JP2015221561A - インプリント用のモールド、およびインプリント方法 - Google Patents

インプリント用のモールド、およびインプリント方法 Download PDF

Info

Publication number
JP2015221561A
JP2015221561A JP2015092355A JP2015092355A JP2015221561A JP 2015221561 A JP2015221561 A JP 2015221561A JP 2015092355 A JP2015092355 A JP 2015092355A JP 2015092355 A JP2015092355 A JP 2015092355A JP 2015221561 A JP2015221561 A JP 2015221561A
Authority
JP
Japan
Prior art keywords
mold
transfer material
transfer
groove
imprint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015092355A
Other languages
English (en)
Inventor
朝敬 小川
Tomotaka Ogawa
朝敬 小川
龍 富永
Ryu TOMINAGA
龍 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015092355A priority Critical patent/JP2015221561A/ja
Publication of JP2015221561A publication Critical patent/JP2015221561A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】スループットを改善できる、インプリント用のモールドの提供。【解決手段】基材との間に転写材料を挟み、該転写材料に凹凸パターンを転写するインプリント用のモールドであって、前記転写材料と接触する転写面、および前記転写面に形成される線状の溝部を有し、前記溝部の側壁部と前記転写面とのなす角が、90?よりも大きく、96?以下である、インプリント用のモールド。【選択図】図1

Description

本発明は、インプリント用のモールド、およびインプリント方法に関する。
フォトリソグラフィ法の代替技術として、インプリント法が注目されている。インプリント法は、モールドと基材との間に転写材料を挟み、モールドの凹凸パターンを転写材料に転写する技術である(例えば特許文献1参照)。インプリント法は、半導体素子だけでなく、反射防止シート、バイオチップ、磁気記録媒体など様々な製品の製造に適用できる。
特開2009−48752号公報
ところで、モールドと基材との間に気泡を巻き込むことがある。気泡内のガスが転写材料に溶け込むことにより、気泡が消滅する。
従来、気泡の消滅時間が長く、スループットが低かった。
尚、上記特許文献1では、モールドとレジストとの離型性向上のため、凹部の側壁部と凹部の底壁部とのなす角を40°以上90°未満とすることが提案されているが、気泡の消滅時間に関する言及はなく、凹部の側壁部と凹部が形成される面とのなす角に関する記載はない。
本発明は、上記課題に鑑みてなされたものであって、スループットを改善できる、インプリント用のモールドの提供を目的とする。
上記課題を解決するため、本発明の一態様によれば、
基材との間に転写材料を挟み、該転写材料に凹凸パターンを転写するインプリント用のモールドであって、
前記転写材料と接触する転写面、および前記転写面に形成される線状の溝部を有し、
前記溝部の側壁部と前記転写面とのなす角が、90°よりも大きく、96°以下である、インプリント用のモールドが提供される。
本発明によれば、スループットを改善できる、インプリント用のモールドが提供される。
本発明の一実施形態によるインプリント用のモールドを示す図である。 本発明の一実施形態によるインプリント方法の塗布工程を示す図である。 本発明の一実施形態によるインプリント方法の転写工程を示す図である。 本発明の一実施形態による転写材料の塗布時の状態を示す図である。 図4の転写材料の濡れ広がりを示す図である。 図5の転写材料の濡れ広がりを示す図である。 本発明の一実施形態によるモールドの転写面と接触する転写材料の状態を示す図である。 図7の転写材料の濡れ広がりを示す図である。 図8の転写材料の濡れ広がりを示す図である。 シミュレーション解析に用いたモデルの一例を示す断面図である。 シミュレーション解析結果による時間Tの増加率(T−T0)/T0と、接続角θとの関係の一例を示す図である。
以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。本明細書において、数値範囲を表す「〜」はその前後の数値を含む範囲を意味する。
図1は、本発明の一実施形態によるインプリント用のモールドを示す図である。インプリント法は、詳しくは後述するが、モールド10と基材との間に転写材料を挟み、モールド10の凹凸パターンを転写材料に転写する技術である。
モールド10は、転写材料と接触する転写面11、および転写面11に形成される線状の溝部12を有する。転写面11は平坦な面であってよく、溝部12は直線状であってよい。溝部12は転写面11に複数形成されてよい。溝部12のピッチPは例えば100nm以下、好ましくは50nm以下である。図1の溝部12は等ピッチで形成されるが、不等ピッチで形成されてもよい。ピッチPは、図3に示すとおり、隣り合う2つの溝部12の底壁部15の中心線間の長さである。
モールド10は、SiOガラス、またはTiO−SiOガラスで形成されてよい。SiOガラスやTiO−SiOは、一般的なソーダライムガラスに比べて、紫外線の透過率が高い。また、SiOガラスやTiO−SiOは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による凹凸パターンの寸法変化が小さい。
TiO−SiOガラスは、SiOガラスよりも、転写材料の濡れ広がり速度が大きく、より好ましい。転写材料の濡れ広がり速度が大きいことで得られる効果については、後述する。
TiO−SiOガラスは、TiOを5〜12質量%含むことが好ましい。TiO含有量が5〜12質量%であると、室温付近(10〜75℃)での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。
モールド10の凹凸パターンは、マスターモールドの凹凸パターンをインプリント法でレジスト層に転写し、そのレジスト層をマスクとしてエッチングを施すことにより形成されてよい。エッチングは、ドライエッチング、ウェットエッチングのいずれでもよい。マスターモールドの凹凸パターンは、電子線描画装置を用いて形成されてよい。
尚、本実施形態のモールド10は、マスターモールドを用いて得られるものであるが、マスターモールドそのものであってもよく、特に限定されない。
図2は、本発明の一実施形態によるインプリント方法の塗布工程を示す図である。塗布工程では、基材20上に転写材料30をドット状に塗布する。
基材20としては、例えばウエハが用いられる。ウエハは素子、回路、端子などが形成されたものであってよく、ウエハに形成された素子などに転写材料30が塗布されてよい。
転写材料30としては、例えば光硬化性樹脂が用いられる。光硬化性樹脂は、光インプリント法に用いられる一般的なものが使用できる。
図3は、本発明の一実施形態によるインプリント方法の転写工程を示す図である。転写工程では、モールド10と基材20との間に転写材料30を挟み、モールド10の凹凸パターンを転写材料30に転写する。転写材料30の凹凸パターンは、モールド10の凹凸パターンが略反転したものとなる。
転写材料30は、液体の状態でモールド10と基材20との間に挟まれ、その状態で固化される。固化の方法は、転写材料30の種類に応じて適宜選択される。転写材料30が光硬化性樹脂の場合、光(例えば紫外線)が用いられる。
光硬化性樹脂は、光の照射によって液体から固体に変化する。光硬化性樹脂は非ニュートン流体や粘弾性を有する液体であってもよい。光は、モールド10を透過して転写材料30に照射されてよい。尚、基材20が光透過性を有する場合、基材20側から転写材料30に光が照射されてもよく、この場合、モールド10は光透過性を有しなくてもよい。モールド10と基材20の両側から転写材料30に光が照射されてもよい。
光インプリント法では、室温での成型が可能であり、モールド10と基材20との線膨張係数差による歪みが発生しにくく、転写精度が良い。尚、硬化反応の促進のため、光硬化性樹脂は加熱されてもよい。
尚、本実施形態では、光インプリント法が用いられるが、熱インプリント法が用いられてもよい。熱インプリント法の場合、転写材料30として、熱可塑性樹脂、または熱硬化性樹脂が用いられる。熱可塑性樹脂は、加熱によって溶融し、冷却によって固化する。熱硬化性樹脂は、加熱によって液体から固体に変化する。熱硬化性樹脂は非ニュートン流体や粘弾性を有する液体であってもよい。
転写材料30の固化後、転写材料30とモールド10とが分離される。転写材料30を固化してなる凹凸層と、基材20とで構成される製品が得られる。製品の凹凸パターンは、モールド10の凹凸パターンが略反転したものであって、マスターモールドの凹凸パターンと同じものとなる。
ところで、転写工程において、モールド10と基材20との間に気泡を巻き込むことがある。気泡内のガスが転写材料30に溶け込むことによって、気泡が消滅する。気泡の消滅時間は、気泡内のガスの種類、気泡の初期サイズなどで決まる。
気泡内のガスの種類としては、Heガスが好ましい。Heガスの原子サイズは、空気の主成分であるNガスの分子サイズに比べて小さい。そのため、Heガスは、Nガスに比べて、転写材料30などに溶け込みやすく、気泡の消滅時間を短縮できる。気泡内のガスがHeガスとなるように、Heガス雰囲気中で転写工程が行われてよい。
気泡の初期サイズが小さいほど、気泡の消滅時間が短い。
本発明者らは、気泡の初期サイズを小さくするため、転写材料30の濡れ広がり速度の異方性を利用することを見出した。
図4は、本発明の一実施形態による転写材料の塗布時の状態を示す図である。図5は、図4の転写材料の濡れ広がりを示す図である。図6は、図5の転写材料の濡れ広がりを示す図である。図4〜6は、濡れ広がり速度に異方性がある場合(左右方向への濡れ広がり速度が上下方向への濡れ広がり速度よりも小さい場合)の転写材料の状態を時系列的に示す。図6において、二点鎖線は、濡れ広がり速度に異方性がない場合の転写材料の状態を示す。
転写材料30は、図4に示すように、液体の状態で、基材20上にドット状に塗布される。その後、転写材料30の液滴は、基材20とモールド10との間に挟まれ、濡れ広がる。図4〜図6に示すように、左右方向への濡れ広がり速度が上下方向への濡れ広がり速度よりも小さい場合、上下方向に隣り合う液滴同士がくっついた後、左右方向に隣り合う液滴同士がくっつくことで、4つの液滴の間に気泡50が閉じ込められる。一方、図6に二点鎖線で示すように、濡れ広がり速度に異方性がない場合、液滴は円状のまま径方向外方に広がり、4つの液滴が同時にくっつくことで、4つの液滴の間に気泡が閉じ込められる。図6から明らかなように、濡れ広がり速度に異方性がある場合、異方性がない場合に比べて、気泡50の初期サイズが小さい。
図1に示すようにモールド10の転写面11には線状の溝部12が形成されており、転写材料30は溝部12の長手方向に沿って濡れ広がりやすい。溝部12の長手方向への濡れ広がり速度V1は、溝部12の幅方向への濡れ広がり速度V2よりも大きい。
図7は、本発明の一実施形態によるモールドの転写面と接触する転写材料の状態を示す図である。図8は、図7の転写材料の濡れ広がりを示す図である。図9は、図8の転写材料の濡れ広がりを示す図である。図7〜9は、転写材料の状態を時系列的に示す。
転写材料30が転写面11に沿って濡れ広がるとき、転写面11に溝部12が形成されていると、溝部12の側壁部13と転写面11との境界16を転写材料30が乗り越えるのに時間がかかる。転写材料30が境界16を乗り越えるためには、図7〜9に示すように転写材料30の接触角αが一時的に大きくなる必要があり、そのための待ち時間が生じるためである。待ち時間が長いほど、溝部12の幅方向への濡れ広がり速度V2が小さい。
本発明者らは、シミュレーション解析などによって、溝部12の側壁部13と転写面11とのなす角θ(以下、接続角θという)が96°以下である場合に濡れ広がり速度V1、V2の異方性が顕著であることを見出した。尚、上記接続角θは、モールド10と転写材料30との離型性の観点から90°よりも大きい。
尚、溝部12の側壁部13が平坦面ではなく曲面である場合、互いに平行な底壁部15と転写面11から等距離な位置での側壁部13の接線と、転写面11の延長面とのなす角が接続角θとして用いられる。
図10は、シミュレーション解析に用いたモデルの一例を示す断面図である。図10において、実線は転写材料の液面がスタート地点にある状態を示し、二点鎖線は転写材料の液面がゴール地点にある状態を示す。スタート地点およびゴール地点は、転写面11に設定した。
シミュレーション解析では、転写材料30の液面がスタート地点から出発し溝部を横切りゴール地点に到達するまでの時間Tと、接続角θとの関係を調べた。接続角θが105°の場合の時間TをT0とし、T0を基準として時間Tの増加率(T−T0)/T0を調べた。解析手法としてはVOF法(Volume Of Fluid Method)を、解析ソフトとしてはANSYS, Inc.社製のANSYS FLUENT(Ver.14.5)を用いた。
図10に示すモデルでは、互いに平行な基材20の表面21とモールド10の転写面11との間隔RLTは50nm、溝部12の幅Aは50nm、溝部12の深さBは50nmとした。溝部12の形状は等脚台形状とした。溝部12の幅Aは、溝部12の底壁部15と転写面11とから等距離な位置での幅であり、接続角θに関係なく50nmである。溝部12の中心線とスタート地点との間の距離Cは55nm、溝部12の中心線とゴール地点との間の距離Dは50nmとした。
初期条件として、基材20の表面21とモールド10の転写面11との間に形成される隙間の左端部に、転写材料30で充填された領域を設定した。境界条件として、上記隙間の左右両端にそれぞれPressure Outlet条件を設定した。転写材料30の液面が右方向に移動するにつれ、上記隙間の左端からは転写材料30が供給され、上記隙間の右端からはガスが排出される。転写材料30が接触する面(基材20の表面21、モールド10の転写面11、および溝部12の側壁部13や底壁部15)にはNo-slip条件を設定した。また、基材20の表面21と転写材料30との接触角は10°、モールド10の転写面11および転写材料30との接触角は30°、および溝部12の側壁部13や底壁部15と転写材料30の接触角はそれぞれ30°と設定した。
図11は、シミュレーション解析結果による時間Tの増加率(T−T0)/T0と、接続角θとの関係の一例を示す図である。図11において、横軸は接続角θ(°)であり、縦軸は時間Tの増加率(T−T0)/T0(%)である。
図11から明らかなように、接続角θが96〜99°の間に時間Tが急激に変化する。接続角θが96°以下であると、時間Tが十分に大きく、溝部12の幅方向への濡れ広がり速度V2が十分に小さく、濡れ広がり速度V1、V2の異方性が十分に大きい。よって、転写工程で生じる気泡の初期サイズが十分に小さく、スループットが改善できる。接続角θは好ましくは93°以下である。
濡れ広がり速度V1、V2の異方性は、モールド10がSiOガラスで形成される場合よりも、モールド10がTiO−SiOガラスで形成される場合に顕著である。TiO−SiOガラスは、SiOガラスよりも、転写材料30が濡れやすく、転写材料30の濡れ広がり速度V1、V2が大きい。転写材料30の濡れ広がり速度V1、V2が大きいほど、その異方性が顕著になる。これは、転写材料30が短時間で移動するため、転写材料30が境界16を乗り越えるための待ち時間の影響が大きいためである。
濡れ広がり速度V1、V2は、転写材料30が接触する面(基材20の表面21、モールド10の転写面11、および溝部12の側壁部13や底壁部15)の表面粗さにも依存する。表面粗さが大きい(つまり粗い)表面ほど、転写材料30が濡れやすく、濡れ広がり速度V1、V2が大きく、その異方性が大きい。
溝部12の側壁部13の表面粗さRa1は、溝部12の底壁部15の表面粗さRa2よりも小さくてよい。溝部12の側壁部13が平滑であるほど、転写材料30が濡れにくく、転写材料30が溝部12の側壁部13を這い上がる時間が長く、転写材料30が溝部12を横切る時間が長い。よって、溝部12の幅方向への濡れ広がり速度V2をさらに小さくすることができる。
溝部12の側壁部13の表面粗さRa1と、溝部12の底壁部15の表面粗さRa2との大小関係は、溝部12を形成するエッチングの条件で調節できる。例えば、エッチングガス種やその混合比、及びエッチング条件(具体的には、プロセス圧力、バイアスパワー等)を好適な範囲で選択することにより形成する。具体的には、0.1〜10.0Paの圧力で、CF系ガスに希ガス、水素ガス、酸素ガス等を導入し、プラズマ源に100〜1,000W、基板側に20〜400Wのパワーを投入することで調節できる。
溝部12の側壁部13の表面粗さRa1、および溝部12の底壁部15の表面粗さRa2は、それぞれ、例えば0.1nm以上、10nm以下であり、好ましくは0.1〜5nmであり、より好ましくは0.1nm以上、3nm以下である。表面粗さRa1、Ra2は、日本工業規格JIS B0601:2013(ISO4287:1997/Amd. 1:2009)に記載の「算術平均粗さ」であって、AFM(Atomic Force Microscope)により測定することがする。ただし、Ra1<Ra2の関係を満たす場合には、Ra1は例えば0.1nm以上10nm未満であり、好ましくは0.1nm以上5nm未満であり、より好ましくは0.1nm以上3nm未満である。Ra2は、例えば0.1nm超10nm以下であり、好ましくは0.1nm超5nm以下であり、より好ましくは0.1nm超3nm以下である。
以上、インプリント用のモールドの実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。
例えば、上記実施形態の転写材料30は、基材20上にドット状に塗布されるが、ストライプ状に塗布されてもよい。この場合、転写材料30は、溝部12の長手方向に対して平行に細長く塗布されてよい。転写材料30は、基材20ではなく、モールド10に塗布されてもよい。
10 モールド
11 転写面
12 溝部
13 側壁部
15 底壁部
20 基材
30 転写材料

Claims (8)

  1. 基材との間に転写材料を挟み、該転写材料に凹凸パターンを転写するインプリント用のモールドであって、
    前記転写材料と接触する転写面、および前記転写面に形成される線状の溝部を有し、
    前記溝部の側壁部と前記転写面とのなす角が、90°よりも大きく、96°以下である、インプリント用のモールド。
  2. 前記溝部の側壁部の表面粗さが、前記溝部の底壁部の表面粗さよりも小さい、請求項1に記載のインプリント用のモールド。
  3. 前記溝部の側壁部の表面粗さ、および前記溝部の底壁部の表面粗さは、それぞれ、0.1nm以上、10nm以下である、請求項1または2に記載のインプリント用のモールド。
  4. 前記溝部は、前記転写面に複数形成され、
    複数の前記溝部のピッチが100nm以下である、請求項1〜3のいずれか1項に記載のインプリント用のモールド。
  5. 前記モールドは、SiOガラス、またはTiO−SiOガラスで形成される、請求項1〜4のいずれか1項に記載のインプリント用のモールド。
  6. 前記モールドは、TiO−SiOガラスで形成される、請求項5に記載のインプリント用のモールド。
  7. 前記TiO−SiOガラスは、TiOを5〜12質量%含む、請求項6に記載のインプリント用のモールド。
  8. 請求項1〜7のいずれか一項のインプリント用のモールドと基材との間に転写材料を挟み、前記モールドの凹凸パターンを前記転写材料に転写する転写工程を有する、インプリント方法。
JP2015092355A 2014-04-28 2015-04-28 インプリント用のモールド、およびインプリント方法 Pending JP2015221561A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092355A JP2015221561A (ja) 2014-04-28 2015-04-28 インプリント用のモールド、およびインプリント方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014092706 2014-04-28
JP2014092706 2014-04-28
JP2015092355A JP2015221561A (ja) 2014-04-28 2015-04-28 インプリント用のモールド、およびインプリント方法

Publications (1)

Publication Number Publication Date
JP2015221561A true JP2015221561A (ja) 2015-12-10

Family

ID=54333956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092355A Pending JP2015221561A (ja) 2014-04-28 2015-04-28 インプリント用のモールド、およびインプリント方法

Country Status (3)

Country Link
US (1) US20150306814A1 (ja)
JP (1) JP2015221561A (ja)
KR (1) KR20150124408A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200930A (ja) * 2017-05-26 2018-12-20 大日本印刷株式会社 パターン形成方法、凹凸構造体の製造方法、レプリカモールドの製造方法、レジストパターン改質装置及びパターン形成システム
JP2021002630A (ja) * 2019-06-24 2021-01-07 キヤノン株式会社 モールド、インプリント方法、および物品の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780001B2 (en) * 1999-07-30 2004-08-24 Formfactor, Inc. Forming tool for forming a contoured microelectronic spring mold
JP3332081B2 (ja) * 1999-09-07 2002-10-07 日本ピラー工業株式会社 燃料電池用セパレータの製造金型及び燃料電池用セパレータの製造方法
EP1422192B1 (de) * 2002-11-25 2007-04-18 Weidmann Plastics Technology AG Verfahren zur Herstellung eines Werkzeugeinsatzes zum Spritzgiessen eines teils mit zweistufigen Mikrostrukturen
US20060131784A1 (en) * 2003-01-10 2006-06-22 Takaki Sugimoto Flexible mold, method of manufacturing same and method of manufacturing fine structures
WO2004086471A1 (en) * 2003-03-27 2004-10-07 Korea Institute Of Machinery & Materials Uv nanoimprint lithography process using elementwise embossed stamp and selectively additive pressurization
US7682981B2 (en) * 2005-01-27 2010-03-23 Contour Semiconductor, Inc. Topography transfer method with aspect ratio scaling
US20080248334A1 (en) * 2007-03-30 2008-10-09 Fujifilm Corporation Mold structure, imprinting method using the same, magnetic recording medium and production method thereof
US20090029189A1 (en) * 2007-07-25 2009-01-29 Fujifilm Corporation Imprint mold structure, and imprinting method using the same, as well as magnetic recording medium, and method for manufacturing magnetic recording medium
WO2009034954A1 (ja) * 2007-09-13 2009-03-19 Asahi Glass Co., Ltd. TiO2含有石英ガラス基板
US20120000379A1 (en) * 2009-02-04 2012-01-05 The Governing Council Of The University Of Toronto Method for producing a stamp for hot embossing
JP2010287625A (ja) * 2009-06-09 2010-12-24 Toshiba Corp テンプレート及びパターン形成方法
JP5421380B2 (ja) * 2009-09-18 2014-02-19 株式会社東芝 モールド
JP5398502B2 (ja) * 2009-12-10 2014-01-29 株式会社東芝 パターン作成方法、プロセス決定方法およびデバイス製造方法
JP4960473B2 (ja) * 2010-04-27 2012-06-27 株式会社東芝 インプリントモールド及び磁気記録媒体の製造方法
US8867041B2 (en) * 2011-01-18 2014-10-21 Jordan Valley Semiconductor Ltd Optical vacuum ultra-violet wavelength nanoimprint metrology
JP5728748B2 (ja) * 2011-05-25 2015-06-03 国立研究開発法人情報通信研究機構 リフレクタアレイ光学装置およびそれを用いた表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200930A (ja) * 2017-05-26 2018-12-20 大日本印刷株式会社 パターン形成方法、凹凸構造体の製造方法、レプリカモールドの製造方法、レジストパターン改質装置及びパターン形成システム
JP2021002630A (ja) * 2019-06-24 2021-01-07 キヤノン株式会社 モールド、インプリント方法、および物品の製造方法
JP7408305B2 (ja) 2019-06-24 2024-01-05 キヤノン株式会社 モールド、インプリント方法、および物品の製造方法

Also Published As

Publication number Publication date
US20150306814A1 (en) 2015-10-29
KR20150124408A (ko) 2015-11-05

Similar Documents

Publication Publication Date Title
JP4544372B2 (ja) 基板の製造方法
JP5935385B2 (ja) ナノインプリント用レプリカテンプレートの製造方法及びレプリカテンプレート
JP6028413B2 (ja) ナノインプリント用テンプレートの製造方法及びテンプレート
JP5499668B2 (ja) インプリント用モールドおよび該モールドを用いたパターン形成方法
JP2008006820A (ja) ソフトモールド及びその製造方法
US9360751B2 (en) Imprinting stamp and nano-imprinting method using the same
JP2010076219A (ja) ナノインプリントによる基板の加工方法
JP5114962B2 (ja) インプリントモールド、これを用いたインプリント評価装置、レジストパターン形成方法及びインプリントモールドの製造方法
JP6127517B2 (ja) インプリントモールドの製造方法
JP2015221561A (ja) インプリント用のモールド、およびインプリント方法
JP2009087959A (ja) インプリント用転写型、インプリント転写方法、インプリント装置、インプリント用転写型の製造方法およびインプリント転写物
WO2013154077A1 (ja) 微細パターンを表面に有する物品およびその製造方法、ならびに光学物品、その製造方法および複製モールドの製造方法
JP2012236371A (ja) インプリントにおける離型方法
JP6155720B2 (ja) ナノインプリント用テンプレートのパターン配置方法、及びナノインプリント用テンプレート
KR100912598B1 (ko) 더미 나노 패턴을 구비한 나노 임프린트용 스탬프 및 이를이용한 나노 임프린팅 방법
JP2013202900A (ja) モールドおよびその製造方法並びにナノインプリント方法およびパターン化基板の製造方法
JP6059967B2 (ja) 樹脂成形品の製造方法
JP7395303B2 (ja) インプリント用モールド、インプリント方法および物品の製造方法
JP5295870B2 (ja) インプリントパターン形成方法
CN106681102A (zh) 纳米压印方法
JP6036865B2 (ja) インプリント用モールド
JP6634721B2 (ja) インプリント用モールド、および、その離型処理方法
KR101604912B1 (ko) 나노 금속 라인 생성 방법
JP5790798B2 (ja) インプリント用モールドおよび該モールドを用いたパターン形成方法
KR101880176B1 (ko) 직접 임프린팅용 탄성체 몰드 및 이를 이용한 와이어 구조물 제조 방법