JP2015198169A - Electrode for edlc and edlc - Google Patents

Electrode for edlc and edlc Download PDF

Info

Publication number
JP2015198169A
JP2015198169A JP2014075584A JP2014075584A JP2015198169A JP 2015198169 A JP2015198169 A JP 2015198169A JP 2014075584 A JP2014075584 A JP 2014075584A JP 2014075584 A JP2014075584 A JP 2014075584A JP 2015198169 A JP2015198169 A JP 2015198169A
Authority
JP
Japan
Prior art keywords
electrode
active material
edlc
material layer
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014075584A
Other languages
Japanese (ja)
Inventor
橋本 知孝
Tomotaka Hashimoto
知孝 橋本
泰宏 松本
Yasuhiro Matsumoto
泰宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Yukizai Corp
Original Assignee
Asahi Kasei Corp
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Kasei Corp
Priority to JP2014075584A priority Critical patent/JP2015198169A/en
Publication of JP2015198169A publication Critical patent/JP2015198169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for electric double layer capacitor (EDLC) combining a higher output and a higher capacity per volume, and excellent cycle characteristics.SOLUTION: An active material for electrode of EDLC has a BET specific area of 2600-4500 m/g, a meso pore amount V1(cc/g) in a range of 0.8<V1≤2.5, calculated by BJH method and derived from pores having a diameter of 20-500 Å, a micro pore amount V2 (cc/g) in a range of 0.92<V2≤3.0, calculated by MP method and derived from pores having a diameter of less than 20 Å, an average particle size of 1-30 μm, and a sphericity of 0.80 or more. An electrode for EDLC using the active material is also provided.

Description

本発明は、活性炭粉末を活物質とする電気二重層キャパシタ(以下、EDLCと称す。)用電極及び該電極を用いたEDLCに関する。   The present invention relates to an electrode for an electric double layer capacitor (hereinafter referred to as EDLC) using activated carbon powder as an active material, and an EDLC using the electrode.

近年、地球環境の保全及び省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。
これらの蓄電システムに使用される蓄電素子に対する第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度蓄電素子としては、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。このような要求に対応可能な高出力蓄電素子としては、電極に活性炭を用いたEDLCが開発されている。
In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of effective use of energy aimed at conservation of the global environment and resource saving. Yes.
The first requirement for power storage elements used in these power storage systems is high energy density. As a high energy density storage element capable of meeting such demands, development of a lithium ion battery has been vigorously advanced.
The second requirement is high output characteristics. For example, a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle) requires high output discharge characteristics in the power storage system during acceleration. ing. An EDLC using activated carbon as an electrode has been developed as a high-power storage element that can meet such demands.

EDLCは2対の電極を電解液中でセパレータを介して対向させた構造であり、充放電により、電解液中のイオンが非ファラデー反応により、電極表面に吸脱着される。電極では電極と電解液の間で化学反応を伴わないため、0.5〜1kW/L程度という高い入出力特性および耐久性(サイクル特性)が良いことが特徴である。
ところが、EDLCはエネルギー密度が、1〜5Wh/L程度に過ぎず、デバイスの更なる小型化、機器の長時間駆動などの面で一層の改良が望まれている。
The EDLC has a structure in which two pairs of electrodes are opposed to each other through a separator in an electrolytic solution, and ions in the electrolytic solution are adsorbed and desorbed on the electrode surface by a non-Faraday reaction by charging and discharging. Since the electrode does not involve a chemical reaction between the electrode and the electrolytic solution, it is characterized by high input / output characteristics and durability (cycle characteristics) of about 0.5 to 1 kW / L.
However, EDLC has an energy density of only about 1 to 5 Wh / L, and further improvements are desired in terms of further miniaturization of devices and long-time driving of devices.

エネルギー密度を向上し、更に高い入力特性と耐久性を得るには、活物質である活性炭の細孔構造、活性炭の粒子形状、更に電極構造まで最適化することが望ましい。
EDLCの静電容量は活物質表面と電解液との間で形成される電気二重層の大きさに比例するため、比表面積の大きな活性炭が用いられる。また、電解質イオンの大きさを考慮し、吸脱着しやすい細孔構造を規定した方法が開示されている。例えば、以下の特許文献1には、水素/炭素(原子比)が0.05〜0.5、BET比表面積が300〜2000m/g、BJH法によるメソ孔容積が0.02〜0.3ml/g、MP法による全細孔容積が0.3〜1.0ml/gの細孔構造を有する炭化水素材料を正極として用い、負極として黒鉛を除く光学的異方性炭素物質を賦活処理した材料を用いる蓄電素子が提案されている。
In order to improve the energy density and obtain higher input characteristics and durability, it is desirable to optimize the pore structure of activated carbon, which is an active material, the particle shape of activated carbon, and the electrode structure.
Since the capacitance of EDLC is proportional to the size of the electric double layer formed between the active material surface and the electrolyte, activated carbon having a large specific surface area is used. In addition, a method that defines a pore structure that is easy to absorb and desorb in consideration of the size of electrolyte ions is disclosed. For example, in the following Patent Document 1, hydrogen / carbon (atomic ratio) is 0.05 to 0.5, BET specific surface area is 300 to 2000 m 2 / g, and mesopore volume by BJH method is 0.02 to 0.005. Using a hydrocarbon material having a pore structure of 3 ml / g and MP method with a total pore volume of 0.3 to 1.0 ml / g as a positive electrode, an optically anisotropic carbon substance excluding graphite is activated as a negative electrode A power storage element using the selected material has been proposed.

また、以下の特許文献2には、全体のBET比表面積が900〜1500m/gであり、MP法により測定される20Åより小さいミクロ孔の比表面積が800m/g以上で、その比表面積とBJH法により測定される20Å以上のメソ孔の比表面積の比であるミクロ/メソ比が10〜14である活性炭が記載されている。また、全体のBET比表面積が1000〜2500m/gであり、MP法により測定される20Åより小さいミクロ孔の比表面積が900m/g以上で、その比表面積とBJH法により測定される20Å以上のメソ孔の比表面積の比であるミクロ/メソ比が3〜7である活性炭も記載されている。特許文献2における活性炭の原料炭素材料の例として、フェノール樹脂、ポリイミド樹脂、ポリアクリロニトリル樹脂、ハロゲンを含む熱可塑性樹脂などの樹脂系原料、石油又は石炭系ピッチやコークス、ヤシ殻やコーヒー豆などの植物系原料などが挙げられている。 Further, the following Patent Document 2 is a BET specific surface area of the total 900~1500m 2 / g, a specific surface area of 20Å smaller micropores as measured by the MP method is 800 m 2 / g or more, a specific surface area And activated carbon having a micro / meso ratio of 10 to 14, which is the ratio of the specific surface area of 20 mesopores or more measured by the BJH method. Further, 20Å BET specific surface area of the whole is 1000~2500m 2 / g, the specific surface area of 20Å smaller micropores as measured by the MP method is at 900 meters 2 / g or more, as measured by its specific surface area and BJH method An activated carbon having a micro / meso ratio of 3 to 7, which is the ratio of the specific surface area of the mesopores, is also described. Examples of carbon materials for activated carbon in Patent Document 2 include phenolic resins, polyimide resins, polyacrylonitrile resins, resin-based raw materials such as halogen-containing thermoplastic resins, petroleum or coal-based pitches and cokes, coconut shells, and coffee beans. Plant-based materials are listed.

特開2005−93778号公報JP 2005-93778 A 特開2010−105836号公報JP 2010-105836 A

このように蓄電素子に適した活物質が種々提案されてきたが、さらに高い出力と高い体積あたり容量、良好なサイクル特性とを兼ね備えた蓄電素子の要求が未だある。
そこで、本発明が解決しようとする課題は、さらに高い出力と高い体積あたり容量、良好なサイクル特性とを兼ね備えた蓄電素子用電極を提供することである。
As described above, various active materials suitable for a power storage element have been proposed, but there is still a demand for a power storage element having both higher output, higher capacity per volume, and good cycle characteristics.
Therefore, the problem to be solved by the present invention is to provide an electrode for a storage element that has a higher output, a higher capacity per volume, and good cycle characteristics.

蓄電素子電極の電極活物質層に蓄えられる重量当たりの容量Cは、以下の式(1)で表される:
[F/g]=(εε/δ)[F/m]×S[m/g]・・・式(1)
{式中、Sは電極活物質層に含まれる活物質の比表面積、δは活物質表面と電荷担体の間で形成される二重層の厚み、εは真空誘電率、そしてεは二重層の比誘電率を表す。}。
Capacitance C 1 per weight to be stored in the electrode active material layer of the storage element electrode is expressed by the following equation (1):
C 1 [F / g] = (ε 0 ε r / δ) [F / m 2 ] × S [m 2 / g] (1)
{Wherein S is the specific surface area of the active material contained in the electrode active material layer, δ is the thickness of the double layer formed between the active material surface and the charge carrier, ε 0 is the vacuum dielectric constant, and ε r is 2 Represents the relative dielectric constant of the multilayer. }.

活性炭の(εε/δ)は、例えば、EDLCの場合は一般的に0.06〜0.08F/m程度であるので、重量当たりの容量Cは、比表面積Sが2,500m/g以上の活性炭では150F/g以上となる。このように、比表面積Sが大きくなるにつれて重量当たりの容量Cも大きくなることが期待される。
一方、電極活物質層の体積当たりの容量Cは、以下の式(2)で表される:
[F/cm]=C[F/g]×σ[g/cm]・・・式(2)
{式中、Cは蓄電素子電極の電極活物質層に蓄えられる重量当たりの容量であり、そしてσは電極の活物質層のかさ密度を表す。}。
For example, in the case of EDLC, (ε 0 ε r / δ) of activated carbon is generally about 0.06 to 0.08 F / m 2 , so that the capacity per unit weight C 1 has a specific surface area S of 2, For activated carbon of 500 m 2 / g or more, it is 150 F / g or more. Thus, it is expected that the capacity per weight C 1 increases as the specific surface area S increases.
On the other hand, the capacity C 2 per volume of the electrode active material layer is represented by the following formula (2):
C 2 [F / cm 3 ] = C 1 [F / g] × σ [g / cm 3 ] (2)
{Wherein C 1 is the capacity per weight stored in the electrode active material layer of the storage element electrode, and σ represents the bulk density of the active material layer of the electrode. }.

したがって、比表面積Sが高い活物質を用いることによって、重量当たりの容量Cを高めて電極活物質層の体積当たり容量Cを向上させることができ、及び/又は電極の活物質層のかさ密度σを高めることによって、電極活物質層の体積当たり容量Cを向上させることができる。しかしながら、一般に比表面積Sが高い活物質を用いると、その活物質層のかさ密度σは低下する傾向にあり、このバランスを考慮して用いる活物質を選択する必要がある。 Therefore, by using an active material having a high specific surface area S, the capacity C 1 per weight can be increased to improve the capacity C 2 per volume of the electrode active material layer and / or the bulk of the active material layer of the electrode. By increasing the density σ, the capacity C 2 per volume of the electrode active material layer can be improved. However, generally, when an active material having a high specific surface area S is used, the bulk density σ of the active material layer tends to decrease, and it is necessary to select an active material to be used in consideration of this balance.

また、良好なサイクル特性を得るためには、電極を構成する活物質、導電材及びバインダーのそれぞれが物理化学的に安定である他に、それらが形成する電極構造の最適化が必要である。特に注意すべきは、充放電サイクルに伴う電気化学的反応により生成する反応物が活物質内の細孔や活物質同士の間の空隙の目詰まり起こし、電極全体のイオン電導性を低下させ、充放電特性に悪影響を及ぼすことである。サイクル特性の良好な状態に維持するための電極構造は活物質同士の結着は強固であり、かつ活物質間の空隙は大きく、かつ電極内で均一に形成することが電極全体のイオン電導性を長期間にわたり維持するために必要である。   In addition, in order to obtain good cycle characteristics, it is necessary to optimize the electrode structure formed by each of the active material, the conductive material and the binder constituting the electrode in addition to being physicochemically stable. Of particular note is that the reactant produced by the electrochemical reaction associated with the charge / discharge cycle causes clogging of the pores in the active material and the gaps between the active materials, reducing the ionic conductivity of the entire electrode, It has an adverse effect on the charge / discharge characteristics. The electrode structure for maintaining a good cycle characteristic is that the active materials are strongly bonded, the gaps between the active materials are large, and the ionic conductivity of the entire electrode can be formed uniformly within the electrodes. Is necessary to maintain the

本発明者らは、前記課題を解決すべく鋭意研究を進め実験を重ねた結果、特許文献1及び2に記載の活性炭とは異なる細孔径分布を有する活性炭を活物質として使用することによって、比表面積が高くかつかさ密度の高い活物質層を作製できることを見出し、さらに、良好なサイクル特性を得るためには活物質の形状としてアスペクト比が小さく、球状に近いものが有効であることを見出した。そして、かかる活物質層を用いたEDLCが、上記課題を解決するものであることを見出し、本発明を完成するに至ったものである。なお、アスペクト比とは粒子の像の長径と短径の比であり、「長径÷短径」で算出することができる。   As a result of intensive research and repeated experiments to solve the above problems, the present inventors have used activated carbon having a pore size distribution different from the activated carbon described in Patent Documents 1 and 2 as an active material. It has been found that an active material layer having a high surface area and a high bulk density can be produced. Further, in order to obtain good cycle characteristics, it has been found that an active material having a small aspect ratio and a nearly spherical shape is effective. . And it discovered that EDLC using this active material layer solves the said subject, and came to complete this invention. The aspect ratio is the ratio of the major axis to the minor axis of the particle image, and can be calculated by “major axis ÷ minor axis”.

すなわち、本発明は、以下のとおりのものである。
[1]2600m/g以上4500m/g以下のBET比表面積を有し、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5であり、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.92<V2≦3.0であり、平均粒径が1μm以上30μm以下であり、かつ、真球度が0.80以上であることを特徴とする電気二重層キャパシタ(EDLC)の電極用活物質。
That is, the present invention is as follows.
[1] The amount of mesopores V1 (cc / g) derived from pores having a BET specific surface area of 2600 m 2 / g to 4500 m 2 / g and a diameter of 20 to 500 mm calculated by the BJH method is 0.8. <V1 ≦ 2.5, the amount of micropores V2 (cc / g) derived from pores having a diameter of less than 20 mm calculated by the MP method is 0.92 <V2 ≦ 3.0, and the average particle size is 1 μm. An active material for an electrode of an electric double layer capacitor (EDLC) having a sphericity of 0.80 or more and a sphericity of 30 μm or less.

[2]活物質を含む活物質層を有するEDLC用電極であって、該活物質は、2600m/g以上4500m/g以下のBET比表面積を有し、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5であり、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.92<V2≦3.0であり、平均粒径が1μm以上30μm以下であり、該活物質を含む活物質層のかさ密度は、0.40g/cm以上0.70g/cm以下であり、そして該活物質層は、該活物質層を電極の厚さ方向に垂直に切断した際に得られる断面において真円度0.80以上の活物質の粒子を含むことを特徴とする前記EDLC用電極。 [2] An electrode for EDLC having an active material layer containing an active material, the active material having a BET specific surface area of 2600 m 2 / g or more and 4500 m 2 / g or less, and a diameter of 20 mm or more calculated by the BJH method The amount of mesopores V1 (cc / g) derived from pores of 500 mm or less is 0.8 <V1 ≦ 2.5, and the amount of micropores V2 derived from pores having a diameter of less than 20 mm calculated by the MP method (cc / G) is 0.92 <V2 ≦ 3.0, the average particle size is 1 μm or more and 30 μm or less, and the bulk density of the active material layer containing the active material is 0.40 g / cm 3 or more and 0.70 g. / Cm 3 or less, and the active material layer includes active material particles having a roundness of 0.80 or more in a cross section obtained by cutting the active material layer perpendicularly to the thickness direction of the electrode. The EDLC electrode characterized by the above.

[3]前記活物質層を電極の厚さ方向に垂直に切断した際に得られる断面において、真円度0.80以上の活物質の断面積の合計が、電極断面にある全活物質の総断面積に対して50%以上ある、前記[2]に記載のEDLC用電極。   [3] In a cross section obtained by cutting the active material layer perpendicularly to the thickness direction of the electrode, the total cross-sectional area of the active material having a roundness of 0.80 or more is the total of the active materials in the electrode cross section. The electrode for EDLC according to [2], wherein the electrode is 50% or more with respect to the total cross-sectional area.

[4]前記活物質は、3000m/g以上4000m/g以下のBET比表面積を有する活性炭である、前記[2]又は[3]に記載のEDLC用電極。 [4] The EDLC electrode according to [2] or [3], wherein the active material is activated carbon having a BET specific surface area of 3000 m 2 / g or more and 4000 m 2 / g or less.

[5]活物質を含む活物質層と集電体とを有する電極とセパレータとが積層されてなる電極体、電解液、及び外装体を有するEDLCであって、該電極が前記[2]〜[4]のいずれかに記載のEDLC用電極である前記EDLC。   [5] An EDLC having an electrode body in which an electrode having an active material layer containing an active material and a current collector and a separator are laminated, an electrolytic solution, and an exterior body, wherein the electrode is the above-mentioned [2] to [4] The EDLC, which is the EDLC electrode according to any one of [4].

本発明に係るEDLC用電極は、体積あたりの容量が高く、高出力であり、かつ、高サイクル特性をもつEDLCの実現に寄与する。   The EDLC electrode according to the present invention contributes to the realization of an EDLC having a high capacity per volume, high output, and high cycle characteristics.

(a)本発明のEDLCの一態様を示す平面方向の断面模式図である。(b)本発明のEDLCの一態様を示す厚み方向の断面模式図である。(A) It is a cross-sectional schematic diagram of the plane direction which shows the one aspect | mode of EDLC of this invention. (B) It is a cross-sectional schematic diagram of the thickness direction which shows the one aspect | mode of EDLC of this invention. 加圧工程で使用する装置の一例の模式図である。It is a schematic diagram of an example of the apparatus used at a pressurization process.

本実施態様のEDLC用電極は、活物質を含む活物質層と集電体からなる電極、セパレータが積層されてなる電極体、電解質を含む電解液、並びに外装体からなる。以下、蓄電素子EDLCの好ましい実施態様を説明する。   The electrode for EDLC of this embodiment consists of an electrode made of an active material layer containing an active material and a current collector, an electrode body in which separators are laminated, an electrolyte solution containing an electrolyte, and an exterior body. Hereinafter, preferred embodiments of the power storage element EDLC will be described.

(活物質)
活物質は活性炭を用いる。BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.8<V1≦2.5、かつ、0.92<V2≦3.0を満たす活性炭を含む。
メソ孔量V1は、電極材料を蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましく、また、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。また、V1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは1.2cc/g以上1.8cc/g以下である。
(Active material)
Activated carbon is used as the active material. The amount of mesopores derived from pores with a diameter of 20 to 500 mm calculated by the BJH method is V1 (cc / g), and the amount of micropores derived from pores with a diameter of less than 20 mm calculated by the MP method is V2 (cc / g ), Activated carbon satisfying 0.8 <V1 ≦ 2.5 and 0.92 <V2 ≦ 3.0 is included.
The mesopore amount V1 is preferably a value larger than 0.8 cc / g from the viewpoint of increasing the output characteristics when the electrode material is incorporated in the power storage element, and from the viewpoint of suppressing a decrease in the capacity of the power storage element. It is preferable that it is 2.5 cc / g or less. V1 is more preferably 1.00 cc / g or more and 2.0 cc / g or less, and further preferably 1.2 cc / g or more and 1.8 cc / g or less.

一方、マイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.92cc/gより大きい値であることが好ましく、また、活性炭の電極としての密度を増加させ、単位体積あたりの容量を増加させるという観点から、3.0cc/g以下であることが好ましい。また、V2は、より好ましくは、1.0cc/gより大きく、2.5cc/g以下、さらに好ましくは1.5cc/g以上2.5cc/g以下である。   On the other hand, the micropore amount V2 is preferably a value larger than 0.92 cc / g in order to increase the specific surface area of the activated carbon and increase the capacity, and the density of the activated carbon as an electrode is increased. From the viewpoint of increasing the capacity per volume, it is preferably 3.0 cc / g or less. V2 is more preferably greater than 1.0 cc / g and not greater than 2.5 cc / g, and still more preferably not less than 1.5 cc / g and not greater than 2.5 cc / g.

上述のマイクロ孔量及びメソ孔量は、以下の方法により求められる値である。すなわち、試料を500℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。このときの脱着側の等温線を用いて、マイクロ孔量はMP法により、メソ孔量はBJH法により算出する。
MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail,Brunauer,Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。また、BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett,Joyner,Halendaらにより提唱されたものである(E.P.Barrett,L.G.Joyner and P. Halenda,J.Amer.Chem.Soc.,73,373(1951))。
The above-mentioned micropore amount and mesopore amount are values obtained by the following method. That is, the sample is vacuum-dried at 500 ° C. all day and night, and the adsorption and desorption isotherm is measured using nitrogen as an adsorbate. Using the isotherm on the desorption side at this time, the micropore volume is calculated by the MP method, and the mesopore volume is calculated by the BJH method.
The MP method uses a “t-plot method” (BC Lippens, JH de Boer, J. Catalysis, 4319 (1965)), and uses a micropore volume, a micropore area, and a micropore. Is a method for obtaining the distribution of M.M. It is a method devised by Mikhal, Brunauer, Bodor (RS Mikhal, S. Brunauer, EE Bodor, J. Colloid Interface Sci., 26, 45 (1968)). The BJH method is a calculation method generally used for analysis of mesopores and proposed by Barrett, Joyner, Halenda et al. (EP Barrett, LG Joyner and P. Halenda, J. Amer.Chem.Soc., 73, 373 (1951)).

上述したメソ孔量、及びマイクロ孔量を有する活性炭は、具体的なBET比表面積の値としては、2600m/g以上4500m/g以下であり、3000m/g以上4000m/g以下であることが好ましい。BET比表面積が2600m/g以上の場合には、良好なエネルギー密度が得られ易く、他方、BET比表面積が4500m/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる傾向がある。 The activated carbon having the mesopore amount and the micropore amount described above has a specific BET specific surface area value of 2600 m 2 / g or more and 4500 m 2 / g or less, 3000 m 2 / g or more and 4000 m 2 / g or less. Preferably there is. When the BET specific surface area is 2600 m 2 / g or more, good energy density is easily obtained. On the other hand, when the BET specific surface area is 4500 m 2 / g or less, a large amount of binder is used to maintain the strength of the electrode. Since it is not necessary to put in, the performance per electrode volume tends to be high.

本発明の正極活物質は、真球度が0.80以上の粒子を含む。真球度が0.80以上の粒子は球状に近い構造であり、活物質粒子同士が形成する空隙が大きく、かつ、電極内で均一に分布するようになる。特に電極内に占める真球度が0.80以上の活物質粒子が多いほど、サイクル特性が良好になる。より好ましくは真球度が0.85以上、さらに好ましくは真球度が0.90以上である。
ここで真球度0.80以上とは、電子顕微鏡により得られた球状活物質の断面積の真円度が0.80以上であることをいい、真円度が0.80以上であるとは、球状活物質の断面積におけるアスペクト比が1.25以下のものをいう。
さらに、本発明では、正極電極を構成する正極活物質層を電極の厚さ方向に垂直に切断した際に得られる電子顕微鏡中の断面において、任意に選んだ100個の断面積の真円度0.80以上の正極活物質の断面積の合計が、電極断面にある全正極活物質全体の総断面積に対して好ましくは30%以上、より好ましくは50%以上、更に好ましくは60%以上である。
The positive electrode active material of the present invention includes particles having a sphericity of 0.80 or more. Particles having a sphericity of 0.80 or more have a nearly spherical structure, and the active material particles have large gaps and are uniformly distributed within the electrode. In particular, the more active material particles having a sphericity of 0.80 or more in the electrode, the better the cycle characteristics. More preferably, the sphericity is 0.85 or more, and still more preferably the sphericity is 0.90 or more.
Here, the roundness of 0.80 or more means that the roundness of the cross-sectional area of the spherical active material obtained by an electron microscope is 0.80 or more, and the roundness is 0.80 or more. Means that the aspect ratio in the cross-sectional area of the spherical active material is 1.25 or less.
Further, in the present invention, the roundness of 100 cross-sectional areas arbitrarily selected in the cross section in the electron microscope obtained when the positive electrode active material layer constituting the positive electrode is cut perpendicularly to the thickness direction of the electrode. The total cross-sectional area of the positive electrode active material of 0.80 or more is preferably 30% or more, more preferably 50% or more, still more preferably 60% or more with respect to the total cross-sectional area of all the positive electrode active materials in the electrode cross section. It is.

上記のような断面におけるアスペクト比が1.25以下の真球度0.80以上の球状粒子を得るためには、炭素化する前の原料の形状を断面積におけるアスペクト比を1.25以下、真球度0.80以上に成型しておく方法が挙げられる。
本製造条件に用いる原料には、乳化重合によって重合したフェノール樹脂、フラン樹脂、及びレゾルシノール樹脂などの各種合成樹脂から選択することができる。
これらの樹脂は、乳化重合法によって真球度を制御することが可能であるため、本発明の炭素化後、賦活処理後の正極活物質としての活性炭の断面積のアスペクト比を1.25以下、真球度0.80以上に成型することができる。
In order to obtain spherical particles having a sphericity of 0.80 or more with an aspect ratio in the cross section of 1.25 or less, the shape of the raw material before carbonization has an aspect ratio in the cross sectional area of 1.25 or less, There is a method of molding to a sphericity of 0.80 or more.
The raw material used for the production conditions can be selected from various synthetic resins such as phenol resin, furan resin, and resorcinol resin polymerized by emulsion polymerization.
Since these resins can control the sphericity by an emulsion polymerization method, the aspect ratio of the cross-sectional area of activated carbon as the positive electrode active material after the carbonization of the present invention and after the activation treatment is 1.25 or less. The sphericity can be molded to 0.80 or more.

その他の方法として、ヤシ殻等の炭素化前の原料を粉砕した後に球状に成型した後、焼成以降の過程を施し炭素化する方法、焼成前の原料の形状をアスペクト比を1.25以下に予め成型しておく方法も挙げることができるが、製造効率の面から、乳化重合によって炭素化する前の原料の真球度を制御する方法が好ましい。
上記の製造条件は、上記以外の原料として、例えば、木材、木粉、ヤシ殻などの植物系原料;石油ピッチ、コークスなどの化石系原料;塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂などの各種合成樹脂などの炭素質材料も利用することができる。
As another method, after pulverizing the raw material before carbonization such as coconut shell, it is formed into a spherical shape, and then subjected to the process after baking and carbonized, and the shape of the raw material before baking is reduced to an aspect ratio of 1.25 or less. Although the method of shape | molding beforehand can also be mentioned, from the surface of manufacturing efficiency, the method of controlling the sphericity of the raw material before carbonizing by emulsion polymerization is preferable.
The above production conditions include, for example, plant-based materials such as wood, wood flour, and coconut shells; fossil-based materials such as petroleum pitch and coke; vinyl chloride resin, vinyl acetate resin, melamine resin, and urea resin. Carbonaceous materials such as various synthetic resins can also be used.

上記の製造方法で得られた原料は引き続き加熱により炭化する。
炭化する為の加熱は、炭化温度は400〜700℃程度で0.5〜10時間加熱することが好ましい。加熱方式は、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式などの公知の方式が挙げられる。加熱時の雰囲気は窒素、二酸化炭素、ヘリウム、アルゴンなどの不活性ガス、又はこれらの不活性ガスを主成分として他のガスとの混合したガスが用いられる。
炭化する為の加熱を行い炭化された原料は、その後、賦活処理が施される。
The raw material obtained by the above production method is subsequently carbonized by heating.
The heating for carbonization is preferably performed at a carbonization temperature of about 400 to 700 ° C. for 0.5 to 10 hours. Examples of the heating method include known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method. The atmosphere at the time of heating is an inert gas such as nitrogen, carbon dioxide, helium, or argon, or a gas mixed with other gases containing these inert gases as a main component.
The raw material carbonized by heating for carbonization is then subjected to activation treatment.

以下、賦活処理の条件を詳説する。
賦活方法としては、水蒸気、二酸化炭素、酸素などの賦活ガスを用いて焼成するガス賦活法、アルカリ金属化合物と混合した後に加熱処理を行うアルカリ金属賦活方があるが、高比表面積の活性炭を作製するにはアルカリ金属賦活法が好ましい。この賦活方法では、炭化物とKOH、NaOHなどのアルカリ金属化合物との重量比が1:1以上となるように混合した後に、不活性ガス雰囲気下で600〜900℃の範囲で、0.5〜5時間加熱を行い、その後アルカリ金属化合物を酸及び水により洗浄除去し、更に乾燥を行う。
上記加熱には、炭化の為に用いた加熱方式と同様の方式を用いることが可能である。
尚、原料にヤシ殻等の原料を粉砕した後に球状に成型した後、焼成以降の過程を施す方法を用いた場合には、分級処理を施した後、先記の賦活方法で処理を行えばよい。粉砕・分級処理後に賦活処理を施すことで、賦活化後の粉砕をした場合に生じる新生界面による特性低下を防止することが可能となる。
Hereinafter, the conditions for the activation process will be described in detail.
As activation methods, there are a gas activation method in which firing is performed using an activation gas such as water vapor, carbon dioxide, oxygen, and an alkali metal activation method in which heat treatment is performed after mixing with an alkali metal compound. For this purpose, an alkali metal activation method is preferred. In this activation method, after mixing so that the weight ratio of carbide and an alkali metal compound such as KOH and NaOH is 1: 1 or more, in the range of 600 to 900 ° C. in an inert gas atmosphere, 0.5 to Heating is performed for 5 hours, and then the alkali metal compound is removed by washing with an acid and water, followed by drying.
For the heating, it is possible to use a method similar to the heating method used for carbonization.
In addition, after pulverizing the raw material such as coconut shell into the raw material and then forming it into a spherical shape, when using the method of performing the process after baking, after performing the classification treatment, the treatment is performed by the activation method described above. Good. By performing the activation treatment after the pulverization / classification treatment, it is possible to prevent deterioration of characteristics due to the nascent interface that occurs when pulverization after activation is performed.

1μmから30μmの粒径で断面積のアスペクト比が1.25以下、真球度0.80以上の炭素質粒子(炭素化する前の原料)を作製した場合は、その後の工程である粉砕、分級を行わず、焼成賦活(炭化、賦活化)を行うことができる。一方、塊状、破砕状などの形状の炭素質材料(炭化物)は賦活する前に予め粉砕・分級しておくと、効率的に賦活化できる。   When carbonaceous particles (raw material before carbonization) having a particle diameter of 1 μm to 30 μm and an aspect ratio of a cross-sectional area of 1.25 or less and a sphericity of 0.80 or more are prepared, The firing activation (carbonization and activation) can be performed without classification. On the other hand, if the carbonaceous material (carbide) in the form of a lump or crushed is pulverized and classified in advance before activation, it can be activated efficiently.

本発明で用いる賦活方法では、炭化物とアルカリ金属化合物の質量比(=炭化物:アルカリ金属化合物)は1:1以上が好ましいことを先記したが、アルカリ金属化合物の量が増えるほど、メソ孔量が増えるが、質量比1:3.5付近を境に急激に孔量が増える傾向があるので、質量比は1:3よりアルカリ金属化合物が増えることが好ましく、1:5.5以下であることが好ましい。質量比はアルカリ金属化合物が増えるほど孔量が大きくなるが、その後の洗浄等の処理効率を考慮すると上記範囲であることが好ましい。
尚、マイクロ孔量を大きくし、メソ孔量を大きくしないためには、賦活する際に炭化物を多めにしてKOHと混合する。いずれの孔量も大きくするためには、炭化物とKOHの比についてKOHを多めにする。また主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行う。
以上の製造条件でアスペクト比が1.25以下の真球度0.80以上の球状粒子の原料から活性炭を得ることができる。得られた活性炭もアスペクト比が1.25以下の真球度0.80以上の球状粒子となっている。
In the activation method used in the present invention, the mass ratio of carbide to alkali metal compound (= carbide: alkali metal compound) is preferably 1: 1 or more. However, the amount of mesopore increases as the amount of the alkali metal compound increases. However, since there is a tendency for the amount of pores to increase suddenly at a mass ratio of about 1: 3.5, the mass ratio is preferably more than 1: 3, and is preferably 1: 5.5 or less. It is preferable. As the mass ratio increases, the amount of pores increases as the number of alkali metal compounds increases.
In order to increase the amount of micropores and not increase the amount of mesopores, a larger amount of carbide is mixed with KOH when activated. In order to increase the amount of both pores, KOH is increased with respect to the ratio of carbide to KOH. In order to mainly increase the amount of mesopores, water vapor activation is performed after alkali activation treatment.
Under the above production conditions, activated carbon can be obtained from a raw material of spherical particles having an aspect ratio of 1.25 or less and a sphericity of 0.80 or more. The obtained activated carbon is also spherical particles having an aspect ratio of 1.25 or less and a sphericity of 0.80 or more.

上記製造条件で得られた本発明のEDLCに使用する活物質である活性炭の平均粒径は1μm以上30μm以下であり、好ましくは2μm以上20μm以下であり、より好ましくは2μm以上10μm以下である。平均粒径が異なる2種の活性炭の混合物であってもよい。ここで平均粒径とは、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径を50%径とし、その50%径(Median径)のことを指すものである。   The average particle diameter of activated carbon, which is an active material used in the EDLC of the present invention obtained under the above production conditions, is 1 μm or more and 30 μm or less, preferably 2 μm or more and 20 μm or less, more preferably 2 μm or more and 10 μm or less. It may be a mixture of two kinds of activated carbons having different average particle sizes. Here, the average particle diameter is 50% when the particle size distribution is measured using a particle size distribution measuring device, and when the cumulative curve is determined with the total volume being 100%, the cumulative curve is 50%. The diameter refers to the 50% diameter (Median diameter).

(電極)
上記した活物質である活性炭は、電極を構成する。EDLCにおいてはこの電極を正極、負極として用いて、充放電を行う。
電極は、活物質層を集電体の片面のみに形成したものでもよいし、両面に形成したものでも構わない。該活物質層の厚みは、例えば、片面あたり30μm以上200μm以下が好ましい。
集電体の材質は、EDLCにした際、電解液への溶出又は反応などの劣化が起こらない導電性材質であれば特に制限はない。好適な材料としては、アルミニウムが挙げられる。集電体の形状は、金属箔又は金属の隙間に電極が形成可能である構造体(発泡体など)を用いることができる。金属箔は貫通孔を持たない通常の金属箔でもよいし、エキスパンドメタル、パンチングメタル等の貫通孔を有する金属箔でもよい。また、集電体の厚みは、電極の形状及び強度を十分に保持できれば特に制限はないが、例えば、強度、導電抵抗、体積あたりの容量の観点から、1〜100μmが好ましい。
(electrode)
Activated carbon that is the active material described above constitutes an electrode. In EDLC, charging / discharging is performed using this electrode as a positive electrode and a negative electrode.
The electrode may have an active material layer formed on only one side of the current collector, or may be formed on both sides. The thickness of the active material layer is preferably, for example, 30 μm to 200 μm per side.
The material of the current collector is not particularly limited as long as it is a conductive material that does not cause degradation such as elution into the electrolyte or reaction when EDLC is used. A suitable material is aluminum. As the shape of the current collector, a metal foil or a structure (such as a foam) in which an electrode can be formed in a gap between metals can be used. The metal foil may be a normal metal foil having no through hole, or a metal foil having a through hole such as an expanded metal or a punching metal. The thickness of the current collector is not particularly limited as long as the shape and strength of the electrode can be sufficiently maintained, but for example, 1 to 100 μm is preferable from the viewpoint of strength, conductive resistance, and capacity per volume.

活物質層に用いるバインダーは、特に制限されるものではないが、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、スチレン−ブタジエン共重合体などを用いることができる。活物質層におけるバインダーの含有量は、例えば、活物質100質量部に対して3〜20質量部の範囲が好ましい。また、必要に応じて、活物質層には導電性フィラーを添加することができる。導電性フィラーの種類は特に制限されるものではないが、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維が例示される。導電性フィラーの添加量は、例えば、活物質100質量部に対して0〜30質量部が好ましい。   The binder used for the active material layer is not particularly limited, and PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), a styrene-butadiene copolymer, or the like can be used. For example, the binder content in the active material layer is preferably in the range of 3 to 20 parts by mass with respect to 100 parts by mass of the active material. Moreover, a conductive filler can be added to the active material layer as necessary. The type of the conductive filler is not particularly limited, and examples thereof include acetylene black, ketjen black, and vapor grown carbon fiber. As for the addition amount of an electroconductive filler, 0-30 mass parts is preferable with respect to 100 mass parts of active materials, for example.

電極は、公知の電極成形手法を利用して製造することができ、例えば、活物質、導電性フィラー、バインダーを溶媒に分散させたスラリーを、活物質層として集電体上に塗布する塗布工程、溶媒を乾燥させる乾燥工程、そして加圧によって正極活物質層のかさ密度を向上させる加圧工程を行うことにより得られる。   The electrode can be manufactured using a known electrode forming technique. For example, an application step of applying a slurry in which an active material, a conductive filler, and a binder are dispersed in a solvent as an active material layer is applied on a current collector. It is obtained by performing a drying step of drying the solvent and a pressurizing step of improving the bulk density of the positive electrode active material layer by pressurization.

活物質層のかさ密度は、0.40g/cm以上であり、好ましくは0.45g/cm以上0.70g/cm以下の範囲である。かさ密度が0.40g/cm以上であれば、体積当たりの電極の容量を大きくすることができ、蓄電素子の小型化を達成できる。また、かさ密度が0.70g/cm以下であれば、活物質層内の空隙における電解液の拡散が十分となり大電流での充放電特性が高いと考えられる。
本発明の1つの実施態様で用いられる活物質層のかさ密度は、特定のミクロ孔量及びメソ孔量を有することに起因して、同じ方法で作製した通常の活性炭の活物質層のかさ密度に比べて小さい。その場合、活物質層として成形した状態において上記のかさ密度を達成するに、例えば、表面温度が前記バインダーの融点マイナス40℃以上、かつ融点以下の温度に設定されたロールによって加熱しながら加圧する方法(以下「加熱プレス」ともいう。)を用いることができる。
The bulk density of the active material layer is 0.40 g / cm 3 or more, preferably 0.45 g / cm 3 or more 0.70 g / cm 3 or less. When the bulk density is 0.40 g / cm 3 or more, the capacity of the electrode per volume can be increased, and the storage element can be reduced in size. Further, if the bulk density is 0.70 g / cm 3 or less, it is considered that the electrolyte solution is sufficiently diffused in the voids in the active material layer, and the charge / discharge characteristics at a large current are high.
The bulk density of the active material layer used in one embodiment of the present invention is that the bulk density of the active material layer of normal activated carbon produced by the same method due to having a specific micropore volume and mesopore volume. Smaller than In that case, in order to achieve the above-mentioned bulk density in a state of being formed as an active material layer, for example, the surface temperature is pressurized while being heated by a roll set to a temperature not lower than the melting point of the binder minus 40 ° C. and lower than the melting point. A method (hereinafter also referred to as “heat press”) can be used.

また、溶媒を使用せずに、活性炭とバインダーとを乾式で混合して、前記バインダーの融点マイナス40℃以上、かつ融点以下の温度に加熱した状態で加圧して板状に成形する成形工程と、該成形された活物質層を導電性接着剤で集電体に貼り付ける接着工程とで行ってもよい。なお、融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。   Further, a molding process in which activated carbon and a binder are mixed by a dry method without using a solvent, and are pressed into a plate shape while being heated to a temperature of the melting point of the binder minus 40 ° C. or higher and lower than the melting point, and In addition, the formed active material layer may be bonded to the current collector with a conductive adhesive. In addition, melting | fusing point can be calculated | required in the endothermic peak position of DSC (Differential Scanning Calorimetry). For example, using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., 10 mg of sample resin is set in a measurement cell, and the temperature is increased from 30 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen gas atmosphere. The temperature is raised, and the endothermic peak temperature in the temperature raising process becomes the melting point.

加熱プレス方法は、例えば、以下の工程で行うことができる。加熱プレスに用いる設備は図2を参照して説明する。
集電体に活物質層を塗布した正極(6)を巻き取った巻き出しロール(1)を巻だしロール位置に設置する。図2に示すように、正極(6)を、第一のガイド(2)、加熱プレスロール(3)、第二のガイド(2)を順次経て、巻取りロール(4)に巻き取る。
加熱プレスロール(3)の表面温度は、活物質層に含まれるバインダーの融点マイナス40℃以上、かつ融点以下の温度に設定するが、好ましくは融点マイナス30℃以上かつ融点以下、より好ましくは融点マイナス20℃以上、かつ融点以下の温度から選択する。例えば、バインダーにPVDF(ポリフッ化ビニリデン:融点150℃)を用いた場合は110〜150℃の範囲に加温することが好ましく、120〜150℃の範囲内で加温することがより好ましい。バインダーにスチレン−ブタジエン共重合体(融点100℃)を用いた場合は60〜100℃の範囲に加温することが好ましく、70〜100℃の範囲で加温することがより好ましい。
The hot press method can be performed, for example, in the following steps. The equipment used for the heating press will be described with reference to FIG.
The unwinding roll (1) which wound up the positive electrode (6) which apply | coated the active material layer to the electrical power collector is unwound and installed in a roll position. As shown in FIG. 2, the positive electrode (6) is wound around a winding roll (4) through a first guide (2), a heated press roll (3), and a second guide (2) in this order.
The surface temperature of the heated press roll (3) is set to a temperature not lower than the melting point minus 40 ° C. and not higher than the melting point of the binder contained in the active material layer, preferably not lower than the melting point minus 30 ° C. and not higher than the melting point, more preferably the melting point. It selects from the temperature below minus 20 degreeC and below melting | fusing point. For example, when PVDF (polyvinylidene fluoride: melting point 150 ° C.) is used as the binder, it is preferably heated in the range of 110 to 150 ° C., more preferably in the range of 120 to 150 ° C. When a styrene-butadiene copolymer (melting point: 100 ° C.) is used as the binder, it is preferably heated in the range of 60 to 100 ° C., more preferably in the range of 70 to 100 ° C.

加熱プレスする際の加圧圧力、及びプレスを行う速度は、得られる電極のかさ密度により調整する。加熱プレスロールのプレス圧力は、油圧シリンダー(5)の圧力を調整して一定に保つ。プレスの圧力は50kgf/cm以上300kgf/cm以下が好ましい。プレス速度は15m/分以下の速度が好ましく、より好ましくは10m/分以下、更に好ましくは5m/分以下である。上記のプレス速度であると十分なかさ密度を得ることができる。
また、プレス圧力が高すぎる場合は活物質層が集電体から剥離するため、セルの抵抗や放電容量維持率等を測定してプレス圧力を決定することが好ましい。
プレスロール同士の距離(ロール間距離)は任意に選ぶことができる。一回目のプレスでは少なくともプレスする電極厚さより狭いロール間距離でプレスを行うが、電極厚さに近いロール間距離ではプレスによるかさ密度増加の効果が小さく、狭すぎる場合は活物質層が集電体から剥離するためセルの抵抗や放電容量維持率等を測定してロール間距離を選ぶことが好ましい。
The pressurizing pressure at the time of heat pressing and the speed at which the pressing is performed are adjusted by the bulk density of the obtained electrode. The press pressure of the heated press roll is kept constant by adjusting the pressure of the hydraulic cylinder (5). The pressing pressure is preferably 50 kgf / cm or more and 300 kgf / cm or less. The pressing speed is preferably 15 m / min or less, more preferably 10 m / min or less, and still more preferably 5 m / min or less. A sufficient bulk density can be obtained at the above pressing speed.
In addition, when the pressing pressure is too high, the active material layer is peeled off from the current collector. Therefore, it is preferable to determine the pressing pressure by measuring the resistance of the cell, the discharge capacity retention rate, and the like.
The distance between the press rolls (distance between the rolls) can be arbitrarily selected. In the first press, pressing is performed at a distance between the rolls that is at least narrower than the electrode thickness to be pressed, but the effect of increasing the bulk density by the press is small at the distance between the rolls that is closer to the electrode thickness. In order to peel from the body, it is preferable to select the distance between rolls by measuring the resistance of the cell, the discharge capacity maintenance rate, and the like.

本発明の電極はプレスを2回以上行うことが好ましい。1回のプレスではかさ密度を十分に上げることができないか、かさ密度を上げるために、高すぎるプレス圧力又は狭すぎるロール間距離でプレスすることが必要となり、結果として剥離を引き起こし、セルの抵抗や放電容量維持率等の性能を低下させる。電極の損傷が著しい場合はセル作製が行えない場合もある。
例えばプレスを2回以上プレスする場合は、ロール間距離は最初に実施するプレス時よりも二回目のプレス時のロール間距離が同等、より好ましくは狭くすることが好ましい。具体的には、一回目のロール間距離を1とすると、二回目のロール間距離は、0.4〜0.6、更に三回目も行う場合には、二回目のロール間距離を1として三回目のロール間距離は0.2〜0.4としてプレスを行うと求める嵩密度を得ることができる。必要に応じて更にプレスをしても構わない。但し、生産効率上、二回から三回程度のプレス回数が好ましい。また、二回以上プレスする場合、初回のプレスを室温で行っても構わない。
また、プレス圧力は最初に実施するプレス時に対して二回目のプレス時は同じか高くてもよい。プレス圧は高いほうが密度向上にとって好ましい。
The electrode of the present invention is preferably pressed twice or more. A single press cannot increase the bulk density sufficiently, or in order to increase the bulk density, it is necessary to press at a press pressure that is too high or a distance between rolls that is too narrow, resulting in peeling and cell resistance. And the performance such as the discharge capacity maintenance rate is reduced. If the electrode is significantly damaged, the cell may not be manufactured.
For example, when the press is pressed twice or more, the distance between the rolls is preferably the same as the distance between the rolls during the second press, more preferably narrower than that during the first press. Specifically, when the first roll distance is 1, the second roll distance is 0.4 to 0.6, and when the third roll is performed, the second roll distance is 1. When the press is performed with the third inter-roll distance being 0.2 to 0.4, the desired bulk density can be obtained. You may further press as needed. However, from the viewpoint of production efficiency, a press number of about 2 to 3 is preferable. Moreover, when pressing twice or more, you may perform the first press at room temperature.
Further, the pressing pressure may be the same as or higher in the second pressing than in the first pressing. A higher pressing pressure is preferable for improving the density.

加熱プレスロール(3)を、電極(6)が巻出ロール(1)から巻取りロール(4)に送られる方向に自転させ、任意の速度に制御する。巻取りロール(4)は電極の張力が適正な値になるように自転して正極(6)を巻き取る。巻出しロール(1)は自転する必要はないが電極(6)がたるまない程度の張力を与える負荷であることが望ましい。   The heated press roll (3) is rotated in the direction in which the electrode (6) is sent from the unwinding roll (1) to the winding roll (4), and controlled to an arbitrary speed. The winding roll (4) rotates so that the tension of the electrode becomes an appropriate value and winds up the positive electrode (6). The unwinding roll (1) does not need to rotate, but is preferably a load that gives a tension that does not sag the electrode (6).

(セパレータ)
セパレータとしては、一般的にEDLCで用いられる不織紙などを用いることができる。例えば、ポリオレフィン不織布、PTFE多孔体フィルム、クラフト紙、レーヨン繊維・サイザル麻繊維混抄シート、マニラ麻シート、ガラス繊維シート、セルロース系電解紙、レーヨン繊維からなる抄紙、セルロースとガラス繊維の混抄紙、またはこれらを組み合せて複数層に構成したものなどを使用することができる。
セパレータの厚みは、10μm以上50μm以下であることが好ましい。厚みが10μm以上であれば、内部のマイクロショートによる自己放電の抑制に優れ、一方、厚みが50μm以下であれば、EDLCのエネルギー密度及び出力特性に優れる。
(Separator)
As the separator, non-woven paper or the like generally used in EDLC can be used. For example, polyolefin nonwoven fabric, PTFE porous film, kraft paper, rayon fiber / sisal fiber mixed paper, manila hemp sheet, glass fiber sheet, cellulosic electrolytic paper, paper made of rayon fiber, mixed paper of cellulose and glass fiber, or these It is possible to use a combination of two or more layers.
The thickness of the separator is preferably 10 μm or more and 50 μm or less. If the thickness is 10 μm or more, it is excellent in suppressing self-discharge due to internal micro shorts, and if the thickness is 50 μm or less, the energy density and output characteristics of EDLC are excellent.

(電極端子)
電極端子(正極端子と負極端子とを総称していう。)は、一般的には略矩形をしており、その一端は電極の集電体と電気的に接続され、他端は使用時に外部の負荷(放電の場合)又は電源(充電の場合)と電気的に接続される。正極に正極端子の一端を電気的に接続し、負極に負極端子の一端を電気的に接続する。具体的には、正極集電体の正極活物質層の未塗布領域に正極端子を、負極集電体の負極活物質層の未塗布領域に負極端子を電気的に接続する。電極端子は、材質がアルミニウムであることが好ましい。
下記のラミネートフィルム外装体の封止部となる、電極端子の中央部には、ポリプロピレン等の樹脂製のフィルムが貼りつけられていることが好ましい。これは、電極端子と、ラミネートフィルムを構成する金属箔との短絡を防ぎ、かつ封止密閉性を向上させる。
前述した電極体と電極端子との電気的な接続方法は、例えば、超音波溶接法が一般的であるが、抵抗溶接、レーザー溶接等でもよく、限定するものではない。
(Electrode terminal)
An electrode terminal (collectively referred to as a positive electrode terminal and a negative electrode terminal) generally has a substantially rectangular shape, one end of which is electrically connected to an electrode current collector, and the other end is externally connected during use. It is electrically connected to a load (when discharging) or a power source (when charging). One end of the positive electrode terminal is electrically connected to the positive electrode, and one end of the negative electrode terminal is electrically connected to the negative electrode. Specifically, the positive electrode terminal is electrically connected to the uncoated region of the positive electrode active material layer of the positive electrode current collector, and the negative electrode terminal is electrically connected to the uncoated region of the negative electrode active material layer of the negative electrode current collector. The electrode terminal is preferably made of aluminum.
It is preferable that a resin film such as polypropylene is attached to the central portion of the electrode terminal, which is a sealing portion of the laminate film outer package described below. This prevents a short circuit between the electrode terminal and the metal foil constituting the laminate film, and improves the sealing hermeticity.
For example, an ultrasonic welding method is generally used as an electrical connection method between the electrode body and the electrode terminal. However, resistance welding, laser welding, or the like may be used, and the method is not limited.

(外装体)
外装体に使用される金属缶としては、アルミニウム製のものが好ましい。また、外装体をラミネートフィルムから形成することもでき、その場合に使用されるラミネートフィルムは、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内層樹脂フィルムから成る3層構成のものが例示される。外層樹脂フィルムは接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分又はガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内層樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。
(Exterior body)
As a metal can used for an exterior body, the thing made from aluminum is preferable. Further, the outer package can be formed from a laminate film, and the laminate film used in that case is preferably a film in which a metal foil and a resin film are laminated, and is composed of three layers comprising an outer layer resin film / metal foil / inner layer resin film. The thing of a structure is illustrated. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing the permeation of moisture or gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used. The inner layer resin film protects the metal foil from the electrolyte contained therein and melts and seals it at the time of heat sealing. Polyolefin and acid-modified polyolefin can be preferably used.

電解液は非水系電解液が好ましい。非水系電解液の溶質としては、R4+、R4+(ただし、RはCn2n+1で示されるアルキル基:n=1〜4)、トリエチルメチルアンモニウムイオン等で示される第4級オニウムカチオンと、BF4 -、PF6 -、ClO4 -、SbF6 -またはCF3SO3 -なるアニオンとを組み合わせた塩、または、カチオンがリチウムイオンであるリチウム塩を用いる。リチウム塩としては、LiBF4、LiClO4、LiPF6、LiSbF6、LiAsF6、LiCF3SO3、LiC(CF3SO23、LiB(C654、LiC49SO3、LiC817SO3及びLiN(CF3SO22から選ばれる1つ以上の物質が好ましい。特に、電気伝導性、安定性、及び低コスト性という点から、カチオンとしてR4+(ただし、RはCn2n+1で示されるアルキル基:n=1〜4)及びトリエチルメチルアンモニウムイオン、アニオンとして、BF4 -、PF6 -、ClO4 -及びSbF6 -を組み合わせた塩が好ましい。 The electrolyte is preferably a non-aqueous electrolyte. Examples of the solute of the non-aqueous electrolyte include R 4 N + , R 4 P + (where R is an alkyl group represented by C n H 2n + 1 : n = 1 to 4), triethylmethylammonium ion, and the like. A salt obtained by combining a quaternary onium cation and an anion of BF 4 , PF 6 , ClO 4 , SbF 6 or CF 3 SO 3 or a lithium salt in which the cation is a lithium ion is used. Examples of the lithium salt, LiBF 4, LiClO 4, LiPF 6, LiSbF 6, LiAsF 6, LiCF 3 SO 3, LiC (CF 3 SO 2) 3, LiB (C 6 H 5) 4, LiC 4 F 9 SO 3, One or more materials selected from LiC 8 F 17 SO 3 and LiN (CF 3 SO 2 ) 2 are preferred. In particular, from the viewpoint of electrical conductivity, stability, and low cost, R 4 N + (wherein R is an alkyl group represented by C n H 2n + 1 : n = 1 to 4) and triethylmethylammonium as cations As the ions and anions, salts in which BF 4 , PF 6 , ClO 4 and SbF 6 are combined are preferable.

これらの非水系電解液中の溶質濃度はEDLCの特性が十分引き出せるように、0.3〜2.0モル/リットルが好ましく、特に、0.7モル/リットル以上1.9モル/リットル以下の濃度では、高い電気伝導性が得られて好ましい。特に、−20℃以下の低温で充放電するとき、2.0モル/リットル以上の濃度では、電解液の電気伝導性が低下し好ましくない。0.3モル/リットル以下では室温下、低温下とも電気伝導度が小さく好ましくない。電解液としては、トリエチルメチルアンモニウムテトラフルオロボレードTEMABF4のプロピレンカーボネート溶液が好ましく、TEMABF4の濃度としては0.5〜1.8モル/リットルが好ましい。   The solute concentration in these non-aqueous electrolytes is preferably 0.3 to 2.0 mol / liter so that the characteristics of EDLC can be sufficiently extracted, and particularly 0.7 mol / liter or more and 1.9 mol / liter or less. The concentration is preferable because high electrical conductivity is obtained. In particular, when charging / discharging at a low temperature of −20 ° C. or less, a concentration of 2.0 mol / liter or more is not preferable because the electrical conductivity of the electrolytic solution is lowered. If it is 0.3 mol / liter or less, the electric conductivity is low and unfavorable at both room temperature and low temperature. As the electrolytic solution, a propylene carbonate solution of triethylmethylammonium tetrafluoroborate TEMABF4 is preferable, and the concentration of TEMABF4 is preferably 0.5 to 1.8 mol / liter.

(EDLC)
本実施態様のEDLCにおいては、正極及び負極は、セパレータを介して積層又は捲廻積層された電極体として、金属缶又はラミネートフィルムから形成された外装体に挿入される。
本実施態様のEDLCの一実施態様は、図1(a)及び(b)の断面模式図で表されるものであり、正極端子(7)と負極端子(8)とが、電極体(10)の1辺より導出される態様である。別の実施態様としては、正極端子(7)と負極端子(8)とが、電極体(10)の対向する2辺より導出される態様が挙げられる。後者の実施態様は、電極端子を幅広くできるために、より大電流を流す用途に適している。
(EDLC)
In the EDLC of this embodiment, the positive electrode and the negative electrode are inserted into an outer package formed from a metal can or a laminate film as an electrode body that is laminated or wound around a separator.
One embodiment of the EDLC of this embodiment is represented by the schematic cross-sectional views of FIGS. 1A and 1B. The positive electrode terminal (7) and the negative electrode terminal (8) are electrode bodies (10). ) Is derived from one side. As another embodiment, a mode in which the positive electrode terminal (7) and the negative electrode terminal (8) are led out from two opposing sides of the electrode body (10) can be mentioned. The latter embodiment is suitable for applications in which a larger current flows because the electrode terminals can be made wider.

EDLCは、正極集電体(11)に正極活物質層(12)を積層した正極(16)、及び負極集電体(14)に負極活物質層(15)を積層した負極(17)を、正極活物質層(12)と負極活物質層(15)とがセパレータ(13)を挟んで対向するように、交互に積層して電極体(10)を形成し、正極端子(7)を正極集電体(11)に接続し、かつ負極端子(8)を負極集電体(14)に接続し、電極体(10)を外装体(9)に収納し、電解液(図示せず)を外装体(9)内に注入し、そして正極端子(7)と負極端子(8)の端部を外装体(9)の外部に引き出した状態で外装体(9)の周縁部を封口して成る。   The EDLC includes a positive electrode (16) in which a positive electrode active material layer (12) is laminated on a positive electrode current collector (11), and a negative electrode (17) in which a negative electrode current collector (14) is laminated with a negative electrode active material layer (15). The positive electrode active material layer (12) and the negative electrode active material layer (15) are alternately laminated so that the separator (13) is interposed therebetween to form an electrode body (10), and the positive electrode terminal (7) is formed. The positive electrode current collector (11) is connected, the negative electrode terminal (8) is connected to the negative electrode current collector (14), the electrode body (10) is accommodated in the exterior body (9), and an electrolyte (not shown) ) Is injected into the exterior body (9), and the periphery of the exterior body (9) is sealed with the ends of the positive electrode terminal (7) and the negative electrode terminal (8) pulled out of the exterior body (9). It consists of

以下、実施例、比較例により、本発明を具体的に説明するが、本発明はこれらの実施例
により何ら限定されるものではない。
<実施例1>
(電極の作製)
アスペクト比が1.25以下となる樹脂原料は以下のようにして作製した。35重量%塩酸と36重量%ホルムアルデヒド水溶液とを用いて、ホルムアルデヒド濃度15重量%および塩酸濃度15重量%である混合溶液10000gを調製した後、該混合溶液にカルボキシメチルセルロースナトリウム塩の2重量%水溶液40gを添加し、攪拌して均一溶液とした。次に、該均一溶液の温度を20℃に調整した後、攪拌しながら、30℃の95重量%フェノール400gを加えた。フェノールの添加から約120秒で反応液は白濁化した。白濁化後も攪拌速度を落として反応を継続したところ、フェノールの添加から約30分後に反応液は淡いピンク色に着色した。このとき、反応液の温度は30℃に達していた。反応液の着色後、外部加熱により反応液を90℃に加熱し、この温度で30分間保持した。ついで、この反応液を濾過し、得られたケーキを水で洗浄した後、0.5重量%アンモニア水溶液に懸濁させて、40℃で1時間中和反応を行なった。中和反応後、当該懸濁液をアスピレータを用いて吸引濾過し、水で洗浄し、50℃の乾燥機で20時間乾燥させることにより、球状のフェノール樹脂350gを得た。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited at all by these Examples.
<Example 1>
(Production of electrodes)
A resin raw material having an aspect ratio of 1.25 or less was prepared as follows. After preparing 10000 g of a mixed solution having a formaldehyde concentration of 15 wt% and a hydrochloric acid concentration of 15 wt% using 35 wt% hydrochloric acid and a 36 wt% aqueous formaldehyde solution, 40 g of a 2 wt% aqueous solution of carboxymethylcellulose sodium salt was added to the mixed solution. And stirred to make a homogeneous solution. Next, after adjusting the temperature of the homogeneous solution to 20 ° C., 400 g of 95 wt% phenol at 30 ° C. was added with stirring. About 120 seconds after the addition of phenol, the reaction solution became cloudy. After the white turbidity, the reaction was continued at a reduced stirring speed. As a result, about 30 minutes after the addition of phenol, the reaction solution was colored pale pink. At this time, the temperature of the reaction solution had reached 30 ° C. After coloring the reaction solution, the reaction solution was heated to 90 ° C. by external heating and kept at this temperature for 30 minutes. Next, this reaction solution was filtered, and the resulting cake was washed with water, then suspended in a 0.5 wt% aqueous ammonia solution, and neutralized at 40 ° C. for 1 hour. After the neutralization reaction, the suspension was subjected to suction filtration using an aspirator, washed with water, and dried in a dryer at 50 ° C. for 20 hours to obtain 350 g of a spherical phenol resin.

このフェノール樹脂を焼成炉にて窒素雰囲気下、600℃で2時間炭化処理を行い、炭化物を得た。KOHをこの炭化物に対して重量比1:3.5で混合し、焼成炉にて混合物を窒素雰囲下、800℃で1時間、加熱して賦活化を行った。その後2mol/Lに調整した希塩酸で1時間撹拌洗浄を行った後、蒸留水でPH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行い、平均粒径が約7μmの球状の活性炭(A)を作製した。
この粒子100個のアスペクト比を走査型電子顕微鏡S−4700(日立ハイテクノロジーズ製)にで加速電圧5kV、倍率2000倍で観察したところ、平均は1.06であった。
The phenol resin was carbonized in a baking furnace at 600 ° C. for 2 hours in a nitrogen atmosphere to obtain a carbide. KOH was mixed with this carbide in a weight ratio of 1: 3.5, and the mixture was activated in a firing furnace by heating at 800 ° C. for 1 hour in a nitrogen atmosphere. Then, after stirring and washing with dilute hydrochloric acid adjusted to 2 mol / L for 1 hour, boiling and washing with distilled water until it is stable between pH 5 and 6, followed by drying, spherical activated carbon having an average particle diameter of about 7 μm (A ) Was produced.
When the aspect ratio of 100 particles was observed with a scanning electron microscope S-4700 (manufactured by Hitachi High-Technologies) at an acceleration voltage of 5 kV and a magnification of 2000, the average was 1.06.

一方、ノボラック型フェノール樹脂を焼成炉にて窒素雰囲気下、600℃で2時間炭化処理を行った。その後、焼成物をボールミルにて粉砕し、分級を行い平均粒径が7μmの破砕状の炭化物を得た。KOHをこの炭化物に対して重量比1:3.5で混合し、焼成炉にて混合物を窒素雰囲下、800℃で1時間、加熱して賦活化を行った。その後2mol/Lに調整した希塩酸で1時間撹拌洗浄を行った後、蒸留水でPH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行い、破砕状の平均粒径7μmの活性炭(B)を作製した。
活性炭(A)35重量%と活性炭(B)65重量%を混合し、電極活物質とした。
On the other hand, the novolac type phenol resin was carbonized in a baking furnace at 600 ° C. for 2 hours in a nitrogen atmosphere. Thereafter, the fired product was pulverized with a ball mill and classified to obtain a crushed carbide having an average particle size of 7 μm. KOH was mixed with this carbide in a weight ratio of 1: 3.5, and the mixture was activated in a firing furnace by heating at 800 ° C. for 1 hour in a nitrogen atmosphere. Then, after stirring and washing with dilute hydrochloric acid adjusted to 2 mol / L for 1 hour, boiling and washing with distilled water until stable between PH 5 and 6, followed by drying, activated carbon (B) having a crushed average particle size of 7 μm Was made.
Activated carbon (A) 35% by weight and activated carbon (B) 65% by weight were mixed to obtain an electrode active material.

本活性炭をユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を前述の方法により、BET比表面積をBET1点法により、求めた。その結果、メソ孔量V1は0.98cc/g、マイクロ孔量V2は1.05cc/g、BET比表面積は2640m/gであった。
この活性炭を正極活物質に用い、活性炭83.4質量部、導電性カーボンブラック(ライオン株式会社ケッチェンブラックECP600JD)8.3質量部及びPVDF(ポリフッ化ビニリデン、クレハ社製KFポリマー W#9300、融点163℃)8.3質量部をNMP(N−メチルピロリドン)と混合して、スラリー状の活物質層を得た。次いで、得られた活物質層を表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.31g/cmであった。尚、電極活物質層の目付は24g/mでかさ密度は、十分に乾燥させた電極を露点が−60℃以下に管理されたドライルームにて、集電体を除いた電極の重量と集電体の厚さを除いた電極活物質層の厚さを求めて、計算をして求めた。厚みの測定は小野測器DG−4120を用いた。
The activated carbon was determined by a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics, and the BET specific surface area was determined by the BET one-point method by the above-described method. As a result, the mesopore volume V1 was 0.98 cc / g, the micropore volume V2 was 1.05 cc / g, and the BET specific surface area was 2640 m 2 / g.
Using this activated carbon as a positive electrode active material, activated carbon 83.4 parts by mass, conductive carbon black (Lion Corporation Ketjen Black ECP600JD) 8.3 parts by mass and PVDF (polyvinylidene fluoride, Kureha KF polymer W # 9300, 8.3 parts by mass of mp 163 ° C. were mixed with NMP (N-methylpyrrolidone) to obtain a slurry-like active material layer. Next, the obtained active material layer was applied to one side of a 15 μm thick aluminum foil having a conductive layer applied to the surface and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.31 g / cm 3 . Note that the basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was the dry weight of the electrode, excluding the current collector, in a dry room where the dew point was controlled to −60 ° C. or less. The thickness of the electrode active material layer excluding the thickness of the electric body was obtained and calculated. Ono Sokki DG-4120 was used for the measurement of thickness.

活物質層を塗布した電極を図1の巻出しロール位置に設置し、140℃に加熱した加熱プレスロール装置(由利ロール社製MSC−31)にて110kgf/cmの線圧で、1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.45g/cm、電極層の厚さ53μmの正極を得た。プレス速度は5m/分で行った。加熱ロールの温度の測定方法はKEYENCE社製、赤外放射温度計IT2−60にてロール表面温度を非接触で検出し、PID制御にて設定温度に調節した。また、線圧は加圧ロールに掛かる圧力と上下のロールが接触する長さで計算をした。
この電極について5か所でサンプル片を切り出し、Arイオンビームにて切断して、操作型電子顕微鏡S−4700(日立ハイテクノロジーズ製)にて加速電圧5kV、倍率2000倍で断面観察を行った。無作為に像を選び、各活性炭粒子の断面の形状と断面積を求めたところ、アスペクト比が1.25以下の粒子の割合は全粒子に対して32%であった。
The electrode coated with the active material layer is placed at the unwinding roll position in FIG. 1 and heated for the first time at a linear pressure of 110 kgf / cm in a heated press roll apparatus (MSC-31 manufactured by Yuri Roll Co., Ltd.) heated to 140 ° C. The distance between the rolls was 60 μm, and the pressure was applied at 30 μm for the second time to obtain a positive electrode having a bulk density of the electrode active material layer of 0.45 g / cm 3 and a thickness of the electrode layer of 53 μm. The pressing speed was 5 m / min. The temperature of the heating roll was measured by detecting the roll surface temperature in a non-contact manner with an infrared radiation thermometer IT2-60 manufactured by KEYENCE, and adjusting the temperature to the set temperature by PID control. The linear pressure was calculated from the pressure applied to the pressure roll and the length of contact between the upper and lower rolls.
About this electrode, the sample piece was cut out at five places, cut with an Ar ion beam, and the cross section was observed with an operating electron microscope S-4700 (manufactured by Hitachi High-Technologies) at an acceleration voltage of 5 kV and a magnification of 2000 times. When images were randomly selected and the cross-sectional shape and cross-sectional area of each activated carbon particle were determined, the proportion of particles having an aspect ratio of 1.25 or less was 32% with respect to all particles.

(EDLCの組立と性能評価)
上記で得られた電極2枚をそれぞれ3cmになるように切り取り、正極、負極とした。この正極、負極それぞれに正極端子と負極端子とを超音波融着して、厚み30μmのセルロース製不織布セパレータを挟んで対向させ、ポリプロピレンとアルミニウムとナイロンとを積層したラミネートフィルムから成る外装体に収納し、外装体内に電解液を注入し、正極端子と負極端子の端部を外装体外に引き出した状態で外装体をヒートシールすることにより封入し、EDLCを組立てた。
この時、電解液として1.5mol/lのトリエチルメチルアンモニウムテトラフルオロボレードTEMABF4のプロピレンカーボネート溶液を用いた。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの放電容量は40.8F/g、電極活物質層の体積当たりの容量(以下「容積容量」ともいう。)は18.3F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は88%と良好であった。
このセルに0Vから3Vまでの電圧範囲で、300mAで定電流充電、定電流放電を繰り返すサイクル充放電を行い、15万回繰り返したのちの放電容量を初回の放電容量と比較したサイクル維持率は75%であった。
(EDLC assembly and performance evaluation)
The two electrodes obtained above were cut out to 3 cm 2 each, and used as a positive electrode and a negative electrode. The positive electrode and the negative electrode are ultrasonically fused to each of the positive electrode and the negative electrode, facing each other with a 30 μm-thick cellulose non-woven separator, and housed in an outer package made of a laminate film of polypropylene, aluminum and nylon. Then, an electrolytic solution was injected into the exterior body, and the exterior body was sealed by heat sealing in a state where the ends of the positive electrode terminal and the negative electrode terminal were pulled out of the exterior body, and an EDLC was assembled.
At this time, a 1.5 mol / l triethylmethylammonium tetrafluoroborate TEMABF4 propylene carbonate solution was used as the electrolytic solution.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The discharge capacity per electrode active material weight was 40.8 F / g, and the capacity per volume of the electrode active material layer (hereinafter also referred to as “volume capacity”) was 18.3 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 88%.
In this voltage range from 0V to 3V, cycle charge / discharge is repeated with constant current charge and constant current discharge at 300mA, and the cycle retention rate after comparing the discharge capacity after 150,000 times with the initial discharge capacity is 75%.

<実施例2>
(電極の作製)
実施例1に記載の球状炭化物、破砕状炭化物に対して、KOHを重量比1:4.3で混合して賦活し、それぞれ、活性炭(A)、(B)を得て、その後混合した以外は実施例1と同じ条件で活性炭を作製した。
この混合した活性炭を実施例1と同様に測定すると、メソ孔量V1は1.21cc/g、マイクロ孔量V2は1.84cc/g、BET比表面積は3100m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの電極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して33%であった。
<Example 2>
(Production of electrodes)
For the spherical carbide and crushed carbide described in Example 1, KOH was mixed and activated at a weight ratio of 1: 4.3 to obtain activated carbon (A) and (B), respectively, and then mixed. Produced activated carbon under the same conditions as in Example 1.
When the mixed activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.21 cc / g, the micropore volume V2 was 1.84 cc / g, and the BET specific surface area was 3100 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. The electrode was pressurized at 30 μm to obtain an electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 33% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は43F/g、容積容量は18.5F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は89%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、75%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 43 F / g, and the volume capacity was 18.5 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 89%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 75%.

<実施例3>
(電極の作製)
実施例1に記載の球状炭化物、破砕状炭化物に対して、KOHを重量比1:5で混合して賦活し、それぞれ、活性炭(A)、(B)を得て、その後混合した以外は実施例1と同じ条件で活性炭を作製した。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.32cc/g、マイクロ孔量V2は2.12cc/g、BET比表面積は3380m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.28g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて130kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.41g/cm、厚さ59μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して32%であった。
<Example 3>
(Production of electrodes)
The spherical carbide and crushed carbide described in Example 1 were activated by mixing KOH at a weight ratio of 1: 5 to obtain activated carbon (A) and (B), respectively, and then mixing them. Activated carbon was produced under the same conditions as in Example 1.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.32 cc / g, the micropore volume V2 was 2.12 cc / g, and the BET specific surface area was 3380 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.28 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time with a linear pressure of 130 kgf / cm with the heated press roll heated to 140 ° C. The second time Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.41 g / cm 3 and a thickness of 59 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 32% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は45.3F/g、容積容量は18.6F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は90%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、76%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 45.3 F / g, and the volume capacity was 18.6 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 90%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 76%.

<実施例4>
(電極の作製)
実施例1で作製した活性炭(A)65重量%、活性炭(B)35重量%を混合した。
この混合した活性炭を実施例1と同様に測定すると、メソ孔量V1は0.99cc/g、マイクロ孔量V2は1.12cc/g、BET比表面積は2690m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.31g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて110kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.46g/cm、厚さ52μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して61%であった。
<Example 4>
(Production of electrodes)
65% by weight of activated carbon (A) prepared in Example 1 and 35% by weight of activated carbon (B) were mixed.
When the mixed activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 0.99 cc / g, the micropore volume V2 was 1.12 cc / g, and the BET specific surface area was 2690 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.31 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll device in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 110 kgf / cm with a heated press roll heated to 140 ° C. Pressure was applied at 30 μm to obtain a positive electrode having a bulk density of 0.46 g / cm 3 and a thickness of 52 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 61% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は41F/g、容積容量は18.9F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は89%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、78%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 41 F / g, and the volume capacity was 18.9 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 89%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 78%.

<実施例5>
(電極の作製)
実施例2で作製した活性炭(A)65重量%、活性炭(B)35重量%を混合した。
この混合した活性炭を実施例1と同様に測定すると、メソ孔量V1は1.25cc/g、マイクロ孔量V2は1.83cc/g、BET比表面積は3140m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.44g/cm、厚さ55μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して63%であった。
<Example 5>
(Production of electrodes)
65% by weight of activated carbon (A) prepared in Example 2 and 35% by weight of activated carbon (B) were mixed.
When the mixed activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.25 cc / g, the micropore volume V2 was 1.83 cc / g, and the BET specific surface area was 3140 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.44 g / cm 3 and a thickness of 55 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 63% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は43.3F/g、容積容量は19.0F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は90%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、80%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1. The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 43.3 F / g, and the volume capacity was 19.0 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 90%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 80%.

<実施例6>
(電極の作製)
実施例3で作製した活性炭(A)65重量%、活性炭(B)35重量%を混合した。
この混合した活性炭を実施例1と同様に測定すると、メソ孔量V1は1.31cc/g、マイクロ孔量V2は1.92cc/g、BET比表面積は3420m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.41g/cm、厚さ59μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して60%であった。
<Example 6>
(Production of electrodes)
65% by weight of activated carbon (A) prepared in Example 3 and 35% by weight of activated carbon (B) were mixed.
When the mixed activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.31 cc / g, the micropore volume V2 was 1.92 cc / g, and the BET specific surface area was 3420 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.41 g / cm 3 and a thickness of 59 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 60% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は45F/g、容積容量は18.5F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は92%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、81%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 45 F / g, and the volume capacity was 18.5 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 92%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 81%.

<実施例7>
(電極の作製)
実施例1で作製した球状の活性炭(A)のみを用いた。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.00cc/g、マイクロ孔量V2は1.08cc/g、BET比表面積は2650m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.31g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.47g/cm、厚さ51μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して92%であった。
<Example 7>
(Production of electrodes)
Only the spherical activated carbon (A) produced in Example 1 was used.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.00 cc / g, the micropore volume V2 was 1.08 cc / g, and the BET specific surface area was 2650 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.31 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.47 g / cm 3 and a thickness of 51 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 92% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は40.3F/g、容積容量は18.9F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は91%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、84%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 40.3 F / g, and the volume capacity was 18.9 F / cm 3 .
Next, when the same charge was performed and the battery was discharged at 100 mA to 0 V, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was 91%, which was good.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 84%.

<実施例8>
(電極の作製)
実施例2で作製した球状の活性炭(A)のみを用いた。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.19cc/g、マイクロ孔量V2は1.85cc/g、BET比表面積は3110m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.44g/cm、厚さ55μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して91%であった。
<Example 8>
(Production of electrodes)
Only the spherical activated carbon (A) produced in Example 2 was used.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.19 cc / g, the micropore volume V2 was 1.85 cc / g, and the BET specific surface area was 3110 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.44 g / cm 3 and a thickness of 55 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 91% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は43F/g、容積容量は19F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は92%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、85%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 43 F / g, and the volume capacity was 19 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 92%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 85%.

<実施例9>
(電極の作製)
実施例3で作製した活性炭(A)のみを用いた。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.28cc/g、マイクロ孔量V2は1.96cc/g、BET比表面積は3430m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.28g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.42g/cm、厚さ57μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して89%であった。
<Example 9>
(Production of electrodes)
Only the activated carbon (A) prepared in Example 3 was used.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.28 cc / g, the micropore volume V2 was 1.96 cc / g, and the BET specific surface area was 3430 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.28 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.42 g / cm 3 and a thickness of 57 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 89% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は45F/g、容積容量は19.0F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は92%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、89%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 45 F / g, and the volume capacity was 19.0 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 92%.
When the cycle maintenance ratio was evaluated in the same manner as in Example 1, it was 89%.

<実施例10>
(電極の作製)
実施例8でアルミ箔上に活物質層を塗布した電極を、1回目に加熱せず室温のロールで120kgf/cmの線圧でロール間距離60μmでプレスし、2回目に140℃に加熱した加熱プレスロールにて120kgf/cmの線圧、ロール間距離30μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して91%であった。
<Example 10>
(Production of electrodes)
The electrode in which the active material layer was applied on the aluminum foil in Example 8 was not heated at the first time, but was pressed at a linear pressure of 120 kgf / cm with a room temperature roll at a distance of 60 μm between the rolls, and heated to 140 ° C. the second time. Pressurization was performed with a heated press roll at a linear pressure of 120 kgf / cm and a distance between the rolls of 30 μm to obtain a positive electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 91% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は44F/g、容積容量は18.7F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は90%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、88%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 44 F / g, and the volume capacity was 18.7 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 90%.
When the cycle maintenance ratio was evaluated in the same manner as in Example 1, it was 88%.

<実施例11>
(電極の作製)
実施例8でアルミ箔上に活物質層を塗布した電極を、加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に36μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して88%であった。
<Example 11>
(Production of electrodes)
The electrode in which the active material layer was applied on the aluminum foil in Example 8 was placed in a heated press roll device, and the distance between the rolls was 60 μm at the first time with a linear pressure of 120 kgf / cm using a heated press roll heated to 140 ° C., The second pressure was applied at 36 μm to obtain a positive electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 88% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は43F/g、容積容量は18.4F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は90%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、87%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 43 F / g, and the volume capacity was 18.4 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 90%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 87%.

<実施例12>
(電極の作製)
実施例1で作製した樹脂原料作製条件において、ホルムアルデヒド濃度20重量%および塩酸濃度10重量%である混合溶液10000gを調整した以外は実施例1と同様にして作製を行った。この樹脂を実施例1と同様に炭化を行い、球状の炭化物を得た。KOHを炭化物に対して重量比1:4.3で混合した以外は実施例1と同様に賦活を行ったところ、平均粒径10μmの活性炭を得た。この粒子100個のアスペクト比を走査型電子顕微鏡S−4700(日立ハイテクノロジーズ製)で加速電圧5kV、倍率2000倍で観察したところ、平均は1.12であった。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.23cc/g、マイクロ孔量V2は1.86cc/g、BET比表面積は3100m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/m2でかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して90%であった。
<Example 12>
(Production of electrodes)
Production was carried out in the same manner as in Example 1 except that 10000 g of a mixed solution having a formaldehyde concentration of 20% by weight and a hydrochloric acid concentration of 10% by weight was adjusted under the resin raw material production conditions produced in Example 1. This resin was carbonized in the same manner as in Example 1 to obtain a spherical carbide. When activation was performed in the same manner as in Example 1 except that KOH was mixed with the carbide at a weight ratio of 1: 4.3, activated carbon having an average particle diameter of 10 μm was obtained. When the aspect ratio of 100 particles was observed with a scanning electron microscope S-4700 (manufactured by Hitachi High-Technologies) at an acceleration voltage of 5 kV and a magnification of 2000, the average was 1.12.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.23 cc / g, the micropore volume V2 was 1.86 cc / g, and the BET specific surface area was 3100 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 90% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は43F/g、容積容量は18.5F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は89%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、84%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 43 F / g, and the volume capacity was 18.5 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 89%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 84%.

<実施例13>
(電極の作製)
実施例1で作製した樹脂原料作製条件において、ホルムアルデヒド濃度10重量%および塩酸濃度20重量%である混合溶液10000gを調整した以外は実施例1と同様にして作製を行った。この樹脂を実施例1と同様に炭化を行い、球状の炭化物を得た。KOHを炭化物に対して重量比1:4.3で混合した以外は実施例1と同様に賦活を行ったところ、平均粒径2μmの活性炭を得た。この粒子100個のアスペクト比を走査型電子顕微鏡S−4700(日立ハイテクノロジーズ製)で加速電圧5kV、倍率2000倍で観察したところ、平均は1.05であった。
この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.22cc/g、マイクロ孔量V2は1.84cc/g、BET比表面積は3080m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
実施例1でアルミ箔上に活物質層を塗布した電極を、加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて120kgf/cmの線圧で1回目にロール間距離60μm、2回目に24μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して94%であった。
<Example 13>
(Production of electrodes)
Production was performed in the same manner as in Example 1 except that 10000 g of a mixed solution having a formaldehyde concentration of 10% by weight and a hydrochloric acid concentration of 20% by weight was adjusted under the resin raw material production conditions produced in Example 1. This resin was carbonized in the same manner as in Example 1 to obtain a spherical carbide. When activation was performed in the same manner as in Example 1 except that KOH was mixed with the carbide at a weight ratio of 1: 4.3, activated carbon having an average particle diameter of 2 μm was obtained. When the aspect ratio of 100 particles was observed with a scanning electron microscope S-4700 (manufactured by Hitachi High-Technologies) at an acceleration voltage of 5 kV and a magnification of 2000, the average was 1.05.
When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.22 cc / g, the micropore volume V2 was 1.84 cc / g, and the BET specific surface area was 3080 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode in which the active material layer was applied on the aluminum foil in Example 1 was installed in a heated press roll apparatus, and the distance between the rolls was 60 μm at the first time at a linear pressure of 120 kgf / cm with a heated press roll heated to 140 ° C. The second pressure was applied at 24 μm to obtain a positive electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 94% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は42F/g、容積容量は18.2F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は93%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、84%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 42 F / g, and the volume capacity was 18.2 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 93%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 84%.

<比較例1>
(電極の作製)
実施例1で作製した破砕状活性炭(B)のみを用いた以外は実施例1と同じ条件で活性炭を作製した。この活性炭を実施例1と同様に測定すると、メソ孔量V1は0.98cc/g、マイクロ孔量V2は0.98cc/g、BET比表面積は2630m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.31g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて100kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.46g/cm、厚さ52μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して9%であった。
<Comparative Example 1>
(Production of electrodes)
Activated carbon was produced under the same conditions as in Example 1 except that only the crushed activated carbon (B) produced in Example 1 was used . When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 0.98 cc / g, the micropore volume V2 was 0.98 cc / g, and the BET specific surface area was 2630 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.31 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 100 kgf / cm with a heated press roll heated to 140 ° C. Pressure was applied at 30 μm to obtain a positive electrode having a bulk density of 0.46 g / cm 3 and a thickness of 52 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 9% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は40F/g、容積容量は18.5F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は86%であった。
実施例1と同様の方法でサイクル維持率を評価したところ、58%と低い結果であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 40 F / g, and the volume capacity was 18.5 F / cm 3 .
Next, the same charge was performed and the battery was discharged to 2.0 V at 100 mA. The ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was 86%.
When the cycle retention rate was evaluated in the same manner as in Example 1, the result was as low as 58%.

<比較例2>
(電極の作製)
実施例2で作製した活性炭(B)のみを用いた以外は実施例1と同じ条件で活性炭を作製した。この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.26cc/g、マイクロ孔量V2は1.85cc/g、BET比表面積は3120m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.29g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置し、140℃に加熱した加熱プレスロールにて110kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.43g/cm、厚さ56μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して11%であった。
<Comparative Example 2>
(Production of electrodes)
Activated carbon was produced under the same conditions as in Example 1 except that only activated carbon (B) produced in Example 2 was used . When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.26 cc / g, the micropore volume V2 was 1.85 cc / g, and the BET specific surface area was 3120 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.29 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll device in the same manner as in Example 1, and the distance between the rolls was 60 μm at the first time and the second time at a linear pressure of 110 kgf / cm with a heated press roll heated to 140 ° C. Pressurization was performed at 30 μm to obtain a positive electrode having a bulk density of 0.43 g / cm 3 and a thickness of 56 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 11% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は44F/g、容積容量は18.8F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は88%であった。
実施例1と同様の方法でサイクル維持率を評価したところ、62%と低い結果であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 44 F / g, and the volume capacity was 18.8 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was 88%.
When the cycle retention rate was evaluated in the same manner as in Example 1, the result was as low as 62%.

<比較例3>
(電極の作製)
実施例3で作製した活性炭(B)のみを用いた以外は実施例1と同じ条件で活性炭を作製した。この活性炭を実施例1と同様に測定すると、メソ孔量V1は1.37cc/g、マイクロ孔量V2は2.09cc/g、BET比表面積は3410m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.28g/cmであった。
活物質層を塗布した電極を実施例1と同様に加熱プレスロール装置に設置したが、加熱を行わず室温の状態のプレスロールにて100kgf/cmの線圧で1回目にロール間距離60μm、2回目に30μmで加圧して、電極活物質層のかさ密度0.41g/cm、厚さ59μmの正極を得た。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して12%であった。
<Comparative Example 3>
(Production of electrodes)
Activated carbon was produced under the same conditions as in Example 1 except that only activated carbon (B) produced in Example 3 was used . When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 1.37 cc / g, the micropore volume V2 was 2.09 cc / g, and the BET specific surface area was 3410 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.28 g / cm 3 .
The electrode coated with the active material layer was installed in a heated press roll apparatus as in Example 1, but the distance between the rolls was 60 μm for the first time at a linear pressure of 100 kgf / cm with a press roll at room temperature without heating. The second pressure was applied at 30 μm to obtain a positive electrode having a bulk density of 0.41 g / cm 3 and a thickness of 59 μm of the electrode active material layer. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 12% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は45/g、容積容量は18.3F/cmであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は88%であった。
実施例1と同様の方法でサイクル維持率を評価したところ、63%と低い結果であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 45 / g, and the volume capacity was 18.3 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was 88%.
When the cycle retention rate was evaluated in the same manner as in Example 1, the result was as low as 63%.

<比較例4>
(電極の作製)
実施例1で作製した球状炭化物のみを用い、炭化物の重量に対して、KOHを炭化物に対して重量比1:2.2で混合した以外は実施例1と同じ条件で活性炭を作製した。この活性炭を実施例1と同様に測定すると、メソ孔量V1は0.31cc/g、マイクロ孔量V2は0.78cc/g、BET比表面積は2100m/gであった。この活性炭を用いて実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.33g/cmであった。
実施例1でアルミ箔上に活物質層を塗布した電極を、100kgf/cmの線圧でロール間距離60μmで1回だけプレスしたところ、電極活物質層のかさ密度0.54g/cm、厚さ44μmとなり、実施例1に比べるとかさ密度が高い正極となった。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して92%であった。
<Comparative Example 4>
(Production of electrodes)
Activated carbon was produced under the same conditions as in Example 1 except that only the spherical carbide produced in Example 1 was used and KOH was mixed with the carbide in a weight ratio of 1: 2.2 with respect to the weight of the carbide. When this activated carbon was measured in the same manner as in Example 1, the mesopore volume V1 was 0.31 cc / g, the micropore volume V2 was 0.78 cc / g, and the BET specific surface area was 2100 m 2 / g. Using this activated carbon, a slurry-like active material layer was prepared in the same manner as in Example 1, applied to one side of a 15 μm thick aluminum foil having a conductive layer applied on the surface, and dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.33 g / cm 3 .
When the electrode in which the active material layer was applied on the aluminum foil in Example 1 was pressed only once with a linear pressure of 100 kgf / cm and a distance between rolls of 60 μm, the bulk density of the electrode active material layer was 0.54 g / cm 3 , The thickness was 44 μm, and a positive electrode having a higher bulk density than that of Example 1 was obtained. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 92% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は35F/g、容積容量は18.9F/cmであった。
次に同様の充電を行い100mAで2.0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は77%と低い値であった。
実施例1と同様の方法でサイクル維持率を評価したところ、82%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was 35 F / g, and the volume capacity was 18.9 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 2.0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was a low value of 77%.
When the cycle retention rate was evaluated in the same manner as in Example 1, it was 82%.

<比較例5>
(電極の作製)
実施例1で作製した活性炭(A)のみを用いて、実施例1と同様の方法でスラリー状の活物質層を作製し、表面に導電層を塗布した厚さ15μmのアルミニウム箔の片面に塗布し、乾燥した。電極活物質層の目付は24g/mでかさ密度は0.31g/cmであった。実施例1でアルミ箔上に活物質層を塗布した電極を、120kgf/cmの線圧でロール間距離60μmで1回だけプレスしたところ、電極活物質層のかさ密度0.36g/cm、厚さ67μmとなり、実施例1に比べるとかさ密度が低い正極となった。プレス速度は5m/分で行った。
実施例1と同様方法で電極の断面観察を行い、アスペクト比が1.25以下の割合を算出したところ、全粒子に対して91%であった。
<Comparative Example 5>
(Production of electrodes)
Using only the activated carbon (A) produced in Example 1, a slurry-like active material layer was produced in the same manner as in Example 1, and applied to one side of a 15 μm thick aluminum foil having a conductive layer coated on the surface. And dried. The basis weight of the electrode active material layer was 24 g / m 2 and the bulk density was 0.31 g / cm 3 . When the electrode in which the active material layer was applied on the aluminum foil in Example 1 was pressed only once with a linear pressure of 120 kgf / cm and a distance between rolls of 60 μm, the bulk density of the electrode active material layer was 0.36 g / cm 3 , The thickness was 67 μm, which was a positive electrode having a lower bulk density than that of Example 1. The pressing speed was 5 m / min.
When the cross section of the electrode was observed in the same manner as in Example 1 and the ratio of the aspect ratio of 1.25 or less was calculated, it was 91% with respect to all particles.

(EDLCの組立と性能評価)
EDLCの組み立ては、実施例1と同様に行った。
作製したEDLCをアスカ電子製の充放電装置(ACD−01)を用いて、1mAの電流で3.0Vまで充電し、その後3.0Vの定電圧を印加する定電流定電圧充電を2時間行なった。続いて、1mAの定電流で0Vまで放電した。電極の活物質重量当たりの容量は41F/g、容積容量は14.6F/cmと低い値でであった。
次に同様の充電を行い100mAで0Vまで放電したところ、1mAでの放電容量に対する100mAでの放電容量の比は88%と良好であった。
実施例1と同様の方法でサイクル維持率を評価したところ、83%であった。
(EDLC assembly and performance evaluation)
The EDLC was assembled in the same manner as in Example 1.
The produced EDLC was charged to 3.0 V with a current of 1 mA using a charge / discharge device (ACD-01) manufactured by Asuka Electronics, and then a constant current and constant voltage charge for applying a constant voltage of 3.0 V was performed for 2 hours. It was. Subsequently, the battery was discharged to 0 V with a constant current of 1 mA. The capacity per active material weight of the electrode was a low value of 41 F / g and the volume capacity was 14.6 F / cm 3 .
Next, when the same charge was performed and the battery was discharged to 0 V at 100 mA, the ratio of the discharge capacity at 100 mA to the discharge capacity at 1 mA was as good as 88%.
When the cycle maintenance ratio was evaluated in the same manner as in Example 1, it was 83%.

Figure 2015198169
Figure 2015198169

本発明のEDLC用電極を用いた蓄電素子は、自動車において、内燃機関又は燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、さらには瞬間電力ピークのアシスト用途などで好適に利用できる。   The power storage element using the EDLC electrode of the present invention can be suitably used in an automobile, in the field of a hybrid drive system in which an internal combustion engine or a fuel cell, a motor, and a power storage element are combined, and for assisting an instantaneous power peak. .

1 巻だしロール
2 ガイド
3 加熱プレスロール
4 巻取りロール
5 油圧シリンダー
6 正極
7 正極端子
8 負極端子
9 外装体
10 電極体
11 正極集電体
12 正極活物質層
13 セパレータ
14 負極集電体
15 負極活物質層
16 正極
17 負極
1 Unwinding roll 2 Guide 3 Heating press roll
DESCRIPTION OF SYMBOLS 4 Winding roll 5 Hydraulic cylinder 6 Positive electrode 7 Positive electrode terminal 8 Negative electrode terminal 9 Exterior body 10 Electrode body 11 Positive electrode current collector 12 Positive electrode active material layer 13 Separator 14 Negative electrode current collector 15 Negative electrode active material layer 16 Positive electrode 17 Negative electrode

Claims (5)

2600m/g以上4500m/g以下のBET比表面積を有し、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5であり、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.92<V2≦3.0であり、平均粒径が1μm以上30μm以下であり、かつ、真球度が0.80以上であることを特徴とする電気二重層キャパシタ(EDLC)の電極用活物質。 The amount of mesopores V1 (cc / g) derived from pores having a BET specific surface area of 2600 m 2 / g to 4500 m 2 / g and a diameter of 20 mm to 500 mm calculated by the BJH method is 0.8 <V1 ≦ The micropore amount V2 (cc / g) derived from pores having a diameter of less than 20 mm calculated by the MP method is 0.92 <V2 ≦ 3.0, and the average particle size is 1 μm or more and 30 μm or less. And an active material for an electrode of an electric double layer capacitor (EDLC) characterized by having a sphericity of 0.80 or more. 活物質を含む活物質層を有するEDLC用電極であって、該活物質は、2600m/g以上4500m/g以下のBET比表面積を有し、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5であり、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.92<V2≦3.0であり、平均粒径が1μm以上30μm以下であり、該活物質を含む活物質層のかさ密度は、0.40g/cm以上0.70g/cm以下であり、そして該活物質層は、該活物質層を電極の厚さ方向に垂直に切断した際に得られる断面において真円度0.80以上の活物質の粒子を含むことを特徴とする前記EDLC用電極。 An electrode for EDLC having an active material layer containing an active material, the active material having a BET specific surface area of 2600 m 2 / g or more and 4500 m 2 / g or less and having a diameter of 20 mm or more and 500 mm or less calculated by the BJH method. The amount of mesopores V1 (cc / g) derived from the pores is 0.8 <V1 ≦ 2.5, and the amount of micropores V2 (cc / g) derived from pores having a diameter of less than 20 mm calculated by the MP method 0.92 <V2 ≦ 3.0, the average particle size is 1 μm or more and 30 μm or less, and the bulk density of the active material layer containing the active material is 0.40 g / cm 3 or more and 0.70 g / cm 3. The active material layer includes active material particles having a roundness of 0.80 or more in a cross section obtained when the active material layer is cut perpendicularly to the thickness direction of the electrode. The EDLC electrode. 前記活物質層を電極の厚さ方向に垂直に切断した際に得られる断面において、真円度0.80以上の活物質の断面積の合計が、電極断面にある全活物質の総断面積に対して50%以上ある、請求項2に記載のEDLC用電極。   In the cross section obtained by cutting the active material layer perpendicularly to the thickness direction of the electrode, the total cross sectional area of the active materials having a roundness of 0.80 or more is the total cross sectional area of all active materials in the electrode cross section. The electrode for EDLC of Claim 2 which is 50% or more with respect to. 前記活物質は、3000m/g以上4000m/g以下のBET比表面積を有する活性炭である、請求項2又は3に記載のEDLC用電極。 The electrode for EDLC according to claim 2 or 3, wherein the active material is activated carbon having a BET specific surface area of 3000 m 2 / g or more and 4000 m 2 / g or less. 活物質を含む活物質層と集電体とを有する電極とセパレータとが積層されてなる電極体、電解液、及び外装体を有するEDLCであって、該電極が請求項2〜4のいずれか1項に記載のEDLC用電極である前記EDLC。   An EDLC having an electrode body in which an electrode having an active material layer containing an active material and a current collector and a separator are laminated, an electrolytic solution, and an exterior body, wherein the electrode is any one of claims 2 to 4. Said EDLC which is an electrode for EDLC of Claim 1.
JP2014075584A 2014-04-01 2014-04-01 Electrode for edlc and edlc Pending JP2015198169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075584A JP2015198169A (en) 2014-04-01 2014-04-01 Electrode for edlc and edlc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075584A JP2015198169A (en) 2014-04-01 2014-04-01 Electrode for edlc and edlc

Publications (1)

Publication Number Publication Date
JP2015198169A true JP2015198169A (en) 2015-11-09

Family

ID=54547695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075584A Pending JP2015198169A (en) 2014-04-01 2014-04-01 Electrode for edlc and edlc

Country Status (1)

Country Link
JP (1) JP2015198169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181447A1 (en) * 2021-02-25 2022-09-01 日亜化学工業株式会社 Carbon material, method for producing same, and electrode active substance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201517A (en) * 1989-12-28 1991-09-03 Isuzu Motors Ltd Electric double layer capacitor
JP2004514637A (en) * 2000-11-27 2004-05-20 セカ ソシエテ アノニム Energy storage cell with high energy density and high power density electrochemical double layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201517A (en) * 1989-12-28 1991-09-03 Isuzu Motors Ltd Electric double layer capacitor
JP2004514637A (en) * 2000-11-27 2004-05-20 セカ ソシエテ アノニム Energy storage cell with high energy density and high power density electrochemical double layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181447A1 (en) * 2021-02-25 2022-09-01 日亜化学工業株式会社 Carbon material, method for producing same, and electrode active substance

Similar Documents

Publication Publication Date Title
JP6006325B2 (en) Electrode for storage element and non-aqueous lithium storage element
JP6373761B2 (en) Non-aqueous lithium storage element
JP6223466B2 (en) Lithium ion capacitor
JPWO2006118120A1 (en) Negative electrode active material for electricity storage devices
US11942621B2 (en) Positive electrode coating liquid, positive electrode precursor, and nonaqueous lithium electric storage element
JP5302646B2 (en) Pre-doping power storage device
JP2018056410A (en) Nonaqueous lithium power storage element
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP6154591B2 (en) Method for manufacturing electrode for power storage element
JP2019029632A (en) Power storge module having nonaqueous lithium power storage elements
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2015198169A (en) Electrode for edlc and edlc
JP2012235041A (en) Positive electrode and lithium-ion capacitor
JP2018056436A (en) Nonaqueous lithium power storage element
JP2020013875A (en) Non-aqueous lithium storage element
JP2020013867A (en) Cathode precursor
JP2018056402A (en) Positive electrode precursor
JP6754657B2 (en) Non-aqueous lithium storage element
JP2024011759A (en) Non-aqueous lithium power storage element
JP2022142971A (en) positive electrode precursor
JP2019029380A (en) Method for drying wound electrode body for nonaqueous lithium power storage element
JP2020140889A (en) Positive electrode for non-aqueous lithium power storage element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113