ましくは100体積%とする。
また、酸化物半導体膜を形成した後、加熱処理を行い、酸化物半導体膜の脱水素化または脱水化をしてもよい。加熱処理の温度は、代表的には、150℃以上基板歪み点未満、好ましくは250℃以上450℃以下、更に好ましくは300℃以上450℃以下とする。
加熱処理は、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等の希ガス、または窒素を含む不活性ガス雰囲気で行う。または、不活性ガス雰囲気で加熱した後、酸素雰囲気で加熱してもよい。なお、上記不活性雰囲気及び酸素雰囲気に水素、水などが含まれないことが好ましい。処理時間は3分乃至24時間とする。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱処理時間を短縮することができる。
酸化物半導体膜を加熱しながら成膜することで、さらには酸化物半導体膜を形成した後、加熱処理を行うことで、酸化物半導体膜において、水素濃度を2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、5×1018atoms/cm以下、好ましくは1×1018atoms/cm以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm以下である部分を有することができる。
ALD法を利用する成膜装置により酸化物半導体膜、例えばInGaZnO(X>0)膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してInO層を形成し、その後、Ga(CHガスとOガスを同時に導入してGaO層を形成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてInGaO層やInZnO層、GaInO層、ZnInO層、GaZnO層などの混合化合物層を形成してもよい。なお、Oガスに変えてAr等の不活性ガスでバブリングしたHOガスを用いてもよいが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスを用いてもよい。また、Ga(CHガスにかえて、Ga(Cガスを用いてもよい。また、Zn(CHガスを用いてもよい。
ここでは、スパッタ法により酸化物半導体膜を形成した後、当該酸化物半導体膜上にマスクを形成し、酸化物半導体膜の一部を選択的にエッチングする。次に、マスクを除去した後、窒素及び酸素を含む混合ガス雰囲気で加熱処理を行うことで、酸化物半導体膜を形成する。
なお、加熱処理は、350℃より高く650℃以下、好ましくは450℃以上600℃以下で行うことで、CAAC化率が、60%以上、好ましくは80%以上、さらに好ましくは90%以上、より好ましくは95%以上である酸化物半導体膜を得ることができる。また、水素、水等の含有量が低減された酸化物半導体膜を得ることが可能である。すなわち、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を形成することができる。なお、CAAC−OS膜であったとしても、部分的にnc−OS膜などと同様の回折パターンが観測される場合があり、一定の範囲におけるCAAC−OS膜の回折パターンが観測される領域の割合をCAAC化率と定義する。
次に、酸化物半導体膜101bに接するソース電極103a及びドレイン電極103bを形成する(図3(C)参照)。
次に、酸化物半導体膜101b、ソース電極103a及びドレイン電極103b上に酸化物半導体膜101cを形成し、酸化物半導体膜101c上にゲート絶縁膜104を形成する(図4(A)参照)。
なお、酸化物半導体膜101cを成膜後に加熱処理を行ってもよい。該加熱処理により、酸化物半導体膜101cから水素や水などの不純物を除去することができる。また、酸化物半導体膜101aおよび酸化物半導体膜101bから、さらに水素や水などの不純物を除去することができる。
次に、ゲート絶縁膜104を介して、酸化物半導体膜101bと互いに重なるゲート電極105を形成する(図4(B)参照)。
次に、ゲート絶縁膜104及びゲート電極105上に絶縁膜107を形成する(図4(C)参照)。
絶縁膜107は、ALD法を用いて成膜することが好ましい。ALD法で成膜した膜は被覆性が良好であるため、段差の大きい箇所(たとえば、ゲート電極105とゲート絶縁膜104でできる段差など)においても良好に被覆することができ、トランジスタ150の特性を安定化させることができる。
なお、絶縁膜107は、段差部分とその他の領域(ここでは非段差領域ともいう)とで膜厚が異なることがある。絶縁膜107の非段差部分の膜厚は、段差部分の膜厚の1.0倍以上2.0倍以下であることが好ましく、1.3倍以上1.5倍以下であることがさらに好ましい。
以上の工程により、トランジスタ150を作製することができる。
<変形例1>
実施の形態1に示すトランジスタ150は、酸化物半導体膜が3層であったが、これに限られず、酸化物半導体膜が単層、2層、4層以上であってもよい。図5に酸化物半導体膜が単層の場合、図6に酸化物半導体膜が2層の場合について図示する。
図5(A)乃至図5(C)に、半導体装置が有するトランジスタ150aの上面図及び断面図を示す。図5(A)はトランジスタ150aの上面図であり、図5(B)は、図5(A)の一点鎖線A1−A2間の断面図であり、図5(C)は、図5(A)の一点鎖線B1−B2間の断面図である。また、図5(A)乃至図5(C)では、図の明瞭化のために一部の要素を拡大、縮小、または省略して図示している。
また、図6(A)乃至図6(C)に、半導体装置が有するトランジスタ150bの上面図及び断面図を示す。図6(A)はトランジスタ150bの上面図であり、図6(B)は、図6(A)の一点鎖線A1−A2間の断面図であり、図6(C)は、図6(A)の一点鎖線B1−B2間の断面図である。また、図6(A)乃至図6(C)では、図の明瞭化のために一部の要素を拡大、縮小、または省略して図示している。
<変形例2>
また、上記構成において、図7(A)乃至図7(C)に示すようにオフセット領域を低抵抗化したセルフアライン構造とすることができる。
n型の低抵抗領域141、低抵抗領域142は、ゲート電極105をマスクとして不純物を添加することで形成することができる。当該不純物の添加方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。
酸化物半導体膜101a、酸化物半導体膜101b及び酸化物半導体膜101cの導電率を高める不純物としては、例えば、水素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ホウ素、窒素、リン、または砒素がある。
なお、図8(A)のようなセルフアライン構造としてもよい。この構造の場合、n型の低抵抗領域141、低抵抗領域142は、ソース領域およびドレイン領域となる。なお、低抵抗領域141、低抵抗領域142は、絶縁膜108を介して配線110aおよび配線110bと電気的に接続している。
絶縁膜108は、層間膜として機能を有し、乾式法や湿式法で形成される無機絶縁膜、有機絶縁膜を用いることができる。例えば、CVD法やスパッタリング法などを用いて得られる窒化シリコン膜、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などを用いることができる。また、ポリイミド、アクリル、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンケイ酸ガラス)、BPSG(ボロンリンケイ酸ガラス)等を用いることができる。
配線110aおよび配線110bは、ソース電極103aおよびドレイン電極103bの材料等の説明を援用することができる。
しかし、図8(A)の構成では、n型の低抵抗領域141、低抵抗領域142に下地絶縁膜102から酸素が供給されると抵抗が上がってしまうことがある。そのため、図8(B)に示すように下地絶縁膜102と低抵抗領域141、低抵抗領域142との間にバリア膜となる絶縁膜109aおよび絶縁膜109bを設けると好ましい。
絶縁膜109aおよび絶縁膜109bは、少なくとも加熱処理などにより酸化物半導体膜へ酸素を供給しない膜である。絶縁膜109aおよび絶縁膜109bは、絶縁膜107と同様にバリア膜として機能し、酸素、水素、水などをブロックする。
絶縁膜109aおよび絶縁膜109bを設けることにより、下地絶縁膜102から低抵抗領域141および低抵抗領域142へ酸素が供給されることを抑制することができ、低抵抗領域141および低抵抗領域142の抵抗が上昇することを抑制することができる。
絶縁膜109aおよび絶縁膜109bは、絶縁膜107の材料等の説明を援用することができる。また、絶縁膜109aおよび絶縁膜109bはALD法を用いて成膜することが好ましい。
なお、ゲート電極105をマスクとして不純物を添加することは、必ずしも行わなくてもよい。その場合の例を、図9(A)、図9(B)、図9(C)に示す。なお、図9では、ゲート電極105の端部とソース電極103a及びドレイン電極103bの端部とは、そろっていないが、本発明の一態様はこれに限定されない。ゲート電極105の端部と、ソース電極103a及びドレイン電極103bの端部とを揃えて配置してもよい。
なお、本実施の形態において、本発明の一態様について述べた。ただし、本発明の一態様は、これらに限定されない。例えば、本発明の一態様として、ALD法を用いて、絶縁膜107を成膜した場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様では、様々な方法を用いて、絶縁膜107を成膜してもよい。例えば、本発明の一態様では、ALD法を用いずに、絶縁膜107を成膜してもよい。例えば、本発明の一態様では、CVD法、または、スパッタ法を用いて、絶縁膜107を成膜してもよい。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明した半導体装置に含まれているトランジスタにおいて、酸化物半導体膜に適用可能な一態様について説明する。
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline Oxide Semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous like Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であって不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(completely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため、物性的には非晶質酸化物半導体に近いといえる。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図26(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
図26(A)の領域(1)を拡大したCs補正高分解能TEM像を図26(B)に示す。図26(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図26(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図26(C)は、特徴的な原子配列を、補助線で示したものである。図26(B)および図26(C)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造となる(図26(D)参照。)。図26(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図26(D)に示す領域5161に相当する。
また、図27(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図27(A)の領域(1)、領域(2)および領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図27(B)、図27(C)および図27(D)に示す。図27(B)、図27(C)および図27(D)より、ペレットは、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図28(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図28(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図28(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図29(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図29(B)に示す。図29(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図29(B)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図29(B)における第2リングは(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図30は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図30より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図30中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図30中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態及び実施例に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、本発明の一態様のトランジスタを利用した回路の一例について図面を参照して説明する。
[断面構造]
図10(A)に本発明の一態様の半導体装置の断面図を示す。図10(A)に示す半導体装置は、下部に第1の半導体材料を用いたトランジスタ2200を有し、上部に第2の半導体材料を用いたトランジスタ2100を有している。トランジスタ2100には先の実施の形態で説明したトランジスタを用いることができ、図10(A)ではトランジスタ2100として、トランジスタ150を適用した例を示している。なお、一点鎖線より左側がトランジスタのチャネル長方向の断面、右側がチャネル幅方向の断面である。
なお、トランジスタ2100にバックゲートを設けた構成であってもよい。
第1の半導体材料と第2の半導体材料は異なる禁制帯幅を持つ材料とすることが好ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、有機半導体など)とし、第2の半導体材料を酸化物半導体とすることができる。酸化物半導体以外の材料として単結晶シリコンなどを用いたトランジスタは、高速動作が容易である。一方で、酸化物半導体を用いたトランジスタは、オフ電流が低い。
トランジスタ2200は、nチャネル型のトランジスタまたはpチャネル型のトランジスタのいずれであってもよく、回路によって適切なトランジスタを用いればよい。また、酸化物半導体を用いた本発明の一態様のトランジスタを用いるほかは、用いる材料や構造など、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図10(A)に示す構成では、トランジスタ2200の上部に、絶縁膜2201、絶縁膜2207を介してトランジスタ2100が設けられている。また、トランジスタ2200とトランジスタ2100の間には、複数の配線2202が設けられている。また、各種絶縁膜に埋め込まれた複数のプラグ2203により、上層と下層にそれぞれ設けられた配線や電極が電気的に接続されている。また、トランジスタ2100を覆う絶縁膜2204と、絶縁膜2204上に配線2205と、トランジスタ2100の一対の電極と同一の導電膜を加工して得られた配線2206と、が設けられている。
このように、2種類のトランジスタを積層することにより、回路の占有面積が低減され、より高密度に複数の回路を配置することができる。
ここで、下層に設けられるトランジスタ2200にシリコン系半導体材料を用いた場合、トランジスタ2200の半導体膜の近傍に設けられる絶縁膜中の水素はシリコンのダングリングボンドを終端し、トランジスタ2200の信頼性を向上させる効果がある。一方、上層に設けられるトランジスタ2100に酸化物半導体を用いた場合、トランジスタ2100の半導体膜の近傍に設けられる絶縁膜中の水素は、酸化物半導体中にキャリアを生成する要因の一つとなるため、トランジスタ2100の信頼性を低下させる要因となる場合がある。したがって、シリコン系半導体材料を用いたトランジスタ2200の上層に酸化物半導体を用いたトランジスタ2100を積層して設ける場合、これらの間に水素の拡散を防止する機能を有する絶縁膜2207を設けることは特に効果的である。絶縁膜2207により、下層に水素を閉じ込めることでトランジスタ2200の信頼性が向上することに加え、下層から上層に水素が拡散することが抑制されることでトランジスタ2100の信頼性も同時に向上させることができる。
絶縁膜2207としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
また、酸化物半導体膜を含んで構成されるトランジスタ2100を覆うように、トランジスタ2100上に水素の拡散を防止する機能を有するブロック膜2208(トランジスタ150では絶縁膜107に相当)を形成することが好ましい。ブロック膜2208としては、絶縁膜2207と同様の材料を用いることができ、特に酸化アルミニウムを適用することが好ましい。酸化アルミニウム膜は、水素、水分などの不純物及び酸素の双方に対して膜を透過させない遮断(ブロッキング)効果が高い。したがって、トランジスタ2100を覆うブロック膜2208として酸化アルミニウム膜を用いることで、トランジスタ2100に含まれる酸化物半導体膜からの酸素の脱離を防止するとともに、酸化物半導体膜への水及び水素の混入を防止することができる。
なお、トランジスタ2200は、プレーナ型のトランジスタだけでなく、様々なタイプのトランジスタとすることができる。例えば、FIN(フィン)型、TRI−GATE(トライゲート)型などのトランジスタなどとすることができる。その場合の断面図の例を、図10(D)に示す。半導体基板2211の上に、絶縁膜2212が設けられている。半導体基板2211は、先端の細い凸部(フィンともいう)を有する。なお、凸部の上には、絶縁膜が設けられていてもよい。その絶縁膜は、凸部を形成するときに、半導体基板2211がエッチングされないようにするためのマスクとして機能するものである。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の凸部であってもよいし、先端が太い凸部であってもよい。半導体基板2211の凸部の上には、ゲート絶縁膜2214が設けられ、その上には、ゲート電極2213が設けられている。なお、本実施の形態では、ゲート電極2213は2層構造であるがこれに限られず、単層でも3層以上でもよい。半導体基板2211には、ソース領域及びドレイン領域2215が形成されている。なお、ここでは、半導体基板2211が、凸部を有する例を示したが、本発明の一態様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸部を有する半導体領域を形成しても構わない。
[回路構成例]
上記構成において、トランジスタ2100やトランジスタ2200の電極の接続構成を異ならせることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導体装置を用いることにより実現できる回路構成の例を説明する。
〔CMOS回路〕
図10(B)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型のトランジスタ2100を直列に接続し、且つそれぞれのゲートを接続した、いわゆるCMOS回路の構成を示している。
〔アナログスイッチ〕
また、図10(C)に示す回路図は、トランジスタ2100とトランジスタ2200のそれぞれのソースとドレインを接続した構成を示している。このような構成とすることで、いわゆるアナログスイッチとして機能させることができる。
〔記憶装置の例〕
本発明の一態様であるトランジスタを使用し、電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図11に示す。
図11(A)に示す半導体装置は、第1の半導体材料を用いたトランジスタ3200と第2の半導体材料を用いたトランジスタ3300、及び容量素子3400を有している。なお、トランジスタ3300としては、先の実施の形態で説明したトランジスタを用いることができる。
図11(B)に図11(A)に示す半導体装置の断面図を示す。当該断面図の半導体装置では、トランジスタ3300にバックゲートを設けた構成を示している。
トランジスタ3300は、酸化物半導体を有する半導体膜にチャネルが形成されるトランジスタである。トランジスタ3300は、オフ電流が小さいため、これを用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、或いは、リフレッシュ動作の頻度が極めて少ない半導体記憶装置とすることが可能となるため、消費電力を十分に低減することができる。
図11(A)において、第1の配線3001はトランジスタ3200のソース電極と電気的に接続され、第2の配線3002はトランジスタ3200のドレイン電極と電気的に接続されている。また、第3の配線3003はトランジスタ3300のソース電極またはドレイン電極の一方と電気的に接続され、第4の配線3004はトランジスタ3300のゲート電極と電気的に接続されている。そして、トランジスタ3200のゲート電極は、トランジスタ3300のソース電極またはドレイン電極の他方、及び容量素子3400の第1の端子と電気的に接続され、第5の配線3005は容量素子3400の第2の端子と電気的に接続されている。
図11(A)に示す半導体装置では、トランジスタ3200のゲート電極の電位が保持可能という特徴を活かすことで、次のように、情報の書き込み、保持、読み出しが可能である。
情報の書き込み及び保持について説明する。まず、第4の配線3004の電位を、トランジスタ3300がオン状態となる電位にして、トランジスタ3300をオン状態とする。これにより、第3の配線3003の電位が、トランジスタ3200のゲート電極、及び容量素子3400に与えられる。すなわち、トランジスタ3200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という)のいずれかが与えられるものとする。その後、第4の配線3004の電位を、トランジスタ3300がオフ状態となる電位にして、トランジスタ3300をオフ状態とすることにより、トランジスタ3200のゲートに与えられた電荷が保持される(保持)。
トランジスタ3300のオフ電流は極めて小さいため、トランジスタ3200のゲートの電荷は長時間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、トランジスタ3200のゲートに保持された電荷量に応じて、第2の配線3002は異なる電位をとる。一般に、トランジスタ3200をnチャネル型とすると、トランジスタ3200のゲート電極にHighレベル電荷が与えられている場合の見かけのしきい値Vth_Hは、トランジスタ3200のゲート電極にLowレベル電荷が与えられている場合の見かけのしきい値Vth_Lより低くなるためである。ここで、見かけのしきい値電圧とは、トランジスタ3200を「オン状態」とするために必要な第5の配線3005の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることにより、トランジスタ3200のゲートに与えられた電荷を判別できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジスタ3200は「オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<Vth_L)となっても、トランジスタ3200は「オフ状態」のままである。このため、第2の配線3002の電位を判別することで、保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置して用いる場合、所望のメモリセルの情報のみを読み出せることが必要になる。このように情報を読み出さない場合には、ゲートの状態にかかわらずトランジスタ3200が「オフ状態」となるような電位、つまり、Vth_Hより小さい電位を第5の配線3005に与えればよい。または、ゲートの状態にかかわらずトランジスタ3200が「オン状態」となるような電位、つまり、Vth_Lより大きい電位を第5の配線3005に与えればよい。
図11(C)に示す半導体装置は、トランジスタ3200を設けていない点で図11(A)と相違している。この場合も上記と同様の動作により情報の書き込み及び保持動作が可能である。
次に、情報の読み出しについて説明する。トランジスタ3300がオン状態となると、浮遊状態である第3の配線3003と容量素子3400とが導通し、第3の配線3003と容量素子3400の間で電荷が再分配される。その結果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量素子3400の第1の端子の電位(あるいは容量素子3400に蓄積された電荷)によって、異なる値をとる。
例えば、容量素子3400の第1の端子の電位をV、容量素子3400の容量をC、第3の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素子3400の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとすると、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すことができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体材料が適用されたトランジスタを用い、トランジスタ3300として第2の半導体材料が適用されたトランジスタを駆動回路上に積層して設ける構成とすればよい。
本実施の形態に示す半導体装置では、チャネル形成領域に酸化物半導体を用いたオフ電流の極めて小さいトランジスタを適用することで、極めて長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することができる。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、本実施の形態に示す半導体装置では、情報の書き込みに高い電圧を必要とせず、素子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため、ゲート絶縁膜の劣化といった問題が全く生じない。すなわち、開示する発明に係る半導体装置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報の書き込みが行われるため、高速な動作も容易に実現しうる。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、先の実施の形態で説明したトランジスタ、または記憶装置を含むRFタグについて、図12を参照して説明する。
本実施の形態におけるRFタグは、内部に記憶回路を有し、記憶回路に必要な情報を記憶し、非接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証システムなどに用いることが可能である。なお、これらの用途に用いるためには極めて高い信頼性が要求される。
RFタグの構成について図12を用いて説明する。図12は、RFタグの構成例を示すブロック図である。
図12に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどともいう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ804を有する。またRFタグ800は、整流回路805、定電圧回路806、復調回路807、変調回路808、論理回路809、記憶回路810、ROM811を有している。なお、復調回路807に含まれる整流作用を示すトランジスタに逆方向電流を十分に抑制することが可能な材料、例えば、酸化物半導体が用いられた構成としてもよい。これにより、逆方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止できる。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。なお、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式の3つに大別される。本実施の形態に示すRFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアンテナ802との間で無線信号803の送受信を行うためのものである。また、整流回路805は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流、例えば、半波2倍圧整流し、後段に設けられた容量素子により、整流された信号を平滑化することで入力電位を生成するための回路である。なお、整流回路805の入力側または出力側には、リミッタ回路を設けてもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御するための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路809のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成するための回路である。また、変調回路808は、アンテナ804より出力するデータに応じて変調を行うための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行うための回路である。
なお、上述の各回路は、必要に応じて、適宜、取捨することができる。
ここで、先の実施の形態で説明した記憶装置を、記憶回路810に用いることができる。本発明の一態様の記憶回路は、電源が遮断された状態であっても情報を保持できるため、RFタグに好適に用いることができる。さらに本発明の一態様の記憶回路は、データの書き込みに必要な電力(電圧)が従来の不揮発性メモリに比べて著しく小さいため、データの読み出し時と書込み時の最大通信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様の記憶回路は、不揮発性のメモリとして用いることが可能であるため、ROM811に適用することもできる。その場合には、生産者がROM811にデータを書き込むためのコマンドを別途用意し、ユーザが自由に書き換えできないようにしておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷することで、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にのみ固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になることがなく出荷後の製品に対応した顧客管理が容易となる。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、先の実施の形態で説明した記憶装置を含むCPUについて説明する。
図13は、先の実施の形態で説明したトランジスタを少なくとも一部に用いたCPUの一例の構成を示すブロック図である。
図13に示すCPUは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198、書き換え可能なROM1199、及びROMインターフェース1189を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199及びROMインターフェース1189は、別チップに設けてもよい。もちろん、図13に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば、図13に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行う。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行う。
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、及びレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成する内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
図13に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ1196のメモリセルとして、先の実施の形態に示したトランジスタを用いることができる。
図13に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
図14は、レジスタ1196として用いることのできる記憶素子の回路図の一例である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有する。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ1210と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさらに有していても良い。
ここで、回路1202には、先の実施の形態で説明した記憶装置を用いることができる。記憶素子1200への電源電圧の供給が停止した際、回路1202のトランジスタ1209の第1ゲートには接地電位(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする。例えば、トランジスタ1209の第1ゲートが抵抗等の負荷を介して接地される構成とする。
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用いて構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)のトランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203はトランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1213のオン状態またはオフ状態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとドレインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソースとドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1214のオン状態またはオフ状態)が選択される。
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のうちの一方、及びトランジスタ1210のゲートと電気的に接続される。ここで、接続部分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1208の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。
なお、容量素子1207及び容量素子1208は、トランジスタや配線の寄生容量等を積極的に利用することによって省略することも可能である。
トランジスタ1209の第1ゲート(第1のゲート電極)には、制御信号WEが入力される。スイッチ1203及びスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態となる。
なお、図14におけるトランジスタ1209では第2ゲート(第2のゲート電極:バックゲート)を有する構成を図示している。第1ゲートには制御信号WEを入力し、第2ゲートには制御信号WE2を入力することができる。制御信号WE2は、一定の電位の信号とすればよい。当該一定の電位には、例えば、接地電位GNDやトランジスタ1209のソース電位よりも小さい電位などが選ばれる。このとき、制御信号WE2は、トランジスタ1209のしきい値電圧を制御するための電位信号であり、トランジスタ1209のゲート電圧が0Vの時のドレイン電流をより低減することができる。また、制御信号WE2は、制御信号WEと同じ電位信号であってもよい。なお、トランジスタ1209としては、第2ゲートを有さないトランジスタを用いることもできる。
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータに対応する信号が入力される。図14では、回路1201から出力された信号が、トランジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206によってその論理値が反転された反転信号となり、回路1220を介して回路1201に入力される。
なお、図14では、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206及び回路1220を介して回路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号を当該ノードに入力することができる。
また、図14において、記憶素子1200に用いられるトランジスタのうち、トランジスタ1209以外のトランジスタは、酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることができる。例えば、シリコン層またはシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1200に用いられるトランジスタ全てを、チャネルが酸化物半導体膜で形成されるトランジスタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも、チャネルが酸化物半導体膜で形成されるトランジスタを含んでいてもよく、残りのトランジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることもできる。
図14における回路1201には、例えばフリップフロップ回路を用いることができる。また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いることができる。
本発明の一態様のける半導体装置では、記憶素子1200に電源電圧が供給されない間は、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208によって保持することができる。
また、酸化物半導体膜にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例えば、酸化物半導体膜にチャネルが形成されるトランジスタのオフ電流は、結晶性を有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そのため、当該トランジスタをトランジスタ1209として用いることによって、記憶素子1200に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(データ)を保持することが可能である。
また、スイッチ1203及びスイッチ1204を設けることによって、プリチャージ動作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が元のデータを保持しなおすまでの時間を短くすることができる。
また、回路1202において、容量素子1208によって保持された信号はトランジスタ1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開された後、容量素子1208によって保持された信号を、トランジスタ1210の状態(オン状態、またはオフ状態)に変換して、回路1202から読み出すことができる。それ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出すことが可能である。
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を抑えることができる。
本実施の形態では、記憶素子1200をCPUに用いる例として説明したが、記憶素子1200は、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSI、RF(Radio Frequency)デバイスにも応用可能である。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、本発明の一態様のトランジスタを利用した表示装置の構成例について説明する。
[構成例]
図15(A)は、本発明の一態様の表示装置の上面図であり、図15(B)は、本発明の一態様の表示装置の画素に液晶素子を適用する場合に用いることができる画素回路を説明するための回路図である。また、図15(C)は、本発明の一態様の表示装置の画素に有機EL素子を適用する場合に用いることができる画素回路を説明するための回路図である。
画素部に配置するトランジスタは、先の実施の形態に従って形成することができる。また、当該トランジスタはnチャネル型とすることが容易なので、駆動回路のうち、nチャネル型トランジスタで構成することができる駆動回路の一部を画素部のトランジスタと同一基板上に形成する。このように、画素部や駆動回路に先の実施の形態に示すトランジスタを用いることにより、信頼性の高い表示装置を提供することができる。
アクティブマトリクス型表示装置の上面図の一例を図15(A)に示す。表示装置の基板700上には、画素部701、第1の走査線駆動回路702、第2の走査線駆動回路703、信号線駆動回路704を有する。画素部701には、複数の信号線が信号線駆動回路704から延伸して配置され、複数の走査線が第1の走査線駆動回路702、及び第2の走査線駆動回路703から延伸して配置されている。なお走査線と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に設けられている。また、表示装置の基板700はFPC(Flexible Printed Circuit)等の接続部を介して、タイミング制御回路(コントローラ、制御ICともいう)に接続されている。
図15(A)では、第1の走査線駆動回路702、第2の走査線駆動回路703、信号線駆動回路704は、画素部701と同じ基板700上に形成される。そのため、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また、基板700の外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接続数が増える。同じ基板700上に駆動回路を設けた場合、その配線間の接続数を減らすことができ、信頼性の向上、または歩留まりの向上を図ることができる。なお、第1の走査線駆動回路702、第2の走査線駆動回路703、信号線駆動回路704のいずれかが基板700上に実装された構成や基板700の外部に設けられた構成としてもよい。
〔液晶表示装置〕
また、画素の回路構成の一例を図15(B)に示す。ここでは、一例としてVA型液晶表示装置の画素に適用することができる画素回路を示す。
この画素回路は、一つの画素に複数の画素電極層を有する構成に適用できる。それぞれの画素電極層は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動できるように構成されている。これにより、マルチドメイン設計された画素の個々の画素電極層に印加する信号を独立して制御できる。
トランジスタ716のゲート配線712と、トランジスタ717のゲート配線713には、異なるゲート信号を与えることができるように分離されている。一方、データ線714は、トランジスタ716とトランジスタ717で共通に用いられている。トランジスタ716とトランジスタ717は先の実施の形態で説明するトランジスタを適宜用いることができる。これにより、信頼性の高い液晶表示装置を提供することができる。
また、トランジスタ716には、第1の画素電極層が電気的に接続され、トランジスタ717には、第2の画素電極層が電気的に接続される。第1の画素電極層と第2の画素電極層とは分離されている。なお、第1の画素電極層及び第2の画素電極層の形状としては、特に限定は無い。例えば、第1の画素電極層はV字状とすればよい。
トランジスタ716のゲート電極はゲート配線712と接続され、トランジスタ717のゲート電極はゲート配線713と接続されている。ゲート配線712とゲート配線713に異なるゲート信号を与えてトランジスタ716とトランジスタ717の動作タイミングを異ならせ、液晶の配向を制御できる。
また、容量配線710と、誘電体として機能するゲート絶縁膜と、第1の画素電極層または第2の画素電極層と電気的に接続する容量電極とで保持容量を形成してもよい。
マルチドメイン設計では、一画素に第1の液晶素子718と第2の液晶素子719を備える。第1の液晶素子718は第1の画素電極層と対向電極層とその間の液晶層とで構成され、第2の液晶素子719は第2の画素電極層と対向電極層とその間の液晶層とで構成される。
なお、図15(B)に示す画素回路は、これに限定されない。例えば、図15(B)に示す画素回路に新たにスイッチ、抵抗素子、容量素子、トランジスタ、センサ、または論理回路などを追加してもよい。
〔有機EL表示装置〕
画素の回路構成の他の一例を図15(C)に示す。ここでは、有機EL素子を用いた表示装置の画素構造を示す。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極の一方から電子が、他方から正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、電子及び正孔が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
図15(C)は、適用可能な画素回路の一例を示す図である。ここではnチャネル型のトランジスタを1つの画素に2つ用いる例を示す。また、当該画素回路は、デジタル時間階調駆動を適用することができる。
適用可能な画素回路の構成及びデジタル時間階調駆動を適用した場合の画素の動作について説明する。
画素720は、スイッチング用トランジスタ721、駆動用トランジスタ722、発光素子724及び容量素子723を有している。スイッチング用トランジスタ721は、ゲート電極層が走査線726に接続され、第1電極(ソース電極層及びドレイン電極層の一方)が信号線725に接続され、第2電極(ソース電極層及びドレイン電極層の他方)が駆動用トランジスタ722のゲート電極層に接続されている。駆動用トランジスタ722は、ゲート電極層が容量素子723を介して電源線727に接続され、第1電極が電源線727に接続され、第2電極が発光素子724の第1電極(画素電極)に接続されている。発光素子724の第2電極は共通電極728に相当する。共通電極728は、同一基板上に形成される共通電位線と電気的に接続される。
スイッチング用トランジスタ721及び駆動用トランジスタ722には先の実施の形態で説明するトランジスタを適宜用いることができる。これにより、信頼性の高い有機EL表示装置を提供することができる。
発光素子724の第2電極(共通電極728)の電位は低電源電位に設定する。なお、低電源電位とは、電源線727に供給される高電源電位より低い電位であり、例えばGND、0Vなどを低電源電位として設定することができる。発光素子724の順方向のしきい値電圧以上となるように高電源電位と低電源電位を設定し、その電位差を発光素子724に印加することにより、発光素子724に電流を流して発光させる。なお、発光素子724の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。
なお、容量素子723は駆動用トランジスタ722のゲート容量を代用することにより省略できる。
次に、駆動用トランジスタ722に入力する信号について説明する。電圧入力電圧駆動方式の場合、駆動用トランジスタ722が十分にオンするか、オフするかの二つの状態となるようなビデオ信号を、駆動用トランジスタ722に入力する。なお、駆動用トランジスタ722を線形領域で動作させるために、電源線727の電圧よりも高い電圧を駆動用トランジスタ722のゲート電極層にかける。また、信号線725には、電源線電圧に駆動用トランジスタ722の閾値電圧Vthを加えた値以上の電圧をかける。
アナログ階調駆動を行う場合、駆動用トランジスタ722のゲート電極層に発光素子724の順方向電圧に駆動用トランジスタ722のしきい値電圧Vthを加えた値以上の電圧をかける。なお、駆動用トランジスタ722が飽和領域で動作するようにビデオ信号を入力し、発光素子724に電流を流す。また、駆動用トランジスタ722を飽和領域で動作させるために、電源線727の電位を、駆動用トランジスタ722のゲート電位より高くする。ビデオ信号をアナログとすることで、発光素子724にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、画素回路の構成は、図15(C)に示す画素構成に限定されない。例えば、図15(C)に示す画素回路にスイッチ、抵抗素子、容量素子、センサ、トランジスタまたは論理回路などを追加してもよい。
図15で例示した回路に先の実施の形態で例示したトランジスタを適用する場合、低電位側にソース電極(第1の電極)、高電位側にドレイン電極(第2の電極)がそれぞれ電気的に接続される構成とする。さらに、制御回路等により第1のゲート電極の電位を制御し、第2のゲート電極には図示しない配線によりソース電極に与える電位よりも低い電位など、上記で例示した電位を入力可能な構成とすればよい。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、及び発光素子を有する装置である発光装置は、様々な形態を用いること、または様々な素子を有することができる。表示素子、表示装置、発光素子または発光装置は、例えば、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、MIRASOL(登録商標)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子など、の少なくとも一つを有している。これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していてもよい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク、電子粉流体(登録商標)、または電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の半導体装置を適用した表示モジュールについて、図16を用いて説明を行う。
図16に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8011、タッチパネル8004などは、設けられない場合もある。
本発明の一態様の半導体装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、表示パネル8006の各画素内に光センサを設け、光学式のタッチパネル機能を付加することも可能である。または、表示パネル8006の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネル機能を付加することも可能である。また、表示パネル8006に位置入力装置としての機能が付加された表示モジュールを用いるようにしても良い。なお、位置入力装置としての機能は、表示パネル8006にタッチパネル8004を設けることで付加することができる。
バックライトユニット8007は、光源8008を有する。光源8008をバックライトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010から発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリー8011であってもよい。なお、商用電源を用いる場合には、バッテリー8011を省略することができる。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
(実施の形態8)
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いることができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器として、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図17に示す。
図17(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部904、マイクロフォン905、スピーカー906、操作キー907、スタイラス908等を有する。なお、図17(A)に示した携帯型ゲーム機は、2つの表示部903と表示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。
図17(B)は携帯データ端末であり、第1筐体911、第2筐体912、第1表示部913、第2表示部914、接続部915、操作キー916等を有する。第1表示部913は第1筐体911に設けられており、第2表示部914は第2筐体912に設けられている。そして、第1筐体911と第2筐体912とは、接続部915により接続されており、第1筐体911と第2筐体912の間の角度は、接続部915により変更が可能である。第1表示部913における映像を、接続部915における第1筐体911と第2筐体912との間の角度に従って、切り替える構成としても良い。また、第1表示部913及び第2表示部914の少なくとも一方に、位置入力装置としての機能が付加された表示装置を用いるようにしても良い。なお、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。或いは、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。
図17(C)はノート型パーソナルコンピュータであり、筐体921、表示部922、キーボード923、ポインティングデバイス924等を有する。
図17(D)は腕時計型の情報端末であり、筐体931、表示部932、リストバンド933等を有する。表示部932はタッチパネルとなっていてもよい。
図17(E)はビデオカメラであり、第1筐体941、第2筐体942、表示部943、操作キー944、レンズ945、接続部946等を有する。操作キー944及びレンズ945は第1筐体941に設けられており、表示部943は第2筐体942に設けられている。そして、第1筐体941と第2筐体942とは、接続部946により接続されており、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能である。表示部943における映像を、接続部946における第1筐体941と第2筐体942との間の角度に従って切り替える構成としても良い。
図17(F)は普通自動車であり、車体951、車輪952、ダッシュボード953、ライト954等を有する。
なお、本実施の形態は、本明細書で示す他の実施の形態または実施例と適宜組み合わせることができる。
(実施の形態9)
本実施の形態では、本発明の一態様に係るRFデバイスの使用例について図18を用いながら説明する。RFデバイスの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等、図18(A)参照)、乗り物類(自転車等、図18(C)参照)、包装用容器類(包装紙やボトル等、図18(D)参照)、記録媒体(DVDやビデオテープ等、図18(B)参照)、身の回り品(鞄や眼鏡等)、食品類、植物類、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電子機器(液晶表示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、若しくは各物品に取り付ける荷札(図18(E)、図18(F)参照)等に設けて使用することができる。
本発明の一態様に係るRFデバイス4000は、表面に貼る、または埋め込むことにより、物品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFデバイス4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、または証書類等に本発明の一態様に係るRFデバイス4000を設けることにより、認証機能を設けることができ、この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、または電子機器等に本発明の一態様に係るRFデバイスを取り付けることにより、検品システム等のシステムの効率化を図ることができる。また、乗り物類であっても、本発明の一態様に係るRFデバイスを取り付けることにより、盗難などに対するセキュリティ性を高めることができる。
以上のように、本発明の一態様に係わるRFデバイスを本実施の形態に挙げた各用途に用いることにより、情報の書込みや読み出しを含む動作電力を低減できるため、最大通信距離を長くとることが可能となる。また、電力が遮断された状態であっても情報を極めて長い期間保持可能であるため、書き込みや読み出しの頻度が低い用途にも好適に用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態及び実施例と適宜組み合わせることができる。
本実施例では、トランジスタについて作製し、断面形状を調べた。また、作製したトランジスタの電気特性を評価した。
はじめに、実施例試料の作製方法について示す。
まず、シリコンウェハを熱酸化し、シリコンウェハ表面に100nmの熱酸化膜を形成した。熱酸化の条件は950℃で4時間であり、熱酸化の雰囲気は、HClが酸素に対して3体積%の割合で含まれるものとした。
次に、熱酸化膜上に、PECVD法によって300nmの酸化窒化シリコン膜を形成した。成膜ガスとして、流量2.3sccmのシラン及び流量800sccmの一酸化二窒素を原料ガスとし、反応室の圧力を40Paとし、基板温度を400℃、50Wの電力(RF)を印加することで成膜した。
次に、酸化窒化シリコン膜を研磨処理後、加熱処理を行った。加熱処理は真空で、450℃で1時間行った。
次に、酸化窒化シリコン膜へイオン注入法を用いて酸素イオン(16)を注入した。酸素イオンの注入条件は、加速電圧を60kV、ドーズ量を2.0×1016ions/cm、チルト角を7°、ツイスト角を72°とした。
次に、酸化窒化シリコン膜上にスパッタ法によって10nmの第1の酸化物半導体膜と40nmの第2の酸化物半導体膜を積層して成膜した。成膜条件は、第1の酸化物半導体膜はIn:Ga:Zn=1:3:2[原子数比]のターゲット(IGZO(132)とも表記する)を用い、アルゴンおよび酸素(アルゴン:酸素=30sccm:15sccm)混合雰囲気下において、圧力0.4Pa、電源電力(DC)0.5kWを印加し、ターゲットと基板の間の距離を60mm、基板温度200℃として成膜し、第2の酸化物半導体膜はIn:Ga:Zn=1:1:1[原子数比]のターゲット(IGZO(111))を用い、アルゴンおよび酸素(アルゴン:酸素=30sccm:15sccm)混合雰囲気下において、圧力0.4Pa、電源電力(DC)0.5kWを印加し、ターゲットと基板の間の距離を60mm、基板温度300℃として成膜した。
次に、加熱処理を行った。ここでは450℃の窒素雰囲気で1時間加熱処理を行った後、450℃の酸素雰囲気で1時間の加熱処理を行った。
次に、第2の酸化物半導体膜上に、タングステンターゲットを用い、成膜ガスとして流量80sccmのアルゴン(Ar)ガス雰囲気下において、圧力0.8Pa、基板温度を230℃、ターゲットと基板の間の距離を60mm、電源電力(DC)1.0kW印加する条件を用いたスパッタ法により、タングステン膜を10nm成膜した。このタングステン膜はハードマスクとして機能する。
次に、タングステン膜上にレジストマスクを形成し、ICPエッチング法により、流量100sccmの四フッ化炭素(CF)雰囲気下、電源電力2000W、バイアス電力50W、圧力0.67Pa、基板温度‐10℃において第1のエッチングをしたのち、ICPエッチング法により、流量60sccmの四フッ化炭素(CF)及び流量40sccmの酸素(O)の混合雰囲気下、電源電力1000W、バイアス電力25W、圧力2.0Pa、基板温度‐10℃において第2のエッチングをしてタングステン膜を加工した。
次に、第1の酸化物半導体膜及び第2の酸化物半導体膜を、ICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力3.0Pa、基板温度70℃において第1のエッチングをしたのち、ICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力1.0Pa、基板温度70℃において第2のエッチングをして島状の第1の酸化物半導体膜及び第2の酸化物半導体膜に加工した。
次に、第2の酸化物半導体膜上に、タングステンターゲットを用い、成膜ガスとして流量80sccmのアルゴン(Ar)ガス雰囲気下において、圧力0.8Pa、基板温度を230℃、ターゲットと基板の間の距離を60mm、電源電力(DC)1.0kW印加する条件を用いたスパッタ法により、タングステン(W)膜を10nm成膜した。
次に、タングステン膜上にレジストマスクを形成し、ICPエッチング法により、流量100sccmの四フッ化炭素(CF)雰囲気下、電源電力2000W、バイアス電力50W、圧力0.67Pa、基板温度‐10℃において第1のエッチングをしたのち、ICPエッチング法により、流量60sccmの四フッ化炭素(CF)及び流量40sccmの酸素(O)の混合雰囲気下、電源電力1000W、バイアス電力25W、圧力2.0Pa、基板温度‐10℃において第2のエッチングをしてタングステン膜を加工し、ソース電極及びドレイン電極を形成した。
次に、第2の酸化物半導体膜、ソース電極及びドレイン電極上にIn:Ga:Zn=1:3:2[原子数比]のターゲット(IGZO(132))を用いたスパッタ法により、膜厚5nmの第3の酸化物半導体膜を形成した。成膜条件は、アルゴンおよび酸素(アルゴン:酸素=30sccm:15sccm)混合雰囲気下において、圧力0.4Pa、電源電力(DC)0.5kWを印加し、ターゲットと基板の間の距離を60mm、基板温度200℃とした。
次に、第3の酸化物半導体膜上に流量1sccmのシラン(SiH)及び流量800sccmの一酸化二窒素(NO)を原料ガスとし、反応室の圧力を200Pa、基板温度を350℃、60MHzの高周波電源を用いて150Wの高周波電力を平行平板電極に供給したPECVD法により、ゲート絶縁膜となる酸化窒化シリコン(SiON)膜を10nm成膜した。
次に、酸化窒化シリコン膜上に、窒化チタンターゲットを用い、成膜ガスとして流量50sccmの窒素(N)ガスを用いて、圧力を0.2Pa、基板温度を室温、ターゲットと基板の間の距離を400mm、電源電力(DC)12kW印加する条件を用いたスパッタ法により、窒化チタン膜を10nm成膜し、その上に、タングステンターゲットを用い、成膜ガスとして流量100sccmのアルゴン(Ar)ガスを用いて、圧力を2.0Pa、基板温度を230℃、ターゲットと基板の間の距離を60mm、電源電力(DC)1.0kW印加する条件を用いたスパッタ法により、タングステン(W)膜を10nm成膜した。
次に、窒化チタン膜及びタングステン膜をICPエッチング法により、流量55sccmの四フッ化炭素(CF)ガス、流量45sccmの塩素(Cl)ガス及び流量55sccmの酸素(O)混合雰囲気下、電源電力3000W、バイアス電力110W、圧力0.67Paにて第1のエッチングを行い、さらにICPエッチング法により、流量50sccmの塩素(Cl)ガス及び流量150sccmの三塩化ホウ素(BCl)ガスの混合雰囲気下、電源電力1000W、バイアス電力50W、圧力0.67Paにて第2のエッチングを行い、ゲート電極を形成した。
次に、ゲート電極をマスクとして、ゲート絶縁膜をICPエッチング法により、流量36sccmのトリフルオロメタン(CHF)ガス及び流量144sccmのヘリウム(He)ガスの混合雰囲気下、電源電力25W、バイアス電力425W、圧力7.5Paにてエッチングして島状のゲート絶縁膜に加工した。
次に、ゲート電極をマスクとして、第3の酸化物半導体膜をICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力3.0Pa、基板温度70℃において第1のエッチングをしたのち、ICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力1.0Pa、基板温度70℃において第2のエッチングをして島状の第3の酸化物半導体膜に加工した。
次に、ゲート電極、ソース電極及びドレイン電極上に、スパッタ法を用いて酸化アルミニウム(AlO)膜を形成した。
スパッタ法を用いて40nmの酸化アルミニウム膜を形成した際の条件は、酸化アルミニウムターゲットを用い、成膜ガスとして流量25sccmのアルゴン(Ar)ガス及び流量25sccmの酸素(O)ガスを用いて、圧力を0.4Pa、基板温度を250℃、ターゲットと基板の間の距離を60mm、RF電力を2.5kW印加とした。
または、ゲート絶縁膜となる酸化窒化シリコン(SiON)膜まで上記の工程で行い、その後、上記条件にてゲート絶縁膜となる酸化窒化シリコン(SiON)膜及び第3の酸化物半導体膜をICPエッチング法により島状に加工した。その後、上述した工程にてゲート電極を形成し、ゲート電極、ソース電極及びドレイン電極上に、ALD法により基板温度250℃で、アルミニウム前駆体化合物を含む液体(TMAなど)を気化させた原料ガスと、酸化剤としてOの2種類のガスを用いて20nmの酸化アルミニウム膜を形成した。
次に、加熱処理を行った。ここでは350℃の酸素雰囲気で1時間加熱処理を行った。
次に、酸化アルミニウム膜上に流量5sccmのシラン(SiH)及び流量1000sccmの一酸化二窒素(NO)を原料ガスとし、反応室の圧力を133Pa、基板温度を325℃、13.56MHzの高周波電源を用いて35Wの高周波電力を平行平板電極に供給したPECVD法により、酸化窒化シリコン(SiON)膜を150nm成膜した。
以上の工程を経て、トランジスタを作製した。
酸化アルミニウム膜をスパッタ法で作製したトランジスタの断面STEM写真を図19に示す。図19(A)はチャネル長方向の断面図、図19(B)はチャネル幅方向の断面図である。また、酸化アルミニウム膜をALD法で作製したトランジスタの断面STEM写真を図20に示す。図20(A)はチャネル長方向の断面図、図20(B)はチャネル幅方向の断面図である。
図19で示すスパッタ法で成膜した酸化アルミニウム膜(AlOx)は、ゲート電極においてできる段差部分の被覆性が低く、局所的に膜厚が小さくなるため段差部分で段切れが生じる可能性があり、段切れによるトランジスタの電気特性の不良につながる恐れがある。
一方、図20で示すALD法で成膜した酸化アルミニウム膜(AlOx)は、原子レベルの薄膜層を積み重ねるため被覆性が良好であり、均一な膜厚で膜全体が成膜されている。
図20より、ALD法で成膜された酸化アルミニウム膜を用いることで良好な被覆性を得ることができ、トランジスタの特性を安定化させることができる。
次に、上記の工程で作製したトランジスタにおいて、ドレイン電圧(Vd:[V])が0.1Vまたは1Vとし、ゲート電圧(Vg:[V])を−3Vから3Vまで掃引した際の、ドレイン電流(Id:[A])の測定を行った。また、Vd=0.1Vのときの電界効果移動度(μFE:[cm/Vs])の測定を行った。なお、本実施例のトランジスタのサイズは、チャネル長が122nm、チャネル幅が45nmであった。各測定結果を図21に示す。
図21(A)は酸化アルミニウム膜をスパッタ法で作製したトランジスタの測定結果であり、図21(B)は酸化アルミニウム膜をALD法で作製したトランジスタの測定結果であり、横軸はゲート電圧(Vg:[V])、左側の縦軸はドレイン電流(Id:[A])、右側の縦軸は電界効果移動度(μFE:[cm/Vs])を示す。なお、「ドレイン電圧(Vd:[V])」とは、ソースを基準としたドレインとソースの電位差であり、「ゲート電圧(Vg:[V])」とは、ソースを基準としたゲートとソースの電位差である。
ここで、本明細書におけるしきい値電圧及びシフト値について説明する。しきい値電圧(Vth)は、ゲート電圧(Vg:[V])を横軸、ドレイン電流の平方根(Id1/2[A])を縦軸としてプロットしたVg−Id曲線において、曲線上の傾きが最大である点における接線と、Id1/2=0の直線(すなわちVg軸)との交点におけるゲート電圧と定義する。なお、ここでは、ドレイン電圧Vdを10Vとして、しきい値電圧を算出する。
また、本明細書におけるシフト値は、ゲート電圧(Vg[V])を横軸、ドレイン電流(Id[A])の対数を縦軸としてプロットしたVg−Id曲線において、曲線上の傾きが最大である点における接線と、Id=1.0×10−12[A]の直線との交点におけるゲート電圧と定義する。なお、ここではドレイン電圧Vdを10Vとして、シフト値を算出する。
図21(A)のトランジスタのオン電流(Vd=1V、Vg=2.7V)は3.41μA、電界効果移動度(Vd=0.1V)は18.75cm/Vs、シフト値(Vd=1V)は0.43V、S値(Vd=0.1V)は92.7mV/dec.、しきい値電圧(Vd=1V)は0.8Vであった。
また、図21(B)のトランジスタのオン電流(Vd=1V、Vg=2.7V)は4.65μA、電界効果移動度(Vd=0.1V)は20.92cm/Vs、シフト値(Vd=1V)は−0.01V、S値(Vd=0.1V)は85.7mV/dec.、しきい値電圧(Vd=1V)は0.4Vであった。
図21(A)及び図21(B)を比較すると、酸化アルミニウム膜をALD法で作製したトランジスタの方が特性のばらつきが酸化アルミニウム膜をスパッタ法で作製したトランジスタより小さく、良好な電気特性が得られることが分かった。
本実施例では、スパッタ法で成膜した酸化アルミニウム膜とALD法で成膜した酸化アルミニウム膜のTDS(Thermal Desorption Spectroscopy:昇温脱離ガス分光法)分析結果について説明する。はじめに、TDS評価に用いたサンプルについて説明する。
まず、シリコンウェハを熱酸化し、シリコンウェハ表面に100nmの熱酸化膜を形成した。熱酸化の条件は950℃で4時間であり、熱酸化の雰囲気は、HClが酸素に対して3体積%の割合で含まれるものとした。
次に、熱酸化膜上に酸化アルミニウム膜を成膜した。酸化アルミニウム膜はスパッタ法またはALD法で成膜した。
スパッタ法の条件は、酸化アルミニウムターゲットを用い、成膜ガスとして流量25sccmのアルゴン(Ar)ガス及び流量25sccmの酸素(O)ガスを用いて、圧力を0.4Pa、基板温度を250℃、ターゲットと基板の間の距離を60mm、RF電力を2.5kW印加とした。
ALD法の条件は、基板温度250℃で、アルミニウム前駆体化合物を含む液体(TMAなど)を気化させた原料ガスと、酸化剤としてOの2種類のガスを用いた。
なお、シリコンウェハ表面に100nmの熱酸化膜を形成したものをサンプル1、サンプル1の上にスパッタ法で酸化アルミニウム膜を20nm成膜したものをサンプル2、サンプル1の上にALD法で酸化アルミニウム膜を20nm成膜したものをサンプル3とし、各サンプルをTDS分析した。
図22にサンプル1乃至サンプル3において測定された質量電荷比m/z=32(たとえばO)のTDS結果を示す。図22(A)にサンプル1の測定結果、図22(B)にサンプル2の測定結果、図22(C)にサンプル3の測定結果をそれぞれ示す。
また、サンプル1の上にスパッタ法で酸化アルミニウム膜を40nm成膜し、その後、85℃で酸化アルミニウム膜をエッチングしたものをサンプル4、サンプル1の上にALD法で第1の酸化アルミニウム膜を10nm成膜し、第1の酸化アルミニウム膜の上にスパッタ法で第2の酸化アルミニウム膜を40nm成膜し、その後、85℃で第1の酸化アルミニウム膜及び第2の酸化アルミニウム膜をエッチングしたものをサンプル5、サンプル1の上にALD法で第1の酸化アルミニウム膜を20nm成膜し、第1の酸化アルミニウム膜の上にスパッタ法で第2の酸化アルミニウム膜を40nm成膜し、その後、85℃で第1の酸化アルミニウム膜及び第2の酸化アルミニウム膜をエッチングしたものをサンプル6とし、各サンプルをTDS分析した。
図23にサンプル4乃至サンプル6において測定された質量電荷比m/z=32(たとえばO)のTDS結果を示す。図23(A)にサンプル4の測定結果、図23(B)にサンプル5の測定結果、図23(C)にサンプル6の測定結果をそれぞれ示す。
図22及び図23に示すように、熱酸化膜、スパッタ法で成膜した酸化アルミニウム膜及びALD法で成膜した酸化アルミニウム膜からは質量電荷比m/z=32で検出されるイオン強度の鋭いピークは確認されなかった。なお、TDS分析したときの気体の全放出量は放出ガスのイオン強度の積分値に比例するため、上記の結果より熱酸化膜、スパッタ法で成膜した酸化アルミニウム膜及びALD法で成膜した酸化アルミニウム膜から放出される質量電荷比m/z=32で検出されるガスは確認されなかった。また、図23(A)に示すように、スパッタ法で酸化アルミニウム膜を成膜した後に、酸化アルミニウム膜をエッチングすることにより、質量電荷比m/z=32で検出されるガスの放出が確認された。一方、スパッタ法で成膜した酸化アルミニウム膜の下にALD法で成膜した酸化アルミニウム膜を成膜すると質量電荷比m/z=32で検出されるガスの放出は確認されなかった。すなわち、スパッタ法で成膜した酸化アルミニウム膜による質量電荷比m/z=32で検出されるガスの放出をALD法で成膜した酸化アルミニウム膜がブロックしていることが確認された。
本実施例では、トランジスタについて作製し、作製したトランジスタの電気特性を評価した。
はじめに、実施例試料の作製方法について示す。
まず、実施例1の試料の作製方法で説明したシリコンウェハを熱酸化し、シリコンウェハ表面に熱酸化膜を形成してから第3の酸化物半導体膜を形成する工程までを援用する。
次に、第3の酸化物半導体膜上にゲート絶縁膜を形成した。ゲート絶縁膜には、PECVD法で10nm成膜した酸化窒化シリコン膜、またはPECVD法で5nm成膜した酸化窒化シリコン膜に加えて酸化窒化シリコン膜上にALD法で10nm成膜した酸化アルミニウム膜の積層膜を用いた。
酸化窒化シリコン膜は、流量1sccmのシラン(SiH)及び流量800sccmの一酸化二窒素(NO)を原料ガスとし、反応室の圧力を200Pa、基板温度を350℃、60MHzの高周波電源を用いて150Wの高周波電力を平行平板電極に供給して成膜した。
酸化アルミニウム膜は、基板温度250℃で、アルミニウム前駆体化合物を含む液体(TMAなど)を気化させた原料ガスと、酸化剤としてOの2種類のガスを用いて成膜した。
次に、ゲート絶縁膜上に、窒化チタンターゲットを用い、成膜ガスとして流量50sccmの窒素(N)ガスを用いて、圧力を0.2Pa、基板温度を室温、ターゲットと基板の間の距離を400mm、電源電力(DC)12kW印加する条件を用いたスパッタ法により、窒化チタン膜を10nm成膜し、その上に、タングステンターゲットを用い、成膜ガスとして流量100sccmのアルゴン(Ar)ガスを用いて、圧力を2.0Pa、基板温度を230℃、ターゲットと基板の間の距離を60mm、電源電力(DC)1.0kW印加する条件を用いたスパッタ法により、タングステン(W)膜を10nm成膜した。
次に、窒化チタン膜及びタングステン膜をICPエッチング法により、流量55sccmの四フッ化炭素(CF)ガス、流量45sccmの塩素(Cl)ガス及び流量55sccmの酸素(O)混合雰囲気下、電源電力3000W、バイアス電力110W、圧力0.67Paにて第1のエッチングを行い、さらにICPエッチング法により、流量50sccmの塩素(Cl)ガス及び流量150sccmの三塩化ホウ素(BCl)ガスの混合雰囲気下、電源電力1000W、バイアス電力50W、圧力0.67Paにて第2のエッチングを行い、ゲート電極を形成した。
次に、ゲート電極をマスクとして、ゲート絶縁膜をICPエッチング法により、流量36sccmのトリフルオロメタン(CHF)ガス及び流量144sccmのヘリウム(He)ガスの混合雰囲気下、電源電力25W、バイアス電力425W、圧力7.5Paにてエッチングして島状のゲート絶縁膜に加工した。
次に、ゲート電極をマスクとして、第3の酸化物半導体膜をICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力3.0Pa、基板温度70℃において第1のエッチングをしたのち、ICPエッチング法により、流量16sccmのメタン(CH)及び流量32sccmのアルゴン(Ar)の混合雰囲気下、電源電力600W、バイアス電力50W、圧力1.0Pa、基板温度70℃において第2のエッチングをして島状の第3の酸化物半導体膜に加工した。
次に、ゲート電極、ソース電極及びドレイン電極上に、層間膜を形成した。層間膜には、スパッタ法または/およびALD法を用いて20nmまたは40nmの酸化アルミニウム膜を形成した。
スパッタ法で成膜された酸化アルミニウム膜の成膜条件は、酸化アルミニウムターゲットを用い、成膜ガスとして流量25sccmのアルゴン(Ar)ガス及び流量25sccmの酸素(O)ガスを用いて、圧力を0.4Pa、基板温度を250℃、ターゲットと基板の間の距離を60mm、RF電力を2.5kW印加とした。
ALD法で成膜された酸化アルミニウム膜の成膜条件は、基板温度250℃で、アルミニウム前駆体化合物を含む液体(TMAなど)を気化させた原料ガスと、酸化剤としてOの2種類のガスを用いた。
次に、加熱処理を行った。ここでは350℃の酸素雰囲気で1時間加熱処理を行った。
次に、層間膜上に流量5sccmのシラン(SiH)及び流量1000sccmの一酸化二窒素(NO)を原料ガスとし、反応室の圧力を133Pa、基板温度を325℃、13.56MHzの高周波電源を用いて35Wの高周波電力を平行平板電極に供給したPECVD法により、酸化窒化シリコン膜を150nm成膜した。
以上の工程を経て、トランジスタを作製した。
作製した各トランジスタにおいて、ドレイン電圧(Vd:[V])が0.1Vまたは1Vとし、ゲート電圧(Vg:[V])を−3Vから3Vまで掃引した際の、ドレイン電流(Id:[A])の測定を行った。なお、本実施例のトランジスタのサイズは、チャネル長Lが49nm、チャネル幅Wが45nm、Loff領域(低抵抗領域がゲート絶縁膜を介してゲート電極と互いに重ならない領域)が50nmであった。測定結果を図24に示す。また、図中、SP−AlOxはスパッタ法で成膜された酸化アルミニウム膜、ALD−AlOxはALD法で成膜された酸化アルミニウム膜、PECVD−SiONはPECVD法で成膜された酸化窒化シリコン膜を表す。
図24より、層間膜がALD−AlOx\SP−AlOxまたはALD−AlOxの場合(図24の上段右、下段左)、もしくはゲート絶縁膜にALD−AlOxを用いた場合(図24の下段中央、下段右)において、ゲート絶縁膜がPECVD−SiON、かつ層間膜がSP−AlOxの条件(図24の上段左)と比較して高いオン電流が得られていることが確認できた。
また、各トランジスタの酸化物半導体膜全体のシート抵抗を測定した。なお、トランジスタのサイズをチャネル長Lが100nmであり、チャネル幅Wが100nm、500nm、または1000nmのいずれかである3条件で測定を行った。図25にシート抵抗の測定結果を示す。
図25より、オン電流が高い条件では、シート抵抗が低い傾向になっていることが確認できた。
100 基板
101a 酸化物半導体膜
101b 酸化物半導体膜
101c 酸化物半導体膜
102 下地絶縁膜
103a ソース電極
103b ドレイン電極
104 ゲート絶縁膜
105 ゲート電極
107 絶縁膜
108 絶縁膜
109a 絶縁膜
109b 絶縁膜
110a 配線
110b 配線
141 低抵抗領域
142 低抵抗領域
150 トランジスタ
150a トランジスタ
150b トランジスタ
700 基板
701 画素部
702 走査線駆動回路
703 走査線駆動回路
704 信号線駆動回路
710 容量配線
712 ゲート配線
713 ゲート配線
714 データ線
716 トランジスタ
717 トランジスタ
718 液晶素子
719 液晶素子
720 画素
721 スイッチング用トランジスタ
722 駆動用トランジスタ
723 容量素子
724 発光素子
725 信号線
726 走査線
727 電源線
728 共通電極
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
901 筐体
902 筐体
903 表示部
904 表示部
905 マイクロフォン
906 スピーカー
907 操作キー
908 スタイラス
911 筐体
912 筐体
913 表示部
914 表示部
915 接続部
916 操作キー
921 筐体
922 表示部
923 キーボード
924 ポインティングデバイス
931 筐体
932 表示部
933 リストバンド
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 車体
952 車輪
953 ダッシュボード
954 ライト
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
2100 トランジスタ
2200 トランジスタ
2201 絶縁膜
2202 配線
2203 プラグ
2204 絶縁膜
2205 配線
2206 配線
2207 絶縁膜
2208 ブロック膜
2211 半導体基板
2212 絶縁膜
2213 ゲート電極
2214 ゲート絶縁膜
2215 ソース領域及びドレイン領域
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFデバイス
5100 ペレット
5120 基板
5161 領域
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (5)

  1. 酸化物半導体膜と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極と、絶縁膜と、を有する半導体装置であって、
    前記ソース電極は、前記酸化物半導体膜と接する領域を有し、
    前記ドレイン電極は、前記酸化物半導体膜と接する領域を有し、
    前記ゲート絶縁膜は、前記酸化物半導体膜と、前記ゲート電極との間に設けられ、
    前記絶縁膜は、前記ゲート電極上と、前記ゲート絶縁膜上と、に設けられ、
    前記絶縁膜は、第1の部分と、第2の部分と、を有し、
    前記第1の部分は、段差状になっている部分を有し、
    前記第2の部分は、段差状になっていない部分を有し、
    前記第1の部分は、第1の膜厚である部分を有し、
    前記第2の部分は、第2の膜厚である部分を有し、
    前記第2の膜厚は、前記第1の膜厚の1.0倍以上2.0倍以下であることを特徴とする半導体装置。
  2. 請求項1において、
    前記絶縁膜は、酸素と、アルミニウムと、を有することを特徴とする半導体装置。
  3. 請求項1または請求項2において、
    前記絶縁膜は、原子層成膜法により形成されていることを特徴とする半導体装置。
  4. 請求項1乃至請求項3のいずれか一において、
    前記第1の膜厚である部分は、前記ゲート電極と互いに重なる第1の領域と、前記ソース電極又は前記ドレイン電極と互いに重なる第2の領域と、を有することを特徴とする半導体装置。
  5. 請求項1乃至請求項4のいずれか一に記載の半導体装置を含むことを特徴とする電子機器。
JP2015075589A 2014-04-08 2015-04-02 半導体装置及び該半導体装置を含む電子機器 Withdrawn JP2016001722A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075589A JP2016001722A (ja) 2014-04-08 2015-04-02 半導体装置及び該半導体装置を含む電子機器

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014079475 2014-04-08
JP2014079475 2014-04-08
JP2014103168 2014-05-19
JP2014103168 2014-05-19
JP2015075589A JP2016001722A (ja) 2014-04-08 2015-04-02 半導体装置及び該半導体装置を含む電子機器

Publications (2)

Publication Number Publication Date
JP2016001722A true JP2016001722A (ja) 2016-01-07
JP2016001722A5 JP2016001722A5 (ja) 2018-05-24

Family

ID=54210475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075589A Withdrawn JP2016001722A (ja) 2014-04-08 2015-04-02 半導体装置及び該半導体装置を含む電子機器

Country Status (3)

Country Link
US (1) US20150287831A1 (ja)
JP (1) JP2016001722A (ja)
KR (1) KR20150126771A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191935A (ja) * 2016-04-08 2017-10-19 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
WO2017182910A1 (ja) * 2016-04-22 2017-10-26 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2020024995A (ja) * 2018-08-06 2020-02-13 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580971B (zh) * 2016-01-29 2017-05-01 Chip structure for detecting carbon monoxide concentration and method of manufacturing the same
KR20180124874A (ko) 2016-03-04 2018-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 그 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
US20230238248A1 (en) * 2022-01-26 2023-07-27 Nanya Technology Corporation Method of processing substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541237A (ja) * 2007-09-26 2010-12-24 イーストマン コダック カンパニー 原子層堆積による薄膜トランジスタの製造方法
JP2013520839A (ja) * 2010-02-26 2013-06-06 イーストマン コダック カンパニー 内側にへこんだ形状を含んだ縦型トランジスタ
JP2013229587A (ja) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd 半導体装置、及び当該半導体装置を有する電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010923A (en) * 1997-03-31 2000-01-04 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device utilizing annealed semiconductor layer as channel region
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP2010182819A (ja) * 2009-02-04 2010-08-19 Sony Corp 薄膜トランジスタおよび表示装置
KR101768433B1 (ko) * 2009-12-18 2017-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
JP2011187506A (ja) * 2010-03-04 2011-09-22 Sony Corp 薄膜トランジスタおよびその製造方法、並びに表示装置
US9147768B2 (en) * 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
JP5738699B2 (ja) * 2010-07-28 2015-06-24 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
US8946066B2 (en) * 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
WO2013030865A1 (ja) * 2011-08-26 2013-03-07 パナソニック株式会社 薄膜トランジスタアレイの製造方法、薄膜トランジスタアレイおよび表示装置
TW201338173A (zh) * 2012-02-28 2013-09-16 Sony Corp 電晶體、製造電晶體之方法、顯示裝置及電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541237A (ja) * 2007-09-26 2010-12-24 イーストマン コダック カンパニー 原子層堆積による薄膜トランジスタの製造方法
JP2013520839A (ja) * 2010-02-26 2013-06-06 イーストマン コダック カンパニー 内側にへこんだ形状を含んだ縦型トランジスタ
JP2013229587A (ja) * 2012-03-28 2013-11-07 Semiconductor Energy Lab Co Ltd 半導体装置、及び当該半導体装置を有する電子機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191935A (ja) * 2016-04-08 2017-10-19 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
US10886412B2 (en) 2016-04-08 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017182910A1 (ja) * 2016-04-22 2017-10-26 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JPWO2017182910A1 (ja) * 2016-04-22 2019-02-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2020024995A (ja) * 2018-08-06 2020-02-13 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法
JP7061941B2 (ja) 2018-08-06 2022-05-02 東京エレクトロン株式会社 エッチング方法及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
US20150287831A1 (en) 2015-10-08
KR20150126771A (ko) 2015-11-13

Similar Documents

Publication Publication Date Title
JP7457074B2 (ja) 半導体装置
JP6728452B2 (ja) 半導体装置
JP6630497B2 (ja) 半導体装置
JP6517030B2 (ja) 半導体装置
JP6580326B2 (ja) 半導体装置
JP2023179593A (ja) 半導体装置
JP2019134182A (ja) 半導体装置
JP2016111369A (ja) 半導体装置、半導体装置の作製方法、および電子機器
JP2015164181A (ja) 半導体装置、電子機器及び半導体装置の作製方法
JP6463117B2 (ja) 半導体装置
JP6440457B2 (ja) 半導体装置
JP2016001722A (ja) 半導体装置及び該半導体装置を含む電子機器
JP6537341B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190307

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190425