TW200839039A - Periodic pulse reverse current electroplating process - Google Patents

Periodic pulse reverse current electroplating process Download PDF

Info

Publication number
TW200839039A
TW200839039A TW96111177A TW96111177A TW200839039A TW 200839039 A TW200839039 A TW 200839039A TW 96111177 A TW96111177 A TW 96111177A TW 96111177 A TW96111177 A TW 96111177A TW 200839039 A TW200839039 A TW 200839039A
Authority
TW
Taiwan
Prior art keywords
current density
value
peak
nickel
ratio
Prior art date
Application number
TW96111177A
Other languages
Chinese (zh)
Inventor
Johannes Wessels
Original Assignee
Great Technology Bureau Ltd Liability Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Technology Bureau Ltd Liability Company filed Critical Great Technology Bureau Ltd Liability Company
Priority to TW96111177A priority Critical patent/TW200839039A/en
Publication of TW200839039A publication Critical patent/TW200839039A/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention relates to a method of electrodepositing metal onto a substrate, which comprises applying a pulsed periodic reverse current across the electrodes of a plating cell utilizing a peak reverse current density and peak forward current density; and varying the ratio of peak reverse current density to peak forward current density in periodic cycles to provide metal deposits in order to improve the grain structure and leveling of the deposit while maintaining high current density throwing power. The invention also relates to a process for improving a uniform thickness and appearance upon the substrate, particularly on substrates having uneven surfaces or apertures, by using programmed pulse periodic reverse current modulation. More particularly, it involves varying the anodic to cathodic current density ratio, in order to improve the surface uniformity appearance, grain structure and leveling of the deposit while maintaining high current density throwing power.

Description

200839039 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種脈衝週期反向電鍍方法,尤指一 種藉由改變陽極及陰極之間電流密度比例以增進沉積的表 面外觀、晶粒結構及整平的製程,並於高電流密度電鍍下 在基肢上維持均勻的金屬分佈及外觀。 【先前技術】 在習用的電鍍製程中,主要係以溶解的金屬鹽作為電 谷液’例如:硫酸鎳、氣化鎳、氨基磺酸鎳或氣 鎳等。 、必要時可在電解溶液中添加適當的添加劑,例如:界 = :::!、光澤劑、緩衝劑等,藉此使得電解溶液 物具有某種特性。 相 直流^卜部電路的電極被浸在電解歸t,並在電極間提供 解溶液中從5::::可以產生-電化學反應,並導致電 -金:::::編的金屬離子沉積在陰極上,而形成 橫越陰極的電流密度能 據陽極與陰極之間的幾何主要電流的分佈主要係依 厚度的變化,此、、〃择ρ Ζ倥或距離而改變,並導致沉積 的形狀及位置而Γ貝旱又的變化係根據相對於陰極及陽極 〔的⑽平均松度較高時,上述的影響將更加明 5 200839039 顯。 然而,所使用的電流密度亦會對結晶粒度具有很大的 影響。一般而言,在電流密度較高的情況下將會有較好的 結晶。 而為了得到最均勻的金屬分佈,則要使用較低的平均 電流供應密度。 藉由選擇使用週期脈衝反向電流取代直流電,將可以 較高的電流密度產生具有良好的結晶粒度及均勻的金屬沉 Φ 積。 在平均電流密度相同的情況下,週期脈衝反向電流相 較於直流電而言,將比較有可能可使用更高電流密度。 較南的電流密度可以形成較好的結晶粒度的原因如 下: ~ 金屬沉積是建構在結晶體上,且每一個結晶體内皆存 在有一晶核。 M核的組成稱為成核,其對沉積的最後結構將有極大 響的影響。 、 當成核率越高時,將形成更多具有較小平均尺寸的結 晶體。 和使付成核率成為控制沉積結構的^一個重要參數。 而成核率係取決於過電壓。 較小晶粒的好處在於彼此可堆積的更好。 藉此將不會出現孔洞,而在空隙内亦具有良好的金屬 分佈,且頻繁地產生較少的應力以形成較佳的晶粒沉積。 6 200839039 硬度及&拉強度係與結晶粒度成反比㈤卜⑽心方 f 故以脈衝方式供電相較於開關電源或無添加劑之 直^源而言,將可以產生—個Μ#。 容(Μ==向技術尤其可以應用在積層陶究晶片電 常並在紐切賴錢,其巾電極通200839039 IX. Description of the Invention: [Technical Field] The present invention relates to a pulse period reverse plating method, and more particularly to a surface appearance and a grain structure for improving deposition by changing a ratio of current density between an anode and a cathode. And leveling process, and maintain a uniform metal distribution and appearance on the base limb under high current density plating. [Prior Art] In the conventional electroplating process, a dissolved metal salt is mainly used as a liquid solution, for example, nickel sulfate, nickel vapor, nickel sulfamate or nickel. If necessary, an appropriate additive such as Boundary =:::!, a brightener, a buffer, etc. may be added to the electrolytic solution, thereby giving the electrolytic solution a certain characteristic. The electrode of the phase DC circuit is immersed in the electrolysis, and the electrochemical solution is generated from 5:::: in the solution solution provided between the electrodes, and causes the metal ion deposition of the electro-gold::::: At the cathode, the current density across the cathode can be varied depending on the geometrical main current distribution between the anode and the cathode, depending on the thickness, which varies depending on the distance ρ Ζ倥 or distance and results in a deposited shape. And the position and the change of the oysters are based on the relative relaxation of the (10) relative to the cathode and the anode. The above effects will be more apparent 5 200839039. However, the current density used also has a large effect on the crystal grain size. In general, there will be better crystallization at higher current densities. In order to get the most uniform metal distribution, a lower average current supply density is used. By choosing to use a periodic pulse reverse current instead of direct current, a higher current density can be produced with a good crystal grain size and a uniform metal sink Φ product. In the case of the same average current density, the periodic pulse reverse current will be more likely to use a higher current density than the direct current. The reason why the souther current density can form a better crystal grain size is as follows: ~ Metal deposition is constructed on crystals, and there is a crystal nucleus in each crystal body. The composition of the M core is called nucleation, which has a significant impact on the final structure of the deposit. When the nucleation rate is higher, more crystals with smaller average size will be formed. And making the nucleation rate an important parameter for controlling the sedimentary structure. The nucleation rate depends on the overvoltage. The advantage of smaller grains is that they can pile up better. Thereby, no voids will occur, and there will be good metal distribution in the voids, and less stress will be generated frequently to form better grain deposition. 6 200839039 Hardness and & tensile strength is inversely proportional to crystal grain size (5) Bu (10) heart f Therefore, the pulsed mode of power supply can produce a Μ# compared to the switching power supply or the source without additives. Rong (Μ== to the technology can be especially applied to the laminated ceramics chip and often in the New Zealand money, its towel electrode

然而,因為銀或銅電極常會被焊料 會在銀或銅電極的外部進行鎳電鑛以做為保^層。一没 而導“電極並對電流的分佈造成影響,進 可量測的電流密ί差異⑽上微小的孔;同與裂縫之間產生 流密度較高的區域將將形成較厚的電鏡層 又的i異將會產生不平坦的金屬沉積。。 陷,截面可明瞭構造的缺 面之裂縫内部的鎳沉積不完蜀美包。、面’尤其是銅電極表 問題藉由整體程序的操作應可解決光澤鎳微分布力特性的 在必要時可藉由降低 提高溶劑酸鹼值及增加金 性。 電流密度、增加溶液的導電率、 屬濃度,改善光澤鎳微分布力特 7 200839039 但由於極端低區域性電流密度以及整平特性的兩 於裂缝内部形成完整的鎳沉積層將是非常困難的。、而〆, 沉積層厚 鎳沉積的 通常裂缝的深度遠高於錫沉積本身要求的 度。 、 尤其在e又置較厚的沉積層時,更可能會因為 過度累積而閉合裂縫。 然而此類狹窄之電極裂縫的過度累積的, 内部殘留或多或少的電鍍溶液。 、nHowever, because silver or copper electrodes are often soldered to the outside of the silver or copper electrodes, the nickel is used as a protective layer. "The electrode does not affect the distribution of the current, and the difference in current density (10) is small; the area with a higher flow density between the crack and the crack will form a thicker electron mirror layer. The i-different will produce uneven metal deposition. The trap, the cross-section can be understood that the nickel deposit inside the crack of the constructed missing surface is not complete. The surface 'especially the copper electrode table problem should be operated by the overall program It can solve the problem of the micro-distribution force of the gloss nickel, if necessary, by increasing the pH value of the solvent and increasing the goldness. The current density, increasing the conductivity of the solution, and the genus concentration, improving the gloss nickel micro-distribution force 7 200839039 But due to extremes It is very difficult to form a complete nickel deposit inside the crack with low regional current density and leveling properties. However, the thickness of the conventional crack deposited by the thick nickel deposit is much higher than that required for the tin deposit itself. Especially when e is placed on a thicker sediment layer, it is more likely to close the crack due to excessive accumulation. However, the excessive accumulation of such narrow electrode cracks, internal residual or more Less plating solution., N

此將可能導致印刷電路板在進行紅精麵技術(如 弟1圖及第2圖所示)時產生錫喷藏或鍚球之問題。 在電極裂縫内所殘留的電鍍溶液處在重熔溫度時,將 會從電極裂缝巾轉並濺出,使賴顆粒遍及電ς板,而 發生錫噴濺(或錫球)現象。 角午决上述問遞產生的方法,主要係確保所有裂缝皆填 禺臬而未存在有液體,藉此將可避免在爐中的預熱區重熔 時有液體被蒸發。 有數個缺陷做法會導致,,錫喷濺問題”,故辨識出發 生的根本原因是非常重要。 否則單單只是藉由某些製程的交互作用 以進行改善卻 /又有瞭解真正原因,將會使得相同的問題在大量生產時再 次發生。 有三種典型的原因會導致錫喷濺,電鍍溶液殘留在電 極孔洞或裂縫内、因電極不平整而造成之電鍍溶液的殘留 或口化本知:餘造成電鍍溶液留在裂縫中。 8 200839039 當然鎳沉積層的厚度均勻及整體的均勻度是避免錫喷 濺問題的首要原因。 夕=週期脈衝反向電流,亦可稱為脈衝週期反向電流, 舲使得於黾極表面及裂縫上完整地形成一均勻電鍍的沉積 層。 脈衝週期反向電流係藉由調整正向及反向週期之間的 電流所產生。 特別是藉由電流從陰極反轉至陽極所完成,將可防止 因恆疋直流所造成的極化效應。 防止極化效應產生的程度主要係由主電流分佈的情形 决定,較向的電流密度區域將比較低電流密度區域更顯 者,因此在複雜幾何結構上提供一較高的平均電流密度, 並產生一個穩定的沉積速率。 再者,藉由供應較高的平均電流密度並保持厚度的均 勻,使得整體的沉積率增加並減少製程的次數將藉此以提 高產量。 雖然使用脈衝週期反向電流可以高電流密度產生均勻 的電鍍厚度,並使得最後的沉積表面呈現半明亮之拋光面。 另一方面,若供應直流電則可以產生均勻但不光滑的 沉積,但必須要以較低的電流密度才可以維持電鍍厚度的 均勻。 /藉由k些廣泛有益的用途’將有利於發展電鍛技術使 得在高電流密度下產生—具有均勻拋光面之金屬電鍵層。 9 200839039 【發明内容】 #本發明係關於一種於基體上電沉積金屬的方法,藉由 在檢跨電鍍槽的電極之間提供—脈衝週期反向電流,此脈 =期反向電流係由—峰值反向電流密度及—峰值正向電 /败也度所組成,並於週期性的循環裡變動 、、古 度及峰值正向電流密度之_轉,使得在基體上=:: 均勻外觀、具良好的晶粒結構及厚度均勾的金屬沉積。This will likely cause the printed circuit board to have problems with tin squirting or smashing during the red-finish technology (shown in Figure 1 and Figure 2). When the plating solution remaining in the crack of the electrode is at the remelting temperature, it will be transferred from the electrode crack and splashed, so that the particles are spread over the electric plate, and tin splash (or solder ball) occurs. The method of the above-mentioned problem is mainly to ensure that all cracks are filled without liquid, thereby avoiding liquid evaporation when the preheating zone in the furnace is remelted. There are several flaws that can cause, tin spattering problems, so it is very important to identify the root cause of the occurrence. Otherwise, just by the interaction of some processes to improve, but also to understand the real reason, will make The same problem occurs again in mass production. There are three typical causes that cause tin splashing, the plating solution remains in the electrode holes or cracks, and the plating solution remains or is smeared due to electrode irregularities. The plating solution remains in the crack. 8 200839039 Of course, the uniform thickness of the nickel deposit layer and the overall uniformity are the primary reasons for avoiding the problem of tin splash. Xi = periodic pulse reverse current, also known as pulse period reverse current, 舲A uniform plating deposit is formed on the surface and the crack of the drain. The pulse period reverse current is generated by adjusting the current between the forward and reverse periods, especially by reversing the current from the cathode to the cathode. The completion of the anode will prevent the polarization effect caused by constant DC. The degree of polarization prevention is mainly caused by the main current. The situation determines that the more current density regions will be more pronounced than the lower current density regions, thus providing a higher average current density over complex geometries and producing a stable deposition rate. High average current density and uniform thickness, so that the overall deposition rate is increased and the number of processes is reduced to increase throughput. Although the use of pulse period reverse current can produce uniform plating thickness at high current density and make the final The deposited surface presents a semi-bright polished surface. On the other hand, if DC current is supplied, uniform but not smooth deposition can be produced, but a lower current density is required to maintain uniform plating thickness. The use of 'will facilitate the development of electric forging technology to produce at high current density - a metal bond layer with a uniform polished surface. 9 200839039 [Invention] The present invention relates to a method of electrodepositing a metal on a substrate by Providing a pulse period reverse current between the electrodes across the plating bath, this pulse = period reverse The flow system consists of a peak-to-peak reverse current density and a peak forward electrical/destructive degree, and changes in the periodic cycle, and the logarithmic and peak forward current density, so that on the substrate =: : Uniform appearance, metal deposit with good grain structure and thickness.

:較佳的實施方式,翻定峰值正向電流而變動蜂值 反向包流岔度以完成兩者之間比率的調整。 ^峰值反向電流密度至峰值正向電流密度的比率,於一 匕二,間一係為—第—數值,而於_第二時間間隔係為 :弟一 i值’且第—數值及第二數值係有所差異,藉由將 ,反向電流密度及峰值正向電流密度的比率於第一數值 ,第二數值間變動,而有利於達成均勻之厚度及外觀的金 屬沉積。 "峰值反向電流密度至峰值正向電流密度的比率,於一 ?才間㈣係為—第—數值;於—第二時間間隔係為一 t ;秘―第三時間間隔料—第三數值,藉由將 •,向電流密度及峰值正向電流密度之_比率㈣於 弟-紐、第二數值及^數值_動,μ有利於達成 均勻之厚度及外觀的金屬沉積。 尚更好的方法,係將峰值反向電流密度及蜂值正 向電流^度之間的比率依序在第—數值、第二數值、第三 數值、第二數值及第—數值間變動。使用包含有添加劑之 200839039 電解溶液,此添加劑可穩定存在於溶劑中,並對金屬沉積 產生預期的改善。 在形成預期之不明亮的鎳沉積時,電解溶液可為一鎳 電解水溶液,其係由氯離子及硼酸與氨基磺酸鎳、硫酸鎳 或氟硼酸鎳其中之一的結合所組成。 此鎳沉積一顯著的應用係用於電鍍積層陶瓷晶片電容 之電極上。 本發明之方法將可以在電極表面及包含裂缝之電極粗 糙面上設置一具有均勻外觀、好的晶粒結構及均勻厚度之 鎳沉積。 本發明之另一目的係有關於一種提高電鍍沉積特性之 方法,其包括有藉由脈衝週期反向電鍍方法於基體上設置 一電鍍沉積,此方法係藉由變動陽極/陰極之電流密度比 率,以形成一具有均勻外觀、良好的晶粒結構及均勻厚度 的金屬沉積。 當基體内具有不平整的表面或孔洞時,此方法亦可於 基體表面上及基體裂缝内形成一具有均勻外觀、良好的晶 粒結構及均勻厚度的金屬沉積。 【實施方式】 本發明係有關於一種用以改善基體上電沉積金屬之方 法。 本發明之方法尤其適用於具有孔洞、粗糙面或崎嶇表 面之基體的電鍍。 200839039 明哀户由彳^用此方法將可改善表面外觀,包含電鍍沉積的 ^,12日日板結構及表面整平,同時可以在高電流密度下 保持電鍍時的均鍍能力。 本發明Φ, ^ 汸,γ 一基肢及一第二金屬將被浸入一電解溶 液=此形成電鍍槽中之電極。 帝 脈衝產生裝置用以提供一橫跨電極之脈衝週期反向A preferred embodiment is to modulate the peak forward current and vary the buzzer value to reverse the packet enthalpy to complete the ratio adjustment between the two. ^The ratio of the peak reverse current density to the peak forward current density is one-to-two, the first is the -first value, and the second time interval is: the brother-i value' and the first-value and the first The two numerical values are different, and the ratio of the reverse current density and the peak forward current density is varied between the first value and the second value, thereby facilitating the formation of a uniform thickness and appearance of metal deposition. "The ratio of peak reverse current density to peak forward current density, in one (4) is - the first value; in - the second time interval is a t; secret - third time interval material - third The value, by the ratio of the current density and the peak forward current density (4) to the dynasty, the second value, and the value _, is beneficial to achieve a uniform thickness and appearance of metal deposition. A better method is to sequentially vary the ratio between the peak reverse current density and the positive current of the bee value between the first value, the second value, the third value, the second value, and the first value. Using the 200839039 electrolytic solution containing the additive, this additive is stable in the solvent and produces the desired improvement in metal deposition. In forming the desired unbright nickel deposit, the electrolytic solution may be an aqueous nickel electrolysis solution consisting of a combination of chloride ions and boric acid with one of nickel sulfamate, nickel sulfate or nickel fluoroborate. A significant application of this nickel deposition is for plating the electrodes of a multilayer ceramic wafer capacitor. The method of the present invention provides for the deposition of nickel having a uniform appearance, a good grain structure and a uniform thickness on the surface of the electrode and the rough surface of the electrode containing the crack. Another object of the present invention is a method for improving electroplating deposition characteristics, comprising: providing an electroplating deposition on a substrate by a pulse period reverse plating method by varying a current density ratio of the anode/cathode, To form a metal deposit having a uniform appearance, a good grain structure, and a uniform thickness. When the substrate has an uneven surface or a hole, the method can also form a metal deposit having a uniform appearance, a good crystal structure and a uniform thickness on the surface of the substrate and in the crack of the substrate. [Embodiment] The present invention relates to a method for improving electrodeposited metal on a substrate. The method of the present invention is particularly suitable for electroplating of substrates having voids, rough surfaces or rugged surfaces. 200839039 The Mingshui households can improve the surface appearance by using this method, including electroplating deposition, 12-day solar plate structure and surface leveling, and at the same time can maintain the uniform plating ability at the high current density. The Φ, ^ 汸, γ-based limb and a second metal of the present invention will be immersed in an electrolytic solution = the electrode formed in the plating bath. The pulse generating device is used to provide a pulse period reversal across the electrodes

2 1產生系統可產生不同大小之正向及反向電流。 ^明中,脈衝時序、平均電流密度及起始正向與 度係可事先以手動方式設定。 — ;電錢過程中,峰值反向電流密度及峰值正向電流 =是可以進行變動的。 产更具體的來說,峰值反向電流密度及峰值正向電流密 二的比率,於一第一時間間隔具有一第一數值、於一 f =日才間間隔具有一第二數值且於一第三時間間隔具有一 第二數值。 亦可二::直反向電流密度及峰值正向電流密度之間的比率 丌了於週期循環内變動。 擇。 知至基體上之金屬乃依據其應用範圍而進行選 例如:錄 常當作具有某 焊性。 通常被當作保護及/或導電之電鍍層,而錫則 些功能之表面電鍍層,例如:電性連接戋可 工Ά的金屬皆可用在本發明中’包含鋼,錫,纪 12 200839039 金,鎳,銀,鋅,以及兩者或兩者以上的前述或其他金屬 的合金。 本發明對於在電鍍積層陶瓷晶片電容的電極設置電錢 沉積錄尤其有用,其中電極係由銀或鋼之塗設技術所形成。 電鍍積層陶瓷晶片電容係與增加導電性的鋼球一起在 ^ 滾鍍桶内進行電鍍。 滾鍍桶及鎳陽極則被浸入含有265g/L硫酸鎳、6〇g/L氣 化鎳及30g/L硼酸之標準鎳電解液中。 ⑩ 一脈衝產生裝置提供一脈衝週期反向電流在橫跨電錢 槽之電極上。 一傳統之脈衝產生系統產生一高達150安培之正向電 流及一高達450安培之反向電流,當然亦可以其他系統達 成。 一個切換式電源供應器係用以產生本發明所需要的高 能量反向脈衝(約15V)。 每一系統皆包含有一脈衝器及一分離控制單元,該分 _ 離控制單元係用以設定並控制脈衝輸出形式,其中正向脈 衝時間介於1到50毫秒之間,並以1〇至3〇毫秒之間為較佳; 一反向脈衝時間介於〇·1至4毫秒之間,並以〇·5至2毫秒之 間為較佳;一正向峰值電流係介於1〇至15〇安培之間,並以 40至60安培之間為較佳;及一反向峰值電流係介於3〇至45〇 文培之間,並以介於120至180安培之間為較佳。 一平均電流密度係介於0.1至1.(^/(11112之間,尤以介於 〇· 2至〇· 4A/dm2之間為較佳.。 13 200839039 供應必要的蕾 150安拉的單:、以產生要求的沉積厚度。 元相連接㈣為獨^If雙電源)裝置係與個別的控制單 所有控制單元可’但為了因應較A的複合裝置, 連接線。 、电腦連接並進行控制,例如:RS485資料 脈衝次序是由 個人或工業用 早兀。 配置為主控的控制器所設定並控制。 電腦可用以控健個裝置中所有的脈衝The 2 1 generation system produces positive and negative currents of different sizes. In the middle, the pulse timing, average current density, and initial forward and inverse degrees can be manually set in advance. — During peak money, the peak reverse current density and peak forward current = can be changed. More specifically, the peak reverse current density and the peak forward current density ratio have a first value at a first time interval, a second value at a f = day interval, and a The third time interval has a second value. It can also be: The ratio between the direct reverse current density and the peak forward current density is within the cyclic cycle. Choose. It is known that the metal on the substrate is selected according to its application range. For example, it is often recorded as having a certain weldability. It is usually used as a protective and/or conductive plating layer, and tin is a functional surface plating layer, for example, an electrically connectable metal can be used in the present invention. 'Including steel, tin, Ji 12 200839039 gold An alloy of the foregoing or other metals of nickel, silver, zinc, and two or more thereof. The present invention is particularly useful for depositing electromotive deposits on electrodes of electroplated laminated ceramic wafer capacitors, wherein the electrodes are formed by silver or steel coating techniques. The electroplated laminated ceramic chip capacitors are plated together with the increased conductivity of the steel balls in a barrel. The barrel and nickel anode were immersed in a standard nickel electrolyte containing 265 g/L nickel sulfate, 6 〇g/L nickel oxide and 30 g/L boric acid. A pulse generating device provides a pulse period of reverse current across the electrodes of the money slot. A conventional pulse generation system produces a forward current of up to 150 amps and a reverse current of up to 450 amps, which of course can be achieved by other systems. A switched power supply is used to generate the high energy reverse pulses (about 15 volts) required by the present invention. Each system includes a pulser and a separate control unit for setting and controlling the pulse output form, wherein the forward pulse time is between 1 and 50 milliseconds, and is 1 to 3 〇 between milliseconds is preferred; a reverse pulse time is between 〇·1 and 4 milliseconds, and preferably between 5·5 and 2 milliseconds; a positive peak current is between 1 and 15 Between ampere and between 40 and 60 amps is preferred; and a reverse peak current is between 3 〇 and 45 〇, and preferably between 120 and 180 amps. An average current density is between 0.1 and 1. (^/(11112, especially between 〇·2 to A·4A/dm2 is preferred. 13 200839039 Supply of necessary buds for 150 ala : to produce the required deposition thickness. The phase connection (4) is the dual-powered device system and the individual control unit. All control units can be 'but in order to respond to the composite device of A, the connection line. Computer connection and control For example, the RS485 data pulse sequence is set by the personal or industrial use. The configuration is controlled and controlled by the controller. The computer can be used to control all the pulses in the device.

比脈衝次序、平均電流密度及起始正向與反向電流密度 皆可事先以手動方式設定或由控制單元自動設定。 平均琶流後度可預設成為一特定值,而電源則會提供 必須的時間週期。 較好的脈衝次序時間可被設定,例如·· 2〇毫秒之正向 電流及1毫秒之反向電流。 於電鍍過程中,峰值反向電流密度及峰值正向電流密 度之間的比率係可以變動的。 更具體的來說,一般係以固定峰值正向電流密度而變 更峰值反向電流密度來調整兩者之間的比率。 於第一時間間隔内,峰值反向電流密度及峰值正向電 流密度之間的比率係固定在1比1。 而於第二時間間隔内,峰值反向電流密度及峰值正向 電流密度之間的比率係固定在2比1。 第二時間間隔之後,上述的次序將於整個電鍍時間内 反複進行。 14 200839039 在本發明中尚可推算出更複雜的變化方式。 於前述的第一及第二時間間隔之後,尚可增加有一第 二時間間m,在第二時間間隔内峰值反向電流密度及峰值 正向電流岔度之間的比率係固定在3比1。 而在第四時間間隔時,兩者的比率則固定在2比】。 第四%間間隔之後,上述之次序將於整個電鍍時間内 反才旻進行。 曰我們亦可理解連續的時間間隔内,兩者的比率將可以 是任何倍數。 例如:兩者的比率的變化可以是 =序重覆),1:1//3:1/5:1//3:1 (依序重覆)或μ/ (依序重覆),抑或是任何其他可用於本發明内 的習用之通常技藝能力所及範圍内的變化率。 藉由平常的測試可決定以何種次序作為任何特定之電 ,的次序列變化,並形成最理想的電鍍結果,且可確作= 疋^幸乂習用的直流電鑛有更好的表現,尤其是對具有不均 句的表面、孔洞或其他裂痕等不規則形狀的部分。 範例: 心】後述之範例將說明脈衝週期反向電鍍方法之最佳實施 可了解的是這些範例係做為說明目的之用,, 來限定本發明之範圍。 非用 範例1 : 一個具有電鍍積層陶曼晶片電容之滚鍍桶係夂自進行 15 200839039 電鍍。 電鍍積層陶瓷晶片電容產品之型號為0603且具有銅電 極0 每一滾鍍桶包含有1800克產品及用以導電之鋼球,並 浸入包含有265g/L硫酸鎳’ 6〇g/L氯化鎳及30g/L硼酸之500 公升槽中。 第一滚鍍桶(例A)係使用25安培的直流電並持續進行 電鍍120分鐘。The specific pulse order, average current density, and initial forward and reverse current densities can be manually set in advance or automatically set by the control unit. The average turbulence can be preset to a specific value, and the power supply provides the necessary time period. A better pulse order time can be set, for example, a forward current of 2 〇 milliseconds and a reverse current of 1 millisecond. The ratio between the peak reverse current density and the peak forward current density can vary during the plating process. More specifically, the ratio between the two is generally adjusted by changing the peak forward current density and changing the peak reverse current density. During the first time interval, the ratio between the peak reverse current density and the peak forward current density is fixed at 1:1. In the second time interval, the ratio between the peak reverse current density and the peak forward current density is fixed at 2 to 1. After the second time interval, the above sequence will be repeated throughout the plating time. 14 200839039 In the present invention, more complicated variations can be derived. After the first and second time intervals, a second time interval m may be added, and the ratio between the peak reverse current density and the peak forward current intensity is fixed at 3 to 1 during the second time interval. . At the fourth time interval, the ratio of the two is fixed at 2 ratios. After the fourth % interval, the above sequence will be reversed throughout the plating time.曰 We can also understand that the ratio of the two can be any multiple in successive time intervals. For example, the ratio of the two can be changed to = repeat, 1:1//3:1/5:1//3:1 (in order) or μ/ (in order), or It is the rate of change within the scope of any other conventional skill that can be used in the practice of the present invention. By ordinary tests, it can be determined in which order as the sub-sequence of any particular electricity, and the best electroplating results are formed, and it can be confirmed that 直流^ 乂 乂 的 的 的 有 有 有 有 有 有 有 有 有 有It is a part of an irregular shape such as a surface, a hole, or other cracks having an uneven sentence. Example: Heart] The following examples will illustrate the preferred implementation of the pulse period reverse plating method. It is to be understood that these examples are for illustrative purposes and are intended to limit the scope of the invention. Non-use Example 1: A barrel-plated barrel with a plated Tauman wafer capacitor is fabricated from 15 200839039. The electroplated laminated ceramic chip capacitor product model number is 0603 and has a copper electrode 0. Each barrel plating barrel contains 1800 grams of product and a steel ball for conduction, and is immersed in chlorinated 265g/L nickel sulphate '6〇g/L. Nickel and 30g/L boric acid in 500 liter tank. The first barrel (Example A) used 25 amps of DC and was continuously plated for 120 minutes.

其餘兩滾鍍桶則使用一脈衝週期反向電流並持續進行 電鍍90分鐘,其中脈衝週期反向電流係包含有脈衝時間4· 8 毫秒的正向電流及脈衝時間為〇· 2毫秒的反向電流。 兩者皆以一平均電流密度為50安培的電流進行電鍍。 第二滾鍍桶在整個電鍍過程中,陽極及陰極之間電流 比率維持在3比1。 相反的,第三滾鍍桶在電鍍過程中’陽極及陰極之間 電流比率係進行週期性的循環變動,此週期循環約有三分 鐘的時間間隔。 一 在第-時間間隔内,陽極及陰極之間的電流密度比率 於第三時間間隔内 則變為3比1。 而於第二時間間隔内’陽極及陰極之_電流密度比 年則錯由增加峰值反向電流密度而改變成為2比卜 陽極及陰極之間的電流密度比率 於第四時間間隔内,陽極及陰極之之的電流密度比率 16 200839039 則變為2比1。 最後,於第五時間間隔内,陽極及陰極之間的電流密 度比率則為1比1。 在進行鎳電鍍後,滾鍍桶則被轉移至錫電鍍位置並沉 積厚度6微米的錫。 其結果則於表格1中描述。 表格1 方法 沉積外觀 沉積層 厚度 紅外線重熔後 之錫喷濺結果 習用直流電鍍 無光澤,大 3 - 5 120/1800 pcs 晶粒尺寸 微米 週期脈衝反向電流無光澤至 3 - 5 5/1200 pcs 恆定電流密度 半明亮 微米 週期脈衝反向電流半明亮,良 3 - 5 0/1200 pcs 變動電流密度比率好晶粒沉 微米 (本發明) 積 這些結果表現出由於晶粒尺寸及沉積的均勻度,使得 在紅外線重熔後不會產生錫噴濺之問題。 其高電流密度的晶粒結構及外觀將因本發明所採用之 方法而獲得增進,且於電鍍厚度分佈上亦不會產生顯著的 損失。 範例2 : 六個具有電鍍積層陶瓷晶片電容之滾鍍桶係各自·進行 電鍍。 200839039 電鑛積層陶克晶片電容產品之型5虎為〇603且具有銅電 極。 每一滾鍍桶包含有1800克的產品及用以導電之鋼球’ 並浸入500公升的電鍍槽中。 ‘ 此電鍍溶液係包含有440g/L氨基磺酸鎳溶液、l〇g/L氣 • 化鎳及40g/L·酸。 第一滚鍍桶(例A)係使用25安培的直流電持續電鍍120 分鐘。 • 其餘滾鍍桶則使用平均電流密度50安培的不同脈衝循 環週期電流持續電鍍90分鐘。 弟一滾鑛桶(例B)係使用一脈衝週期反向電流進行電 鍍’其中陽極及陰極之間的電流密度比率是固定的(如習 用技術中為4.8毫秒正向電流及〇.2毫秒反向電流)。 第三滾鍍桶則改變陽極及陰極之間的電流密度比率進 行電鍍,從1比1至2比1 ;從2比1至3比1 ;從3比1至2比1 ; 再從2比1至1比1。 ⑩ 第四滾鍍桶則改變陽極及陰極之間的電流密度比率進 行電鍍,從1比1至3比〗;再從回至uu。 第五滾鍍桶(例3)則改變陽極及陰極之間的電流密度 比率進行電鍍,從3比1至2比1 ;再從2比1至1比1。 第六滾鍍桶(例4)則改變陽極及陰極之間的電流密度 比率進行電鍍,從1比;[至2比1 ;從2比1至3比1 ;從3比1至2 比1 ;再從2比1至1比1。 第六滾鍍桶的次序係與第三滾鍍桶之次序相近,除了 18 200839039 在第六滾鍍桶中係在整個電鍍期間内重複此一次序。 在進行鎳電鍍後,滾鍍桶則被轉移至錫電鍍位置並沉 積厚度6微米的錫。 其結果則於表格2中描述。 表格2 - 實 例 沉積外觀 沉積層厚 度 紅外線重熔後之錫喷濺 結果 A 無光澤 3 - 5微米 160/1200 pcs • B 無光澤至半明 亮 3 - 5微米 10/1200 pcs 1 均勻且呈半明 亮 3 - 5微米 0/1200 pcs 2 均勻且呈半明 亮 3 - 5微米 0/1200 pcs 3 均勻且呈半明 亮 3 - 5微米 0/1200 pcs 4 均勻且呈半明 亮 3 - 5微米 0/1200 pcs 實例A及B係為習用技術 實例1至4係採用本發明之方法 從表格2中的結果可顯示出採用本發明之方法時,於沉 積外觀及相同高電流密度的均鍍能力(實例1-4)皆得到一 致性的改善。 第3圖至第6圖係為本發明所具備的優點之圖示說 200839039 明。 第3圖顯示了本發明於電極表面及裂缝内形成一均勾 的鎳沉積層(例3),而第4圖則顯示出習用技術在表面及 裂縫内沉積時所產生的不均勻度及外觀(例A)。 對照第5圖及第6圖,第5圖顯示本發明可形成一具 有均勻的晶粒結構及外觀,且平均的結晶粒度係約為ιι〇奈The other two barrel plating barrels use a pulse period reverse current and continue to perform plating for 90 minutes, wherein the pulse period reverse current system includes a forward current with a pulse time of 4.8 milliseconds and a pulse time of 〇·2 milliseconds. Current. Both were electroplated with a current having an average current density of 50 amps. In the second barrel plating bath, the current ratio between the anode and the cathode was maintained at 3 to 1 throughout the plating process. Conversely, during the electroplating process, the current ratio between the anode and the cathode is periodically cyclically varied, and the cycle is cycled for approximately three minutes. In the first time interval, the current density ratio between the anode and the cathode becomes 3 to 1 in the third time interval. In the second time interval, the current density of the anode and the cathode is changed from the peak reverse current density to the current density ratio between the anode and the cathode in the fourth time interval. The current density ratio of the cathode is 16 to 139039 and becomes 2 to 1. Finally, during the fifth time interval, the current density ratio between the anode and the cathode is 1 to 1. After nickel plating, the barrel was transferred to the tin plating position and a thickness of 6 μm tin was deposited. The results are described in Table 1. Table 1 Method Deposition Appearance Layer Thickness Infrared Remelting Tin Splash Results Conventional DC Plating Matte, Large 3 - 5 120/1800 pcs Grain Size Micro Period Pulse Reverse Current Matte to 3 - 5 5/1200 pcs Constant current density semi-bright micron period pulse reverse current semi-bright, good 3 - 5 0/1200 pcs fluctuating current density ratio good grain sinking micron (invention) These results show that due to grain size and deposition uniformity, This eliminates the problem of tin splashing after remelting in the infrared. The high current density grain structure and appearance will be enhanced by the method employed in the present invention and will not cause significant loss in plating thickness distribution. Example 2: Six barrels of barrels with plated ceramic chip capacitors are individually plated. 200839039 The type of electric ore layered ceramic chip capacitor product is 〇603 and has a copper electrode. Each barrel has 1800 grams of product and a steel ball for conducting ' and is immersed in a 500 liter plating bath. ‘ This plating solution contains 440 g/L nickel sulfamate solution, l〇g/L gas nickel and 40 g/L acid. The first barrel (Example A) was continuously plated for 120 minutes using 25 amps of DC. • The remaining barrels are plated for 90 minutes using different pulse cycle currents with an average current density of 50 amps. The younger mine barrel (example B) is electroplated using a pulse period reverse current 'where the current density ratio between the anode and the cathode is fixed (as in the conventional technique, 4.8 milliseconds forward current and 〇. 2 milliseconds inverse) To the current). The third barrel plating barrel changes the current density ratio between the anode and the cathode for plating, from 1 to 1 to 2 to 1; from 2 to 1 to 3 to 1; from 3 to 1 to 2 to 1; 1 to 1 to 1. 10 The fourth barrel is changed by changing the current density ratio between the anode and the cathode, from 1 to 1 to 3; and then back to uu. The fifth barrel plating barrel (Example 3) changes the current density ratio between the anode and the cathode for plating, from 3 to 1 to 2 to 1; and then from 2 to 1 to 1 to 1. The sixth barrel plating barrel (Example 4) changes the current density ratio between the anode and the cathode for plating, from 1 ratio; [to 2 to 1; from 2 to 1 to 3 to 1; from 3 to 1 to 2 to 1 From 2 to 1 to 1 to 1. The order of the sixth barrel plating barrel is similar to that of the third barrel plating barrel except that 18 200839039 repeats this sequence throughout the plating period in the sixth barrel plating barrel. After nickel plating, the barrel was transferred to the tin plating position and a thickness of 6 μm tin was deposited. The results are described in Table 2. Table 2 - Example Deposition Appearance Deposition Layer Thickness Tin Reflow after Tin Sputtering Results A Matte 3 - 5 microns 160/1200 pcs • B Matte to semi-bright 3 - 5 microns 10/1200 pcs 1 Uniform and semi-bright 3 - 5 μm 0/1200 pcs 2 Uniform and semi-bright 3 - 5 μm 0/100 pcs 3 Uniform and semi-bright 3 - 5 μm 0/100 pcs 4 Uniform and semi-bright 3 - 5 μm 0/100 pcs Examples A and B are conventional techniques Examples 1 to 4. The results of Table 2 using the method of the present invention can show the uniformity of deposition and the same high current density when using the method of the present invention (Example 1- 4) All have improved consistency. Figures 3 through 6 are diagrams showing the advantages of the present invention. Figure 3 shows the present invention to form a uniform nickel deposit on the surface of the electrode and in the crack (Example 3), while Figure 4 shows the unevenness and appearance of the conventional technique when deposited on the surface and in the crack. (Example A). Referring to Figures 5 and 6, Figure 5 shows that the present invention can form a uniform grain structure and appearance, and the average crystal size is about ιι〇奈.

米;而第6圖則是以習用技術所形成的構造,其中平均晶 結晶粒度約為225奈米。 、 M ^前述實施例係說明了在外觀均勻度、晶粒結構及整平 月b力上皆具有代表性的改善,且藉由使用本文所揭露之脈 衝週期反向電鍍方法將不會損失均鏡能力。 當然,類似的改善方式亦可藉由變動陽極及陰極之間 的電流密度比率的次序模式而獲得。 因此,上述的揭露僅是本發明一較佳之實施例所描述 的事物。 更可了解的是不同的修改及變化亦可於不違反本發明 之領域的前提下而達成,其係定義於下述申請專利範圍中。 【圖式簡單說明】 本發明所附加的特色不僅可於後續之詳細說明而且於 附圖中提出,其中: 第1圖:係為錫噴濺問題之表示圖。 第2圖··係為錫噴濺問題之詳細表示圖。 第3圖:係為根據本發明所提供的鎳沉積整平之電鍍積層 20 200839039 陶瓷晶片電容剖面圖。 第4圖:係為習用所提供的鎳沉積整平之電鍍積層陶瓷晶 片電容剖面圖。 第5圖:係為根據本發明所提供的鎳沉積晶粒結構之電鍍 積層陶乾晶片電容剖面圖。 第6圖:係為習用所提供的鎳沉積晶粒結構之電鍍積層陶 瓷晶片電容剖面圖。The figure 6 is a structure formed by conventional techniques in which the average crystal grain size is about 225 nm. M ^ The foregoing examples illustrate representative improvements in appearance uniformity, grain structure, and leveling b-force, and will not be lost by using the pulse period reverse plating method disclosed herein. Mirror ability. Of course, a similar improvement can also be obtained by varying the order pattern of the current density ratio between the anode and the cathode. Accordingly, the foregoing disclosure is only illustrative of the preferred embodiments of the invention. It will be appreciated that various modifications and variations can be made without departing from the scope of the invention, which is defined in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS The additional features of the present invention are set forth not only in the detailed description but also in the drawings, wherein: FIG. 1 is a representation of the problem of tin splashing. Figure 2 is a detailed representation of the problem of tin splashing. Figure 3 is a cross-sectional view of a ceramic wafer capacitor in accordance with the present invention. Figure 4: A cross-sectional view of a plated ceramic wafer capacitor for nickel deposition flattening provided by the conventional application. Fig. 5 is a cross-sectional view showing the capacitance of a plated ceramic chip of a nickel deposited grain structure according to the present invention. Fig. 6 is a cross-sectional view showing the capacitance of a plated ceramic wafer of a nickel-deposited grain structure provided by a conventional one.

【主要元件符號說明】[Main component symbol description]

Claims (1)

200839039 十、申請專利範圍: 1 ·一種用於提高基體上電鍍金屬之沉積特性的方法,其 包括有: 提供一脈衝週期反向電流,係包括有一峰值反向電流 密度及一峰值正向電流密度,並在一橫跨電鍍槽之 * 電極上以不間斷之方式由正向至反向,反向至正向 連續變換,以成為一重複的脈衝次序;及 週期性的變動該峰值反向電流密度及該峰值正向密度 • 之間的比率,一第一數值及一第二數值係為該峰值 反向電流密度及該峰值正向電流密度之間的比率, 藉此以在基體上形成一均勻外觀、良好晶粒結構及 均勻厚度之一金屬沉積,其中,該峰值反向電流密 度及該峰值正向密度的比率在週期内連續的變動, 在一第一時間間隔為該第一數值,而在一第二時間 間隔内則為該第二數值間的,且該第二數值係不同 於該第一數值。 • 2 ·如申請專利範圍第1項所述之方法,其中該峰值反向 電流密度及該峰值正向電流密度之間的比率在一第三 時間週期内尚包括有一第三數值及一第四數值,且該 第三數值係不同於該第二數值,並使得該比率在該第 一數值、該第二數值、該第三數值及該第四數值間進 行變動。 3 ·如申請專利範圍第2項所述之方法,其中該第一數值、 該第二數值、該第三數值及該第四數值的比率係於1:1 22 200839039 /2:1/3:1/2:卜 1:1/5:1/2:1/7:1 或 ι:ΐ/3ΐ /5:1/3:1間進行週期性的變動。 4 •如申請專利範圍第1項所述之方法,其中係以變㈣ 峰值反向電流密度並固定該峰值正向電流來完成該比 率的變動。 5 如申請專利範圍第1項所述之方法,其中尚包括有一 電解溶液,該電解溶液内係包含有一;;穩定=在的: 加劑,並使得金屬沉積得到預期的改盖。 如申請專利範圍第5項所述之方法,°其中該電解溶液 係為-鎳電解水溶液,並選擇由氯及爛酸與硫酸錄、 氨基磺酸鎳、氟硼酸鎳、氯化鎳之其中之一者之結人, 亚在該基體上形成-均勻外觀、良好晶粒結構及均 厚度之鎳沉積。 7 =請專麯圍第6項所述之方法,其中該基體係為 孝貝層陶瓦晶片電容,係包括有銀或鋼所形成之電 極’並於電極表面及裂縫上形成一均勾外觀、良好晶 8 粒結構及均勻厚度之半明亮鎳沉積層。 專利範圍“項所述之方法,其中該基體具有 -勺勻的表面及孔洞’並於該基體之不均勻表面及孔 2上形成-良好晶粒結構及均勻厚度之半明亮金屬沉 積。 •如申請翻制第!項所述之方法,尚包括有一介於】 至50爱秒之正向脈衝時間、一介於〇. i至 向脈衝«、-介於]G至⑽安培間之正向峰值電流 200839039 及一介於30至450安培間之反向峰值電流。 10 ·如申請專利範圍第9項所述之方法,其中該正向脈衝 時間係至少為該反向脈衝時間的20倍。200839039 X. Patent Application Range: 1 · A method for improving the deposition characteristics of electroplated metal on a substrate, comprising: providing a pulse period reverse current comprising a peak reverse current density and a peak forward current density And continuously transforming from forward to reverse, reverse to positive in an uninterrupted manner on a * electrode across the plating bath to become a repeating pulse sequence; and periodically varying the peak reverse current a ratio between the density and the peak forward density, a first value and a second value are a ratio between the peak reverse current density and the peak forward current density, thereby forming a a metal deposition having a uniform appearance, a good grain structure, and a uniform thickness, wherein the ratio of the peak reverse current density and the peak forward density continuously varies during the period, and the first time interval is the first value. And in a second time interval, between the second values, and the second value is different from the first value. 2. The method of claim 1, wherein the ratio between the peak reverse current density and the peak forward current density further includes a third value and a fourth in a third time period. a value, and the third value is different from the second value, and the ratio is varied between the first value, the second value, the third value, and the fourth value. 3. The method of claim 2, wherein the ratio of the first value, the second value, the third value, and the fourth value is 1:1 22 200839039 /2: 1/3: 1/2: Bu 1:15:1/2:1/7:1 or ι:ΐ/3ΐ /5:1/3:1 Periodically change. 4 • The method of claim 1, wherein the change in the ratio is performed by varying (4) the peak reverse current density and fixing the peak forward current. [5] The method of claim 1, further comprising an electrolytic solution comprising: a stable; at: an additive, and causing the metal deposition to be expected to be modified. The method according to claim 5, wherein the electrolytic solution is an aqueous solution of nickel electrolysis, and one of chlorine, rotten acid and sulfuric acid, nickel sulfamate, nickel fluoroborate or nickel chloride is selected. One of the knots, the sub-form on the substrate to form a uniform appearance, good grain structure and nickel deposits of uniform thickness. 7 = Please refer to the method described in Item 6, wherein the base system is a filial layer ceramic tile chip capacitor, which comprises an electrode formed of silver or steel and forms a uniform appearance on the electrode surface and the crack. , a good crystal 8 grain structure and a semi-bright nickel deposit layer of uniform thickness. The method of the above-mentioned item, wherein the substrate has a scooped surface and a hole and forms a semi-bright metal deposit with a good grain structure and a uniform thickness on the uneven surface of the substrate and the pores 2. The method described in the application for reversing the item of item also includes a positive pulse time between 】 and 50 sec, and a positive peak between 〇. i and the pulse «, - between G and (10) amps. Current 200839039 and a reverse peak current between 30 and 450 amps. 10. The method of claim 9, wherein the forward pulse time is at least 20 times the reverse pulse time. 24 200839039 surfaces or apertures, by using programmed pulse periodic reverse current modulation. More particularly,it involves varying the anodic to cathodic current density ratio, in order to improve the surface uniformity appearance^ grain structure and leveling of the deposit while maintaining high current density throwing power. 七、 指定代表圖: (一) 本案指定代表圖為:第(3 )圖。 (二) 本代表圖之元件符號簡單說明: 八、 本案若有化學式時,請揭示最能顯示發明特徵的 化學式: 200839039 發明專利說明書 外年(> 月4!正24 200839039 surfaces or apertures, by using programmable pulse periodic reverse current modulation. More particularly, it is varying the anodic to cathodic current density ratio, in order to improve the surface uniformity appearance^ grain structure and leveling of the deposit while maintaining high current density Throwing power. VII. Designation of representative drawings: (1) The representative representative of the case is: (3). (2) A brief description of the symbol of the representative figure: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: 200839039 Patent description of the invention Year of the outside (> Month 4! (本說明書格式、順序及粗體字,請勿任意更動,※記號部分請勿填寫) ※申請案號: ※申請曰期: 一、發明名稱:(中文/英文) ※IPC分類: Cvrp ^ (2006.01) <z^srt> ^(2006,01) 週期脈衝反向電流電鑛方法/Periodic Pulse Reverse Current Electroplating Process 二、申請人:(共壹人)(The format, order and bold text of this manual should not be changed at all. ※Please do not fill in the mark. ※Application number: ※Application deadline: 1. Name of the invention: (Chinese/English) ※IPC classification: Cvrp ^ ( 2006.01) <z^srt> ^(2006,01) Periodic Pulse Reverse Current Electroplating Process II. Applicant: (Total Deaf) 姓名或名稱:(中文/英文) 美商博凯科技有限公司 /Great Technology Bureau Limited Liability Company 代表人··(中文/英文) 魏碩詩/Johannes Wessels 住居所或營業所地址:(中文/英文) 高雄市鼓山區明華路7號/ No. 7, Minghua Rd.5 Gushan Dist.? Kaohsuing 804, Taiwan 國籍··(中文/英文)美國/U.S.A. 二、發明人:(共一人)Name or Name: (Chinese / English) Great Technology Bureau Limited Liability Company Representative · (Chinese / English) Wei Shuo Shi / Johannes Wessels Residence or Business Office Address: (Chinese / English) Kaohsiung City No. 7 Minghua Road, No. 7, No. 7, Minghua Rd.5 Gushan Dist.? Kaohsuing 804, Taiwan Nationality·(Chinese/English) USA/USA II. Inventor: (1 person in total) 姓名··(中文/英文) 魏碩詩/Johannes Wessels 國籍:(中文/英文) 何 /Netherlands 1 200839039 但由於極端低區域性電流 jfs m M Her Λα ^ λ> ^ 汉正十知性的需求, 於衣相抑成完整的鎳沉積層將是非常困難的。 SS 通常裂縫的深度遠高於鎳 度。 沉積本身要求的沉積層厚 ^其在設置較厚狀積科,更 ⑽鎳沉積的 過度累積而閉合裂缝。 1 然而此類狹窄之電極裂縫的過度累積的,將導致裂缝 内部殘留或多或少的電鍍溶液。Name··(Chinese/English) Wei Shuo Shi/Johannes Wessels Nationality: (Chinese/English) He/Netherlands 1 200839039 But due to the extremely low regional current jfs m M Her Λα ^ λ> ^ Han Zhengshi's intellectual needs, Yu Yixiang It would be very difficult to suppress a complete nickel deposit. SS usually has a crack depth much higher than nickel. The thickness of the sediment required by the deposition itself is set in a thicker stack, and more (10) excessive accumulation of nickel deposits closes the crack. 1 However, excessive accumulation of such narrow electrode cracks will result in more or less plating solution remaining inside the crack. 此將可能導致印刷電路板在進行紅外線重炫技術(如 第1圖及第2圖所示)時產生錫噴濺或錫球之問題。 在電極裂缝内所殘留的電鍍溶液處在重熔溫度時,將 會從電極裂缝中沸騰並濺出,使焊錫顆粒遍及電路板,而 發生錫噴濺(或錫球)現象。 角午決上述問題產生的方法’主要係確保所有裂缝皆填 滿鎳而未存在有液體’藉此將可避免在爐中的預熱區重熔 時有液體被蒸發。This may cause problems with tin splash or solder balls when the printed circuit board is subjected to infrared slashing techniques (as shown in Figures 1 and 2). When the plating solution remaining in the crack of the electrode is at the remelting temperature, it will boil and splatter from the crack of the electrode, causing the solder particles to spread over the board and causing tin splash (or solder ball). The method of producing the above problems is mainly to ensure that all the cracks are filled with nickel and no liquid is present, whereby the liquid can be prevented from being evaporated when the preheating zone in the furnace is remelted. 有數個缺陷做法會導致,,錫喷濺問題”,故辨識出發 生的根本原因是非常重要。 否則單單只疋藉由某些製程的交互作用以進行政善卻 沒有暸解真正原因,將會使得相同的問題在大量生產時再 次發生。 有三種典塑的原因會導致錫噴濺,電鍍溶液殘留在電 極孔洞或裂縫内、因電極不平整而造成之電鍍溶液的殘留 或因化學侵钮造成電鍍溶液留在裂縫中。 8There are several flaws that can cause, tin splashing problems, so it is very important to identify the root cause of the occurrence. Otherwise, only by the interaction of some processes to carry out the political but not the real reason, will make the same The problem occurs again in mass production. There are three reasons for the tin splash, the plating solution remains in the electrode holes or cracks, the plating solution remains due to the unevenness of the electrode, or the plating solution is caused by the chemical attack button. Stay in the crack. 8
TW96111177A 2007-03-30 2007-03-30 Periodic pulse reverse current electroplating process TW200839039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96111177A TW200839039A (en) 2007-03-30 2007-03-30 Periodic pulse reverse current electroplating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96111177A TW200839039A (en) 2007-03-30 2007-03-30 Periodic pulse reverse current electroplating process

Publications (1)

Publication Number Publication Date
TW200839039A true TW200839039A (en) 2008-10-01

Family

ID=44820694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96111177A TW200839039A (en) 2007-03-30 2007-03-30 Periodic pulse reverse current electroplating process

Country Status (1)

Country Link
TW (1) TW200839039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793054A (en) * 2018-07-05 2018-11-13 南京工业职业技术学院 A kind of micro-nano electrode preparation facilities and preparation method based on bidirectional pulse power supply
CN110699725A (en) * 2019-11-21 2020-01-17 上海江南轧辊有限公司 In-liquid discharge deposition system and use method thereof
CN113046805A (en) * 2021-03-16 2021-06-29 元六鸿远(苏州)电子科技有限公司 Surface treatment method for coating thickness homogenization of single-layer ceramic capacitor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108793054A (en) * 2018-07-05 2018-11-13 南京工业职业技术学院 A kind of micro-nano electrode preparation facilities and preparation method based on bidirectional pulse power supply
CN108793054B (en) * 2018-07-05 2023-11-07 南京工业职业技术学院 Micro-nano electrode preparation device and preparation method based on bidirectional pulse power supply
CN110699725A (en) * 2019-11-21 2020-01-17 上海江南轧辊有限公司 In-liquid discharge deposition system and use method thereof
CN113046805A (en) * 2021-03-16 2021-06-29 元六鸿远(苏州)电子科技有限公司 Surface treatment method for coating thickness homogenization of single-layer ceramic capacitor substrate

Similar Documents

Publication Publication Date Title
Isakhani-Zakaria et al. Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
CN103261479B (en) The material of nanometer lamination brass alloys and electrochemical deposition method thereof
Arganaraz et al. Ni–W coatings electrodeposited on carbon steel: Chemical composition, mechanical properties and corrosion resistance
Fei et al. Electrodeposition of Zn–Co alloys with pulse containing reverse current
CN105063699B (en) A kind of nickel plating copper material and its preparation method and application
TW201241240A (en) Non-metallic coating and method of its production
Elias et al. Development of nanolaminated multilayer Ni–P alloy coatings for better corrosion protection
WO2007082112A2 (en) Tin and tin alloy electroplating method with controlled internal stress and grain size of the resulting deposit
Silkin et al. Electrodeposition of alloys of the iron group metals with tungsten from citrate and gluconate solutions: Size effect of microhardness
Balasubramanian et al. Effect of pulse parameter on pulsed electrodeposition of copper on stainless steel
JP2014224321A (en) Electrolytic copper foil and method for producing the electrolytic copper foil
Shanthi et al. The effect of pulse parameters in electro deposition of silver alloy
TW200839039A (en) Periodic pulse reverse current electroplating process
Yogesha et al. Optimization of bright zinc-nickel alloy bath for better corrosion resistance
Bhat et al. Development of nano-structured cyclic multilayer Zn-Ni alloy coatings using triangular current pulses
Bhat et al. Production of layer by layer Zn–Fe compositional multilayer alloy coatings using triangular current pulses for better corrosion protection
Bellige et al. Electrodeposition of Cu-Ni coatings for marine protection of mild steel
Zemanová et al. Pulse nickel electrolytic colouring process of anodised aluminium
Choi et al. Microstructural observation and wear properties of thin chrome layers prepared by pulse plating
JP2011208175A (en) Method for producing plated article, and plated article
Takaloo et al. A mechanism of nickel deposition on titanium substrate by high speed electroplating
Kalaivani et al. Pulse reverse plating of silver on silver alloy
Rao et al. Nanofabricated multilayer coatings of Zn-Ni alloy for better corrosion protection
Ohsaka et al. Electroplating of iridium–cobalt alloy