JP2015190024A - Thin film plating method improving anticorrosion - Google Patents

Thin film plating method improving anticorrosion Download PDF

Info

Publication number
JP2015190024A
JP2015190024A JP2014069239A JP2014069239A JP2015190024A JP 2015190024 A JP2015190024 A JP 2015190024A JP 2014069239 A JP2014069239 A JP 2014069239A JP 2014069239 A JP2014069239 A JP 2014069239A JP 2015190024 A JP2015190024 A JP 2015190024A
Authority
JP
Japan
Prior art keywords
plating
current
power supply
thin film
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014069239A
Other languages
Japanese (ja)
Other versions
JP5932870B2 (en
Inventor
尊 伊藤
Takashi Ito
尊 伊藤
皓 伊藤
Akira Ito
皓 伊藤
徳朗 佐々木
Tokuaki Sasaki
徳朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYODA KIKI HANBAI KK
Original Assignee
CHIYODA KIKI HANBAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYODA KIKI HANBAI KK filed Critical CHIYODA KIKI HANBAI KK
Priority to JP2014069239A priority Critical patent/JP5932870B2/en
Publication of JP2015190024A publication Critical patent/JP2015190024A/en
Application granted granted Critical
Publication of JP5932870B2 publication Critical patent/JP5932870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve problems that, for example, in multilayer plating using only a DC power supply, a plating layer becomes thicker.SOLUTION: A metallic substrate serving as a cathode is immersed in an electrolyte, electrical plating using a high speed current inversion power supply and electrical plating using a DC power supply, are alternately performed for performing multilayer plating, and plating layers are sequentially formed on minute, uniform, and thin plating layers, thereby the multilayer plating becomes thinner, overall.

Description

本発明は、金属素地を陰極としてメッキし、陽極としてメッキ表面を溶解させるべく電流を高速で反転させることで、均一且つ緻密なメッキ層を形成可能にして耐食性を向上させた薄膜メッキ方法に関する。   The present invention relates to a thin film plating method in which a metal base is plated as a cathode and a current is reversed at a high speed so as to dissolve a plating surface as an anode, thereby forming a uniform and dense plating layer and improving corrosion resistance.

従来、電気メッキでは、金属素地を陰極とし金属イオンを含む電解液を介して直流電流を流して、金属イオンが金属素地の表面で放電し析出してメッキ層が形成される。   Conventionally, in electroplating, a metal base is used as a cathode, a direct current is passed through an electrolytic solution containing metal ions, and metal ions are discharged and deposited on the surface of the metal base to form a plating layer.

具体的には、金属素地を陰極として陽極に対向させて配置した電解槽内に電解液を満たし直流電流を通電して前記金属素地の表面に所定の膜厚を有するメッキ層を形成するのが一般的である(例えば、特許文献1参照)。   Specifically, a plating layer having a predetermined film thickness is formed on the surface of the metal substrate by filling the electrolytic solution in the electrolytic cell arranged with the metal substrate as a cathode and facing the anode and supplying a direct current. It is general (see, for example, Patent Document 1).

特開2002−220690号公報JP 2002-220690 A

しかし、上記従来技術にあっては、例えば図2に示す様に、金属素地の表面に発生する気泡(水素)が高電流部では多く低電流部では少なくなって、不均一に発生してしまう傾向があるため、高電流部に厚く低電流部に薄くメッキされてしまって、緻密且つ均一なメッキ層を形成することが困難であり、その結果多層メッキを行う場合、メッキ層を厚くしなければ対応できないなど、解決せねばならない課題があった。   However, in the above prior art, for example, as shown in FIG. 2, bubbles (hydrogen) generated on the surface of the metal substrate are generated more unevenly in the high current portion and less in the low current portion. Due to the tendency, it is difficult to form a dense and uniform plating layer because the high current part is thick and the low current part is thinly plated. As a result, when performing multi-layer plating, the plating layer must be thick. There was a problem that had to be solved.

本発明は、上記従来技術に基づく、直流電源だけでの多層メッキではメッキ層が厚くなってしまう課題に鑑み、金属素地を陰極として電解液に浸漬し、高速電流反転電源による電気メッキと、直流電源による電気メッキを交互に行うことで多層メッキを行う様にして、緻密且つ均一な薄いメッキ層の上に順次メッキ層を形成することによって、総合的に多層メッキの薄厚化を可能にして、上記課題を解決する。   In view of the problem that the plating layer becomes thick in the multi-layer plating only with a DC power source based on the above-mentioned conventional technology, the present invention is soaked in an electrolytic solution using a metal substrate as a cathode, Multi-layer plating is performed by alternately performing electroplating with a power source, and by sequentially forming a plating layer on a dense and uniform thin plating layer, it is possible to comprehensively reduce the thickness of the multi-layer plating, Solve the above problems.

要するに本発明は、金属素地を陰極として電解液に浸漬し、高速電流反転電源による電気メッキと、直流電源による電気メッキを交互に行うことで多層メッキを行う様にしたので、低電流部では薄くメッキされても反転時の溶解が少ないが、高電流部では厚くメッキされるも反転時の溶解も多いことで、全体的に均一且つ緻密な薄いメッキ層を形成することが出来、更に上記メッキ層の上に直流電源による電気メッキが施されることから、析出結晶粒子の変化で多層化することで、従来よりも薄いメッキ厚さで耐食性の向上と材料(Ni材及び光沢剤)を節約することが可能なため、コストダウンを図ることが出来る等その実用的効果甚だ大である。   In short, in the present invention, multilayer plating is performed by immersing a metal base in an electrolyte solution as a cathode, and alternately performing electroplating with a high-speed current reversal power source and electroplating with a DC power source. Even if plated, there is little dissolution at the time of reversal, but since the plating is thick at the high current portion but also at the time of reversal, it is possible to form a uniform and dense thin plating layer as a whole. Since electroplating with a direct current power source is applied on the layer, multilayering is achieved by changing the precipitated crystal particles, thereby improving corrosion resistance and saving materials (Ni materials and brighteners) with a thinner plating thickness. Since it is possible to reduce the cost, it is possible to reduce the cost.

高速電流反転電解における気泡発生状況を表す拡大図である。It is an enlarged view showing a bubble generation situation in high-speed current reversal electrolysis. 直流電解における気泡発生状況を表す拡大図である。It is an enlarged view showing the bubble generation situation in direct current electrolysis. 高速電流反転電源での電気メッキで形成された皮膜の拡大断面図である。It is an expanded sectional view of the membrane | film | coat formed by electroplating with a high-speed current reversal power supply. 直流電源での電気メッキで形成された皮膜の拡大断面図である。It is an expanded sectional view of the membrane | film | coat formed by electroplating with a DC power supply. 高速電流反転電源での電流波形図である。It is a current waveform figure in a high-speed current reversal power supply. 直流電源での電流波形図である。It is a current waveform diagram in a DC power supply. 直流法と反転法の光沢度を比較したグラフである。It is the graph which compared the glossiness of the direct current | flow method and the inversion method. 直流法と反転法の均一電着性を比較したグラフである。It is the graph which compared the uniform electrodeposition property of the direct current | flow method and the inversion method.

本発明に係る表面処理方法は、金属素地を陰極として電解液に浸漬し、後述する高速電流反転電源により電気メッキと、直流電源による電気メッキを交互に行うことで多層メッキを行う様にしている。   In the surface treatment method according to the present invention, multilayer plating is performed by immersing the metal base in an electrolyte solution as a cathode and alternately performing electroplating with a high-speed current reversing power source described later and electroplating with a DC power source. .

電気メッキを行う際に、金属素地表面から気泡が発生するが、この気泡を透過光法で観察すると、気泡の発生状況は直流電源(図2参照)より、高速電流反転電源(図1)の方が気泡の数が多く、小さい気泡が均一に出る。   When electroplating, bubbles are generated from the surface of the metal substrate. When these bubbles are observed by the transmitted light method, the generation of bubbles is detected by a high-speed current reversing power source (Fig. 1) from a DC power source (see Fig. 2). The number of air bubbles is larger, and small air bubbles appear uniformly.

高速電流反転電源は、高電流部より低電流部方向に活性点の移動が速いことにより、気泡が小さく均一化され、各種メッキにおいて直流電源より高速電流反転電源でメッキした方が均一なメッキができる(図8参照)。   The high-speed current reversal power supply has faster movement of the active point in the direction of the low current part than the high current part, so that bubbles are made smaller and uniform. Yes (see FIG. 8).

高電流部と低電流部において、反転波形のため高電流部は電流密度が高いためメッキは沢山付くが溶解も多い、また低電流部は電流密度が低いためメッキは付きにくいが溶解も少ない。   In the high current portion and the low current portion, the high current portion has a high current density, so that the high current portion has a high current density, so much plating occurs, but there is a lot of dissolution.

メッキ皮膜は従来型直流電源より高速電流反転電源でした方が均一で緻密なメッキができる。   If the plating film is a high-speed current reversal power supply than a conventional DC power supply, uniform and dense plating can be achieved.

そして、下地に上記の方法で撤密なメッキをしたあと直流電源でレベリングがよいメッキをすることで、従来より薄いメッキ皮膜の組み合わせで、耐食性の向上とコストダウンを目的とするメッキラインを作る。   Then, by plating the base with the above method and plating with good leveling with a DC power supply, a plating line with the aim of improving corrosion resistance and reducing costs can be created with a combination of thinner plating films than before. .

メッキ層の断面組織を観察すると直流の特徴である柱状組織(図4参照)に対し、高速電流反転波形の場合は、反転比率或いはメッキ液の組成によっても異なるが、初期析出部分は細粒組織(図3参照)ができる。   When the cross-sectional structure of the plating layer is observed, the columnar structure (see FIG. 4), which is a direct current characteristic, is different depending on the reversal ratio or the composition of the plating solution in the case of a high-speed current reversal waveform. (See FIG. 3).

メッキの光沢度は、電流反転では低い周波数域で直流よりも著しく光沢のすぐれたメッキがみられ、直流の3倍以上の光沢度が得られる(図7参照)。   As for the glossiness of the plating, plating with a remarkably higher gloss than the direct current is seen in the low frequency region in the current reversal, and a glossiness of 3 times or more of the direct current is obtained (see FIG. 7).

例えば、装飾メッキNi−Crの場合(搬送装置はエレベータ型)、SBN(半光沢ニッケル)とBN(光沢ニッケル)メッキを従来より薄くするために、SBNを高速電流反転電源で少し(1ラック)メッキした後(図3参照)、直流電源でメッキをし(図4参照)、次にBNを高速電流反転電源でメッキした後(図3参照)、直流電源でレベリングが良いメッキを行なう(図4参照)。   For example, in the case of decorative plating Ni-Cr (the transport device is an elevator type), in order to make SBN (semi-bright nickel) and BN (bright nickel) plating thinner than before, SBN is a little (1 rack) with a high-speed current reversal power supply. After plating (see FIG. 3), plating is performed with a DC power source (see FIG. 4), and then BN is plated with a high-speed current reversal power source (see FIG. 3), followed by plating with good leveling with the DC power source (FIG. 3). 4).

すると、析出結晶粒子の変化で多層化にする事で、従来よりも薄いメッキ厚さで耐食性の向上と材料(Ni材及び光沢剤)を節約する。   Then, by making the multilayer by changing the precipitated crystal particles, the corrosion resistance is improved and the materials (Ni material and brightener) are saved with a thinner plating thickness than the conventional one.

図5は、上記メッキ方法における高速電流反転電源による反転電流法による電流波形の一例であり、図6は、直流法による電流波形の一例である。   FIG. 5 is an example of a current waveform by the reversal current method using a high-speed current reversal power source in the plating method, and FIG. 6 is an example of a current waveform by the direct current method.

60Hz地区の場合、周期が360Hzの、実際には図6に示す波形の電流にすべく整流される。   In the case of the 60 Hz area, the current is rectified to a current of the waveform shown in FIG.

高速電流反転電源による図5に示した反転電流波形の場合は、陽極:陰極が15:3の反転比率とし、60Hz地区では、周波数が15Hzになるため、図5に示す参考波形の反転比率15:3とは、1サイクルにおいてプラス時間がマイナス時間の5倍長く且つプラスとマイナスが1秒間に15回繰り返し出力される特殊波形となる。
尚、上記反転電流波形は反転比率15:3のものであるが、この反転比率は種々に変更可能とする。
In the case of the inversion current waveform shown in FIG. 5 by the high-speed current inversion power source, the inversion ratio of anode: cathode is 15: 3, and the frequency is 15 Hz in the 60 Hz region. Therefore, the inversion ratio 15 of the reference waveform shown in FIG. : 3 is a special waveform in which plus time is five times longer than minus time in one cycle and plus and minus are repeatedly output 15 times per second.
Although the inversion current waveform has an inversion ratio of 15: 3, the inversion ratio can be changed variously.

又、上記方法における高速電流反転での電解は、電解脱脂及び電解研磨にも有効である。   In addition, the electrolysis with high-speed current reversal in the above method is also effective for electrolytic degreasing and electrolytic polishing.

例えば、錆、スケール除去を目的とする場合、塩酸等の酸性浴を用いて電解すれば除去効果が大きく、頑固なスケール、溶接部等の酸化物もプラスの時間比率を変えることにより容易に除去、活性化され、めっき皮膜の密着性が良く、光沢も向上する。
又、アルミニウム材の陽極酸化では、硫酸浴、しゅう酸浴、硫酸・しゅう酸混浴等で既に広く使用されている。
For example, if the purpose is to remove rust and scale, electrolysis using an acidic bath such as hydrochloric acid will have a large removal effect, and stubborn oxides such as scales and welds can be easily removed by changing the positive time ratio. Activated, the adhesion of the plating film is good, and the gloss is improved.
In addition, the anodization of aluminum materials has already been widely used in sulfuric acid baths, oxalic acid baths, sulfuric acid / oxalic acid mixed baths, and the like.

Claims (1)

金属素地を陰極として電解液に浸漬し、高速電流反転電源による電気メッキと、直流電源による電気メッキを交互に行うことで多層メッキを行う様にしたことを特徴とする耐食性を向上させた薄膜メッキ方法。   Thin film plating with improved corrosion resistance, characterized by immersing a metal substrate in the electrolyte as a cathode and performing multi-layer plating by alternately performing electroplating with a high-speed current reversal power supply and electroplating with a DC power supply Method.
JP2014069239A 2014-03-28 2014-03-28 Thin film plating method with improved corrosion resistance Expired - Fee Related JP5932870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014069239A JP5932870B2 (en) 2014-03-28 2014-03-28 Thin film plating method with improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014069239A JP5932870B2 (en) 2014-03-28 2014-03-28 Thin film plating method with improved corrosion resistance

Publications (2)

Publication Number Publication Date
JP2015190024A true JP2015190024A (en) 2015-11-02
JP5932870B2 JP5932870B2 (en) 2016-06-08

Family

ID=54424790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069239A Expired - Fee Related JP5932870B2 (en) 2014-03-28 2014-03-28 Thin film plating method with improved corrosion resistance

Country Status (1)

Country Link
JP (1) JP5932870B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180080A (en) * 1993-03-23 1995-07-18 Chiyoda Kiki Hanbai Kk Method for plating aluminum and aluminum alloy and electrolyte
CN1394988A (en) * 2002-08-20 2003-02-05 中国科学院电子学研究所 Multi-layer nickel-plating process by adopting single bath process
JP2003268590A (en) * 2002-03-07 2003-09-25 Applied Materials Inc Plating method and method of producing semiconductor system
JP2012136765A (en) * 2010-12-28 2012-07-19 Ebara Corp Electroplating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180080A (en) * 1993-03-23 1995-07-18 Chiyoda Kiki Hanbai Kk Method for plating aluminum and aluminum alloy and electrolyte
JP2003268590A (en) * 2002-03-07 2003-09-25 Applied Materials Inc Plating method and method of producing semiconductor system
CN1394988A (en) * 2002-08-20 2003-02-05 中国科学院电子学研究所 Multi-layer nickel-plating process by adopting single bath process
JP2012136765A (en) * 2010-12-28 2012-07-19 Ebara Corp Electroplating method

Also Published As

Publication number Publication date
JP5932870B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
Sadiku-Agboola et al. Influence of operation parameters on metal deposition in bright nickel-plating process
JP4981488B2 (en) Roughened rolled copper plate and method for producing the same
CN104342731A (en) Ruthenium plating method for semiconductor molybdenum material
JP6190104B2 (en) Nickel plating material and method for producing the same
CN105887152A (en) Aluminum alloy anodic oxidation process
US20040108211A1 (en) Surface treatment for a wrought copper foil for use on a flexible printed circuit board (FPCB)
Liu et al. The effect of pulse reversal on morphology of cobalt hard gold
JP2006233245A (en) Product composed of magnesium or magnesium alloy and method for producing the same
US10590558B2 (en) Nanostructured aluminum alloys for improved hardness
JP2007254866A (en) Plating pretreatment method for aluminum or aluminum alloy raw material
JP5932870B2 (en) Thin film plating method with improved corrosion resistance
JP2014005545A (en) Electrolytic copper foil with carrier foil, method for manufacturing electrolytic copper foil with carrier foil and copper clad laminate obtained using electrolytic copper foil with carrier foil
RU2550393C1 (en) Method for electrolyte-plasma treatment of metal surface
JP6081224B2 (en) Manufacturing method of surface-treated steel sheet
JP2011208175A (en) Method for producing plated article, and plated article
Tajiri et al. Development of an electroformed copper lining for accelerator components
US10301735B2 (en) Method of forming metal coating
JP5084055B2 (en) Electrolytic degreasing apparatus and electrolytic degreasing method
TW200839039A (en) Periodic pulse reverse current electroplating process
KR20070097895A (en) Method for treating the surface of magnesium and its alloys
JP2007039770A (en) Method for improving corrosion resistance of copper-free plated film on resin
KR102254372B1 (en) Method for bright electroplating without brightener
JP5425440B2 (en) Whisker suppression method in copper plating
JP2008248371A (en) High corrosion resistance, and gold plating member of high productivity
JP2015108169A (en) Electrolysis plating method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160428

R150 Certificate of patent or registration of utility model

Ref document number: 5932870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees