JP2014005545A - Electrolytic copper foil with carrier foil, method for manufacturing electrolytic copper foil with carrier foil and copper clad laminate obtained using electrolytic copper foil with carrier foil - Google Patents

Electrolytic copper foil with carrier foil, method for manufacturing electrolytic copper foil with carrier foil and copper clad laminate obtained using electrolytic copper foil with carrier foil Download PDF

Info

Publication number
JP2014005545A
JP2014005545A JP2013179909A JP2013179909A JP2014005545A JP 2014005545 A JP2014005545 A JP 2014005545A JP 2013179909 A JP2013179909 A JP 2013179909A JP 2013179909 A JP2013179909 A JP 2013179909A JP 2014005545 A JP2014005545 A JP 2014005545A
Authority
JP
Japan
Prior art keywords
electrolytic copper
foil
copper foil
carrier foil
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013179909A
Other languages
Japanese (ja)
Other versions
JP5503789B2 (en
Inventor
Hiroaki Tsuyoshi
裕昭 津吉
Shinichi Obata
真一 小畠
Ayumi Tatsuoka
歩 立岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013179909A priority Critical patent/JP5503789B2/en
Publication of JP2014005545A publication Critical patent/JP2014005545A/en
Application granted granted Critical
Publication of JP5503789B2 publication Critical patent/JP5503789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic copper foil with a peelable type carrier foil, capable of easily peeling the carrier foil even when heated at a temperature over 300°C.SOLUTION: In an electrolytic copper foil 1 with a carrier foil, having a layer structure of a carrier foil 2, a junction interface layer 3, a heatproof metal layer 5 and an electrolytic copper foil layer 4, an electrolytic copper foil having a predetermined surface roughness (Rzjis), glossiness [Gs(60°)], etc., is used as the carrier foil. In a GDS analyser, used are the electrolytic copper foil with the carrier foil etc., satisfying a relationship of ([W2]-[W1])/[W1]≤0.3, where W1 represents the half width of a peak when a component profile in a depth direction of the heatproof metal layer is measured toward a carrier foil side from an electrolytic copper foil layer side of the electrolytic copper foil with a carrier foil, and W2 represents the half width of a peak when a component profile in a depth direction of the heatproof metal layer is measured after the electrolytic copper foil with a carrier foil is heated at a temperature of 300°C.

Description

本発明は、キャリア箔付電解銅箔、当該キャリア箔付電解銅箔の製造方法、当該キャリア箔付電解銅箔を用いた銅張積層板に関する。   The present invention relates to an electrolytic copper foil with a carrier foil, a method for producing the electrolytic copper foil with a carrier foil, and a copper-clad laminate using the electrolytic copper foil with a carrier foil.

キャリア箔付電解銅箔は、広く電気、電子産業の分野で用いられるプリント配線板製造用材料として用いられてきた。一般に、電解銅箔はガラス−エポキシ基材、フェノール基材、ポリイミド樹脂フィルム等の高分子絶縁基材と張り合わされ銅張積層板とし、プリント配線板製造に用いられてきた。   Electrolytic copper foil with carrier foil has been widely used as a printed wiring board manufacturing material widely used in the fields of electric and electronic industries. In general, an electrolytic copper foil is laminated with a polymer insulating substrate such as a glass-epoxy substrate, a phenol substrate, or a polyimide resin film to form a copper-clad laminate, and has been used in the production of printed wiring boards.

特に、近年の電子機器には、軽薄短小化に伴うダウンサイジング、低消費電力化の要求が年々強くなっている。その結果、これらに組み込まれるプリント配線板の配線回路の導体厚さを薄くして、ファインピッチの配線回路を設けるプリント配線板設計が要求されている。具体的には、導体厚さを2μm〜10μm、回路幅が10μm程度というファインピッチ配線回路を備えるプリント配線板も実用化されている。そして、この要求に応えるためにキャリア箔付電解銅箔の使用が広く普及している。   In particular, in recent electronic devices, demands for downsizing and low power consumption associated with lighter and thinner devices are increasing year by year. As a result, there is a demand for a printed wiring board design that provides a fine-pitch wiring circuit by reducing the conductor thickness of the wiring circuit of the printed wiring board incorporated therein. Specifically, a printed wiring board having a fine pitch wiring circuit having a conductor thickness of 2 μm to 10 μm and a circuit width of about 10 μm has been put into practical use. In order to meet this requirement, the use of electrolytic copper foil with carrier foil is widely used.

このキャリア箔付電解銅箔には、ピーラブルタイプとエッチャブルタイプとがあり、これらの相違を一言で言えば、銅張積層板に加工した後に、ピーラブルタイプはキャリア箔を引き剥がして除去するタイプのものであり、エッチャブルタイプはキャリア箔をエッチングして除去するタイプのものである。いずれにおいても、キャリア箔付電解銅箔は、キャリア箔が存在することによって、薄い銅箔層へのシワの発生を防止して、銅箔表面の異物付着及び汚染防止が可能なものである。従って、キャリア箔付電解銅箔のハンドリングを容易にして、銅張積層板としての品質維持も容易となる。   There are two types of electrolytic copper foil with carrier foil: peelable type and etchable type. To put the difference between them in a nutshell, after processing into a copper clad laminate, the peelable type peels off the carrier foil. The etchable type is a type that etches and removes the carrier foil. In any case, the electrolytic copper foil with carrier foil is capable of preventing the occurrence of wrinkles on the thin copper foil layer and preventing foreign matter adhesion and contamination on the copper foil surface due to the presence of the carrier foil. Therefore, handling of the electrolytic copper foil with carrier foil is facilitated, and quality maintenance as a copper clad laminate is also facilitated.

ところが、近年の傾向として、特殊な設備を不要とするため、キャリア箔を引き剥がして除去するピーラブルタイプの需要が急増している。このピーラブルタイプのキャリア箔付電解銅箔としては、種々の剥離層を備えた製品が市場に供給されている。   However, as a recent trend, demand for a peelable type for peeling off and removing a carrier foil is rapidly increasing in order to eliminate the need for special equipment. As this peelable type electrolytic copper foil with carrier foil, products having various release layers are supplied to the market.

例えば、特許文献1に開示のピーラブルタイプのキャリア箔付電解銅箔は、アルミニウムキャリア上に、無機酸化物である二酸化ケイ素で構成される剥離層を設け、この剥離層の上にスパッタリングなどの乾式成膜法と電気銅めっき法とを併用して銅箔層を形成している。ところが、このような無機酸化物を、ピーラブルタイプのキャリア箔付電解銅箔の剥離層として用いた場合には、耐熱性には優れるが、キャリア箔の引き剥がし強さの安定化が困難と言われてきた。   For example, in the electrolytic copper foil with a peelable type carrier foil disclosed in Patent Document 1, a release layer made of silicon dioxide, which is an inorganic oxide, is provided on an aluminum carrier, and sputtering or the like is formed on the release layer. The copper foil layer is formed by using a dry film forming method and an electrolytic copper plating method in combination. However, when such an inorganic oxide is used as a peelable layer of an electrolytic copper foil with peelable carrier foil, heat resistance is excellent, but it is difficult to stabilize the peel strength of the carrier foil. I have been told.

そこで、本件出願人等は、特許文献2に開示のピーラブルタイプのキャリア箔付電解銅箔を提唱してきた。特許文献2では、キャリア箔の表面上に、有機剤を用いて形成した有機系接合界面層を形成し、その接合界面層上に電解銅箔層を析出形成させたピーラブルタイプのキャリア箔付電解銅箔を開示している。即ち、このピーラブルタイプのキャリア箔付電解銅箔は、キャリア箔/有機系接合界面層/電解銅箔層の3層の層構成を備えたものであり、従来のピーラブルタイプのキャリア箔付電解銅箔に比べて、プレス成形後のキャリア箔の引き剥がし強さの安定化を可能にして、且つ、小さな力でキャリア箔の引き剥がしをすることが可能となり、飛躍的な品質向上を行えた。その結果、ピーラブルタイプのキャリア箔付電解銅箔の使用を身近なものとして、広く市場に受け入れられてきた。   Therefore, the present applicants have proposed the peelable type electrolytic copper foil with carrier foil disclosed in Patent Document 2. In Patent Document 2, an organic bonding interface layer formed using an organic agent is formed on the surface of the carrier foil, and an electrolytic copper foil layer is deposited on the bonding interface layer. An electrolytic copper foil is disclosed. That is, this electrolytic copper foil with peelable carrier foil has a three-layer structure of carrier foil / organic bonding interface layer / electrolytic copper foil layer, and has a conventional peelable carrier foil attached. Compared to electrolytic copper foil, it is possible to stabilize the peeling strength of the carrier foil after press molding, and it is possible to peel off the carrier foil with a small force, which can dramatically improve the quality. It was. As a result, the use of peelable type electrolytic copper foil with carrier foil has been widely accepted by the market.

ところが、近年、銅箔と絶縁樹脂基材との張り合わせ時の負荷温度が上昇する傾向にある。その結果、接合界面層が有機剤で出来た特許文献2に開示のキャリア箔付電解銅箔を、300℃を超えるプレス成形温度の銅張積層板製造条件下で使用した場合には、有機系接合界面層が劣化し、消失するため、キャリア箔と電解銅箔層とが焼き付いてしまい、キャリア箔を引き剥がしての除去が困難であった。この問題を解決するため、本件出願人等は、特許文献3及び特許文献4に開示のピーラブルタイプのキャリア箔付電解銅箔を提唱してきた。   However, in recent years, the load temperature at the time of bonding the copper foil and the insulating resin base material tends to increase. As a result, when the electrolytic copper foil with carrier foil disclosed in Patent Document 2 in which the bonding interface layer is made of an organic agent is used under the production conditions of a copper clad laminate having a press molding temperature exceeding 300 ° C., Since the bonding interface layer deteriorates and disappears, the carrier foil and the electrolytic copper foil layer are seized, and it is difficult to remove the carrier foil by peeling off. In order to solve this problem, the present applicants have proposed the peelable type electrolytic copper foil with carrier foil disclosed in Patent Document 3 and Patent Document 4.

この特許文献3には、ピーラブルタイプのキャリア箔付電解銅箔の、300℃を超える高温プレス成形後のキャリア箔の引き剥がし強さの不安定さを解消し、小さな力で安定したキャリア箔の引き剥がしが可能なキャリア箔付電解銅箔の提供を目的して、キャリア箔の表面上に、チオシアヌル酸を用いて形成した接合界面層を形成し、その接合界面層上に電解銅箔層を析出形成させたピーラブルタイプのキャリア箔付電解銅箔を開示している。   This Patent Document 3 discloses a carrier foil that is stable with a small force by eliminating the unstable peeling strength of the carrier foil after high-temperature press molding exceeding 300 ° C. of the electrolytic copper foil with a peelable carrier foil. In order to provide an electrolytic copper foil with a carrier foil that can be peeled off, a bonding interface layer formed using thiocyanuric acid is formed on the surface of the carrier foil, and the electrolytic copper foil layer is formed on the bonding interface layer Discloses a peelable type electrolytic copper foil with a carrier foil.

そして、この特許文献4には、200℃以上の温度でプレス加工しても、キャリア箔の引き剥がしが容易な高温耐熱用キャリア箔付電解銅箔の製造方法の提供を目的として、キャリア箔の表面への有機接合界面の形成は、接合界面層の形成に用いる有機剤を50ppm〜2000ppm含有する酸洗溶液を用いて、キャリア箔の表面を酸洗溶解しつつ、同時に有機剤を吸着させることにより酸洗吸着有機被膜として形成することを特徴とした高温耐熱用キャリア箔付電解銅箔の製造方法が開示されている。   And in this patent document 4, even if it press-processes at the temperature of 200 degreeC or more, in order to provide the manufacturing method of the electrolytic copper foil with a high temperature heat-resistant carrier foil which is easy to peel off, a carrier foil is provided. The organic bonding interface is formed on the surface by pickling and dissolving the surface of the carrier foil using a pickling solution containing 50 ppm to 2000 ppm of the organic agent used for forming the bonding interface layer, and simultaneously adsorbing the organic agent. Has disclosed a method for producing an electrolytic copper foil with a carrier foil for high temperature and heat resistance, characterized in that it is formed as a pickled adsorption organic coating.

特開昭57−72851号公報JP-A-57-72851 特開2001−89892号公報JP 2001-89892 A 特開2001−68804号公報JP 2001-68804 A 特開2003−328178号公報JP 2003-328178 A

しかしながら、特許文献3及び特許文献4に開示のピーラブルタイプのキャリア箔付電解銅箔も、300℃を超える高温プレス成形後のキャリア箔の引き剥がし強さの安定化を向上させることが出来るものの、近年、更に多様化してきた種々の高温負荷の行われる銅張積層板製造においては、更なる高温負荷後のキャリア箔の引き剥がし強さの安定化が求められてきた。   However, the peelable type electrolytic copper foil with carrier foil disclosed in Patent Document 3 and Patent Document 4 can also improve the stability of the peeling strength of the carrier foil after high-temperature press molding exceeding 300 ° C. In recent years, in the manufacture of copper-clad laminates subjected to various high-temperature loads that have been further diversified, it has been required to stabilize the peel strength of the carrier foil after further high-temperature loads.

特に、近年の高温プレス成形においては、400℃付近の高温での加工が行われる場合もあり、特許文献3及び特許文献4に開示のキャリア箔付電解銅箔でも、キャリア箔が引き剥がせないという結果が得られてきた。従って、市場では、400℃に近い温度が負荷されても、容易にキャリア箔の引き剥がしが可能な、ピーラブルタイプのキャリア箔付電解銅箔の供給が望まれてきた。   In particular, in high-temperature press molding in recent years, processing at a high temperature around 400 ° C. may be performed, and even with the electrolytic copper foil with carrier foil disclosed in Patent Document 3 and Patent Document 4, the carrier foil cannot be peeled off. The result has been obtained. Therefore, in the market, it has been desired to supply a peelable type electrolytic copper foil with a carrier foil that can be easily peeled off even when a temperature close to 400 ° C. is applied.

そこで、本件発明者等は、鋭意研究の結果、特許文献2、特許文献3及び特許文献4に開示の発明を基礎として、以下の技術的思想のキャリア箔付電解銅箔であれば、400℃に近い高温負荷を受けても、キャリア箔の引き剥がし強さを、引き剥がし作業が容易と言える程度に低く且つ安定化させられることに想到した。   Therefore, the inventors of the present invention, as a result of earnest research, based on the invention disclosed in Patent Literature 2, Patent Literature 3 and Patent Literature 4, if the electrolytic copper foil with carrier foil of the following technical idea, 400 ° C. It has been conceived that even when subjected to a high temperature load close to 1, the peeling strength of the carrier foil can be lowered and stabilized to such an extent that the peeling work can be said to be easy.

キャリア箔付電解銅箔: 本件発明に係るキャリア箔付電解銅箔は、キャリア箔/接合界面層/耐熱金属層/電解銅箔層の層構成を備えるキャリア箔付電解銅箔において、
当該キャリア箔として、表面粗さ(Rzjis)が1.0μm未満、光沢度[Gs(60°)]が400以上、及び幅方向で測定したTD光沢度と流れ方向で測定したMD光沢度との比[TD光沢度]/[MD光沢度]が0.9〜1.1の特性の析出面を備える電解銅箔を用いたものであり、GDS分析装置を用いて、常態の当該キャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、当該耐熱金属成分の深さ方向プロファイルを測定したときのピークの半価幅をW1とし、当該キャリア箔付電解銅箔を300℃の大気雰囲気で120分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、当該耐熱金属成分の深さ方向プロファイルを測定したときのピークの半価幅をW2としたとき、([W2]−[W1])/[W1]≦0.3の関係を満たすことを特徴とする。
Electrolytic copper foil with carrier foil: The electrolytic copper foil with carrier foil according to the present invention is an electrolytic copper foil with carrier foil comprising a layer configuration of carrier foil / bonding interface layer / heat-resistant metal layer / electrolytic copper foil layer,
As the carrier foil, the surface roughness (Rzjis) is less than 1.0 μm, the glossiness [Gs (60 °)] is 400 or more, and the TD glossiness measured in the width direction and the MD glossiness measured in the flow direction. The ratio [TD gloss] / [MD gloss] is an electrolytic copper foil provided with a precipitation surface having a characteristic of 0.9 to 1.1, and is attached to the normal carrier foil using a GDS analyzer. From the electrolytic copper foil layer side to the carrier foil side of the electrolytic copper foil, the half width of the peak when the depth direction profile of the refractory metal component is measured is W1, and the electrolytic copper foil with carrier foil is 300 ° C. When the half-value width of the peak when measuring the profile in the depth direction of the refractory metal component from the electrolytic copper foil layer side to the carrier foil side is 120 W W2] − [W1]) / [W1] ≦ 0 .3 relationship is satisfied.

本件発明に係るキャリア箔付電解銅箔は、GDS分析装置を用いて、常態の当該キャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、前記耐熱金属成分の深さ方向プロファイルを測定したときのピークのピークトップ位置をP1とし、当該キャリア箔付電解銅箔を300℃の大気雰囲気で30分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、前記耐熱金属成分の深さ方向プロファイルを測定したときのピークのピークトップ位置をP2としたとき、P1とP2とのピークトップ位置の差([P2]−[P1])が0.20μm以内であることが好ましい。   The electrolytic copper foil with carrier foil according to the present invention is a depth direction of the refractory metal component from the electrolytic copper foil layer side to the carrier foil side of the normal electrolytic copper foil with carrier foil using a GDS analyzer. The peak top position of the peak when the profile is measured is P1, and after heating the electrolytic copper foil with carrier foil in an air atmosphere at 300 ° C. for 30 minutes, the heat resistance is increased from the electrolytic copper foil layer side to the carrier foil side. When the peak top position of the peak when measuring the depth profile of the metal component is P2, the difference between the peak top positions of P1 and P2 ([P2]-[P1]) is within 0.20 μm. Is preferred.

本件発明に係るキャリア箔付電解銅箔は、前記キャリア箔として用いる電解銅箔の析出面は、析出面側の光沢度[Gs(20°)]>光沢度[Gs(60°)]の関係を備える電解銅箔を用いることが好ましい。   In the electrolytic copper foil with carrier foil according to the present invention, the deposition surface of the electrolytic copper foil used as the carrier foil has a relationship of gloss [Gs (20 °)]> gloss [Gs (60 °)] on the deposition surface side. It is preferable to use an electrolytic copper foil comprising

本件発明に係るキャリア箔付電解銅箔の前記接合界面層は、厚さ1nm〜1μmであることが好ましい。   The joining interface layer of the electrolytic copper foil with a carrier foil according to the present invention preferably has a thickness of 1 nm to 1 μm.

本件発明に係るキャリア箔付電解銅箔の前記耐熱金属層は、ニッケル層、ニッケル合金層、コバルト層、コバルト合金層のいずれかであることが好ましい。   The heat-resistant metal layer of the electrolytic copper foil with a carrier foil according to the present invention is preferably any one of a nickel layer, a nickel alloy layer, a cobalt layer, and a cobalt alloy layer.

本件発明に係るキャリア箔付電解銅箔の前記耐熱金属層は、厚さ0.001μm〜0.05μmであることが好ましい。   The heat-resistant metal layer of the electrolytic copper foil with carrier foil according to the present invention preferably has a thickness of 0.001 μm to 0.05 μm.

銅張積層板: 本件発明に係る銅張積層板は、上述のキャリア箔付電解銅箔を用いて得られることを特徴とする。 Copper-clad laminate: The copper-clad laminate according to the present invention is obtained using the above-described electrolytic copper foil with a carrier foil.

本件発明に係るキャリア箔付電解銅箔は、400℃に近い高温負荷を受けても、キャリア箔の引き剥がし強さが低く、且つ、安定化する。従って、種々の高温負荷の行われる銅張積層板製造においても使用可能なピーラブルタイプのキャリア箔付電解銅箔である。また、キャリア箔として、3−メルカプト−1−プロパンスルホン酸(以下、単に「MPS」と称する。)又はビス(3−スルホプロピル)ジスルフィド(以下、単に「SPS」と称する。)から選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液を電解して得られる電解銅箔を用いることで、安定した品質のキャリア箔付電解銅箔製品が得られる。   Even if the electrolytic copper foil with carrier foil according to the present invention is subjected to a high temperature load close to 400 ° C., the peel strength of the carrier foil is low and stabilized. Therefore, it is a peelable type electrolytic copper foil with a carrier foil that can be used in the production of copper clad laminates subjected to various high temperature loads. The carrier foil was selected from 3-mercapto-1-propanesulfonic acid (hereinafter simply referred to as “MPS”) or bis (3-sulfopropyl) disulfide (hereinafter simply referred to as “SPS”). By using an electrolytic copper foil obtained by electrolyzing a sulfuric acid-based copper electrolytic solution containing at least one quaternary ammonium salt polymer having a cyclic structure and chlorine, an electrolytic copper foil product with a stable carrier foil is obtained. It is done.

本件発明に係るキャリア箔付電解銅箔の層構成を示した断面模式図である。It is the cross-sectional schematic diagram which showed the layer structure of the electrolytic copper foil with a carrier foil which concerns on this invention. GDS(GD−OES)分析装置を用い、従来の電解銅箔をキャリア箔として用いたキャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けてアルゴンスパッタリングで掘り下げたときの深さ方向の耐熱金属成分のプロファイルである。Depth when digging down by argon sputtering from the electrolytic copper foil layer side to the carrier foil side of an electrolytic copper foil with a carrier foil using a conventional electrolytic copper foil as a carrier foil using a GDS (GD-OES) analyzer It is a profile of the heat-resistant metal component of a direction. GDS(GD−OES)分析装置を用い、本件発明に係るキャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けてアルゴンスパッタリングで掘り下げたときの深さ方向の耐熱金属成分のプロファイルである。Using a GDS (GD-OES) analyzer, the profile of the refractory metal component in the depth direction when dug by argon sputtering from the electrolytic copper foil layer side to the carrier foil side of the electrolytic copper foil with carrier foil according to the present invention It is.

以下、本件発明に係るキャリア箔付電解銅箔の形態及び本件発明に係る銅張積層板の形態に関して、順に説明する。   Hereinafter, the form of the electrolytic copper foil with carrier foil according to the present invention and the form of the copper clad laminate according to the present invention will be described in order.

A.本件発明に係るキャリア箔付電解銅箔の形態
本件発明に係るキャリア箔付電解銅箔1は、キャリア箔2/接合界面層3/耐熱金属層5/電解銅箔層4の層構成を備えるものであり、その層構成の概念図を模式的に図1に示した。この図1において、接合界面層3としての有機剤層と耐熱金属層5とからなる。なお、この図1は、各層の積層状態を把握できるように記載したおり、各層の厚さに関しては、現実の製品の厚さを反映させていない。以下、本件発明に係るキャリア箔付電解銅箔を構成する「キャリア箔」、「接合界面層」、「耐熱金属層」、「電解銅箔層」の順に説明する。
A. 1. Form of electrolytic copper foil with carrier foil according to the present invention Electrolytic copper foil with carrier foil according to the present invention has a layer configuration of carrier foil 2 / bonding interface layer 3 / heat-resistant metal layer 5 / electrolytic copper foil layer 4. The conceptual diagram of the layer structure is schematically shown in FIG. In FIG. 1, an organic agent layer as a bonding interface layer 3 and a refractory metal layer 5 are formed. In addition, this FIG. 1 describes so that the lamination | stacking state of each layer can be grasped | ascertained, and the thickness of each product is not reflected about the thickness of each layer. Hereinafter, “carrier foil”, “joining interface layer”, “heat-resistant metal layer”, and “electrolytic copper foil layer” constituting the electrolytic copper foil with carrier foil according to the present invention will be described in this order.

図1に示す層構成を備える本件発明に係るキャリア箔付電解銅箔は、キャリア箔/接合界面層/耐熱金属層/電解銅箔層の層構成を備えるキャリア箔付電解銅箔であり、GDS分析装置を用いて、「常態の当該キャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、耐熱金属成分の深さ方向プロファイルを測定したときのピークの半価幅をW1」とし、「当該キャリア箔付電解銅箔を300℃の大気雰囲気で120分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、耐熱金属の深さ方向プロファイルを測定したときのピークの半価幅をW2」としたとき、([W2]−[W1])/[W1]≦0.3の関係を満たすことを特徴とする。このようなパラメータを設けた理由に関して、以下に説明する。   The electrolytic copper foil with a carrier foil according to the present invention having the layer configuration shown in FIG. 1 is an electrolytic copper foil with a carrier foil having a layer configuration of carrier foil / bonding interface layer / heat-resistant metal layer / electrolytic copper foil layer, and GDS Using the analyzer, “the half width of the peak when the depth profile of the refractory metal component is measured from the electrolytic copper foil layer side to the carrier foil side of the normal electrolytic copper foil with carrier foil is W1. "When the electrolytic copper foil with carrier foil is heated in an air atmosphere at 300 ° C for 120 minutes and then the depth profile of the refractory metal is measured from the electrolytic copper foil layer side to the carrier foil side, When the full width at half maximum of W2 is “(W2) − [W1]) / [W1] ≦ 0.3, the relationship is satisfied. The reason why such parameters are provided will be described below.

図2には、従来の電解銅箔をキャリア箔として用いて、その表面に接合界面層を構成する有機剤層を形成し、その表面に耐熱金属層を形成し、その耐熱金属層の表面に電解銅箔層を形成したキャリア箔付電解銅箔を用いて、堀場製作所製のマーカス型高周波グロー放電発光表面分析装置(GDS(GD−OES)分析装置)による、深さ方向(電解銅箔層側からキャリア箔側に向けてアルゴンスパッタリングで掘り下げたときの深さ方向のこと。)の耐熱金属成分のプロファイルを表示している。そして、図3には、本件発明に係るキャリア箔付電解銅箔を用いて、同様の深さ方向の耐熱金属成分のプロファイルを表示している。ここで、図2(a)及び図3(a)は、常態における耐熱金属成分であるニッケルの深さ方向プロファイルである。また、図2(b)及び図3(b)は、300℃×30分の加熱処理後における同成分の深さ方向プロファイルである。更に、図2(c)及び図3(c)は、300℃×120分の加熱処理後における同成分の深さ方向プロファイルである。   In FIG. 2, a conventional electrolytic copper foil is used as a carrier foil, an organic agent layer constituting a bonding interface layer is formed on the surface, a heat-resistant metal layer is formed on the surface, and the surface of the heat-resistant metal layer is formed. Using electrolytic copper foil with carrier foil formed with electrolytic copper foil layer, depth direction (electrolytic copper foil layer) by Marcus type high frequency glow discharge light emitting surface analyzer (GDS (GD-OES) analyzer) manufactured by Horiba, Ltd. The profile of the refractory metal component is shown in the depth direction when dug down by argon sputtering from the side toward the carrier foil side. And in FIG. 3, the profile of the heat-resistant metal component of the same depth direction is displayed using the electrolytic copper foil with a carrier foil which concerns on this invention. Here, FIG. 2A and FIG. 3A are depth profile of nickel which is a refractory metal component in a normal state. Moreover, FIG.2 (b) and FIG.3 (b) are the depth direction profiles of the same component after 300 degreeC x 30 minute heat processing. Further, FIG. 2C and FIG. 3C are depth profiles of the same component after the heat treatment at 300 ° C. for 120 minutes.

ここで、図2(c)及び図3(c)とのニッケルピークの形状を見ると、図2(c)のニッケルピークの形状に比べ、図3(c)のニッケルピークの形状がブロードになっていることが明瞭に分かる。しかし、この差異は、客観性を備える判断指標とはならない。そこで、以下のようにして考えた。即ち、図2(a)と図2(c)との関係と、図3(a)と図3(c)との関係を対比して考える。最初に、ニッケルピークの形状に着目して、その検出ピークの半価幅を比較する。まず、従来の電解銅箔をキャリア箔として用いたキャリア箔付電解銅箔の場合をみると、図2(a)の常態のニッケルピークの半価幅W1は、0.42μmである。そして、図2(c)の300℃×120分の加熱処理後ニッケルピークの半価幅W2は、0.61μmである。即ち、([W2]−[W1])/[W1]=0.45である。これに対し、本件発明に係るキャリア箔付電解銅箔の場合、図3(a)の常態のニッケルピークの半価幅W1は、0.50μmである。そして、図3(c)の300℃×120分の加熱処理後ニッケルピークの半価幅W2は、0.52μmである。即ち、([W2]−[W1])/[W1]=0.04である。   Here, looking at the shape of the nickel peak in FIGS. 2 (c) and 3 (c), the shape of the nickel peak in FIG. 3 (c) is broader than the shape of the nickel peak in FIG. 2 (c). It can be clearly seen that However, this difference is not a judgment index with objectivity. Therefore, I thought as follows. That is, the relationship between FIG. 2 (a) and FIG. 2 (c) is compared with the relationship between FIG. 3 (a) and FIG. 3 (c). First, focusing on the shape of the nickel peak, the half widths of the detected peaks are compared. First, in the case of an electrolytic copper foil with a carrier foil using a conventional electrolytic copper foil as a carrier foil, the half-value width W1 of the normal nickel peak in FIG. 2 (a) is 0.42 μm. And the half width W2 of the nickel peak after heat processing of 300 degreeC x 120 minutes of FIG.2 (c) is 0.61 micrometer. That is, ([W2] − [W1]) / [W1] = 0.45. On the other hand, in the case of the electrolytic copper foil with carrier foil according to the present invention, the half-value width W1 of the normal nickel peak in FIG. 3 (a) is 0.50 μm. And the half width W2 of the nickel peak after heat processing of 300 degreeC x 120 minutes of FIG.3 (c) is 0.52 micrometer. That is, ([W2] − [W1]) / [W1] = 0.04.

これらのことから、従来の電解銅箔をキャリア箔として用いたキャリア箔付電解銅箔に比べ、本件発明に係るキャリア箔付電解銅箔の方が、長時間の加熱を受けても、ニッケルのキャリア箔側への拡散が少なく、電解銅箔層とキャリア箔との焼き付きを防止できることが理解できる。本件発明者等の研究によれば、上述の([W2]−[W1])/[W1]≦0.3であれば、400℃×30分〜120分の加熱を受けても、容易にキャリア箔の引き剥がしの可能なキャリア箔付電解銅箔となる。なお、ここで300℃×120分の加熱条件を採用したのは、図2及び図3を対比することから理解できるように、ニッケルピークの形状の変化が顕著に観察出来るからである。   From these, compared with the electrolytic copper foil with a carrier foil using a conventional electrolytic copper foil as a carrier foil, the electrolytic copper foil with a carrier foil according to the present invention has a nickel It can be understood that there is little diffusion to the carrier foil side and seizure between the electrolytic copper foil layer and the carrier foil can be prevented. According to the study by the present inventors, if the above-mentioned ([W2]-[W1]) / [W1] ≦ 0.3, it is easy even when subjected to heating at 400 ° C. × 30 minutes to 120 minutes. It becomes an electrolytic copper foil with a carrier foil capable of peeling off the carrier foil. Here, the reason why the heating condition of 300 ° C. × 120 minutes was adopted is that the change in the shape of the nickel peak can be observed remarkably as can be understood from the comparison between FIG. 2 and FIG.

また、図2(a)からみた図2(b)のニッケルピークのピークトップ位置のズレと、図3(a)からみた図3(b)のニッケルピークのピークトップ位置のズレとを対比してみる。図2(a)及び図3(a)から、「常態のキャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、耐熱金属成分の深さ方向プロファイルを測定したときのピークのピークトップ位置(P1)」が分かる。そして、図2(b)及び図3(b)から、「キャリア箔付電解銅箔を300℃の大気雰囲気で30分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、耐熱金属の深さ方向プロファイルを測定したときのピークのピークトップ位置(P2)」が分かる。このとき、従来の電解銅箔をキャリア箔として用いたキャリア箔付電解銅箔の場合には、図2(a)からみた図2(b)のニッケルピークのピークトップ位置のズレとして、([P2]−[P1])=0.24μm(図2(b)のaの距離)であることが分かる。これに対し、本件発明に係るキャリア箔付電解銅箔の場合には、図3(a)からみた図3(b)のニッケルピークのピークトップ位置のズレとして、([P2]−[P1])=0.08μm(図3(b)のaの距離)であることが分かる。   Also, the deviation of the peak top position of the nickel peak in FIG. 2 (b) as viewed from FIG. 2 (a) is compared with the deviation of the peak top position of the nickel peak in FIG. 3 (b) as viewed from FIG. 3 (a). Try. From FIG. 2 (a) and FIG. 3 (a), “peak when the depth profile of the refractory metal component is measured from the electrolytic copper foil layer side to the carrier foil side of the electrolytic copper foil with a normal carrier foil. The peak top position (P1) ”of FIG. 2 (b) and 3 (b), “After heating the electrolytic copper foil with carrier foil in an air atmosphere at 300 ° C. for 30 minutes, from the electrolytic copper foil layer side toward the carrier foil side, The peak top position (P2) of the peak when the profile in the depth direction is measured. At this time, in the case of an electrolytic copper foil with a carrier foil using a conventional electrolytic copper foil as a carrier foil, as a deviation of the peak top position of the nickel peak in FIG. 2B as viewed from FIG. P2] − [P1]) = 0.24 μm (the distance a in FIG. 2B). On the other hand, in the case of the electrolytic copper foil with a carrier foil according to the present invention, as the deviation of the peak top position of the nickel peak in FIG. 3 (b) viewed from FIG. 3 (a), ([P2]-[P1] ) = 0.08 μm (the distance a in FIG. 3B).

よって、従来の電解銅箔をキャリア箔として用いたキャリア箔付電解銅箔に比べ、本件発明に係るキャリア箔付電解銅箔の方が、加熱を受けても深さ方向プロファイルのニッケルピークトップの位置の変化が少ないことから、ニッケルのキャリア箔側への拡散が少なく、電解銅箔層とキャリア箔との焼き付きを防止効果が高いことが理解できる。本件発明者等の研究によれば、([P2]−[P1])≦0.20μmであれば、400℃×30分〜120分の加熱を受けても、より確実且つ容易に、キャリア箔の引き剥がしの可能なキャリア箔付電解銅箔となる。なお、ここで300℃×30分の加熱条件を採用したのは、図2及び図3を対比することから理解できるように、加熱後のピークトップの位置のズレ(図2(b)及び図3(b)のaの距離)の方が、300℃×120分の加熱後のピークトップの位置のズレ(図2(c)及び図3(c)のbの距離)に比べて、明瞭な差異として捉えられるからである。   Therefore, compared with the electrolytic copper foil with carrier foil using the conventional electrolytic copper foil as the carrier foil, the electrolytic copper foil with carrier foil according to the present invention has a nickel peak top in the depth direction profile even when heated. Since there is little change in position, it can be understood that there is little diffusion of nickel to the carrier foil side and the effect of preventing seizure between the electrolytic copper foil layer and the carrier foil is high. According to the study by the present inventors, when ([P2] − [P1]) ≦ 0.20 μm, the carrier foil can be more reliably and easily even when heated at 400 ° C. for 30 minutes to 120 minutes. This is an electrolytic copper foil with a carrier foil that can be peeled off. The reason why the heating condition of 300 ° C. × 30 minutes was adopted here is that the peak top position after heating is shifted (FIG. 2B and FIG. 2), as can be understood from the comparison between FIG. 2 and FIG. 3 (b) is a clearer distance than the displacement of the peak top position after heating at 300 ° C. for 120 minutes (the distance b in FIGS. 2 (c) and 3 (c)). This is because it is perceived as a significant difference.

以下、以上のようなパラメータを備えた本件発明に係るキャリア箔付電解銅箔を得るために好適な構成材料に関して、以下に述べる。   Hereinafter, constituent materials suitable for obtaining an electrolytic copper foil with a carrier foil according to the present invention having the parameters as described above will be described below.

キャリア箔: 本件発明に係るキャリア箔付電解銅箔に使用するキャリア箔には、MPS又はSPSから選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液を電解して得られる電解銅箔を用いる。この組成の硫酸系銅電解液を用いることで、本件発明に係るキャリア箔付電解銅箔用のキャリア箔として好適な電解銅箔の製造が可能となる。なお、ここで言う「硫酸系銅電解液」の基本組成として、銅濃度は40g/l〜120g/l、フリー硫酸濃度は60g/l〜220g/lを採用することが好ましい。そして、より好ましくは、銅濃度は50g/l〜80g/l、フリー硫酸濃度は80g/l〜150g/lの範囲である。 Carrier foil: The carrier foil used for the electrolytic copper foil with a carrier foil according to the present invention is a sulfuric acid-based copper electrolysis containing at least one selected from MPS or SPS, a quaternary ammonium salt polymer having a cyclic structure, and chlorine. An electrolytic copper foil obtained by electrolyzing the liquid is used. By using the sulfuric acid-based copper electrolytic solution having this composition, it is possible to produce an electrolytic copper foil suitable as a carrier foil for an electrolytic copper foil with a carrier foil according to the present invention. In addition, as a basic composition of "sulfuric acid type copper electrolyte solution" said here, it is preferable to employ | adopt 40 g / l-120 g / l of copper concentration, and 60 g / l-220 g / l of free sulfuric acid concentration. More preferably, the copper concentration is in the range of 50 g / l to 80 g / l, and the free sulfuric acid concentration is in the range of 80 g / l to 150 g / l.

このような製造方法で得られた電解銅箔をキャリア箔として選択的に使用することで、従来の電解銅箔を使用した場合と比べて、その析出面に設ける接合界面層を構成する有機剤層の形成形態が異なると推測できる。即ち、上述の電解銅箔をキャリア箔として用いることで、加熱を受けても、接合界面層を構成する有機剤の構成成分の分解を抑制することで有機剤層の消失量が抑制され、且つ、接合界面層を構成する成分のキャリア箔側への拡散を困難にする効果が得られていると考えることができる(以下、これらの効果を、単に「拡散防止効果」と称する。)。結果として、キャリア箔と電解銅箔層との焼き付きを防止し、キャリア箔と電解銅箔層との焼き付きが起こりにくくなり、キャリア箔の引き剥がし強さが低位で安定化することになると推測できる。   By using the electrolytic copper foil obtained by such a manufacturing method selectively as a carrier foil, compared with the case where a conventional electrolytic copper foil is used, the organic agent constituting the bonding interface layer provided on the precipitation surface It can be inferred that the formation form of the layers is different. That is, by using the above-described electrolytic copper foil as a carrier foil, the amount of disappearance of the organic agent layer is suppressed by suppressing the decomposition of the components of the organic agent constituting the bonding interface layer, even when heated, and It can be considered that the effect of making it difficult to diffuse the components constituting the bonding interface layer to the carrier foil side is obtained (hereinafter, these effects are simply referred to as “diffusion prevention effect”). As a result, it can be inferred that seizure between the carrier foil and the electrolytic copper foil layer is prevented, seizure between the carrier foil and the electrolytic copper foil layer hardly occurs, and the peel strength of the carrier foil is stabilized at a low level. .

そして、前記キャリア箔を構成する電解銅箔の析出面は、その表面粗さ(Rzjis)が1.0μm未満、光沢度[Gs(60°)]が400以上、及び幅方向で測定したTD光沢度と流れ方向で測定したMD光沢度との比([TD光沢度]/[MD光沢度])が0.9〜1.1の特性を備えるものであることが好ましい。このような物理的表面状態を備える電解銅箔の析出面は、有機剤を吸着させる際に均一な厚さで、高密度且つ密着性に優れた有機皮膜の形成を可能として、有機剤層の熱拡散による消失を防止する。また、このような物理的表面状態を備える電解銅箔の析出面は、「有機剤層の均一な厚さの形成能」、「キャリア箔と接合界面層との密着性」、「接合界面層と耐熱金属層を介して接する電解銅箔層との密着性」を安定化させることができる。   The deposited surface of the electrolytic copper foil constituting the carrier foil has a surface roughness (Rzjis) of less than 1.0 μm, a gloss [Gs (60 °)] of 400 or more, and a TD gloss measured in the width direction. It is preferable that the ratio ([TD glossiness] / [MD glossiness]) of MD and glossiness measured in the flow direction is 0.9 to 1.1. The deposited surface of the electrolytic copper foil having such a physical surface state has a uniform thickness when adsorbing the organic agent, and can form an organic film having high density and excellent adhesion, Prevent disappearance due to thermal diffusion. In addition, the deposited surface of the electrolytic copper foil having such a physical surface state is “the ability to form a uniform thickness of the organic agent layer”, “adhesion between the carrier foil and the bonding interface layer”, “the bonding interface layer” It is possible to stabilize the “adhesiveness between the electrode and the electrolytic copper foil layer in contact with the heat-resistant metal layer”.

ここでは析出面側の表面粗さ(Rzjis)の下限値を限定していない。しかし、測定器の感度にもよるが、経験的に表面粗さの下限値は0.1μm程度である。但し、実際の測定においては、バラツキが見られ、保証できる測定値としての下限は0.2μm程度であると考える。従来から、電解銅箔の析出面の平滑性の評価には、表面粗さRzjisの値が用いられてきた。しかしながら、Rzjisだけでは高さ方向の凹凸情報しか得られず、凹凸の周期やうねりと言った情報を得ることができない。これに対して、光沢度は、両者の情報を反映したパラメータであり、Rzjisと併用することで表面の粗さ周期、うねり、それらの面内での均一性等の種々のパラメータを総合して判断できる。   Here, the lower limit value of the surface roughness (Rzjis) on the precipitation surface side is not limited. However, although depending on the sensitivity of the measuring instrument, the lower limit of the surface roughness is empirically about 0.1 μm. However, in actual measurement, variation is seen, and the lower limit of the measurement value that can be guaranteed is about 0.2 μm. Conventionally, the value of the surface roughness Rzjis has been used to evaluate the smoothness of the deposited surface of the electrolytic copper foil. However, with Rzjis alone, only the unevenness information in the height direction can be obtained, and information such as the unevenness period and waviness cannot be obtained. On the other hand, the glossiness is a parameter reflecting both information. By using it together with Rzjis, various parameters such as the roughness cycle of the surface, the swell, and the uniformity within the surface are combined. I can judge.

従って、本件発明に係る電解銅箔の析出面は、光沢度[Gs(60°)]が400以上という特性を備えることが好ましい。そして、光沢度[Gs(60°)]は600以上であることがより好ましい。上記表面粗さの範囲にあり、当該光沢度[Gs(60°)]が400以上あれば、表面のうねりが極めて小さい電解銅箔と言え、有機剤層の均一な厚さの形成に有利で、キャリア箔と接合界面層との密着性、接合界面層と耐熱金属層を介して接する電解銅箔層との密着性、それぞれの安定化が可能になる。また、当該光沢度[Gs(60°)]は600以上になれば、「有機剤層の均一な厚さの形成能」、「キャリア箔と接合界面層との密着性」、「接合界面層と耐熱金属層を介して接する電解銅箔層との密着性」の各特性の安定化効果も飛躍的に高くなる。ここでは、光沢度の上限値を定めていないが、経験的に判断して[Gs(60°)]で900程度が上限となる。   Therefore, it is preferable that the precipitation surface of the electrolytic copper foil according to the present invention has a glossiness [Gs (60 °)] of 400 or more. The glossiness [Gs (60 °)] is more preferably 600 or more. If the glossiness [Gs (60 °)] is 400 or more in the range of the surface roughness, it can be said that the surface undulation is an extremely small electrolytic copper foil, which is advantageous for forming a uniform thickness of the organic agent layer. The adhesion between the carrier foil and the bonding interface layer and the adhesion between the bonding interface layer and the electrolytic copper foil layer in contact with the heat-resistant metal layer can be stabilized. When the glossiness [Gs (60 °)] is 600 or more, “the ability to form a uniform thickness of the organic agent layer”, “adhesiveness between the carrier foil and the bonding interface layer”, “the bonding interface layer” The effect of stabilizing each characteristic of “adhesiveness between the electrode and the electrolytic copper foil layer in contact with the heat-resistant metal layer” is greatly enhanced. Here, the upper limit value of the glossiness is not set, but an upper limit is about 900 in [Gs (60 °)] judging from experience.

ここで、[Gs(60°)]の光沢度とは、電解銅箔の表面に入射角60°で測定光を照射し、反射角60°で跳ね返った光の強度を測定したものである。ここで言う入射角は、光の照射面に対する垂直方向を0°としている。そして、JIS Z 8741−1997によれば、入射角の異なる5つの鏡面光沢度測定方法が記載されており、試料の光沢度に応じて最適な入射角を選択すべきとされている。中でも、入射角を60°とすることで低光沢度の試料から高光沢度の試料まで幅広く測定可能であるとされている。従って、本件発明に係る電解銅箔の光沢度測定に、主として60°を採用した。なお、本件発明における光沢度は、日本電色工業株式会社製光沢計PG−1M型を用い、光沢度の測定方法であるJIS Z 8741−1997に準拠して測定した。   Here, the glossiness of [Gs (60 °)] is obtained by measuring the intensity of light bounced at a reflection angle of 60 ° by irradiating the surface of the electrolytic copper foil with measurement light at an incident angle of 60 °. The incident angle referred to here is 0 ° in the direction perpendicular to the light irradiation surface. According to JIS Z 8741-1997, five specular gloss measurement methods having different incident angles are described, and an optimal incident angle should be selected according to the gloss of the sample. In particular, it is said that by setting the incident angle to 60 °, it is possible to measure a wide range of samples from low gloss samples to high gloss samples. Therefore, 60 ° was mainly adopted for the glossiness measurement of the electrolytic copper foil according to the present invention. In addition, the glossiness in this invention was measured based on JIS Z8741-1997 which is a measuring method of glossiness using the Nippon Denshoku Industries Co., Ltd. gloss meter PG-1M type.

以上に述べてきた表面粗さと光沢度とは、一定の関連性があるため、両者を同時に管理して考えることが、低プロファイル銅箔の低プロファイル品質を表し、「有機剤層の均一な厚さの形成能」、「キャリア箔と接合界面層との密着性」、「接合界面層と耐熱金属層を介して接する電解銅箔層との密着性」を安定化させる上で有用である。   Since the surface roughness and glossiness described above have a certain relationship, managing both at the same time represents the low profile quality of the low profile copper foil, and “uniform thickness of organic agent layer” This is useful in stabilizing the “satability”, “adhesion between the carrier foil and the bonding interface layer”, and “adhesion between the bonding interface layer and the electrolytic copper foil layer in contact with the heat-resistant metal layer”.

また、本件発明でキャリア箔として用いる電解銅箔は、前記析出面側の光沢度[Gs(60°)]を、「幅方向で測定したTD光沢度」と「流れ方向で測定したMD光沢度」との比である[TD光沢度]/[MD光沢度]の値が、0.9〜1.1の範囲、変化幅が10%以内とすることが好ましい。即ち、幅方向と流れ方向との光沢度の差が非常に小さく、TD方向とMD方向との表面形状のバラツキが極めて小さな事を意味している。そのため、このような電解銅箔をキャリア箔として用いると、「有機剤層の均一な厚さの形成能」、「キャリア箔と接合界面層との密着性」、「接合界面層と耐熱金属層を介して接する電解銅箔層との密着性」を安定化させる観点から、TD方向とMD方向とでの密着性に差異がないために、キャリア箔の引き剥がしの際に、引き剥がし方向を気にする必要が無くなる。   In addition, the electrolytic copper foil used as the carrier foil in the present invention has a glossiness [Gs (60 °)] on the deposition surface side of “TD glossiness measured in the width direction” and “MD glossiness measured in the flow direction”. [TD glossiness] / [MD glossiness] is preferably in the range of 0.9 to 1.1, and the change width is preferably within 10%. That is, the difference in glossiness between the width direction and the flow direction is very small, and the surface shape variation between the TD direction and the MD direction is extremely small. Therefore, when such an electrolytic copper foil is used as a carrier foil, “the ability to form a uniform thickness of the organic agent layer”, “adhesion between the carrier foil and the bonding interface layer”, “the bonding interface layer and the refractory metal layer” From the viewpoint of stabilizing the "adhesiveness with the electrolytic copper foil layer in contact with each other", there is no difference in the adhesiveness between the TD direction and the MD direction. No need to worry.

また、本件発明でキャリア箔として用いる電解銅箔の場合、析出面側の光沢度[Gs(20°)]>光沢度[Gs(60°)]の関係を備えるものを用いることが好ましい。光沢度として[Gs(20°)]と[Gs(60°)]とを用いることにより、従来のキャリア箔として使用してきた電解銅箔との差異を、より明瞭に捉えることが出来る。本件発明で用いる電解銅箔は、前記析出面側が、光沢度[Gs(20°)]>光沢度[Gs(60°)]の関係を備えている。経験的に見て、高光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(20°)]>光沢度[Gs(60°)]>光沢度[Gs(85°)]の関係が成立する。そして、低光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(60°)]>光沢度[Gs(20°)]>光沢度[Gs(85°)]の関係が成立する。更に、無光沢且つ低表面粗さの電解銅箔の場合には、光沢度[Gs(85°)]>光沢度[Gs(60°)]>光沢度[Gs(20°)]の関係が成立する。従って、一定の入射角による光沢度の値の他に、異なる入射角での光沢度の値との関係をもって、電解銅箔の平滑性の指標とすることが有用と判断できる。   In the case of the electrolytic copper foil used as the carrier foil in the present invention, it is preferable to use one having a relationship of gloss [Gs (20 °)]> gloss [Gs (60 °)] on the deposition surface side. By using [Gs (20 °)] and [Gs (60 °)] as the glossiness, the difference from the electrolytic copper foil used as a conventional carrier foil can be grasped more clearly. As for the electrolytic copper foil used by this invention, the said precipitation surface side is equipped with the relationship of glossiness [Gs (20 degrees)]> glossiness [Gs (60 degrees)]. Empirically, in the case of an electrolytic copper foil with high gloss and low surface roughness, gloss [Gs (20 °)]> gloss [Gs (60 °)]> gloss [Gs (85 °) ] Is established. In the case of an electrolytic copper foil having low gloss and low surface roughness, there is a relationship of gloss [Gs (60 °)]> gloss [Gs (20 °)]> gloss [Gs (85 °)]. To establish. Further, in the case of an electrolytic copper foil having a dull and low surface roughness, there is a relationship of gloss [Gs (85 °)]> gloss [Gs (60 °)]> gloss [Gs (20 °)]. To establish. Therefore, it can be judged that it is useful to use as an index of the smoothness of the electrolytic copper foil in relation to the glossiness value at different incident angles in addition to the glossiness value at a constant incident angle.

以上に述べてきたキャリア箔として用いる電解銅箔は、特段の厚さの限定は無いが、ハンドリング性を考慮すると、厚さ12μm〜210μmであることが好ましい。特に、本件発明で用いるキャリア箔としての電解銅箔は、後述する製造方法を用いる限り、電解銅箔の厚さを厚く製造するほど、当該析出面の粗度が小さく、光沢度も上昇すると言う傾向がある。   The electrolytic copper foil used as the carrier foil described above is not particularly limited in thickness, but considering the handling properties, the thickness is preferably 12 μm to 210 μm. In particular, as for the electrolytic copper foil as the carrier foil used in the present invention, as long as the manufacturing method to be described later is used, the thicker the electrolytic copper foil is, the smaller the roughness of the deposited surface and the higher the glossiness. Tend.

接合界面層: 図1から理解できる位置にある接合界面層は、所謂有機剤層を採用することが好ましい。金属又は金属酸化物等の無機材で構成した接合界面層と比べ、キャリア箔の物理的な引き剥がし特性が安定化するからである。以下、これらを順次説明する。 Bonding interface layer: It is preferable to employ a so-called organic agent layer as the bonding interface layer at a position that can be understood from FIG. This is because the physical peeling property of the carrier foil is stabilized as compared with a bonding interface layer made of an inorganic material such as metal or metal oxide. Hereinafter, these will be described sequentially.

ここで言う「接合界面層(有機剤層)」は、窒素含有有機化合物の内、置換基を有するトリアゾール化合物である1,2,3−ベンゾトリアゾール(以下、「BTA」と称する。)、カルボキシベンゾトリアゾール(以下、「CBTA」と称する。)、N’,N’−ビス(ベンゾトリアゾリルメチル)ユリア(以下、「BTD−U」と称する。)、1H−1,2,4−トリアゾール(以下、「TA」と称する。)及び3−アミノ−1H−1,2,4−トリアゾール(以下、「ATA」と称する。)等を用いて形成した層であることが好ましい。この「接合界面層(有機剤層)」の形成方法は、製造形態の中で述べることとする。   The “bonding interface layer (organic agent layer)” referred to here is a 1,2,3-benzotriazole (hereinafter referred to as “BTA”), which is a triazole compound having a substituent among nitrogen-containing organic compounds, and carboxy. Benzotriazole (hereinafter referred to as “CBTA”), N ′, N′-bis (benzotriazolylmethyl) urea (hereinafter referred to as “BTD-U”), 1H-1,2,4-triazole (Hereinafter referred to as “TA”) and 3-amino-1H-1,2,4-triazole (hereinafter referred to as “ATA”) or the like is preferable. The method of forming the “bonding interface layer (organic agent layer)” will be described in the manufacturing mode.

耐熱金属層: そして、「耐熱金属層」は、ニッケル、ニッケル−燐、ニッケル−クロム、ニッケル−モリブデン、ニッケル−モリブデン−コバルト、ニッケル−コバルト、ニッケル−タングステン、ニッケル−錫−燐等のニッケル合金、コバルト、コバルト−燐、コバルト−モリブデン、コバルト−タングステン、コバルト−銅、コバルト−ニッケル−燐、コバルト−錫−燐等のコバルト合金のいずれかで構成されたものである。この「耐熱金属層」の形成方法は、製造形態の中で述べることとする。 Refractory metal layer: The "refractory metal layer" is a nickel alloy such as nickel, nickel-phosphorus, nickel-chromium, nickel-molybdenum, nickel-molybdenum-cobalt, nickel-cobalt, nickel-tungsten, nickel-tin-phosphorus. , Cobalt, cobalt-phosphorus, cobalt-molybdenum, cobalt-tungsten, cobalt-copper, cobalt-nickel-phosphorus, cobalt-tin-phosphorus, and other cobalt alloys. The method for forming the “heat-resistant metal layer” will be described in the manufacturing mode.

この耐熱金属層が存在することによって、本件発明に係るキャリア箔付電解銅箔が、最高到達温度が300℃以上となるようなプレス加工時の熱履歴を受けても、キャリア箔が電解銅箔層から容易に引き剥がせるようになる。接合界面層を構成する有機層と電解銅箔層とが直接接触した状態で、300℃を超える温度が負荷されると、有機剤層を構成する有機剤と電解銅箔層を構成する銅との間で、一定のレベルの相互拡散が起こる。しかし、接合界面層である有機剤層と電解銅箔層との間に耐熱金属層がバリア層として存在すると、上述の相互拡散を抑制し、高温プレス条件下で有機剤層の消失を防止することができる。   Even if the electrolytic copper foil with a carrier foil according to the present invention is subjected to a heat history during press processing such that the maximum temperature reaches 300 ° C. or higher due to the presence of the heat-resistant metal layer, the carrier foil is electrolytic copper foil. It can be easily peeled from the layer. When a temperature exceeding 300 ° C. is applied in a state where the organic layer constituting the bonding interface layer and the electrolytic copper foil layer are in direct contact, the organic agent constituting the organic agent layer and the copper constituting the electrolytic copper foil layer A certain level of interdiffusion occurs between the two. However, if a heat-resistant metal layer exists as a barrier layer between the organic agent layer that is the bonding interface layer and the electrolytic copper foil layer, the above-described mutual diffusion is suppressed, and the disappearance of the organic agent layer is prevented under high-temperature press conditions. be able to.

そして、耐熱金属層の厚さは、0.001μm〜0.05μmの範囲とする。このときの厚さとは、完全な平面上に耐熱金属層を形成したと仮定したときの、異種金属の単位面積当たりの被覆量から計算した換算厚さである。この耐熱金属層の厚さから、非常に薄い層であることが分かる。耐熱金属層の厚さが0.001μm未満の場合には、上述した耐熱金属層の果たす役割の内、バリア層としての役割を果たさず耐熱安定性が損なわれる。一方、耐熱金属層の厚さが0.05μmを超える場合には、プレス加工した後のキャリア箔付電解銅箔のキャリア箔の引き剥がし強さのバラツキが大きくなる。   And the thickness of a heat-resistant metal layer shall be the range of 0.001 micrometer-0.05 micrometer. The thickness at this time is a converted thickness calculated from the coating amount per unit area of a different metal when it is assumed that the refractory metal layer is formed on a complete plane. From the thickness of the refractory metal layer, it can be seen that it is a very thin layer. When the thickness of the heat-resistant metal layer is less than 0.001 μm, the heat-resistant stability is impaired without fulfilling the role as the barrier layer among the roles of the heat-resistant metal layer described above. On the other hand, when the thickness of the heat-resistant metal layer exceeds 0.05 μm, the variation in the peel strength of the carrier foil of the electrolytic copper foil with carrier foil after press working becomes large.

電解銅箔層: ここで言う電解銅箔層とは、上述の耐熱金属層の上に設けた銅層であり、銅張積層板の基材樹脂と直接張り合わされ、回路形成に用いられる銅層のことである。この電解銅箔層の厚さに関しては、特段の限定は無い。しかし、キャリア箔付電解銅箔の電解銅箔層であることを考えれば、10μm以下の厚さと考えることができる。電解銅箔層の厚さが、10μmを超える場合には、キャリア箔付電解銅箔とする意義が没却するからである。そして、以下の各種表面処理を電解銅箔層の表面に施すことも可能である。 Electrolytic copper foil layer: The electrolytic copper foil layer referred to here is a copper layer provided on the above-mentioned heat-resistant metal layer, which is directly bonded to the base resin of the copper-clad laminate and used for circuit formation. That is. There is no particular limitation on the thickness of the electrolytic copper foil layer. However, considering the electrolytic copper foil layer of the electrolytic copper foil with carrier foil, it can be considered that the thickness is 10 μm or less. This is because when the thickness of the electrolytic copper foil layer exceeds 10 μm, the significance of the electrolytic copper foil with carrier foil is lost. And it is also possible to perform the following various surface treatments on the surface of the electrolytic copper foil layer.

表面処理: ここで言う表面処理とは、当該電解銅箔層の表面に、用途に応じた防錆処理、粗化処理、密着性向上処理等を、適宜組み合わせて施したものである。例えば、本件発明に係るキャリア付銅箔をプリント配線板用のポリイミド樹脂、ポリアミド樹脂や、フッ素樹脂基材、液晶ポリマー等の熱可塑性樹脂に張り合わせる場合には、アンカー効果を得るために粗化処理を付加しても構わない。銅箔表面に粗化処理を施さない場合に比べて、高い接着強度、耐熱性等の要求特性が向上するからである。 Surface treatment: The surface treatment referred to here is a treatment in which the surface of the electrolytic copper foil layer is appropriately combined with a rust prevention treatment, a roughening treatment, an adhesion improving treatment, and the like according to the intended use. For example, when laminating a copper foil with a carrier according to the present invention to a thermoplastic resin such as a polyimide resin, a polyamide resin, a fluororesin base material, or a liquid crystal polymer for a printed wiring board, it is roughened to obtain an anchor effect. Processing may be added. This is because required characteristics such as high adhesive strength and heat resistance are improved as compared with the case where the surface of the copper foil is not roughened.

B.キャリア箔付電解銅箔の製造形態
本件発明に係るキャリア箔付電解銅箔の製造方法は、キャリア箔として、3−メルカプト−1−プロパンスルホン酸(以下、単に「MPS」と称する。)又はビス(3−スルホプロピル)ジスルフィド(以下、単に「SPS」と称する。)から選択された少なくとも一種と環状構造を持つ4級アンモニウム塩重合体と塩素とを含む硫酸系銅電解液を電解して得られる電解銅箔を用いる。
B. Manufacturing method of electrolytic copper foil with carrier foil The manufacturing method of the electrolytic copper foil with carrier foil according to the present invention uses 3-mercapto-1-propanesulfonic acid (hereinafter simply referred to as “MPS”) or bis as the carrier foil. Obtained by electrolyzing a sulfuric acid-based copper electrolyte containing chlorine and a quaternary ammonium salt polymer having a cyclic structure and at least one selected from (3-sulfopropyl) disulfide (hereinafter simply referred to as “SPS”). Electrolytic copper foil is used.

キャリア箔の製造形態: キャリア箔の製造方法に関して、簡単に述べる。キャリア箔の製造に用いる硫酸系銅電解液に、MPS又はSPSの少なくとも1種、環状構造を持つ4級アンモニウム塩重合体、塩素を含むものを用いる。ここで、「MPS又はSPSの少なくとも1種」の濃度は、硫酸系銅電解液中のMPS及び/又はSPSの合算濃度と考えればよい。即ち、この合算濃度が、0.5ppm〜100ppmである事が好ましく、より好ましくは0.5ppm〜50ppm、更に好ましくは1ppm〜30ppmである。このMPS又はSPSの濃度が0.5ppm未満の場合には、上述の拡散防止効果が得られず、電解銅箔の析出面が粗くなり、低プロファイル析出面を備える電解銅箔の製造が困難となる。一方、MPS及び/又はSPSの濃度が100ppmを超えても、得られる電解銅箔の析出面が平滑化する効果は向上せず、廃液処理のコスト増加を招くだけである。なお、本件発明で言うMPS及びSPSは、それぞれの塩を含む意味で使用しており、濃度の記載値は、ナトリウム塩としての3−メルカプト−1−プロパンスルホン酸ナトリウムとしての換算値である。そして、MPSは、銅電解液中で2量体化することでSPS構造をとる。従って、MPS及びSPSの濃度とは、3−メルカプト−1−プロパンスルホン酸単体やMPS−Na等塩類の他、SPSとして添加されたもの及びMPSとして電解液中に添加された後にSPS等に重合化した変性物を含む濃度として捉えられる。 Production form of carrier foil: The production method of the carrier foil will be briefly described. A sulfuric acid-based copper electrolytic solution used for manufacturing a carrier foil includes at least one of MPS or SPS, a quaternary ammonium salt polymer having a cyclic structure, and chlorine. Here, the concentration of “at least one of MPS or SPS” may be considered as the combined concentration of MPS and / or SPS in the sulfuric acid-based copper electrolyte. That is, the total concentration is preferably 0.5 ppm to 100 ppm, more preferably 0.5 ppm to 50 ppm, and still more preferably 1 ppm to 30 ppm. When the concentration of MPS or SPS is less than 0.5 ppm, the above-mentioned diffusion preventing effect cannot be obtained, the precipitation surface of the electrolytic copper foil becomes rough, and it is difficult to produce an electrolytic copper foil having a low profile precipitation surface. Become. On the other hand, even if the concentration of MPS and / or SPS exceeds 100 ppm, the effect of smoothing the deposited surface of the obtained electrolytic copper foil is not improved, and only the cost of waste liquid treatment is increased. MPS and SPS referred to in the present invention are used in the sense of including the respective salts, and the stated values are the converted values as sodium 3-mercapto-1-propanesulfonate as the sodium salt. And MPS takes an SPS structure by dimerizing in a copper electrolyte. Therefore, the concentration of MPS and SPS means that 3-mercapto-1-propanesulfonic acid alone or salts such as MPS-Na, as well as those added as SPS and MPS as polymerized into SPS after being added to the electrolyte. It is taken as the concentration containing the denatured product.

そして、本件発明に係る硫酸系銅電解液は、環状構造を持つ4級アンモニウム塩重合体を、濃度が1ppm〜150ppmの範囲で含む事が好ましく、より好ましくは10ppm〜120ppm、更に好ましくは15ppm〜40ppmである。ここで、環状構造を持つ4級アンモニウム塩重合体として、種々のものを用いることが可能である。しかし、低プロファイルの析出面を形成する効果を考えると、ジアリルジメチルアンモニウムクロライド重合体(以下、単に「DDAC重合体」と称する。)を用いることが最も好ましい。DDAC重合体は、重合体構造を取る際に環状構造を成すものであり、環状構造の一部が4級アンモニウムの窒素原子で構成されることになる。そして、DDAC重合体は、前記環状構造が4員環〜7員環のいずれか又はそれらの混合物である。   The sulfuric acid copper electrolyte according to the present invention preferably contains a quaternary ammonium salt polymer having a cyclic structure in a concentration range of 1 ppm to 150 ppm, more preferably 10 ppm to 120 ppm, still more preferably 15 ppm to 40 ppm. Here, various quaternary ammonium salt polymers having a cyclic structure can be used. However, considering the effect of forming a low profile precipitation surface, it is most preferable to use a diallyldimethylammonium chloride polymer (hereinafter simply referred to as “DDAC polymer”). The DDAC polymer forms a cyclic structure when taking a polymer structure, and a part of the cyclic structure is composed of a quaternary ammonium nitrogen atom. In the DDAC polymer, the cyclic structure is a 4-membered to 7-membered ring or a mixture thereof.

このDDAC重合体の硫酸系銅電解液中の濃度は、1ppm〜150ppmである事が好ましく、より好ましくは10ppm〜120ppm、更に好ましくは15ppm〜40ppmである。硫酸系銅電解液中のDDAC重合体の濃度が1ppm未満の場合には、MPS又はSPSの濃度を如何に高めても、上述の拡散防止効果が得られず、電解銅箔の析出面が粗くなり、低プロファイル電解銅箔を得ることが困難となる。一方、硫酸系銅電解液中のDDAC重合体の濃度が150ppmを超えると、銅の析出状態が不安定になり、低プロファイル電解銅箔を得ることが困難となる。   The concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte is preferably 1 ppm to 150 ppm, more preferably 10 ppm to 120 ppm, and still more preferably 15 ppm to 40 ppm. When the concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte is less than 1 ppm, no matter how high the MPS or SPS concentration is, the above-mentioned diffusion prevention effect cannot be obtained, and the deposited surface of the electrolytic copper foil is rough. It becomes difficult to obtain a low profile electrolytic copper foil. On the other hand, when the concentration of the DDAC polymer in the sulfuric acid-based copper electrolyte exceeds 150 ppm, the copper deposition state becomes unstable, and it becomes difficult to obtain a low profile electrolytic copper foil.

更に、前記硫酸系銅電解液中の塩素濃度は、5ppm〜120ppmである事が好ましく、更に好ましくは10ppm〜60ppmである。この塩素濃度が5ppm未満の場合には、電解銅箔の析出面が粗くなり、低プロファイルを維持できなくなる。一方、塩素濃度が120ppmを超えても、電解銅箔の析出面が粗くなり、電析状態が安定せず、低プロファイルの析出面を形成出来なくなる。   Furthermore, the chlorine concentration in the sulfuric acid-based copper electrolyte is preferably 5 ppm to 120 ppm, more preferably 10 ppm to 60 ppm. When the chlorine concentration is less than 5 ppm, the deposited surface of the electrolytic copper foil becomes rough and the low profile cannot be maintained. On the other hand, even if the chlorine concentration exceeds 120 ppm, the deposited surface of the electrolytic copper foil becomes rough, the electrodeposition state is not stable, and a low profile deposited surface cannot be formed.

以上のように、前記硫酸系銅電解液中のMPS及び/又はSPSとDDAC重合体と塩素との成分バランスが最も重要であり、これらの量的バランスが上記範囲を逸脱すると、結果として電解銅箔の析出面が粗くなり、低プロファイルを維持できず、キャリア箔と「接合界面層及び接合界面層に接する電解銅箔層」との密着性の安定化も図れなくなる。   As described above, the component balance of MPS and / or SPS, DDAC polymer and chlorine in the sulfuric acid-based copper electrolytic solution is the most important, and if these quantitative balances deviate from the above range, as a result, electrolytic copper The deposited surface of the foil becomes rough, the low profile cannot be maintained, and the adhesion between the carrier foil and the “bonding interface layer and the electrolytic copper foil layer in contact with the bonding interface layer” cannot be stabilized.

そして、前記硫酸系銅電解液を用いて、キャリア箔として用いる電解銅箔を製造する場合には、表面粗さが所定の範囲に調整された陰極と不溶性陽極とを用いて電解する。このとき液温は20℃〜60℃、より好ましくは40℃〜55℃とし、電流密度は15A/dm〜90A/dm、より好ましくは50A/dm〜70A/dmとすることが好ましい。 And when manufacturing the electrolytic copper foil used as carrier foil using the said sulfuric acid system copper electrolyte solution, it electrolyzes using the cathode and insoluble anode whose surface roughness was adjusted to the predetermined range. At this time, the liquid temperature is 20 ° C. to 60 ° C., more preferably 40 ° C. to 55 ° C., and the current density is 15 A / dm 2 to 90 A / dm 2 , more preferably 50 A / dm 2 to 70 A / dm 2. preferable.

接合界面層(有機剤層)の形成形態: 前記キャリア箔の析出面に対して形成される接合界面層は、有機剤層で構成されている。以下、この有機剤層の形成方法に関して述べる。なお、使用する有機剤の種類に関しては、上述のとおりである。 Form of bonding interface layer (organic agent layer): The bonding interface layer formed on the deposition surface of the carrier foil is composed of an organic agent layer. Hereinafter, a method for forming the organic agent layer will be described. The type of organic agent used is as described above.

この有機剤層は、キャリア箔の表面と直接接触する層である。このときの有機剤層は、次のようにして形成することが好ましい。キャリア箔表面への有機剤層の形成にあたり、キャリア箔表面の余分な酸化被膜、コンタミネーションを除去するための酸洗処理を行うことが好ましいが、この酸洗溶液中に、有機剤層を形成するために用いる有機剤を含ませて、この有機剤含有酸洗溶液とキャリア箔とを接触させることにより、キャリア箔の表面を溶解させつつ、同時に有機剤の成分をキャリア箔の表面に吸着させて形成することが好ましい。このように酸洗溶液中に吸着させる有機剤を混入させると、キャリア箔の溶解を行わずに有機剤を吸着させる場合に比べ、キャリア箔上への有機剤の沈殿速度を向上し、同時に均一な吸着状態が得られる。   This organic agent layer is a layer in direct contact with the surface of the carrier foil. The organic agent layer at this time is preferably formed as follows. In forming the organic agent layer on the surface of the carrier foil, it is preferable to perform pickling treatment to remove excess oxide film and contamination on the surface of the carrier foil, but the organic agent layer is formed in this pickling solution. Including the organic agent used to make the organic agent-containing pickling solution and the carrier foil contact, while dissolving the surface of the carrier foil and simultaneously adsorbing the components of the organic agent on the surface of the carrier foil It is preferable to form them. When the organic agent to be adsorbed in the pickling solution is mixed in this way, the precipitation rate of the organic agent on the carrier foil is improved and compared with the case where the organic agent is adsorbed without dissolving the carrier foil. A good adsorption state.

このようにして形成した有機剤層は、沈殿吸着して形成される有機剤の吸着組織が微細であり、且つ、単に有機剤を分散させた水溶液と接触して沈殿吸着させる場合に比べて、多くの有機剤を均一に吸着させる事が出来る。キャリア箔の溶解過程において金属イオンが生じ、その金属イオンと有機剤とが錯体を形成し、その錯体がキャリア箔の表面近傍におけるpH変化による濃度勾配等による沈殿促進作用が起こり、結果として錯体化した有機剤のキャリア箔表面への吸着が容易になる。従って、有機剤の吸着速度が増加し、緻密な有機被膜の形成が可能になる。また、本件発明で用いる有機剤層は、キャリア箔の構成金属成分が金属イオン(本件発明においては「銅イオン」である。)として溶出した酸洗溶液中で形成されるため、酸洗溶液中の金属イオンが有機剤と反応して錯体形成を行うため、その錯体化した金属イオンが有機剤層に包含される可能性が高く、金属成分を一定量含有した状態となる。   The organic agent layer thus formed has a fine organic agent adsorption structure formed by precipitation adsorption, and is simply brought into contact with the aqueous solution in which the organic agent is dispersed and subjected to precipitation adsorption. Many organic agents can be adsorbed uniformly. Metal ions are generated during the dissolution process of the carrier foil, and the metal ions and the organic agent form a complex. The complex promotes precipitation due to a concentration gradient due to pH change near the surface of the carrier foil, resulting in complexation. Adsorption of the organic agent on the surface of the carrier foil is facilitated. Accordingly, the adsorption rate of the organic agent is increased, and a dense organic film can be formed. Further, the organic agent layer used in the present invention is formed in the pickling solution in which the constituent metal component of the carrier foil is eluted as metal ions (in the present invention, “copper ions”). Since this metal ion reacts with the organic agent to form a complex, there is a high possibility that the complexed metal ion is included in the organic agent layer, and a certain amount of metal component is contained.

また、「酸洗溶液」は、キャリア箔の構成成分、採用可能な酸洗時間に応じて、その種類を適宜選択使用すればよいが、キャリア箔が電解銅箔であることを考慮すると、酸性溶液の中でも硫酸系溶液を用いることが好ましい。   In addition, the “pickling solution” may be appropriately selected and used depending on the component of the carrier foil and the pickling time that can be used, but considering that the carrier foil is an electrolytic copper foil, it is acidic. Among the solutions, it is preferable to use a sulfuric acid solution.

以上に述べた「酸洗溶液」に対する「有機剤」の添加は、有機剤の濃度が50ppm〜2000ppmの範囲となるように添加する事が好ましい。50ppm未満の濃度の場合には、有機剤の吸着速度が遅くなり、しかも、形成される酸洗吸着有機被膜の厚さが不均一に成りやすい傾向にある。これに対し、上限値である2000ppmという濃度は、この濃度を超えても現実には有機剤を溶解させることは可能であるが、溶液の品質安定性及び実質操業における経済性を考慮すると、過剰な溶解量を採用する必要が無いからである。   It is preferable to add the “organic agent” to the “pickling solution” described above so that the concentration of the organic agent is in the range of 50 ppm to 2000 ppm. When the concentration is less than 50 ppm, the adsorption rate of the organic agent is slow, and the thickness of the formed pickled adsorption organic coating tends to be uneven. On the other hand, the concentration of 2000 ppm which is the upper limit value can actually dissolve the organic agent even if this concentration is exceeded, but it is excessive when considering the quality stability of the solution and the economic efficiency in actual operation. This is because it is not necessary to employ a sufficient amount of dissolution.

また、このときの「酸洗溶液」の温度は、酸洗処理速度と有機剤層の形成速度を考慮して、適宜選択すればよいものであるため、特に限定はない。但し、酸洗溶液中に有機剤を併存させるため、液温を上げる場合には、有機剤の種類に応じて、有機剤の分解の起こらない温度を選択すべき点に留意を要する。   Further, the temperature of the “pickling solution” at this time is not particularly limited because it can be selected as appropriate in consideration of the pickling rate and the formation rate of the organic agent layer. However, since the organic agent coexists in the pickling solution, when raising the liquid temperature, it should be noted that the temperature at which the organic agent does not decompose should be selected according to the type of the organic agent.

以上に述べたように、本件発明に係るキャリア箔付電解銅箔の接合界面層を構成する有機剤層は、この酸洗溶液中に所定の有機剤を含ませて形成することが基本である。しかし、この有機剤層の形成方法として、以下に述べるような種々の方法を採用することも可能である。例えば、上述のように酸洗溶液中に有機剤層を形成するための有機剤を含ませて有機剤層を形成する。この有機剤層の形成を、繰り返し行って、有機剤層厚さの調整を行うこともできる。   As described above, the organic agent layer constituting the bonding interface layer of the electrolytic copper foil with carrier foil according to the present invention is basically formed by including a predetermined organic agent in the pickling solution. . However, various methods as described below can be adopted as a method of forming the organic agent layer. For example, the organic agent layer is formed by including an organic agent for forming the organic agent layer in the pickling solution as described above. The formation of the organic agent layer can be repeated to adjust the organic agent layer thickness.

また、異なる成分の有機剤を用いた多層の有機剤層とすることも可能である。以下、2種の有機剤を用いる場合に関して述べる。ある種の有機剤を用いて、キャリア箔上に第1有機剤層を形成した後に、この第1有機剤層の上に、他種の有機剤のみを含有した溶液を用いて、更に有機剤を吸着させることで、新たな単純吸着有機被膜である第2有機剤層を形成することも好ましい。第2有機剤層は、第1有機剤層と異なり、単に有機剤のみを含有した溶液を用いて、この溶液と第1有機剤層とを接触させて、その表面に有機剤を吸着させて形成するものであるから、金属成分を含有するものではなく、第1有機剤層と比べ、吸着量も少なく薄い有機剤層である。   Moreover, it is also possible to set it as the multilayer organic agent layer using the organic agent of a different component. Hereinafter, the case where two kinds of organic agents are used will be described. After a first organic agent layer is formed on the carrier foil using a certain organic agent, a solution containing only another organic agent is used on the first organic agent layer, and an organic agent is further added. It is also preferable to form a second organic agent layer which is a new simple adsorption organic coating by adsorbing. Unlike the first organic agent layer, the second organic agent layer uses a solution containing only the organic agent to bring the solution into contact with the first organic agent layer and adsorb the organic agent on the surface. Since it is formed, it does not contain a metal component, and is a thin organic agent layer that has a smaller amount of adsorption than the first organic agent layer.

この第2有機剤層の形成は、上述したと同様の有機剤を、溶媒である水等に溶解若しくは分散させた溶液とし、この溶液とキャリア箔の第1有機剤層を形成した面とが接触するようにする。具体的には、当該溶液中に第1有機剤層を備えるキャリア箔を浸漬させるか、第1有機剤層の表面にシャワーリング、噴霧法、滴下法を採用する等の手法が採用可能である。   The formation of the second organic agent layer is a solution in which the same organic agent as described above is dissolved or dispersed in water or the like as a solvent, and the surface on which the first organic agent layer of the carrier foil is formed is formed. Make contact. Specifically, it is possible to employ a technique such as immersing a carrier foil provided with the first organic agent layer in the solution, or adopting showering, spraying, or dropping method on the surface of the first organic agent layer. .

この第2有機剤層の形成に用いる溶液中の有機剤の濃度は、上述した有機剤の全てにおいて、濃度0.01g/l〜10g/l、液温20〜60℃の範囲であることが好ましい。有機剤の濃度は、特に限定されるものではなく、本来濃度が高くとも低くとも問題のないものではある。しかしながら、有機剤の濃度が0.01g/lよりも低い濃度となると、第1有機剤層への均一な吸着状態を得ることが困難であり、その結果、形成される接合界面層の厚さにバラツキが生じ、製品品質にバラツキが生じやすくなる。一方、有機剤の濃度が10g/lを超える濃度にしても、特に有機剤の第1有機剤層への吸着速度が添加量に応じて増加するものでもなく、生産コスト面から見て好ましいものとは言えない。   The concentration of the organic agent in the solution used for the formation of the second organic agent layer should be in the range of 0.01 g / l to 10 g / l and liquid temperature of 20 to 60 ° C. in all the organic agents described above. preferable. The concentration of the organic agent is not particularly limited, and there is no problem whether the concentration is originally high or low. However, when the concentration of the organic agent is lower than 0.01 g / l, it is difficult to obtain a uniform adsorption state on the first organic agent layer, and as a result, the thickness of the formed bonding interface layer The product quality is likely to vary. On the other hand, even when the concentration of the organic agent exceeds 10 g / l, the adsorption rate of the organic agent on the first organic agent layer does not increase depending on the amount added, and is preferable from the viewpoint of production cost. It can not be said.

また、第2有機剤層の形成に用いる有機剤は、第1有機剤層の形成に用いた有機剤から選択して用いられるものであるが、必ずしも第1有機剤層の形成に用いたと同じ有機剤を用いる必要性はなく、上述した有機剤の群から任意に選択して使用することも可能である。   The organic agent used for forming the second organic agent layer is selected from the organic agents used for forming the first organic agent layer, but is not necessarily the same as that used for forming the first organic agent layer. There is no need to use an organic agent, and the organic agent can be arbitrarily selected from the group of organic agents described above.

このような第1有機剤層と第2有機剤層とで構成した有機剤層を備えるキャリア箔付電解銅箔は、酸洗溶液中に有機剤層を形成するための有機剤を含ませて形成した有機剤層のみを備えるキャリア箔付電解銅箔に比べ、高温プレスによる加熱履歴を受けた後も、キャリア箔を銅箔層から引き剥がす際の引き剥がし強さが、より一層安定する場合がある。   An electrolytic copper foil with a carrier foil comprising an organic agent layer composed of such a first organic agent layer and a second organic agent layer includes an organic agent for forming the organic agent layer in the pickling solution. When the peeling strength when the carrier foil is peeled off from the copper foil layer is more stable after receiving the heating history by the high-temperature press compared to the electrolytic copper foil with carrier foil provided with only the formed organic agent layer There is.

以上に述べてきた接合界面層を構成する有機剤層は、厚さ1nm〜1μmの範囲であることが好ましい。有機剤層の厚さが、1nm未満の場合には、有機剤層の厚さにバラツキが生じ、均一な膜厚とならない。その結果、加熱後の安定した引き剥がし強さが得られず、場合によってはキャリア箔を引き剥がせない場合がある。一方、有機剤層の厚さが、1μmを超えると、電解銅箔層を形成しようとするときの通電状態が不安定になり、銅の析出状況が不安定で、均一な厚さの電解銅箔層の形成が困難となる。   The organic agent layer constituting the bonding interface layer described above preferably has a thickness in the range of 1 nm to 1 μm. When the thickness of the organic agent layer is less than 1 nm, the thickness of the organic agent layer varies and the film thickness is not uniform. As a result, stable peeling strength after heating cannot be obtained, and in some cases, the carrier foil may not be peeled off. On the other hand, when the thickness of the organic agent layer exceeds 1 μm, the energized state when the electrolytic copper foil layer is to be formed becomes unstable, the copper deposition state is unstable, and the electrolytic copper has a uniform thickness. Formation of the foil layer becomes difficult.

耐熱金属層の形成形態: 次に、耐熱金属層の形成形態に関して述べる。この耐熱金属層は、有機剤層を形成したキャリア箔自体を、耐熱金属成分を含む電解液中でカソード分極して、接合界面層を構成する有機剤層の表面に金属成分を析出させて形成する。ここで言う金属成分は、上述のように、ニッケル、ニッケル−燐、ニッケル−クロム、ニッケル−モリブデン、ニッケル−モリブデン−コバルト、ニッケル−コバルト、ニッケル−タングステン、ニッケル−錫−燐等のニッケル合金、コバルト、コバルト−燐、コバルト−モリブデン、コバルト−タングステン、コバルト−銅、コバルト−ニッケル−燐、コバルト−錫−燐等のコバルト合金の成分である。そして、これらの金属成分が電解析出し、厚さ0.001μm〜0.05μmとできる限り、特段の電解条件の限定は無い。 Form of formation of refractory metal layer: Next, a form of formation of the refractory metal layer will be described. This refractory metal layer is formed by cathodic polarization of the carrier foil itself on which the organic agent layer is formed in an electrolyte containing the refractory metal component, and depositing the metal component on the surface of the organic agent layer constituting the bonding interface layer. To do. As mentioned above, the metal component mentioned here is nickel alloy such as nickel, nickel-phosphorus, nickel-chromium, nickel-molybdenum, nickel-molybdenum-cobalt, nickel-cobalt, nickel-tungsten, nickel-tin-phosphorus, It is a component of cobalt alloys such as cobalt, cobalt-phosphorus, cobalt-molybdenum, cobalt-tungsten, cobalt-copper, cobalt-nickel-phosphorus, and cobalt-tin-phosphorus. And as long as these metal components are electrolytically deposited and can have a thickness of 0.001 μm to 0.05 μm, there is no particular limitation on the electrolysis conditions.

電解銅箔層の形成形態: この電解銅箔層は、耐熱金属層を形成したキャリア箔自体を、銅電解液中でカソード分極して、耐熱金属層上に銅成分を析出させ形成したものである。このときの銅電解液及び電解条件は、硫酸銅系溶液、ピロ燐酸銅系溶液等の銅イオン供給源として使用可能な溶液を用いるもので、特に限定されるものではない。例えば、キャリア箔の製造に用いる銅電解液の使用も可能であり、その他の組成の硫酸銅系溶液、ピロ燐酸銅系溶液等の使用が可能である。そして、以下の各種表面処理を電解銅箔層の表面に施すことも可能である。 Form of formation of the electrolytic copper foil layer: This electrolytic copper foil layer is formed by cathodic polarization of the carrier foil itself on which the heat-resistant metal layer is formed in the copper electrolyte solution, and depositing a copper component on the heat-resistant metal layer. is there. The copper electrolytic solution and the electrolysis conditions at this time are not particularly limited, and a solution that can be used as a copper ion supply source such as a copper sulfate-based solution or a copper pyrophosphate-based solution is used. For example, it is possible to use a copper electrolyte used for manufacturing the carrier foil, and it is possible to use a copper sulfate-based solution, a copper pyrophosphate-based solution, or the like having other compositions. And it is also possible to perform the following various surface treatments on the surface of the electrolytic copper foil layer.

表面処理の形態: ここで言う各種表面処理とは、必要に応じて行う任意の処理であり、当該銅箔層の表面に、用途に応じた防錆処理、粗化処理、密着性向上処理等を適宜組み合わせて施すことである。なお、表面処理の方法によっては、キャリア箔の表面にも表面処理が施される場合があるが、このような場合でも特段の問題はないため、何ら構わない。このときの防錆処理、粗化処理等の手法に関しては、公知の技術の転用が可能であり、特段の限定を要するものではない。 Form of surface treatment: Various surface treatments referred to here are arbitrary treatments performed as necessary, and the surface of the copper foil layer is subjected to rust prevention treatment, roughening treatment, adhesion improving treatment, etc. Are appropriately combined. Depending on the surface treatment method, the surface of the carrier foil may be subjected to the surface treatment. However, even in such a case, there is no particular problem, and thus no problem is caused. Regarding techniques such as rust prevention treatment and roughening treatment at this time, known techniques can be diverted and no particular limitation is required.

C.銅張積層板の形態
以上述べてきた本件発明に係るキャリア箔付電解銅箔は、高温熱履歴の負荷されるプレス工程のみならず、通常の最高到達温度が180℃前後の通常プレス加工条件の中で使用しても、非常に優れたキャリア箔の引き剥がし強さの安定性を確保でき、作業の信頼性が著しく向上することになる。従って、本件発明に係るキャリア箔付電解銅箔は、銅張積層板に含まれる液晶ポリマー基板、ポリイミド基板、フッ素樹脂基板、低誘電基板等に限らず、全ての「リジット系の基板」、「TAB、COB等のフレキシブル基板」、「ハイブリッド基板」等の全ての製造において好適に使用でき、高品質の銅張積層板の提供を可能とする。
C. Form of copper-clad laminate The electrolytic copper foil with carrier foil according to the present invention described above is not only for the pressing process that is loaded with high-temperature heat history, but also for the normal pressing conditions where the normal maximum temperature is around 180 ° C. Even if it is used in the inside, the stability of the peel strength of the excellent carrier foil can be secured, and the reliability of the work is remarkably improved. Therefore, the electrolytic copper foil with a carrier foil according to the present invention is not limited to a liquid crystal polymer substrate, a polyimide substrate, a fluororesin substrate, a low dielectric substrate, etc. included in a copper-clad laminate, but all “rigid substrates”, “ It can be suitably used in all manufactures such as “TAB, COB and other flexible substrates”, “hybrid substrates” and the like, and can provide a high-quality copper-clad laminate.

この実施例では、キャリア箔製造工程、接合界面層形成工程、耐熱金属層形成工程、電解銅箔層形成工程、表面処理工程の順で行われ、最終的に水洗して乾燥させることで本件発明に係るキャリア箔付電解銅箔を得た。以下、各工程の順序に従って説明を行う。   In this example, the carrier foil manufacturing process, the bonding interface layer forming process, the heat-resistant metal layer forming process, the electrolytic copper foil layer forming process, and the surface treatment process are performed in this order, and finally the present invention is performed by washing with water and drying. An electrolytic copper foil with a carrier foil according to the present invention was obtained. Hereinafter, description will be given in the order of each step.

キャリア箔製造工程: この工程では、以下に掲載した組成の銅電解液を用い、陽極にDSA、陰極(表面を2000番の研磨紙で研磨を行い、表面粗さをRzjisで1.5μmに調整したチタン板電極)を用い、液温50℃、電流密度60A/dmの条件で電解して、18μm厚さの電解銅箔を得た。 Carrier foil manufacturing process: In this process, a copper electrolyte solution having the following composition was used, the anode was DSA and the cathode (the surface was polished with No. 2000 polishing paper, and the surface roughness was adjusted to 1.5 μm with Rzjis. And an electrolytic copper foil having a thickness of 18 μm was obtained by electrolysis under conditions of a liquid temperature of 50 ° C. and a current density of 60 A / dm 2 .

銅 濃 度 : 80g/l
フリー硫酸濃度 : 140g/l
SPS濃度 : 5mg/l
DDAC重合体濃度: 30mg/l
塩 素 濃 度 : 25mg/l
Copper concentration: 80 g / l
Free sulfuric acid concentration: 140 g / l
SPS concentration: 5 mg / l
DDAC polymer concentration: 30 mg / l
Chlorine concentration: 25 mg / l

このキャリア箔として用いる電解銅箔は、析出面の表面粗さ(Rzjis)は、0.6μmであった。なお、この表面粗さの測定は、JIS B 0601に準拠して、先端曲率半径が2μmのダイヤモンドスタイラスを使用した触針式表面粗さ計で測定した。そして、このキャリア箔として用いる電解銅箔の析出面の光沢度[Gs(60°)]を表1に示す。   The electrolytic copper foil used as the carrier foil had a deposition surface roughness (Rzjis) of 0.6 μm. The surface roughness was measured with a stylus type surface roughness meter using a diamond stylus having a tip curvature radius of 2 μm in accordance with JIS B 0601. Table 1 shows the glossiness [Gs (60 °)] of the deposition surface of the electrolytic copper foil used as the carrier foil.

接合界面層形成工程: この工程では、キャリア箔の析出面側に、接合界面層である有機剤層を形成した。 硫酸が150g/l、銅濃度が10g/l、CBTA濃度が800ppm、液温30℃の有機剤含有希硫酸水溶液に対して、キャリア箔製造工程で得られた電解銅箔を30秒間浸漬して引き上げることで、電解銅箔に付いた汚染成分を酸洗除去し、同時にCBTAを表面に吸着させ、電解銅箔(キャリア箔)の表面に有機剤層を形成した。 Bonding interface layer forming step: In this step, an organic agent layer as a bonding interface layer was formed on the deposition surface side of the carrier foil. The electrolytic copper foil obtained in the carrier foil manufacturing process is immersed for 30 seconds in an organic agent-containing dilute sulfuric acid aqueous solution of 150 g / l sulfuric acid, 10 g / l copper concentration, 800 ppm CBTA concentration, and 30 ° C. liquid temperature. By pulling up, the contaminating components attached to the electrolytic copper foil were pickled and removed, and at the same time, CBTA was adsorbed on the surface to form an organic agent layer on the surface of the electrolytic copper foil (carrier foil).

耐熱金属層形成工程: 次に、この工程において、接合界面層の上に耐熱金属層としてのニッケル層を形成した。このときにニッケル電解液として、硫酸ニッケル(NiSO・6HO)が330g/l、塩化ニッケル(NiCl・6HO)が45g/l、ホウ酸が35g/l、pH3のワット浴を用い、液温45℃、電流密度2.5A/dmで電解して、換算厚さが0.01μmのニッケル層を形成した。 Heat-resistant metal layer forming step: Next, in this step, a nickel layer as a heat-resistant metal layer was formed on the bonding interface layer. As the nickel electrolytic solution at this time, nickel sulfate (NiSO 4 · 6H 2 O) is 330 g / l, nickel chloride (NiCl 2 · 6H 2 O) is 45 g / l, boric acid 35 g / l, pH 3 Watts bath The nickel layer having a converted thickness of 0.01 μm was formed by electrolysis at a liquid temperature of 45 ° C. and a current density of 2.5 A / dm 2 .

電解銅箔層形成工程: 耐熱金属層の形成が終了すると、キャリア箔の耐熱金属層の表面に、電解銅箔層を形成した。この電解銅箔層の形成は、銅電解槽内に、銅濃度が65g/l、硫酸濃度が150g/l、液温45℃の硫酸銅溶液を満たし、電流密度15A/dmで電解し、3μm厚の電解銅箔層を形成し、キャリア箔付電解銅箔を得た。 Electrolytic copper foil layer forming step: When the formation of the heat resistant metal layer was completed, an electrolytic copper foil layer was formed on the surface of the heat resistant metal layer of the carrier foil. This electrolytic copper foil layer is formed by filling a copper electrolytic bath with a copper sulfate solution having a copper concentration of 65 g / l, a sulfuric acid concentration of 150 g / l and a liquid temperature of 45 ° C., and electrolyzing at a current density of 15 A / dm 2 . An electrolytic copper foil layer having a thickness of 3 μm was formed to obtain an electrolytic copper foil with a carrier foil.

表面処理工程: この工程では、電解銅析出工程で得られたキャリア付銅箔の銅箔面に、表面処理を施した。ここでの表面処理は、粗化処理を施すことなく、亜鉛−ニッケル合金防錆層を形成し、電解クロメート処理、アミノ系シランカップリング剤処理とを施した。 Surface treatment process: In this process, the copper foil surface of the copper foil with a carrier obtained in the electrolytic copper deposition process was subjected to a surface treatment. In this surface treatment, a zinc-nickel alloy rust preventive layer was formed without performing a roughening treatment, and an electrolytic chromate treatment and an amino silane coupling agent treatment were performed.

この実施例に係るキャリア箔付電解銅箔の深さ方向プロファイルを測定したときの測定結果を表1に纏めて示す。深さ方向プロファイルの深さは、スパッタレート130nm/sec.の銅換算で算出した値である。また、この実施例で得られたキャリア箔付電解銅箔の、キャリア箔層と電解銅箔層との引き剥がし強さを測定した。その結果に関しては、比較例と対比可能なように表2に纏めて示す。   Table 1 summarizes the measurement results when the depth profile of the electrolytic copper foil with carrier foil according to this example was measured. The depth profile has a sputter rate of 130 nm / sec. It is a value calculated in terms of copper. Further, the peel strength between the carrier foil layer and the electrolytic copper foil layer of the electrolytic copper foil with carrier foil obtained in this example was measured. The results are summarized in Table 2 so that they can be compared with the comparative example.

比較例Comparative example

この比較例では、実施例で用いたキャリア箔として用いた電解銅箔に代えて、グレード3に分類される18μm厚の粗化処理及び防錆処理を行っていない市販の電解銅箔をキャリア箔として用いた。この点を除き、実施例と同様にしてキャリア箔付電解銅箔を得た。   In this comparative example, instead of the electrolytic copper foil used as the carrier foil used in the examples, a commercially available electrolytic copper foil that is not subjected to roughening treatment and rust prevention treatment, which is classified into grade 3, is used as the carrier foil. Used as. Except for this point, an electrolytic copper foil with a carrier foil was obtained in the same manner as in the example.

この比較例で得られたキャリア箔付電解銅箔の深さ方向プロファイルを測定したときの測定結果を、実施例と対比可能なように表1に纏めて示す。また、キャリア箔層と電解銅箔層との引き剥がし強さを測定した。その結果に関しては、実施例と対比可能なように表2に纏めて示す。   The measurement results when measuring the depth profile of the electrolytic copper foil with carrier foil obtained in this comparative example are summarized in Table 1 so that they can be compared with the examples. Further, the peel strength between the carrier foil layer and the electrolytic copper foil layer was measured. The results are summarized in Table 2 so that they can be compared with the examples.

Figure 2014005545
Figure 2014005545

Figure 2014005545
Figure 2014005545

[実施例と比較例との対比]
表1を参照しつつ、実施例と比較例との対比を行う。実施例の([W2]−[W1])/[W1]の値は、0.05であり、0.3以内という条件を満たしている。また、実施例の([P2]−[P1])の値は0.08であり、0.20μm以内という条件を満たしている。これに対し、比較例の([W2]−[W1])/[W1]の値は、0.42であり、([P2]−[P1])の値は0.27μmであり、本件発明で言う条件を満たしていない。この結果が、表2に示す「キャリア箔引き剥がし強さ」の差異として現れていると考えられる。
[Contrast between Example and Comparative Example]
The comparison between the example and the comparative example is made with reference to Table 1. The value of ([W2] − [W1]) / [W1] in the example is 0.05, which satisfies the condition of within 0.3. Further, the value of ([P2]-[P1]) in the example is 0.08, which satisfies the condition of within 0.20 μm. On the other hand, the value of ([W2]-[W1]) / [W1] in the comparative example is 0.42, and the value of ([P2]-[P1]) is 0.27 μm. It does not meet the conditions. It is considered that this result appears as a difference in “carrier foil peeling strength” shown in Table 2.

表2を参照しつつ、以下説明する。最初に、電解銅箔層の形成面として用いたキャリア箔(電解銅箔)の析出面の特性に関して、実施例と比較例とを対比して説明する。実施例の場合には、(1)「表面粗さ(Rzjis)が1.0μm未満」、(2)「光沢度[Gs(60°)]が400以上」、(3)「幅方向で測定したTD光沢度と流れ方向で測定したMD光沢度との比[TD光沢度]/[MD光沢度]が0.9〜1.1」、(4)「[Gs(20°)]>光沢度[Gs(60°)]」の各表面特性(1)〜(4)を全て満足している。これに対し、比較例で用いたキャリア箔(電解銅箔)の場合には、当該(1)〜(4)の各表面特性のいずれも満足していない。   The following will be described with reference to Table 2. First, the characteristics of the deposition surface of the carrier foil (electrolytic copper foil) used as the formation surface of the electrolytic copper foil layer will be described in comparison with Examples and Comparative Examples. In the case of Examples, (1) “Surface roughness (Rzjis) is less than 1.0 μm”, (2) “Glossiness [Gs (60 °)] is 400 or more”, (3) “Measured in width direction” Ratio between the measured TD glossiness and the MD glossiness measured in the flow direction [TD glossiness] / [MD glossiness] is 0.9 to 1.1 ”, (4)“ [Gs (20 °)]> Glossiness Each surface characteristic (1) to (4) of “degree [Gs (60 °)]” is satisfied. On the other hand, in the case of the carrier foil (electrolytic copper foil) used in the comparative example, none of the surface characteristics (1) to (4) is satisfied.

このキャリア箔(電解銅箔)の析出面の表面特性の差異が、キャリア箔付電解銅箔の「キャリア箔引き剥がし強さ」の差異として現れていると考えられる。表1における「キャリア箔引き剥がし強さ」の値を見ると、常態及び条件1(180℃×60分の加熱後)の「キャリア箔引き剥がし強さ」には、実施例と比較例との間で大きな差異は生じていない。しかし、条件2(350℃×60分の加熱後)及び条件3(400℃×60分の加熱後)の「キャリア箔引き剥がし強さ」には、実施例と比較例との間で大きな差異が見られる。比較例の「キャリア箔引き剥がし強さ」の値と比べて、明らかに実施例の「キャリア箔引き剥がし強さ」の値が低くなっていることが理解できる。しかも、実施例は、条件3(400℃×60分の加熱後)の過酷な加熱条件が負荷されても、20kgf/cm未満の力でキャリア箔の除去が出来るため、作業者の手作業で容易にキャリア箔除去が可能なことが分かる。なお、条件3(400℃×60分の加熱後)における比較例の場合、94kgf/cmの引き剥がし強さを示しており、手作業でキャリア箔除去を行う際、作業者の負担は大きく、且つ、キャリア箔がちぎれる可能性も高くなる。   It is considered that the difference in surface characteristics of the deposition surface of the carrier foil (electrolytic copper foil) appears as a difference in “carrier foil peeling strength” of the electrolytic copper foil with carrier foil. When the value of “carrier foil peel strength” in Table 1 is seen, the “carrier foil peel strength” of normal state and condition 1 (after heating at 180 ° C. × 60 minutes) is There is no big difference between them. However, the “carrier foil peel strength” under condition 2 (after heating at 350 ° C. × 60 minutes) and condition 3 (after heating at 400 ° C. × 60 minutes) is greatly different between the example and the comparative example. Is seen. It can be understood that the value of the “carrier foil peel strength” of the example is clearly lower than the value of “carrier foil peel strength” of the comparative example. Moreover, since the carrier foil can be removed with a force of less than 20 kgf / cm even under the severe heating condition of condition 3 (after heating at 400 ° C. for 60 minutes), the embodiment can be manually performed by the operator. It can be seen that the carrier foil can be easily removed. In addition, in the case of the comparative example in condition 3 (after heating at 400 ° C. × 60 minutes), it shows a peeling strength of 94 kgf / cm, and when removing the carrier foil manually, the burden on the operator is large. In addition, there is a high possibility that the carrier foil is torn off.

本件発明に係るキャリア箔付電解銅箔は、400℃に近い高温負荷を受けても、キャリア箔の引き剥がし強さが低く、且つ、安定化するため、キャリア箔の引き剥がし作業の作業効率が飛躍的に向上する。従って、液晶ポリマー基板、銅箔表面に対するキャスティング法によるポリイミド樹脂層の形成、フッ素樹脂基板等の高温負荷の行われる銅張積層板製造において好適に使用可能である。   The electrolytic copper foil with carrier foil according to the present invention has low carrier foil peeling strength and stability even when subjected to a high temperature load close to 400 ° C., so that the work efficiency of the carrier foil peeling work is improved. Improve dramatically. Therefore, it can be suitably used in the formation of a liquid crystal polymer substrate, the formation of a polyimide resin layer by a casting method on the surface of a copper foil, and the production of a copper clad laminate that is subjected to a high temperature load such as a fluororesin substrate.

1 キャリア箔付電解銅箔
2 キャリア箔
3 接合界面層(有機剤層)
4 電解銅箔層
5 耐熱金属層
1 Electrolytic copper foil with carrier foil 2 Carrier foil 3 Bonding interface layer (organic agent layer)
4 Electrolytic copper foil layer 5 Heat-resistant metal layer

Claims (7)

キャリア箔/接合界面層/耐熱金属層/電解銅箔層の層構成を備えるキャリア箔付電解銅箔において、
当該キャリア箔として、表面粗さ(Rzjis)が1.0μm未満、光沢度[Gs(60°)]が400以上、及び幅方向で測定したTD光沢度と流れ方向で測定したMD光沢度との比[TD光沢度]/[MD光沢度]が0.9〜1.1の特性の析出面を備える電解銅箔を用いたものであり、
GDS分析装置を用いて、常態の当該キャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、当該耐熱金属成分の深さ方向プロファイルを測定したときのピークの半価幅をW1とし、
当該キャリア箔付電解銅箔を300℃の大気雰囲気で120分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、当該耐熱金属成分の深さ方向プロファイルを測定したときのピークの半価幅をW2としたとき、
([W2]−[W1])/[W1]≦0.3の関係を満たすことを特徴とするキャリア箔付電解銅箔。
In an electrolytic copper foil with a carrier foil comprising a layer configuration of carrier foil / bonding interface layer / heat-resistant metal layer / electrolytic copper foil layer,
As the carrier foil, the surface roughness (Rzjis) is less than 1.0 μm, the glossiness [Gs (60 °)] is 400 or more, and the TD glossiness measured in the width direction and the MD glossiness measured in the flow direction. The ratio [TD glossiness] / [MD glossiness] is an electrolytic copper foil provided with a precipitation surface having a characteristic of 0.9 to 1.1,
Using a GDS analyzer, the half width of the peak when the depth profile of the refractory metal component is measured from the electrolytic copper foil layer side to the carrier foil side of the electrolytic copper foil with the carrier foil in a normal state is W1
After heating the electrolytic copper foil with the carrier foil in an air atmosphere at 300 ° C. for 120 minutes, half the peak when the depth profile of the refractory metal component is measured from the electrolytic copper foil layer side to the carrier foil side. When the price range is W2,
An electrolytic copper foil with a carrier foil, characterized by satisfying a relationship of ([W2] − [W1]) / [W1] ≦ 0.3.
GDS分析装置を用いて、常態の当該キャリア箔付電解銅箔の電解銅箔層側からキャリア箔側に向けて、前記耐熱金属成分の深さ方向プロファイルを測定したときのピークのピークトップ位置をP1とし、
当該キャリア箔付電解銅箔を300℃の大気雰囲気で30分間加熱した後に、電解銅箔層側からキャリア箔側に向けて、前記耐熱金属成分の深さ方向プロファイルを測定したときのピークのピークトップ位置をP2としたとき、
P1とP2とのピークトップ位置の差([P2]−[P1])が0.20μm以内である請求項1に記載のキャリア箔付電解銅箔。
Using a GDS analyzer, the peak top position of the peak when the depth profile of the refractory metal component is measured from the electrolytic copper foil layer side to the carrier foil side of the normal electrolytic copper foil with carrier foil P1
After heating the electrolytic copper foil with carrier foil in an air atmosphere at 300 ° C. for 30 minutes, the peak of the peak when the depth direction profile of the refractory metal component is measured from the electrolytic copper foil layer side toward the carrier foil side When the top position is P2,
2. The electrolytic copper foil with carrier foil according to claim 1, wherein a difference in peak top position between P1 and P2 ([P2] − [P1]) is within 0.20 μm.
前記キャリア箔として用いる電解銅箔の析出面は、析出面側の光沢度[Gs(20°)]>光沢度[Gs(60°)]の関係を備えるもの電解銅箔を用いる請求項1又は請求項2のいずれかに記載のキャリア箔付電解銅箔。 The deposition surface of the electrolytic copper foil used as the carrier foil has a relationship of gloss [Gs (20 °)]> gloss [Gs (60 °)] on the deposition surface side. The electrolytic copper foil with a carrier foil according to claim 2. 前記接合界面層は、厚さが1nm〜1μmである請求項1〜請求項3のいずれかに記載のキャリア箔付電解銅箔。 The said joining interface layer is 1 nm-1 micrometer in thickness, The electrolytic copper foil with carrier foil in any one of Claims 1-3. 前記耐熱金属層は、ニッケル層、ニッケル合金層、コバルト層、コバルト合金層のいずれかである請求項1〜請求項4のいずれかに記載のキャリア箔付電解銅箔。 The electrolytic copper foil with a carrier foil according to any one of claims 1 to 4, wherein the heat-resistant metal layer is any one of a nickel layer, a nickel alloy layer, a cobalt layer, and a cobalt alloy layer. 前記耐熱金属層は、厚さ0.001μm〜0.05μmである請求項1〜請求項5のいずれかに記載のキャリア箔付電解銅箔。 The said heat-resistant metal layer is 0.001 micrometer-0.05 micrometer in thickness, The electrolytic copper foil with carrier foil in any one of Claims 1-5. 請求項1〜請求項6のいずれかに記載のキャリア箔付電解銅箔を用いて得られることを特徴とする銅張積層板。 A copper clad laminate obtained by using the electrolytic copper foil with a carrier foil according to any one of claims 1 to 6.
JP2013179909A 2013-08-30 2013-08-30 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil Active JP5503789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179909A JP5503789B2 (en) 2013-08-30 2013-08-30 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013179909A JP5503789B2 (en) 2013-08-30 2013-08-30 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009072381A Division JP5379528B2 (en) 2009-03-24 2009-03-24 Electrolytic copper foil with carrier foil, method for producing electrolytic copper foil with carrier foil, and copper-clad laminate obtained using the electrolytic copper foil with carrier foil

Publications (2)

Publication Number Publication Date
JP2014005545A true JP2014005545A (en) 2014-01-16
JP5503789B2 JP5503789B2 (en) 2014-05-28

Family

ID=50103522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179909A Active JP5503789B2 (en) 2013-08-30 2013-08-30 Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil

Country Status (1)

Country Link
JP (1) JP5503789B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152380A1 (en) * 2014-04-02 2015-10-08 三井金属鉱業株式会社 Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
WO2015170715A1 (en) * 2014-05-07 2015-11-12 三井金属鉱業株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
TWI617436B (en) * 2015-03-24 2018-03-11 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil with carrier, manufacturing method thereof, copper laminated board and printed wiring board
WO2021107397A1 (en) * 2019-11-27 2021-06-03 와이엠티 주식회사 Carrier foil-attached metal foil, manufacturing method therefor, and laminate comprising same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217787A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Method for producing electrolytic copper foil, electrolytic copper foil produced by the method, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217787A (en) * 2005-03-31 2007-08-30 Mitsui Mining & Smelting Co Ltd Method for producing electrolytic copper foil, electrolytic copper foil produced by the method, surface-treated electrolytic copper foil obtained by using the electrolytic copper foil, copper-clad laminate using the surface-treated electrolytic copper foil, and printed circuit board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152380A1 (en) * 2014-04-02 2015-10-08 三井金属鉱業株式会社 Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
CN106133200A (en) * 2014-04-02 2016-11-16 三井金属矿业株式会社 Copper Foil, the manufacture method of the Copper Foil of band carrier, the copper clad laminate obtained with the Copper Foil of band carrier and printed substrate with carrier
JP6054523B2 (en) * 2014-04-02 2016-12-27 三井金属鉱業株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board
KR101832806B1 (en) 2014-04-02 2018-02-28 미쓰이금속광업주식회사 Copper foil having carrier, production method for copper foil having carrier, and copper clad laminate sheet and printed wiring board obtained using copper foil having carrier
WO2015170715A1 (en) * 2014-05-07 2015-11-12 三井金属鉱業株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
CN106460212A (en) * 2014-05-07 2017-02-22 三井金属矿业株式会社 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
KR101807453B1 (en) 2014-05-07 2017-12-08 미쓰이금속광업주식회사 Copper foil with carrier, manufacturing method for copper foil with carrier, copper clad laminate sheet and printed wiring board obtained using copper foil with carrier
TWI617436B (en) * 2015-03-24 2018-03-11 Mitsui Mining & Smelting Co., Ltd. Ultra-thin copper foil with carrier, manufacturing method thereof, copper laminated board and printed wiring board
WO2021107397A1 (en) * 2019-11-27 2021-06-03 와이엠티 주식회사 Carrier foil-attached metal foil, manufacturing method therefor, and laminate comprising same

Also Published As

Publication number Publication date
JP5503789B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5379528B2 (en) Electrolytic copper foil with carrier foil, method for producing electrolytic copper foil with carrier foil, and copper-clad laminate obtained using the electrolytic copper foil with carrier foil
KR101056692B1 (en) Manufacturing method of ultra-thin copper foil with carrier and ultra-thin copper foil with carrier manufactured by this manufacturing method, printed wiring board, multilayer printed wiring board and wiring board for chip-on film
JP6219034B2 (en) Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
JP4927503B2 (en) Ultra-thin copper foil with carrier and printed wiring board
KR100547513B1 (en) Electrolyte copper foil having carrier foil,manufacturing method thereof, and layered plate using the electrolyte copper foil having carrier foil
US8674229B2 (en) Ultra-thin copper foil with carrier and copper-clad laminate board or printed circuit board substrate
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
US7892655B2 (en) Ultrathin copper foil with carrier and printed circuit board using same
JP3910623B1 (en) Manufacturing method of electrolytic copper foil, electrolytic copper foil obtained by the manufacturing method, surface-treated electrolytic copper foil obtained using the electrolytic copper foil, copper-clad laminate and printed wiring using the surface-treated electrolytic copper foil Board
JP2012102407A (en) Ultra-thin copper foil with carrier and printed circuit board
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
US8329315B2 (en) Ultra thin copper foil with very low profile copper foil as carrier and its manufacturing method
JP5441945B2 (en) An extremely thin copper foil using a very low profile copper foil as a carrier and a method for producing the same.
JP2008101267A (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP2014101573A (en) Black ultrathin copper foil-fitted copper foil structure and method of manufacturing the same
JP5503789B2 (en) Electrolytic copper foil with carrier foil and copper-clad laminate obtained using the electrolytic copper foil with carrier foil
JP2008127618A (en) Method for treating surface of copper foil through feeding alternating current
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
JP2006005149A (en) Conductive substrate and circuit board material with resistive layer
JP2006207032A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP6606317B1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2024510819A (en) Method of electrochemical deposition of copper with different current densities
KR20140035552A (en) Ultra thin copper foil with very low profile copper foil as carrier

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

R150 Certificate of patent or registration of utility model

Ref document number: 5503789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250