JP2015191905A - electric double layer capacitor - Google Patents

electric double layer capacitor Download PDF

Info

Publication number
JP2015191905A
JP2015191905A JP2014065714A JP2014065714A JP2015191905A JP 2015191905 A JP2015191905 A JP 2015191905A JP 2014065714 A JP2014065714 A JP 2014065714A JP 2014065714 A JP2014065714 A JP 2014065714A JP 2015191905 A JP2015191905 A JP 2015191905A
Authority
JP
Japan
Prior art keywords
electric double
double layer
conductive intermediate
layer capacitor
dlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014065714A
Other languages
Japanese (ja)
Inventor
石川 正司
Masaji Ishikawa
正司 石川
大木 武彦
Takehiko Oki
武彦 大木
隆一郎 窪島
Ryuichiro Kuboshima
隆一郎 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOC CAPACITA CO Ltd
Ohgi Technological Creation Co Ltd
Original Assignee
TOC CAPACITA CO Ltd
Ohgi Technological Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOC CAPACITA CO Ltd, Ohgi Technological Creation Co Ltd filed Critical TOC CAPACITA CO Ltd
Priority to JP2014065714A priority Critical patent/JP2015191905A/en
Publication of JP2015191905A publication Critical patent/JP2015191905A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double layer capacitor provided with a DLC conductive intermediate layer which hardly reacts to an electrolytic solution, which achieves good adhesiveness for both a collector and a polarizable electrode, and whose adhesiveness to a polarizable electrode is more stable.SOLUTION: The electric double layer capacitor 1 includes a separator 2, two polarizable electrodes 3, 3' provided on both sides of the separator 2, and collectors 4, 4' provided at the outer sides of the respective polarizable electrodes 3, 3'. In the separator 2 and the two polarizable electrodes 3, 3' impregnated with an electrolytic solution L, DLC conductive intermediate layers 4a, 4a' are formed on the collectors 4, 4', the DLC conductive intermediate layers 4a, 4a' include plasma modified surface layers 4aa, 4aa' modified by being brought into contact with atoms for modification in a plasma state, and polarizable electrodes 3, 3' are bonded to the plasma modified surface layers 4aa, 4aa'.

Description

本発明は、電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor.

今日、電気二重層キャパシタは、静電容量が大きくて多量の電荷を蓄積でき、内部抵抗が低いので急速充放電が可能であり、充放電による劣化が少ないので充放電のサイクル寿命が長いなどの利点から各種の電子機器に使用されている。電気二重層キャパシタは、セパレータの両側に2個の分極性電極が設けられ、それらに電解液が含浸され、それぞれの分極性電極の外側に集電体が設けられたものである。分極性電極は、静電容量を大きくするよう表面積が大きい多孔質物質(一般には、活性炭)の粒状体がバインダーで結着されたものである。セパレータの両側における分極性電極と電解液の界面で、分極性電極中の電荷と電解液中のイオンが電気二重層を構成することによって、電荷が蓄積される。また、集電体は、金属箔(一般には、アルミニウム箔)が用いられている。   Today, electric double layer capacitors have a large capacitance and can store a large amount of charge, and because of their low internal resistance, they can be rapidly charged and discharged, and since there is little deterioration due to charging and discharging, the cycle life of charging and discharging is long. It is used for various electronic devices because of its advantages. The electric double layer capacitor is one in which two polarizable electrodes are provided on both sides of a separator, impregnated with an electrolyte, and a current collector is provided outside each polarizable electrode. A polarizable electrode is formed by binding particles of a porous material (generally activated carbon) having a large surface area with a binder so as to increase the capacitance. At the interface between the polarizable electrode and the electrolyte solution on both sides of the separator, the charge in the polarizable electrode and the ions in the electrolyte solution constitute an electric double layer, thereby accumulating charges. Further, a metal foil (generally an aluminum foil) is used for the current collector.

多量の電荷の急速充放電のためには、集電体と分極性電極間の内部抵抗が小さく、かつ安定していることが好ましい。そのため、従来より、種々の技術が提案されている。特許文献1には、集電体と分極性電極との間に、合成ゴム及び粒径の異なる2種類以上の炭素材を含んだ導電性中間層を介在させたものが記載されている。また、特許文献2には、集電体と分極性電極との間に、炭素粒子を含み、かつバインダーとしてエポキシ基を含有しない重合体を含む導電性接着剤層を介在させたものが記載されている。これらの特許文献1及び特許文献2は、集電体と分極性電極の間に所定の導電性の層を設けて、集電体と分極性電極の接着性を上げることにより、内部抵抗が小さく、かつ安定しているようにするものである。特許文献3には、集電体と分極性電極との間に導電性のバリア層を設け、電解液中の腐食性イオンから集電体を保護するものが記載されている。このバリア層として、リン系化合物から成るものが挙げられている。また、特許文献4に、活性炭より卑でアルミニウムよりも貴な浸漬電位を示す物質からなる層をアルミニウム箔の表面に設けたものが記載されている。この活性炭より卑でアルミニウムよりも貴な浸漬電位を示す物質として、炭化チタン、窒化チタンが挙げられている。これらの特許文献3及び特許文献4は、集電体と分極性電極の間に所定の導電性の層を設けて、集電体の金属と電解液の反応による経時劣化を抑止することにより、内部抵抗が小さく、かつ安定しているようにするものである。   In order to rapidly charge and discharge a large amount of charge, it is preferable that the internal resistance between the current collector and the polarizable electrode is small and stable. For this reason, various techniques have been conventionally proposed. Patent Document 1 describes a structure in which a conductive intermediate layer containing a synthetic rubber and two or more kinds of carbon materials having different particle diameters is interposed between a current collector and a polarizable electrode. Patent Document 2 describes a material in which a conductive adhesive layer containing a polymer containing carbon particles and containing no epoxy group as a binder is interposed between a current collector and a polarizable electrode. ing. In these Patent Documents 1 and 2, a predetermined conductive layer is provided between the current collector and the polarizable electrode to increase the adhesion between the current collector and the polarizable electrode, thereby reducing the internal resistance. And make it stable. Patent Document 3 describes that a conductive barrier layer is provided between a current collector and a polarizable electrode to protect the current collector from corrosive ions in the electrolytic solution. As this barrier layer, a layer made of a phosphorus compound is cited. Further, Patent Document 4 describes that a layer made of a substance having a dipping potential that is lower than activated carbon and more precious than aluminum is provided on the surface of the aluminum foil. Titanium carbide and titanium nitride are mentioned as substances that are more base than this activated carbon and have a higher immersion potential than aluminum. In these Patent Document 3 and Patent Document 4, a predetermined conductive layer is provided between the current collector and the polarizable electrode to suppress the deterioration over time due to the reaction between the metal of the current collector and the electrolytic solution, The internal resistance is small and stable.

これら特許文献1〜4のように、集電体と分極性電極間の内部抵抗を小さく、かつ安定させるためには、集電体と分極性電極の間に適切な導電性の層を設けるのが有効である。しかしながら、従来の導電性の層は、集電体と分極性電極に対していずれにも十分な接着性を有し、しかも電解液に対して十分に反応し難いものである、とは必ずしも言えない。   As in these Patent Documents 1 to 4, in order to reduce and stabilize the internal resistance between the current collector and the polarizable electrode, an appropriate conductive layer is provided between the current collector and the polarizable electrode. Is effective. However, it can be said that the conventional conductive layer has sufficient adhesion to both the current collector and the polarizable electrode, and is hardly reactive to the electrolyte. Absent.

そこで、本願発明者らは、特許文献5において、電解液に対して反応し難く、集電体と分極性電極に対していずれにも良好な接着性を有するDLC導電性中間層を設けた電気二重層キャパシタを提案した。   In view of this, the inventors of the present application disclosed in Patent Document 5 that an electric power provided with a DLC conductive intermediate layer that hardly reacts with the electrolyte and has good adhesion to the current collector and the polarizable electrode. A double layer capacitor was proposed.

特開2005−136401号公報JP 2005-136401 A 特開2010−171212号公報JP 2010-171212 A 特開2007−242994号公報JP 2007-242994 A 特開2008−91563号公報JP 2008-91563 A 特開2012−169567号公報JP 2012-169567 A

本願発明者らは、その後、特許文献5で提案した電気二重層キャパシタの研究を更に進め、DLC導電性中間層の分極性電極に対する接着性をより安定させた電気二重層キャパシタを案出した。   Thereafter, the inventors of the present application further studied the electric double layer capacitor proposed in Patent Document 5, and devised an electric double layer capacitor in which the adhesion of the DLC conductive intermediate layer to the polarizable electrode was further stabilized.

本発明は、係る事由に鑑みてなされたものであり、その目的は、電解液に対して反応し難く、集電体と分極性電極に対していずれにも良好な接着性を有し、分極性電極に対する接着性をより安定させたDLC導電性中間層を設けた電気二重層キャパシタを提供することにある。   The present invention has been made in view of the above reasons, and its purpose is that it is difficult to react to an electrolyte solution, and has good adhesion to both a current collector and a polarizable electrode. An object of the present invention is to provide an electric double layer capacitor provided with a DLC conductive intermediate layer having more stable adhesion to a polar electrode.

上記目的を達成するために、請求項1に記載の電気二重層キャパシタは、セパレータと、該セパレータの両側に設けられた2個の分極性電極と、該それぞれの分極性電極の外側に設けられた集電体と、を備えており、前記セパレータと前記2個の分極性電極に電解液が含浸された電気二重層キャパシタにおいて、前記集電体にDLC導電性中間層が形成され、該DLC導電性中間層は、プラズマ状態の改質用原子に接触させられることによって改質したプラズマ改質表面層を有しており、該プラズマ改質表面層に前記分極性電極が接着されていることを特徴とする。   In order to achieve the above object, an electric double layer capacitor according to claim 1 is provided with a separator, two polarizable electrodes provided on both sides of the separator, and outside each polarizable electrode. An electric double layer capacitor in which the separator and the two polarizable electrodes are impregnated with an electrolyte, a DLC conductive intermediate layer is formed on the current collector, and the DLC The conductive intermediate layer has a plasma-modified surface layer modified by being brought into contact with the modifying atoms in the plasma state, and the polarizable electrode is adhered to the plasma-modified surface layer It is characterized by.

請求項2に記載の電気二重層キャパシタは、請求項1に記載の電気二重層キャパシタにおいて、前記改質用原子は、酸素又は窒素であることを特徴とする。   The electric double layer capacitor according to claim 2 is the electric double layer capacitor according to claim 1, wherein the modifying atom is oxygen or nitrogen.

本発明によれば、電解液に対して反応し難く、集電体と分極性電極に対していずれにも良好な接着性を有し、分極性電極に対する接着性をより安定させたDLC導電性中間層を設けた電気二重層キャパシタを提供することができる。   According to the present invention, DLC conductivity that hardly reacts to the electrolyte, has good adhesion to both the current collector and the polarizable electrode, and has more stable adhesion to the polarizable electrode. An electric double layer capacitor provided with an intermediate layer can be provided.

本発明の実施形態に係る電気二重層キャパシタ1の構成を示す模式図である。It is a mimetic diagram showing composition of electric double layer capacitor 1 concerning an embodiment of the present invention. 同上の電気二重層キャパシタ1のDLC導電性中間層4a(4a’)の成膜方法を示す模式図である。It is a schematic diagram which shows the film-forming method of DLC conductive intermediate | middle layer 4a (4a ') of the electrical double layer capacitor 1 same as the above. 同上の電気二重層キャパシタ1のDLC導電性中間層4a(4a’)のプラズマ改質表面層4aa(4aa’)を生成する方法を示す模式図である。It is a schematic diagram which shows the method of producing | generating the plasma modification | reformation surface layer 4aa (4aa ') of DLC conductive intermediate layer 4a (4a') of the electric double layer capacitor 1 same as the above. 同上の電気二重層キャパシタ1の実験結果を示す特性図である。It is a characteristic view which shows the experimental result of the electric double layer capacitor 1 same as the above. 同上の電気二重層キャパシタ1の構成の変形例を示す模式図である。It is a schematic diagram which shows the modification of a structure of the electrical double layer capacitor 1 same as the above.

以下、本発明を実施するための好ましい形態を説明する。本発明の実施形態に係る電気二重層キャパシタ1は、図1に示すように、セパレータ2と、そのセパレータ2の両側に設けられた2個の分極性電極3,3’と、それぞれの分極性電極3,3’の外側に設けられた集電体4,4’と、を備えている。セパレータ2と2個の分極性電極3,3’には電解液Lが含浸されている。電解液Lは、セパレータ2の中を通過可能である。分極性電極3,3’は、多孔質物質(一般には、活性炭)の粒状体(例えば、粒径1〜10μm程度)がバインダーで結着されたものである。集電体4,4’は、金属箔(一般には、アルミニウム箔)が用いられている。   Hereinafter, preferred embodiments for carrying out the present invention will be described. As shown in FIG. 1, an electric double layer capacitor 1 according to an embodiment of the present invention includes a separator 2, two polarizable electrodes 3 and 3 ′ provided on both sides of the separator 2, and respective polarizabilities. Current collectors 4, 4 ′ provided outside the electrodes 3, 3 ′. The separator 2 and the two polarizable electrodes 3 and 3 ′ are impregnated with the electrolytic solution L. The electrolytic solution L can pass through the separator 2. The polarizable electrodes 3 and 3 'are formed by binding a porous material (generally activated carbon) particles (for example, a particle size of about 1 to 10 μm) with a binder. The current collectors 4, 4 ′ are made of metal foil (generally aluminum foil).

そして、この電気二重層キャパシタ1は、両集電体4,4’の各対向面側にDLC導電性中間層4a,4a’が形成され、各DLC導電性中間層4a,4a’にそれぞれ分極性電極3,3’が接着されている。DLC導電性中間層4a,4a’は、高い導電性のDLC(ダイヤモンドライクカーボン)の薄膜である。DLCは、例えば気相成長法で成膜可能であって、炭素原子のSP3結合(ダイヤモンド結合)とSP2結合(グラファイト結合)が混在したアモルファス(非晶質)構造のものである。DLC導電性中間層4a,4a’は、例えば、不純物を混ぜることなく膜生成速度や下記に示すようなプラズマ密度などを調整し、ダイヤモンド結合にP型半導体の特性を持たせるなどして導電性を高めた(例えば、抵抗率10mΩcm以下)ものである。   In the electric double layer capacitor 1, DLC conductive intermediate layers 4a and 4a ′ are formed on the opposing surface sides of the current collectors 4 and 4 ′, and the DLC conductive intermediate layers 4a and 4a ′ are separated into the DLC conductive intermediate layers 4a and 4a ′, respectively. Polar electrodes 3 and 3 'are bonded. The DLC conductive intermediate layers 4a and 4a 'are thin films of highly conductive DLC (diamond-like carbon). The DLC can be formed by, for example, a vapor deposition method, and has an amorphous structure in which SP3 bonds (diamond bonds) and SP2 bonds (graphite bonds) of carbon atoms are mixed. For example, the DLC conductive intermediate layers 4a and 4a ′ are conductive by adjusting the film formation speed and the plasma density as shown below without mixing impurities, and imparting the characteristics of a P-type semiconductor to the diamond bond. (For example, a resistivity of 10 mΩcm or less).

DLC導電性中間層4a,4a’は、以下のようにして成膜できる。すなわち、図外の真空状態のチャンバー内において、図2に示すように、集電体4,4’(図2では集電体4側のみを示し、集電体4’側も同様である)の近傍にプラズマPを発生させて原料ガスに含まれる炭素原子C、C、…をイオン化し、そのイオンを電界Eにより加速させてエネルギーを持たせ、集電体4,4’に当てる。詳細には、集電体4,4’の所定の深さの位置から表面までエネルギーを調整して炭素原子C、C、…のイオンを注入し、更に集電体4,4’の表面全体を被覆する所定の厚さの被膜、すなわちDLC導電性中間層4a、4a’を生成する。なお、炭素原子Cのイオン化は化合物の形でもよい。   The DLC conductive intermediate layers 4a and 4a 'can be formed as follows. That is, in the vacuum chamber outside the figure, as shown in FIG. 2, current collectors 4 and 4 ′ (in FIG. 2, only the current collector 4 side is shown, and the current collector 4 ′ side is the same). .. Is generated to ionize carbon atoms C, C,... Contained in the raw material gas, and the ions are accelerated by the electric field E to give energy and strike the current collectors 4 and 4 ′. Specifically, the energy is adjusted from the position of the predetermined depth of the current collectors 4 and 4 ′ to the surface, ions of carbon atoms C, C,... Are implanted, and further the entire surface of the current collectors 4 and 4 ′. A DLC conductive intermediate layer 4a, 4a 'having a predetermined thickness is formed. The ionization of the carbon atom C may be in the form of a compound.

この成膜方法では、集電体4,4’の表面近傍内部では、集電体4,4’を形成する原子が存在するとともに、それらの原子の間にイオン注入された炭素原子C、C、…が存在しており、それらの炭素原子C、C、…同士が連続して結合している状態となっている。そして、この集電体4,4’の内部の炭素原子C、C、…に連続して、DLC導電性中間層4a,4a’の炭素原子C、C、…が固く結合している状態となっている。   In this film forming method, atoms forming the current collectors 4 and 4 ′ exist in the vicinity of the surface of the current collectors 4 and 4 ′, and carbon atoms C and C ion-implanted between these atoms are present. Are present, and the carbon atoms C, C,... Are continuously bonded to each other. In addition, the carbon atoms C, C,... Of the DLC conductive intermediate layers 4a, 4a ′ are tightly bonded to the carbon atoms C, C,. It has become.

このようなDLC導電性中間層4a,4a’は、集電体4,4’との間で界面を持たない連続した結合体となっており、また、集電体4,4’の自然酸化膜の形成も抑制され、従って、それらの間の抵抗は低い。   Such DLC conductive intermediate layers 4a and 4a ′ are continuous bonds having no interface with the current collectors 4 and 4 ′, and the natural oxidation of the current collectors 4 and 4 ′. Film formation is also suppressed, so the resistance between them is low.

そして、DLC導電性中間層4a,4a’は、プラズマ改質表面層4aa,4aa’を有している。プラズマ改質表面層4aa,4aa’は、プラズマ状態の改質用原子Aに接触させられることによってDLC導電性中間層4a,4a’の表面が改質してできた層である。より詳細には、図外の真空状態のチャンバー内において、図3に示すように、DLC導電性中間層4a,4a’(図3ではDLC導電性中間層4a側のみを示し、DLC導電性中間層4a’側も同様である)の近傍にプラズマPを発生させて原料ガスに含まれる改質用原子Aをイオン化し、そのイオンにDLC導電性中間層4a,4a’が接触させられ改質する。改質用原子Aは、酸素又は窒素などとすることができる。   The DLC conductive intermediate layers 4a and 4a 'have plasma modified surface layers 4aa and 4aa'. The plasma modified surface layers 4aa and 4aa 'are layers formed by modifying the surfaces of the DLC conductive intermediate layers 4a and 4a' by being brought into contact with the modifying atoms A in the plasma state. More specifically, in a vacuum chamber outside the figure, as shown in FIG. 3, the DLC conductive intermediate layers 4a and 4a ′ (in FIG. 3, only the DLC conductive intermediate layer 4a side is shown, and the DLC conductive intermediate layer is shown). The same applies to the layer 4a 'side). Plasma P is generated in the vicinity of the layer 4 to ionize the reforming atoms A contained in the source gas, and the DLC conductive intermediate layers 4a and 4a' are brought into contact with the ions for modification. To do. The modifying atom A can be oxygen or nitrogen.

分極性電極3,3’は、多孔質物質の粒状体やバインダーなどを混合したスラリーをプラズマ改質表面層4aa,4aa’に塗布し、その後、スラリーを固化することによって形成する。スラリーは、プラズマ改質表面層4aa,4aa’に塗布したとき、はじかれることが極めて少なくなり、塗布の均一性を高く保つことができる。その結果、固化したとき、DLC導電性中間層4a,4a’と分極性電極3,3’との接着性が、プラズマ改質表面層4aa,4aa’を設けない場合に比べて、より安定したものとなる。   The polarizable electrodes 3 and 3 ′ are formed by applying a slurry mixed with a granular material of a porous material, a binder, or the like to the plasma-modified surface layers 4 aa and 4 aa ′, and then solidifying the slurry. When the slurry is applied to the plasma-modified surface layers 4aa and 4aa ', the slurry is hardly repelled, and the coating uniformity can be kept high. As a result, when solidified, the adhesion between the DLC conductive intermediate layers 4a and 4a ′ and the polarizable electrodes 3 and 3 ′ is more stable than when the plasma-modified surface layers 4aa and 4aa ′ are not provided. It will be a thing.

また、固化した後の活性炭の分極性電極3,3’の粒状体は、DLC導電性中間層4a,4a’ のプラズマ改質表面層4aa,4aa’と同様に、炭素原子が互いに結合したものであるので、DLC導電性中間層4a,4a’ のプラズマ改質表面層4aa,4aa’と分極性電極3,3’の間の親和性が高く、また、自然酸化膜はほとんど形成されないので、それらの間の抵抗は低い。   Further, the granular bodies of the polarizable electrodes 3 and 3 ′ of activated carbon after solidification are obtained by bonding carbon atoms to each other like the plasma-modified surface layers 4aa and 4aa ′ of the DLC conductive intermediate layers 4a and 4a ′. Therefore, since the affinity between the plasma-modified surface layers 4aa and 4aa ′ of the DLC conductive intermediate layers 4a and 4a ′ and the polarizable electrodes 3 and 3 ′ is high, and a natural oxide film is hardly formed, The resistance between them is low.

DLC導電性中間層4a,4a’(及びその一部であるプラズマ改質表面層4aa,4aa’)は、共有結合の炭素原子から構成されるために電解液Lとは反応し難く、また、ピンホールもなく電解液Lが集電体4,4’に接触するのを阻止する。よって、電解液Lとの反応による経時劣化は防止される。DLC導電性中間層4a,4a’を設けることは、特に、2個の集電体4,4’間の電圧を上げることによって多量の電荷を充電しようとする場合、すなわち、経時劣化が起こり易い状況にて、有効である。   The DLC conductive intermediate layers 4a and 4a ′ (and the plasma-modified surface layers 4aa and 4aa ′ that are a part of the DLC conductive intermediate layers 4a and 4a ′) are composed of covalently bonded carbon atoms, and thus hardly react with the electrolyte L. There is no pinhole and the electrolytic solution L is prevented from contacting the current collectors 4 and 4 ′. Therefore, deterioration with time due to reaction with the electrolytic solution L is prevented. The provision of the DLC conductive intermediate layers 4a and 4a ′ is particularly likely to cause deterioration over time when a large amount of charge is to be charged by increasing the voltage between the two current collectors 4 and 4 ′. It is effective in some situations.

以上のように、DLC導電性中間層4a,4a’は、高い導電性を有し、電解液Lに対して反応し難く、集電体4,4’と分極性電極3,3’に対していずれにも良好な接着性を有するものである。そして、更に、DLC導電性中間層4a,4a’の分極性電極3,3’側にプラズマ改質表面層4aa,4aa’を形成することにより、分極性電極に対する接着性がより安定したものとなる。それにより、集電体4,4’と分極性電極3,3’間の内部抵抗を小さく、かつ、安定させることができる。これにより、電気二重層キャパシタ1は、多量の電荷の急速充放電のために非常に好ましい電気二重層キャパシタとなることができる。静電容量が大きい分極性電極3,3’(例えば、PET繊維の活性炭など)の場合は、特に好ましい電気二重層キャパシタとなる。   As described above, the DLC conductive intermediate layers 4a and 4a ′ have high conductivity, hardly react to the electrolytic solution L, and prevent the current collectors 4 and 4 ′ and the polarizable electrodes 3 and 3 ′. Both have good adhesiveness. Further, by forming the plasma-modified surface layers 4aa and 4aa ′ on the polarizable electrodes 3 and 3 ′ side of the DLC conductive intermediate layers 4a and 4a ′, the adhesion to the polarizable electrodes is more stable. Become. As a result, the internal resistance between the current collectors 4 and 4 'and the polarizable electrodes 3 and 3' can be reduced and stabilized. Thereby, the electric double layer capacitor 1 can be a very preferable electric double layer capacitor for rapid charge and discharge of a large amount of charge. In the case of polarizable electrodes 3 and 3 ′ (for example, activated carbon of PET fiber) having a large capacitance, a particularly preferable electric double layer capacitor is obtained.

次に、電気二重層キャパシタ1の実験について述べる。実験サンプルとして、電気二重層キャパシタ1のサンプルSaと、サンプルSaのDLC導電性中間層4a,4a’を省略したサンプルSbと、を用いた。サンプルSaは、セパレータ2をセルロース系の材料とし、集電体4,4’をアルミニウム箔とし、電解液Lを1.96mol・dm−3TEMABF/PCとした。サンプルSaは、また、分極性電極3,3’の多孔質物質をPET繊維を高温加熱処理して賦活した活性炭とし、バインダーをPVdFとし、導電助剤としてアセチレンブラックを更に加えた。 Next, an experiment of the electric double layer capacitor 1 will be described. As an experimental sample, the sample Sa of the electric double layer capacitor 1 and the sample Sb in which the DLC conductive intermediate layers 4a and 4a ′ of the sample Sa are omitted were used. In the sample Sa, the separator 2 was made of a cellulose-based material, the current collectors 4 and 4 ′ were made of aluminum foil, and the electrolyte L was 1.96 mol · dm −3 TEMABF 4 / PC. In the sample Sa, the porous material of the polarizable electrodes 3 and 3 ′ was activated carbon activated by high-temperature heat treatment of PET fibers, the binder was PVdF, and acetylene black was further added as a conductive auxiliary.

図4は、サンプルSa、Sbを、一般的に集電体4,4’の腐食が起こる3.4Vの高電圧で12時間保持し、高電圧保持前後での電流密度に対する放電容量を測定した結果を示すものである。図4において曲線aaは高電圧保持前のサンプルSa、曲線abは高電圧保持後のサンプルSa、曲線baは高電圧保持前のサンプルSb、曲線bbは高電圧保持後のサンプルSb、の場合を示している。曲線aaと曲線baを比較すると、サンプルSaの放電容量が大きいことが分かる。これは、DLC導電性中間層4a,4a’によって、集電体4,4’と分極性電極3,3’間の内部抵抗が小さくなっていることを示している。また、曲線aaから曲線abへの変化と曲線baから曲線bbへの変化を比較すると、曲線aaから曲線abへの変化が少ないことが分かる。例えば、電流密度100mA・cm−2のとき、曲線baから曲線bbへは53%の低下であるが、曲線aaから曲線abへは93%の低下にとどまっている。これは、集電体4,4’と分極性電極3,3’間の内部抵抗が安定していることを示している。 FIG. 4 shows that the samples Sa and Sb were held at a high voltage of 3.4 V where corrosion of the current collectors 4 and 4 ′ generally occurs for 12 hours, and the discharge capacity with respect to the current density before and after holding the high voltage was measured. The result is shown. In FIG. 4, the curve aa is the sample Sa before holding the high voltage, the curve ab is the sample Sa after holding the high voltage, the curve ba is the sample Sb before holding the high voltage, and the curve bb is the sample Sb after holding the high voltage. Show. When the curve aa and the curve ba are compared, it can be seen that the discharge capacity of the sample Sa is large. This indicates that the internal resistance between the current collectors 4 and 4 'and the polarizable electrodes 3 and 3' is reduced by the DLC conductive intermediate layers 4a and 4a '. Further, comparing the change from the curve aa to the curve ab and the change from the curve ba to the curve bb, it can be seen that the change from the curve aa to the curve ab is small. For example, when the current density is 100 mA · cm −2 , the decrease from the curve ba to the curve bb is 53%, but the decrease from the curve aa to the curve ab is only 93%. This indicates that the internal resistance between the current collectors 4 and 4 ′ and the polarizable electrodes 3 and 3 ′ is stable.

以上、本発明の実施形態に係る電気二重層キャパシタについて説明したが、本発明は、上述の実施形態に記載したものに限られることなく、特許請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。例えば、上記のセパレータ2と、そのセパレータ2の両側に設けられた2個の分極性電極3,3’と、それぞれの分極性電極3,3’の外側に設けられた集電体4,4’と、を備えた(図1に示した構成の)セルを、図5に示すように、反転しながら複数個並べることにより、静電容量を増加させることが可能である。この場合、集電体4の両面にDLC導電性中間層4a,4aを形成し、DLC導電性中間層4a,4aに分極性電極3,3が接着するようにできる。集電体4’についても同様である。また、パッケージの仕方などは、記載を省略しているが、それらは用途に合わせてさまざまなものが可能である。   The electric double layer capacitor according to the embodiment of the present invention has been described above. However, the present invention is not limited to that described in the above-described embodiment, and various modifications within the scope of the matters described in the claims. Design changes are possible. For example, the separator 2, the two polarizable electrodes 3, 3 ′ provided on both sides of the separator 2, and the current collectors 4, 4 provided outside the polarizable electrodes 3, 3 ′. By arranging a plurality of cells (with the configuration shown in FIG. 1) including “,” while being inverted, as shown in FIG. 5, the capacitance can be increased. In this case, DLC conductive intermediate layers 4a and 4a can be formed on both surfaces of the current collector 4, and the polarizable electrodes 3 and 3 can be bonded to the DLC conductive intermediate layers 4a and 4a. The same applies to the current collector 4 '. In addition, the description of the packaging method and the like is omitted, but various methods can be used according to the application.

1 電気二重層キャパシタ
2 セパレータ
3,3’ 分極性電極
4,4’ 集電体
4a,4a’ DLC導電性中間層
4aa,4aa’ プラズマ改質表面層
L 電解液
DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Separator 3, 3 'Polarized electrode 4, 4' Current collector 4a, 4a 'DLC conductive intermediate layer 4aa, 4aa' Plasma modified surface layer L Electrolyte

Claims (2)

セパレータと、該セパレータの両側に設けられた2個の分極性電極と、該それぞれの分極性電極の外側に設けられた集電体と、を備えており、前記セパレータと前記2個の分極性電極に電解液が含浸された電気二重層キャパシタにおいて、
前記集電体にDLC導電性中間層が形成され、
該DLC導電性中間層は、プラズマ状態の改質用原子に接触させられることによって改質したプラズマ改質表面層を有しており、
該プラズマ改質表面層に前記分極性電極が接着されていることを特徴とする電気二重層キャパシタ。
A separator, two polarizable electrodes provided on both sides of the separator, and a current collector provided outside each polarizable electrode, the separator and the two polarizability In an electric double layer capacitor in which an electrode is impregnated with an electrolyte,
A DLC conductive intermediate layer is formed on the current collector;
The DLC conductive intermediate layer has a plasma-modified surface layer that has been modified by being brought into contact with a modifying atom in a plasma state,
An electric double layer capacitor, wherein the polarizable electrode is adhered to the plasma-modified surface layer.
請求項1に記載の電気二重層キャパシタにおいて、
前記改質用原子は、酸素又は窒素であることを特徴とする電気二重層キャパシタ。
The electric double layer capacitor according to claim 1,
The electric double layer capacitor, wherein the modifying atom is oxygen or nitrogen.
JP2014065714A 2014-03-27 2014-03-27 electric double layer capacitor Withdrawn JP2015191905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065714A JP2015191905A (en) 2014-03-27 2014-03-27 electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065714A JP2015191905A (en) 2014-03-27 2014-03-27 electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2015191905A true JP2015191905A (en) 2015-11-02

Family

ID=54426203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065714A Withdrawn JP2015191905A (en) 2014-03-27 2014-03-27 electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2015191905A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134988A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Electrode current collector of battery, and method of manufacturing electrode for battery equipped with the electrode current collector
WO2012108014A1 (en) * 2011-02-09 2012-08-16 株式会社ユーテック Production method for magnetic recording medium, magnetic recording medium and dlc film
JP2012169567A (en) * 2011-02-16 2012-09-06 Oki Kogei:Kk Electric double layer capacitor
WO2014034113A1 (en) * 2012-08-29 2014-03-06 昭和電工株式会社 Electricity storage device and method for producing same
WO2014041728A1 (en) * 2012-09-14 2014-03-20 富士電機株式会社 Manufacturing method for magnetic recording medium
JP2014053130A (en) * 2012-09-06 2014-03-20 Nariyasu Machida Electric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134988A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Electrode current collector of battery, and method of manufacturing electrode for battery equipped with the electrode current collector
WO2012108014A1 (en) * 2011-02-09 2012-08-16 株式会社ユーテック Production method for magnetic recording medium, magnetic recording medium and dlc film
JP2012169567A (en) * 2011-02-16 2012-09-06 Oki Kogei:Kk Electric double layer capacitor
WO2014034113A1 (en) * 2012-08-29 2014-03-06 昭和電工株式会社 Electricity storage device and method for producing same
JP2014053130A (en) * 2012-09-06 2014-03-20 Nariyasu Machida Electric device
WO2014041728A1 (en) * 2012-09-14 2014-03-20 富士電機株式会社 Manufacturing method for magnetic recording medium

Similar Documents

Publication Publication Date Title
Wu et al. Lithiophilic Cu‐CuO‐Ni hybrid structure: advanced current collectors toward stable lithium metal anodes
Ortaboy et al. MnO x-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors
Si et al. On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnO x/Au multilayers
Feng et al. Flexible cellulose paper‐based asymmetrical thin film supercapacitors with high‐performance for electrochemical energy storage
JP5704726B2 (en) All-solid electrochemical double layer supercapacitor
JP3719570B2 (en) Electric double layer capacitor
KR102112746B1 (en) Electrode material and energy storage device
TW201248664A (en) Electrode foil, commutator, electrode and storage element using such electrode
JP2010103051A (en) Composite electrode for power storage device, its manufacturing method, and power storage device
JP2014080685A (en) Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode
JP2014507774A (en) Improved battery and assembly method
US20130037756A1 (en) Electrodes for electrochemical capacitor and electrochemical capacitor including the same
JP7118235B2 (en) Negative electrode active material for lithium secondary battery and secondary battery containing the same
US11476455B2 (en) Multilayer anode and lithium secondary battery including the same
TW201411922A (en) Grapheme electrode
JP2012169567A (en) Electric double layer capacitor
US20140315084A1 (en) Method and apparatus for energy storage
Prabu et al. Binder‐Free Electro‐Deposited MnO2@ 3D Carbon Felt Network: A Positive Electrode for 2V Aqueous Supercapacitor
JP2007053084A (en) Method of manufacturing negative electrode for lithium secondary battery
Chen et al. Fabrication and electrochemical performance of TiO2–TiN/Sn–SnO2 composite films on Ti for LIB anodes with high capacity and excellent conductivity
Lu et al. On-chip supercapacitor electrode based on polypyrrole deposited into nanoporous Au scaffold
JP2015191905A (en) electric double layer capacitor
JP6653991B2 (en) Stabilized anode for lithium battery and method for producing the same
JP2017059844A (en) Electric double layer capacitor
JP2015165594A (en) electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190125

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200302