JP2015163732A - 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物 - Google Patents

歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物 Download PDF

Info

Publication number
JP2015163732A
JP2015163732A JP2014208338A JP2014208338A JP2015163732A JP 2015163732 A JP2015163732 A JP 2015163732A JP 2014208338 A JP2014208338 A JP 2014208338A JP 2014208338 A JP2014208338 A JP 2014208338A JP 2015163732 A JP2015163732 A JP 2015163732A
Authority
JP
Japan
Prior art keywords
mass
blank material
dental
cutting
metal frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208338A
Other languages
English (en)
Other versions
JP6492512B2 (ja
Inventor
中村 英文
Hidefumi Nakamura
英文 中村
貴之 田村
Takayuki Tamura
貴之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014208338A priority Critical patent/JP6492512B2/ja
Priority to CN201510038206.8A priority patent/CN104818410B/zh
Priority to EP15153311.4A priority patent/EP2902513A1/en
Priority to US14/609,861 priority patent/US9655698B2/en
Publication of JP2015163732A publication Critical patent/JP2015163732A/ja
Application granted granted Critical
Publication of JP6492512B2 publication Critical patent/JP6492512B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0006Production methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • A61C13/0835Ceramic coating on metallic body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/84Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dental Preparations (AREA)
  • Powder Metallurgy (AREA)
  • Dental Prosthetics (AREA)

Abstract

【課題】被削性に優れた歯科用の被切削加工用ブランク材、かかる被切削加工用ブランク材を製造可能な粉末冶金用金属粉末、陶材の密着性に優れた歯科用の陶材焼付用メタルフレーム、および信頼性の高い歯科用補綴物を提供すること。
【解決手段】歯科用の被切削加工用ブランク材1は、歯科用CAD/CAMシステムに供され、切削加工によって患部に適した形状のメタルフレームを削り出すための被加工物であって、Coが主成分であり、Crが26質量%以上35質量%以下の割合で含まれ、Moが5質量%以上12質量%以下の割合で含まれ、Siが0.3質量%以上2.0質量%以下の割合で含まれ、Nが0.09質量%以上0.5質量%以下の割合で含まれ、金属粉末の焼結体で構成されている。また、Siのうちの一部は酸化ケイ素として含まれており、Siのうち酸化ケイ素として含まれるSiの比率は、10質量%以上90質量%以下であるのが好ましい。
【選択図】図1

Description

本発明は、歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物に関するものである。
歯科治療において歯冠欠損部や歯牙欠損部を補綴する際には、クラウンやブリッジあるいは義歯を用いることが多い。このうち、審美性や機能性の観点から、メタルフレームの表面に陶材と呼ばれるセラミックス材料を焼き付けた歯科用補綴物が用いられる。
特許文献1には、Au、Pd、Cu、Ir、Ag等の金属元素に、Sn、Ga、In等の金属元素を加えた、貴金属系の金属フレーム用合金が開示されている。この合金は、鋳造法により所望の形状に成形することができるため、この合金で構成された金属フレームの表面に歯冠修復用陶材を焼き付けることにより、審美性に優れた歯科用補綴物を得ることができる。
一方、最近では、患部の立体的形状を計測し、得られた形状データに基づいてメタルフレームを形成する方法が普及しつつある。このような仕組みは、歯科用CAD/CAMシステムと呼ばれている。CAD(computer aided design)は、患部の立体的形状を3Dスキャナー等によって取得し、数値化するシステムである。また、CAM(computer aided manufacturing)は、CADで生成された数値データに基づいて、被加工物に切削加工を施し、患部に適した形状のメタルフレームを削り出すシステムである。これらのシステムを組み合わせた歯科用CAD/CAMシステムは、従来、歯科技工士の技量に頼らざるを得なかった高い寸法精度を容易に実現することができるため、患部への適合性に優れたメタルフレームを効率よく形成することができる点でさらなる普及が期待されている(例えば、特許文献2参照。)。
歯科用CAD/CAMシステムに供される被加工物は、一般に「ブランク材」と呼ばれる。ブランク材には、審美性、生体への適合性、化学的安定性、耐摩耗性といったメタルフレームに必要な特性を備えていることに加え、被削性を備えていることが要求される。被削性は、良好な切削加工を施すことができる性質であり、被削性が良好なブランク材を用いることにより、CADで生成された数値データに基づき、目的とする形状が正確に再現されたメタルフレームをCAMによって効率よく削り出すことができる。
特許文献1に記載された合金は、鋳造法には適した合金であるものの、被削性に劣るという課題を抱えている。ブランク材の被削性が低い場合、意図した加工を行うことができず、加工後の形状と目的とする形状との間にずれが生じることになる。その結果、形状の修正のために二次加工を施す手間がかかったり、患部への適合性が低いため、患者が違和感を感じたりするといった不具合を招くこととなる。
特開平11−1738号公報 特開2007−215854号公報
本発明の目的は、被削性に優れた歯科用の被切削加工用ブランク材、かかる被切削加工用ブランク材を製造可能な粉末冶金用金属粉末、陶材の密着性に優れた歯科用の陶材焼付用メタルフレーム、および信頼性の高い歯科用補綴物を提供することにある。
上記目的は、下記の本発明により達成される。
本発明の歯科用の被切削加工用ブランク材は、Coが主成分であり、
Crが26質量%以上35質量%以下の割合で含まれ、
Moが5質量%以上12質量%以下の割合で含まれ、
Siが0.3質量%以上2.0質量%以下の割合で含まれ、
Nが0.09質量%以上0.5質量%以下の割合で含まれ、
金属粉末の焼結体で構成されていることを特徴とする。
これにより、焼結体特有の構造になるため、被削性に優れた歯科用の被切削加工用ブランク材が得られる。
本発明の歯科用の被切削加工用ブランク材では、当該被切削加工用ブランク材の断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部としたとき、
前記内層部におけるN濃度が、前記表層部におけるN濃度の50%以上200%以下であることが好ましい。
これにより、内層部と表層部とで物性が近くなるので、歯科用の被切削加工用ブランク材に切削加工を施すとき、切削の途中で被削性が変化することが抑制される。このため、削り出されるメタルフレームの寸法精度が低下し難くなる。また、メタルフレームの機械的特性が部分的に異なるのを抑制することができる。
本発明の歯科用の被切削加工用ブランク材では、当該被切削加工用ブランク材の断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部としたとき、
前記内層部におけるビッカース硬度が、前記表層部におけるビッカース硬度の67%以上150%以下であることが好ましい。
これにより、内層部と表層部とで硬度が近くなるので、歯科用の被切削加工用ブランク材に切削加工を施すとき、切削の途中で被削性が変化することが抑制される。このため、削り出されるメタルフレームの寸法精度が低下し難くなる。
本発明の歯科用の被切削加工用ブランク材では、前記内層部のビッカース硬度が200以上480以下であることが好ましい。
これにより、噛む力に対しても十分な耐変形性を有するメタルフレームを製造可能なブランク材が得られる。また、切削抵抗が比較的小さくなるため、被削性に優れたものとなり、目的とする形状、寸法のメタルフレームを効率よく削り出すことのできるブランク材が得られる。
本発明の歯科用の被切削加工用ブランク材では、前記Siの含有率に対する前記Nの含有率の割合は、0.1以上0.8以下であることが好ましい。
これにより、高い機械的特性と高い被削性とを両立させることができる。すなわち、Siが一定量添加されることにより、被削性が高くなる一方、Siの添加量が多過ぎると、ブランク材の機械的特性が低下するおそれがある。そこで、前記範囲内の割合でNが添加されると、Siを添加したことによる高い被削性と、Nを添加したことによる効果を、それぞれ互いに相殺することなく発揮させることができるので、被削性の相乗的な向上を図ることができる。しかも、Siが固溶したことによる結晶構造の歪みが、Nが固溶することによって抑えられると考えられるため、機械的特性の低下が防止されると考えられる。また、Siが添加されると、結晶構造に歪みが生じるが、この状態では熱膨張および熱収縮の挙動に大きなヒステリシスが生じ易くなる。熱膨張および熱収縮の挙動に大きなヒステリシスがあると、経時的にブランク材の熱的特性が変化してしまうおそれがある。これに対し、前述した割合でNが添加されていることにより、Nが結晶構造中に侵入して固溶することにより、結晶構造の歪みが抑制される。その結果、熱膨張および熱収縮の挙動におけるヒステリシスが抑えられ、ブランク材の熱的特性の安定化を図ることができる。
本発明の歯科用の被切削加工用ブランク材では、前記Siのうちの一部は酸化ケイ素として含まれており、
前記Siのうちの前記酸化ケイ素として含まれるSiの比率は、10質量%以上90質量%以下であることが好ましい。
これにより、高い被削性、メタルフレームの高い機械的特性、陶材の高い密着性といった効果がもたらされる一方、酸化ケイ素が一定量存在していることにより、このブランク材に含まれるCo、Cr、Moといった遷移金属元素の酸化物量を十分に抑えることができる。その結果、より信頼性の高い歯科用補綴物の実現が図られる。
本発明の歯科用の被切削加工用ブランク材では、前記酸化ケイ素は、前記焼結体の粒界に偏析していることが好ましい。
これにより、金属結晶の肥大化がより確実に抑制されることとなり、より機械的特性に優れたメタルフレームを削り出すことが可能なブランク材が得られる。また、粒界に偏析した酸化ケイ素の析出物同士は、自ずと適度な距離を保つことになるため、ブランク材中において酸化ケイ素の析出物をより均一に分散させることができる。その結果、より均質なブランク材を得ることができる。
本発明の歯科用の被切削加工用ブランク材では、CuKα線を用いたX線回折法により得られたX線回折パターンにおいて、ICDDカードに基づいて同定されたCoに起因するピークのうち最も高いピークの高さを1としたとき、ICDDカードに基づいて同定されたCoMoに起因するピークのうち最も高いピークの高さの比率は、0.01以上0.5以下であることが好ましい。
これにより、メタルフレームの硬度が低下するのを防止し、噛む力によって変形し難い歯科用補綴物を製造可能であるとともに、引張強さ、耐力および伸びの低下が抑えられたブランク材が得られる。
本発明の歯科用の被切削加工用ブランク材では、当該歯科用の被切削加工用ブランク材の0.2%耐力が450MPa以上であり、伸びが2%以上であり、ヤング率が150GPa以上であることが好ましい。
これにより、耐久性に優れたメタルフレームを製造可能なブランク材が得られる。
本発明の粉末冶金用金属粉末は、Coが主成分であり、
Crが26質量%以上35質量%以下の割合で含まれ、
Moが5質量%以上12質量%以下の割合で含まれ、
Siが0.3質量%以上2.0質量%以下の割合で含まれ、
Nが0.09質量%以上0.5質量%以下の割合で含まれ、
歯科用の被切削加工用ブランク材の製造に用いられることを特徴とする。
これにより、被削性に優れた歯科用の被切削加工用ブランク材を製造可能な粉末冶金用金属粉末が得られる。
本発明の歯科用の陶材焼付用メタルフレームは、Coが主成分であり、
Crが26質量%以上35質量%以下の割合で含まれ、
Moが5質量%以上12質量%以下の割合で含まれ、
Siが0.3質量%以上2.0質量%以下の割合で含まれ、
Nが0.09質量%以上0.5質量%以下の割合で含まれ、
金属粉末の焼結体で構成されている歯科用の被切削加工用ブランク材から削り出されたことを特徴とする。
これにより、陶材の密着性に優れた歯科用の陶材焼付用メタルフレームが得られる。
本発明の歯科用補綴物は、本発明の歯科用の陶材焼付用メタルフレームと、
前記歯科用の陶材焼付用メタルフレームの表面に設けられた陶材層と、
を有することを特徴とする。
これにより、歯科用の陶材焼付用メタルフレームと陶材層とが強く密着した信頼性の高い歯科用補綴物が得られる。
本発明の歯科用補綴物では、前記陶材層は、アルミナを含むものであり、
前記歯科用の陶材焼付用メタルフレームと前記陶材層との間に位置するムライト相をさらに有することが好ましい。
これにより、ムライト相を介して陶材層とメタルフレームとが強固に密着し、陶材層が剥離し難く、信頼性の高い歯科用補綴物が得られる。また、ムライト相が生じることにより、焼付処理の際に、メタルフレームに対するセラミックス材料の濡れ性が向上すると考えられる。このため、かかる観点からも、陶材層の密着性が高まると考えられる。
本発明の歯科用の被切削加工用ブランク材の実施形態を示す斜視図である。 図1に示す歯科用の被切削加工用ブランク材の縦断面図である。 本発明の歯科用の被切削加工用ブランク材の電子線マイクロアナライザーによるSiの組成像の一例である。 図4(a)は、本発明の歯科用の被切削加工用ブランク材についての観察像の一例であり、図4(b)は、従来の歯科用の被切削加工用ブランク材についての観察像の一例である。 本発明の歯科用の被切削加工用ブランク材の切削抵抗を測定する方法を説明するための図である。 本発明の歯科用の被切削加工用ブランク材の切削抵抗を測定する際、ブランク材に対して加工ツールを走査する軌跡を示す図である。 図1に示すブランク材に対し、本発明の歯科用の陶材焼付用メタルフレームの実施形態を削り出す加工を施した後の状態を示す斜視図である。 図7のA−A線断面図である。 本発明の歯科用の陶材焼付用メタルフレームの実施形態を示す縦断面図である。 本発明の歯科用補綴物の実施形態を示す縦断面図である。 各サンプルNo.30〜36の歯科用の被切削加工用ブランク材におけるN濃度と表層部および内層部のビッカース硬度との関係性を示すグラフである。
以下、本発明の歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物について、添付図面に示す好適実施形態に基づいて詳細に説明する。
[歯科用の被切削加工用ブランク材]
まず、本発明の歯科用の被切削加工用ブランク材の実施形態について説明する。
図1は、本発明の歯科用の被切削加工用ブランク材の実施形態を示す斜視図、図2は、図1に示す歯科用の被切削加工用ブランク材の縦断面図である。
図1に示す歯科用の被切削加工用ブランク材1(以下、省略して「ブランク材1」ともいう。)は、切削加工に供されることにより、所望の形状の歯科用金属部品を削り出すために用いられる部材である。歯科用の被切削加工用ブランク材は、前述のように歯科用CAD/CAMシステムに供されてCAMによって加工される「CAD/CAMブランク材」や「歯科用ミルブランク」を含むものである。歯科用金属部品は、口腔内に一時的あるいは半永久的に留置される金属部品であれば、特に限定されないものの、以下の説明では、メタルフレームを削り出す場合について説明する。
図1、2に示すブランク材1は、円盤状、すなわち直径に比べて高さが小さい円柱状をなしており、その上面11および下面12は、それぞれ互いに平行な平坦面になっている。本発明の歯科用の被切削加工用ブランク材の形状は、かかる円盤状に限定されず、いかなる形状であってもよい。例えば、直方体、立方体、球状、多角形柱状等の形状であってもよい。
図1、2に示すブランク材1の上面11および下面12の直径は、特に限定されるものではないが、一例として30mm以上500mm以下程度とされる。また、ブランク材1の厚さも、直径に応じて適宜設定されるものの、一例として3mm以上50mm以下程度とされ、好ましくは10mm以上40mm以下程度とされる。
このようなブランク材1は、Co−Cr−Mo−Si−N系の合金で構成されている。
具体的には、ブランク材1を構成する合金は、Coが主成分であり、Crを26質量%以上35質量%以下の割合で含み、Moを5質量%以上12質量%以下の割合で含み、Siを0.3質量%以上2.0質量%以下の割合で含み、Nが0.09質量%以上0.5質量%以下の割合で含むものである。
このような合金で構成されたブランク材1は、生体への適合性や化学的安定性を有するとともに、優れた被削性を有する。このため、ブランク材1に切削加工を施してメタルフレームを削り出すとき、切削屑が滑らかに排出されるとともに、切削面の粗さも十分に小さいものとなり、長時間にわたって安定した切削加工を続けることができる。また、切削工具の欠損や摩耗も最小限に抑えることができる。その結果、切削加工における切削量が狙い通りのものとなり、削り出されるメタルフレームについて設計通りの寸法や形状にすることができる。
そして、このようなメタルフレームは、患部に対して少ない違和感で装着可能なものとなり、患者への負担を最小限に抑えられるとともに、陶材を焼き付けた際の高い密着性と高い審美性を実現可能なものとなる。
ここで、この合金を構成する元素のうち、Co(コバルト)は、ブランク材1を構成する合金の主成分であり、ブランク材1の基本的な特性に大きな影響を及ぼす。
Coの含有率は、この合金を構成する元素の中で最も高くなるよう設定され、具体的には50質量%以上67.5質量%以下であるのが好ましく、55質量%以上67質量%以下であるのがより好ましい。
Cr(クロム)は、主にブランク材1の耐食性を向上させるよう作用する。これは、Crの添加によって合金に不働態被膜(Cr等)が形成され易くなり、化学的安定性が向上するためと考えられる。耐食性の向上によって、例えば体液と接触した場合でも金属イオンが溶出し難くなるといった効果が期待される。したがって、Crを含む合金で構成されたブランク材1は、より生体への適合性に優れたメタルフレームを削り出すことができるものであるといえる。また、CrがCoやMo、Siとともに用いられることで、メタルフレームの機械的特性を高めることができる。
ブランク材1を構成する合金におけるCrの含有率は、26質量%以上35質量%以下とされる。Crの含有率が前記下限値を下回ると、ブランク材1から削り出されるメタルフレームの耐食性が低下する。このため、メタルフレームが長期にわたって体液と接触した場合には、金属イオンの溶出が生じるおそれがある。一方、Crの含有率が前記上限値を上回ると、MoやSiに対するCrの量が相対的に多くなり過ぎて被削性が低下するおそれがある。また、CoやMo、Siとのバランスが崩れて機械的特性が低下する。
なお、Crの含有率は、好ましくは27質量%以上34質量%以下とされ、より好ましくは28質量%以上33質量%以下とされる。
Mo(モリブデン)は、主にブランク材1の耐食性を高めるよう作用する。すなわち、Moの添加によってCrの添加による耐食性をより強化することができる。これは、Moを添加することにより、Crの酸化物を主材料とする不働態被膜がより緻密化されるためであると考えられる。したがって、Moが添加された合金は、さらに金属イオンが溶出し難くなり、生体への適合性が特に高いメタルフレームの実現に寄与する。
ブランク材1を構成する合金におけるMoの含有率は、5質量%以上12質量%以下とされる。Moの含有率が前記下限値を下回ると、ブランク材1から削り出されるメタルフレームの耐食性が不十分になるおそれがある。一方、Moの含有率が前記上限値を上回ると、CrやSiに対するMoの量が相対的に多くなり過ぎて被削性が低下するおそれがある。
なお、Moの含有率は、好ましくは5.5質量%以上11質量%以下とされ、より好ましくは6質量%以上9質量%以下とされる。
また、Si(ケイ素)は、主にブランク材1の被削性を高めるよう作用する。Siの添加によってブランク材1中には、Siの一部が酸化した酸化ケイ素が生成される。酸化ケイ素としては、SiO、SiO等が挙げられる。このような酸化ケイ素がブランク材1中に生じると、その部位で金属結晶が分断されることになる。したがって、酸化ケイ素周辺では、局所的にブランク材1の構造が不連続になっていると思われる。このような状態のブランク材1に対して切削工具を用いた切削加工を施すと、切削工具の先端から発生する切削屑がブランク材1の本体から離れる際、酸化ケイ素が起点となって離れ易くなると考えられる。その結果、切削抵抗が減少し、ブランク材1の被削性が高まると考えられる。
その一方、Siは、ブランク材1から削り出されるメタルフレームの機械的特性を高める方向にも作用する。上述した酸化ケイ素は、ブランク材1の製造時において金属結晶が成長する際に、金属結晶が著しく肥大化するのを抑制する。このため、Siが添加された合金では、金属結晶の粒径が小さく抑えられることとなり、メタルフレームの機械的特性をより高めることができる。
したがって、Siを添加することにより、ブランク材1の被削性と、ブランク材1から削り出されるメタルフレームの機械的特性とを両立することができる。
さらには、Siが添加されることにより、ブランク材1から削り出されるメタルフレームに対する陶材の密着性が向上する。このため、メタルフレームの表面を覆うように陶材層を設けたとき、陶材層の剥離が抑制され、信頼性の高い歯科用補綴物が得られる。
また、上述したような効果が得られるためには、Siの含有率を0.3質量%以上2.0質量%以下に設定する必要がある。Siの含有率が前記下限値を下回ると、酸化ケイ素の量も少なくなるため、切削抵抗が増加し、ブランク材1の被削性が低下するとともに、ブランク材1の製造時において金属結晶が肥大し易くなるため、ブランク材1から削り出されるメタルフレームの機械的特性も低下する可能性が高くなる。また、メタルフレームに対する陶材の密着性も不十分になるため、歯科用補綴物において陶材層の剥離等の不具合が発生し易くなる。一方、Siの含有率が前記上限値を上回ると、ブランク材1中に存在する酸化ケイ素の量が多くなり過ぎて、酸化ケイ素が空間的に連続して分布する領域が生じ易くなる。この領域では、一定の大きさでブランク材1の構造が不連続になっているため、ブランク材1に外力が加わったときにこの領域が破壊の起点となり易い。このため、ブランク材1の機械的特性が低下することとなる。
なお、Siの含有率は、好ましくは0.5質量%以上1.0質量%以下とされ、より好ましくは0.6質量%以上0.9質量%以下とされる。
また、Siのうちの一部は、前述したように酸化ケイ素の状態で存在していることが好ましいが、その存在量は、Siの全量に対して酸化ケイ素として含まれるSiの比率が10質量%以上90質量%以下であるのが好ましく、20質量%以上80質量%以下であるのがより好ましく、30質量%以上70質量%以下であるのがさらに好ましく、35質量%以上65質量%以下であるのが特に好ましい。全Siのうちの酸化ケイ素として含まれるSiの比率を前記範囲内に設定することで、ブランク材1には、上述したような被削性、メタルフレームの機械的特性、陶材の密着性といった効果がもたらされる一方、酸化ケイ素が一定量存在していることにより、このブランク材1に含まれるCo、Cr、Moといった遷移金属元素の酸化物量を十分に抑えることができる。これらはすなわち、Siが、Co、CrおよびMoよりも酸化し易く、これらの遷移金属元素に結合している酸素をSiが奪うことによって還元反応を生じさせることから、Siの全量が酸化ケイ素でないということは、遷移金属元素に対して十分な還元反応を生じさせたことに等しいと考えられるからである。したがって、Siのうちの酸化ケイ素として含まれるSiの比率を前記範囲内に設定することで、ブランク材1では、上述したような高い被削性、メタルフレームの高い機械的特性、陶材の高い密着性といった効果が、Co、CrまたはMoの酸化物によって阻害されることが抑制される。その結果、より信頼性の高い歯科用補綴物の実現が図られる。
また、Siのうちの酸化ケイ素として含まれるSiの比率を前記範囲内に設定することで、ブランク材1に対して適度な硬度が与えられることとなる。すなわち、酸化ケイ素でないSiが一定量存在することにより、Co、CrおよびMoのうちの少なくとも1種とSiとが硬質の金属間化合物を生成し、これがブランク材1の硬度を高めると考えられる。ブランク材1の硬度が高くなることで、ブランク材1から削り出されるメタルフレームの硬度も高くなるため、このメタルフレームを含む歯科用補綴物は、患部に装着後、噛む力によって変形し難いものとなり、信頼性の高いものとなる。換言すれば、Siを添加することにより、金属結晶の著しい成長は阻害されるので、その観点から言えばブランク材1の硬度は低下する傾向にあるものの、一部のSiが金属間化合物を生成することにより、この硬度が著しく低下することが抑えられ、歯科用補綴物としての信頼性を確保することができる。
この金属間化合物としては、特に限定されないが、一例を挙げると、CoSi、CrSi、MoSi、MoSi等が挙げられる。
なお、Siの全量に対して酸化ケイ素として含まれるSiの比率は、重量法とICP発光分光法とを用いて求めることができる。
また、金属間化合物の析出量を考慮すると、Moの含有率に対するSiの含有率の割合(Si/Mo)は、質量比で0.05以上0.2以下であるのが好ましく、0.08以上0.15以下であるのがより好ましい。これにより、ブランク材1の被削性が著しく低下するのを抑制しつつ、信頼性の高い歯科用補綴物を製造し得るブランク材1が得られる。
また、酸化ケイ素は、いかなる位置に分布していてもよいが、粒界(金属結晶同士の界面)に偏析するように分布しているのが好ましい。酸化ケイ素がこのような位置に偏析していることで、金属結晶の肥大化がより確実に抑制されることとなり、より機械的特性に優れたメタルフレームを削り出すことが可能なブランク材1が得られる。また、粒界に偏析した酸化ケイ素の析出物同士は、自ずと適度な距離を保つことになるため、ブランク材1中において酸化ケイ素の析出物をより均一に分散させることができる。その結果、より均質なブランク材1を得ることができる。
このようなブランク材1は、そこから複数個のメタルフレームを削り出した場合でも、メタルフレーム同士で特性の個体差を最小限に抑えることに寄与する。
また、偏析した酸化ケイ素の析出物については、定性分析の面分析により、その大きさや分布等を特定することができる。具体的には、電子線マイクロアナライザー(EPMA)によるSiの組成像において、Siが偏析している領域の平均径は0.1μm以上10μm以下であるのが好ましく、0.3μm以上8μm以下であるのがより好ましい。Siが偏析している領域の平均径が前記範囲内であれば、酸化ケイ素の析出物の大きさが前述したような各効果を奏するにあたって最適なものとなる。すなわち、Siが偏析している領域の平均径が前記下限値を下回ると、酸化ケイ素の析出物が十分な大きさに偏析しておらず、前記各効果が十分に得られないおそれがあり、一方、Siが偏析している領域の平均径が前記上限値を上回ると、ブランク材1の機械的特性が低下するおそれがある。
なお、Siが偏析している領域の平均径は、Siの組成像において、Siが偏析している領域の面積と同じ面積を持つ円の直径(投影面積円相当径)の平均値として求めることができる。また、Siが偏析している領域の平均径は、Siが偏析している領域100個以上についての測定値の平均値として求められる。
図3は、本発明の歯科用の被切削加工用ブランク材の電子線マイクロアナライザーによるSiの組成像の一例である。
この組成像から明らかなように、本発明の歯科用の被切削加工用ブランク材では、Siが局所的に凝集しつつ、その凝集物(図3の淡色部)が分散していることが認められる。これは、酸化ケイ素が粒界に偏析していることを示唆しているものと考えられる。
また、ブランク材1は、主にCoで構成された第1相と、主にCoMoで構成された第2相と、を含んでいる。このうち、第2相が含まれていることにより、前述したSiを含む金属間化合物と同様、メタルフレームに適度な硬度を付与するため、歯科用補綴物の信頼性向上の観点から有用なブランク材1が得られる。一方、第2相が過剰に含まれている場合、それが偏析し易くなり、引張強さ、耐力、伸びといった機械的特性の低下を招くこととなる。
したがって、第1相と第2相は、上記の観点から適度な比率で含まれていることが好ましい。具体的には、ブランク材1について、CuKα線を用いたX線回折法による結晶構造解析を行い、Coに起因するピークのうち最も高いピークの高さを1としたとき、CoMoに起因するピークのうち最も高いピークの高さは0.01以上0.5以下であるのが好ましく、0.02以上0.4以下であるのがより好ましい。
また、Coの前記ピークの高さを1としたときのCoMoの前記ピークの高さの比率が前記下限値を下回ると、ブランク材1中においてCoに対するCoMoの比率が低下するので、メタルフレームの硬度が低下し、噛む力によって変形し易い歯科用補綴物になるおそれがある。一方、CoMoの前記ピークの高さの比率が前記上限値を上回ると、CoMoの存在量が過剰になり、CoMoが偏析し易くなって、引張強さおよび耐力が低下するとともに、伸びも低下するおそれがある。
なお、CuKα線は、通常、エネルギーが8.048keVの特性X線である。
また、Coに起因するピークを同定するにあたっては、ICDD(The International Centre for Diffraction Data)カードのCoのデータベースに基づいて同定される。同様に、CoMoに起因するピークを同定するにあたっては、ICDDカードのCoMoのデータベースに基づいて同定される。
また、ブランク材1においてCoMoの存在比率が0.01質量%以上10質量%以下であるのが好ましく、0.05質量%以上5質量%以下であるのがより好ましい。これにより、適度な硬度、引張強さ、耐力および伸びを有するメタルフレームが得られ、噛む力によって変形し難い歯科用補綴物が得られる。
なお、これらの存在比率は、結晶構造解析の結果からCoMoの存在比率を定量化することにより求められる。
また、N(窒素)は、主にブランク材1の機械的特性を高めるよう作用する。Nはオーステナイト化元素であるので、ブランク材1の結晶構造のオーステナイト化を促進し、ブランク材1の硬度の上昇を抑えるとともに、靭性を高めるように作用する。
また、Nを含むことにより、金属粉末の焼結体で構成されたブランク材1は、デンドライト相の生成が抑えられ、デンドライト相の含有率が非常に小さいものとなる。このような観点からも、ブランク材1の硬度の上昇を抑えるとともに、靭性を高めることができる。
そして、Nを含むブランク材1は、上述したように、適度な硬度を有するとともに、靭性が高く、かつ、デンドライト相の含有率が小さいものとなる。このため、かかるブランク材1は、被削性が高いものとなり、寸法精度の高いメタルフレームを効率よく削り出すことが可能なものとなる。
ここで、デンドライト相は、樹枝状に成長した結晶組織のことであるが、このようなデンドライト相が多量に含まれるとブランク材1の被削性が低下する。したがって、デンドライト相の含有率を小さくすることは、ブランク材1の被削性を高めるにあたって有効である。具体的には、ブランク材1を走査型電子顕微鏡で観察し、得られた観察像においてデンドライト相が占める面積率が20%以下であるのが好ましく、10%以下であるのがより好ましい。このような条件を満足するブランク材1は、機械的特性や被削性において特に優れたものとなる。
また、ブランク材1は、前述したように金属粉末の焼結体で構成されている。金属粉末は、各粒子の体積が非常に小さいため、冷却速度が高く、冷却の均一性も高い。このため、このような金属粉末の焼結体で構成されたブランク材1では、デンドライト相の生成が抑えられている。一方、鋳造等の従来法では、溶融金属をブランク材の形状をした型に流し込むため、冷却すべき体積が非常に大きい。このため、冷却速度が低く、冷却の均一性も低い。その結果、このような方法で製造されたブランク材には、デンドライト相が多量に生成すると考えられる。
なお、上述した面積率は、観察像の面積に対するデンドライト相が占める面積の割合として算出され、観察像の一辺は50μm以上1000μm以下程度に設定される。
上述したような効果が得られるためには、Nの含有率を0.09質量%以上0.5質量%以下に設定する必要がある。Nの含有率が前記下限値を下回ると、ブランク材1の結晶構造のオーステナイト化が不十分になり、このため、ブランク材1の硬度が非常に高くなり、靭性も低下する。このため、ブランク材1の被削性および機械的特性が低下する。これは、ブランク材1中にオーステナイト相(γ相)の他に、hcp構造(ε相)が多く析出するためであると考えられる。一方、Nの含有率が前記上限値を上回ると、各種の窒化物が多量に生成されるとともに、焼結し難い組成になる。このため、ブランク材1の焼結密度が低下し、機械的特性が低下する。生成される窒化物としては、例えばCrN等が挙げられる。このような窒化物が析出すると、硬度も高くなるため、やはり靭性が低下することとなる。
なお、Nの含有率は、好ましくは0.12質量%以上0.4質量%以下とされ、より好ましくは0.14質量%以上0.25質量%以下とされ、さらに好ましくは0.15質量%以上0.22質量%以下とされる。
とりわけ0.15質量%以上0.22質量%の範囲内では、オーステナイト相が特に支配的となり、硬度の著しい低下、靭性の顕著な向上が認められる。このときのブランク材1をCrKα線を用いたX線回折法による結晶構造解析に供すると、オーステナイト相に起因する主ピークが非常に強く認められる一方、hcp構造に起因するピークおよびその他のピークは、いずれも主ピークの高さの5%以下になっている。このことからオーステナイト相が支配的であることが分かる。
一方、Siの含有率に対するNの含有率の割合(N/Si)は、質量比で0.1以上0.8以下であるのが好ましく、0.2以上0.6以下であるのがより好ましい。これにより、高い機械的特性と高い被削性とを両立させることができる。すなわち、Siが一定量添加されることにより、前述したように被削性が高くなる一方、Siの添加量が多過ぎると、ブランク材1の機械的特性が低下するおそれがある。そこで、前記範囲内の割合でNが添加されると、Siを添加したことによる高い被削性と、Nを添加したことによる上述した効果を、それぞれ互いに相殺することなく発揮させることができるので、被削性の相乗的な向上を図ることができる。これは、SiとCo等の金属元素とが置換型固溶体を生成するのに対し、NとCo等の金属元素とは侵入型固溶体を生成するため、互いに共存し得るからであると考えられる。しかも、Siが固溶したことによる結晶構造の歪みが、Nが固溶することによって抑えられると考えられる。このため、機械的特性の低下が防止されると考えられる。
また、Siが添加されると、上述したように結晶構造に歪みが生じるが、この状態では熱膨張および熱収縮の挙動に大きなヒステリシスが生じ易くなる。熱膨張および熱収縮の挙動に大きなヒステリシスがあると、経時的にブランク材1の熱的特性が変化してしまうおそれがある。
これに対し、前述した割合でNが添加されていることにより、Nが結晶構造中に侵入して固溶することにより、結晶構造の歪みが抑制される。その結果、熱膨張および熱収縮の挙動におけるヒステリシスが抑えられ、ブランク材1の熱的特性の安定化を図ることができる。
以上のことから、SiとNとが適度に添加されることによって、ブランク材1の被削性を高めるとともに、機械的特性の安定化および熱的特性の安定化をそれぞれ図ることができる。
なお、Siの含有率に対するNの含有率の割合が前記下限値を下回ると、結晶構造の歪みを十分に抑制することができず、靭性等が低下するおそれがある。一方、前記上限値を上回ると、焼結し難い組成になり、ブランク材1の焼結密度が低下し、機械的特性も低下するおそれがある。
また、ブランク材1を構成する合金は、上述したような各元素以外に、C(炭素)を含んでいてもよい。Cの添加によってブランク材1の硬度や引張強さがより高められるとともに、被削性もより高められる。被削性がより高くなる詳細な理由は明らかではないが、炭化物の生成によって切削抵抗の減少が図られることが理由の1つとして考えられる。さらに、CとCo等の金属元素とは侵入型固溶体を生成するので、Cが添加されても靭性の低下(脆性の増加)はほとんどないと考えられる。このため、一定の靭性を維持しつつ、被削性を高めることができる。
ブランク材1を構成する合金におけるCの含有率は、特に限定されないが、1.5質量%以下であるのが好ましく、0.7質量%以下であるのがより好ましい。Cの含有率が前記上限値を上回ると、ブランク材1の脆性が大きくなり、機械的特性が低下するおそれがある。
また、添加量の下限値は特に設定されないが、上述した効果が十分に発揮されるためには、下限値が0.05質量%程度に設定されるのが好ましい。
また、Cの含有率はSiの含有率の0.02倍以上0.5倍以下程度であるのが好ましく、0.05倍以上0.3倍以下程度であるのがより好ましい。Siに対するCの比率を前記範囲内に設定することにより、酸化ケイ素や炭化物がブランク材1の機械的特性に及ぼす悪影響を最小限に抑えつつ、被削性の向上において相乗的に作用すると考えられる。このため、とりわけ被削性に優れたブランク材1を得ることができる。
さらに、Nの含有率はCの含有率の0.3倍以上10倍以下程度であるのが好ましく、2倍以上8倍以下程度であるのがより好ましい。Cに対するNの比率を前記範囲内に設定することにより、Cの添加によるブランク材1の被削性の向上と、Nの添加によるブランク材1の機械的特性の向上とを、特に両立させることができる。
この他、ブランク材1を構成する合金には、上述したような各元素以外に、上述した効果を阻害しない範囲内で意図的に添加される微量な添加物や製造時において不可避的に生じる不純物の混入も許容される。その場合、添加物や不純物の合計の含有率は好ましくは1質量%以下とされ、より好ましくは0.5質量%以下とされ、さらに好ましくは0.2質量%以下とされる。このような添加物元素や不純物元素としては、例えば、Li、B、N、O、Na、Mg、Al、P、S、Mn、K、Ca、Sc、Ti、V、Co、Zn、Ga、Ge、Y、Pd、Ag、In、Sn、Sb、Hf、Ta、W、Os、Ir、Pt、Au、Bi等が挙げられる。
一方、ブランク材1を構成する合金は、実質的にNi(ニッケル)を含んでいないのが好ましい。Niは、従来のブランク材においては、塑性加工性を確保するために一定量含まれていることが多かったが、金属アレルギーの原因物質として扱われていることもあり、生体への影響が懸念されている元素でもある。ブランク材1を構成する合金には、製造時に不可避的に混入してしまうNiを除いて、構成元素としてのNiが添加されていない。このため、本発明に係るブランク材1から削り出されるメタルフレームは、金属アレルギーを発生させ難く、生体への適合性が特に高いものとなる。なお、本発明では、適量のSiが添加されることにより、Niが添加されていなくても十分な被削性を有するブランク材1を実現している。また、不可避的に混入する場合も考慮すると、Niの含有率は0.05質量%以下であるのが好ましく、0.03質量%以下であるのがより好ましい。
そして、ブランク材1を構成する合金のうち、上述したような各元素の残部がCoである。前述したように、Coの含有率は、ブランク材1を構成する合金に含まれる元素の中で最も高くなるよう設定される。
また、ブランク材1を構成する合金の各構成元素および組成比は、例えば、JIS G 1257(2000)に規定された鉄及び鋼−原子吸光分析法、JIS G 1258(2007)に規定された鉄及び鋼−ICP発光分光分析法、JIS G 1253(2002)に規定された鉄及び鋼−スパーク放電発光分光分析法、JIS G 1256(1997)に規定された鉄及び鋼−蛍光X線分析法、JIS G 1211〜G 1237に規定された重量・滴定・吸光光度法等により特定することができる。具体的には、SPECTRO社製固体発光分光分析装置(スパーク放電発光分光分析装置)、モデル:SPECTROLAB、タイプ:LAVMB08Aが挙げられる。
なお、JIS G 1211〜G 1237は、下記の通りである。
JIS G 1211(2011) 鉄及び鋼−炭素定量方法
JIS G 1212(1997) 鉄及び鋼−けい素定量方法
JIS G 1213(2001) 鉄及び鋼中のマンガン定量方法
JIS G 1214(1998) 鉄及び鋼−りん定量方法
JIS G 1215(2010) 鉄及び鋼−硫黄定量方法
JIS G 1216(1997) 鉄及び鋼−ニッケル定量方法
JIS G 1217(2005) 鉄及び鋼−クロム定量方法
JIS G 1218(1999) 鉄及び鋼−モリブデン定量方法
JIS G 1219(1997) 鉄及び鋼−銅定量方法
JIS G 1220(1994) 鉄及び鋼−タングステン定量方法
JIS G 1221(1998) 鉄及び鋼−バナジウム定量方法
JIS G 1222(1999) 鉄及び鋼−コバルト定量方法
JIS G 1223(1997) 鉄及び鋼−チタン定量方法
JIS G 1224(2001) 鉄及び鋼中のアルミニウム定量方法
JIS G 1225(2006) 鉄及び鋼−ひ素定量方法
JIS G 1226(1994) 鉄及び鋼−すず定量方法
JIS G 1227(1999) 鉄及び鋼中のほう素定量方法
JIS G 1228(2006) 鉄及び鋼−窒素定量方法
JIS G 1229(1994) 鋼−鉛定量方法
JIS G 1232(1980) 鋼中のジルコニウム定量方法
JIS G 1233(1994) 鋼−セレン定量方法
JIS G 1234(1981) 鋼中のテルル定量方法
JIS G 1235(1981) 鉄及び鋼中のアンチモン定量方法
JIS G 1236(1992) 鋼中のタンタル定量方法
JIS G 1237(1997) 鉄及び鋼−ニオブ定量方法
また、C(炭素)およびS(硫黄)の特定に際しては、特に、JIS G 1211(2011)に規定された酸素気流燃焼(高周波誘導加熱炉燃焼)−赤外線吸収法も用いられる。具体的には、LECO社製炭素・硫黄分析装置、CS−200が挙げられる。
さらに、N(窒素)およびO(酸素)の特定に際しては、特に、JIS G 1228(2006)に規定された鉄および鋼の窒素定量方法、JIS Z 2613(2006)に規定された金属材料の酸素定量方法も用いられる。具体的には、LECO社製酸素・窒素分析装置、TC−300/EF−300が挙げられる。
また、図1に示すブランク材1は、金属粉末の焼結体で構成されたもの、すなわち粉末冶金法で製造されたものである。このようなブランク材1は、例えば鋳造法で製造されたもの(溶製材)に比べて、硬度、引張強さ、耐力、伸びといった機械的特性に優れたものとなる。これは、粉末冶金法で製造されたブランク材1は、急冷して得られた金属粉末を用いて製造されたものである(体積が小さいため、急冷され易い)ため、鋳造法等に比べて金属結晶の著しい粒成長が生じ難く、そのため、肥大化した金属結晶が生成され難いという焼結体特有の特徴に基づくものであると考えられる。また、粉末冶金法によれば、組成が均質になり易いため、Siや酸化ケイ素の分布も均一になり易い。したがって、被削性も均質なブランク材1が得られる。
ブランク材1の製造に用いられる金属粉末(本発明の粉末冶金用金属粉末)としては、前述したような合金で構成された粉末が用いられる。その平均粒径は、3μm以上100μm以下であるのが好ましく、4μm以上80μm以下であるのがより好ましく、5μm以上60μm以下であるのがさらに好ましい。このような粒径の金属粉末を用いることにより、高密度で機械的特性が高く、かつ被削性に優れたブランク材1を製造することができる。
なお、平均粒径は、レーザー回折法により得られた粒度分布において、質量基準で小径側からの累積量が50%になるときの粒径として求められる。
また、金属粉末の平均粒径が前記下限値を下回った場合、粉末冶金における成形性が低下するため、ブランク材1の密度が低下し、メタルフレームの機械的特性が低下するおそれがある。一方、金属粉末の平均粒径が前記上限値を上回った場合、粉末冶金において金属粉末の充填性が低下するため、やはりブランク材1の密度が低下し、メタルフレームの機械的特性が低下するおそれがある。また、組成の均一性が損なわれ、ブランク材1の被削性が低下するおそれがある。
また、金属粉末の粒度分布は、できるだけ狭いのが好ましい。具体的には、金属粉末の平均粒径が前記範囲内であれば、最大粒径が200μm以下であるのが好ましく、150μm以下であるのがより好ましい。金属粉末の最大粒径を前記範囲内に制御することにより、金属粉末の粒度分布をより狭くすることができ、ブランク材1の機械的特性および被削性のさらなる向上を図ることができる。
なお、上記の最大粒径とは、レーザー回折法により得られた粒度分布において、質量基準で小径側からの累積量が99.9%となるときの粒径のことをいう。
また、金属粉末の粒子の短径をPS[μm]とし、長径をPL[μm]としたとき、PS/PLで定義されるアスペクト比の平均値は、0.4以上1以下程度であるのが好ましく、0.7以上1以下程度であるのがより好ましい。このようなアスペクト比の金属粉末は、その形状が比較的球形に近くなるので、圧粉成形された際の充填率が高められる。その結果、機械的特性や被削性の高いブランク材1を得ることができる。
なお、前記長径とは、粒子の投影像においてとりうる最大長さであり、前記短径とは、その最大長さに直交する方向の最大長さである。また、アスペクト比の平均値は、金属粉末の粒子100個以上についての測定値の平均値として求められる。
一方、ブランク材1の断面において、結晶組織の長径をCLとし、短径をCSとしたとき、CS/CLで定義されるアスペクト比の平均値は、0.4以上1以下程度であるのが好ましく、0.5以上1以下程度であるのがより好ましい。このようなアスペクト比の結晶組織は、異方性の小さいものとなるので、加わる力の方向によらず優れた耐力等の機械的特性を示すメタルフレームを製造可能なブランク材1の実現に寄与する。すなわち、このようなブランク材1から削り出されたメタルフレームは、どのような姿勢で使用されても、優れた耐破折性を有するものとなるので、口腔内における使用箇所が限定されることもなく、有用である。換言すれば、かかるブランク材1によれば、メタルフレームの削り出し方によらず優れた機械的特性を示すメタルフレームを製造することができる。
なお、前記長径とは、ブランク材1の断面の観察像において1つの結晶組織がとりうる最大長さであり、前記短径とは、その最大長さに直交する方向の最大長さである。また、アスペクト比の平均値は、結晶組織100個以上についての測定値の平均値として求められる。
また、ブランク材1は、その内部に微小な独立した空孔を有しているのが好ましい。このような空孔を有していることにより、ブランク材1は、とりわけ被削性に優れたものとなる。これは、独立した空孔が存在することにより、ブランク材1の機械的特性が低下するのを抑制しつつも、この空孔が起点となって切削加工時に発生する切削屑がブランク材1の本体から特に離れ易くなることから、切削抵抗が大きく減少するという作用が得られるからであると考えられる。
さらには、ブランク材1が空孔を有していることにより、ブランク材1から削り出されるメタルフレームについても、表面に開口した空孔を有することとなる。このような空孔は、メタルフレームに対して陶材を焼き付ける際、陶材の構成材料が入り込むことを可能にする。このため、メタルフレームと陶材との密着性を高めることに寄与する。その結果、メタルフレームの表面を覆うように陶材層を設けたとき、陶材層の剥離が抑制され、信頼性の高い歯科用補綴物を得ることができる。
空孔の平均径は、0.1μm以上10μm以下であるのが好ましく、0.3μm以上8μm以下であるのがより好ましい。空孔の平均径が前記範囲内であれば、より高い被削性を有するブランク材1が得られる。すなわち、空孔の平均径が前記下限値を下回ると、被削性が十分に高められないおそれがあり、一方、空孔の平均径が前記上限値を上回ると、ブランク材1の機械的特性が低下するおそれがある。
なお、空孔の平均径は、走査型電子顕微鏡像において、空孔の面積と同じ面積を持つ円の直径(投影面積円相当径)の平均値として求めることができる。また、空孔の平均径は、空孔100個以上についての測定値の平均値として求められる。
また、ブランク材1の観察像において、空孔が占める面積率は、0.001%以上1%以下であるのが好ましく、0.005%以上0.5%以下であるのがより好ましい。空孔が占める面積率が前記範囲内であれば、ブランク材1の機械的特性と被削性とをより高度に両立することができる。
なお、この面積率は、観察像の面積に対する空孔が占める面積の割合として算出され、観察像の一辺は50μm以上1000μm以下程度に設定される。
図4(a)は、本発明の歯科用の被切削加工用ブランク材についての観察像の一例であり、図4(b)は、従来の歯科用の被切削加工用ブランク材についての観察像の一例である。
図4(a)に示す観察像には、ほぼ一様に分散した空孔の存在が認められる。一方、図4(b)に示す観察像には、樹枝状組織(デンドライト相)が捉えられている。
また、ブランク材1は、そのビッカース硬度が200以上480以下であるのが好ましく、240以上380以下であるのがより好ましい。このような硬度のブランク材1は、噛む力に対しても十分な耐変形性を有するメタルフレームを製造可能なものとなる。また、このような硬度のブランク材1は、切削抵抗が比較的小さくなるため、被削性に優れたものとなり、目的とする形状、寸法のメタルフレームを効率よく削り出すことのできるものとなる。
なお、ブランク材1のビッカース硬度は、JIS Z 2244(2009)に規定された試験方法に準拠して測定される。
また、ブランク材1の引張強さは、520MPa以上であるのが好ましく、600MPa以上1500MPa以下であるのがより好ましい。このような引張強さのブランク材1は、耐久性に優れたメタルフレームを製造可能なものとなる。また、被削性も良好なものとなる。
同様に、ブランク材1の0.2%耐力は、450MPa以上であるのが好ましく、500MPa以上1200MPa以下であるのがより好ましい。このような0.2%耐力のブランク材1は、やはり耐久性に優れたメタルフレームを製造可能なものとなる。また、被削性も良好なものとなる。
これらの引張強さおよび0.2%耐力は、JIS Z 2241(2011)に規定された試験方法に準拠して測定される。
さらに、ブランク材1の伸びは、2%以上50%以下であるのが好ましく、10%以上45%以下であるのがより好ましい。このような伸びを有するブランク材1は、欠損や割れ等が生じ難いことから、被削性に優れたものとなる。
ブランク材1の伸び(破断伸び)は、JIS Z 2241(2011)に規定された試験方法に準拠して測定される。
また、ブランク材1のヤング率は、150GPa以上であるのが好ましく、170GPa以上300GPa以下であるのがより好ましい。このようなヤング率を有するブランク材1は、変形し難いものとなるため、高い寸法精度の切削加工を可能にするとともに、噛む力によって変形し難いメタルフレームを実現し得るものとなる。また、被削性も良好なものとなる。
さらに、ブランク材1の疲労強度は、250MPa以上であるのが好ましく、350MPa以上であるのがより好ましく、500MPa以上1000MPa以下であるのがさらに好ましい。このような疲労強度を有するブランク材1は、例えば、口腔内において体液に触れた状態で、繰り返し荷重が作用する環境下で使用されたとしても、疲労クラック等の発生が抑制され、長期にわたってその機能を発現し得るメタルフレームを実現し得るものとなる。
なお、ブランク材1の疲労強度は、JIS T 0309(2009)に規定された試験方法に準拠して測定される。繰り返し応力に相当する荷重の印加波形は正弦波とし、応力比(最小応力/最大応力)は0.1とする。また、繰り返し周波数は30Hzとし、繰り返し数を1×10回とする。
また、このようなブランク材1は、前述したように、切削抵抗が小さいことから、被削性に優れたものとなる。
すなわち、ブランク材1の切削抵抗は、ブランク材1の製造に用いられる金属粉末と同じ組成の溶製材の切削抵抗に比べて小さい。切削抵抗が小さいということは、切削時の加工ツールの振動における振幅を小さく抑えることにつながる。したがって、ブランク材1に切削加工を施す際、目的とする形状を容易かつ正確に削り出すことができるので、寸法精度の高いメタルフレームを製造することができる。
具体的には、ブランク材1の切削抵抗は、300N以下であるのが好ましく、250N以下であるのがより好ましく、200N以下であるのがさらに好ましい。このような比較的小さい切削抵抗で加工することが可能なブランク材1は、被削性が高く、加工精度の高い加工が可能である。
なお、ブランク材1の切削抵抗は、例えば、三成分切削動力計を用いて測定することができる。
図5は、ブランク材1の切削抵抗を測定する方法を説明するための図である。
ブランク材1の切削抵抗を測定する際には、まず、図5に示すように、加工装置のステージ74上に三成分切削動力計7を載置する。次いで、三成分切削動力計7の測定部71の上にブランク材1を固定する。固定にはネジを利用した固定具72を用い、ネジの締め付けトルクを30kNとする。その状態で加工ツール73を用いてブランク材1に切削加工を施す。そして、三成分切削動力計7によって加工中に計測された三方向の成分(x成分、y成分およびz成分)の切削抵抗のうち、最大の値をブランク材1の切削抵抗として採用することができる。また、湿式加工における切削抵抗は、切削液を用いながら加工したときの切削抵抗である。
図6は、ブランク材1の切削抵抗を測定する際、ブランク材1に対して加工ツール73を走査する軌跡TRを示す図である。ブランク材1の切削抵抗を測定するときには、ブランク材1の外形形状に沿った軌跡TRで加工ツール73を走査するようにすればよい。例えば、ブランク材1の外形形状が円形である場合には、図6(a)に示すように、円形を描くような軌跡TRで加工ツール73を走査すればよく、ブランク材1の外形形状が四角形である場合には、図6(b)に示すように、四角形を描くような軌跡TRで加工ツール73を走査すればよい。
また、ブランク材1の製造に用いられる金属粉末としては、例えば、アトマイズ法(例えば、水アトマイズ法、ガスアトマイズ法、高速回転水流アトマイズ法等)、還元法、カルボニル法、粉砕法等の各種粉末化法により製造されたものが挙げられる。
このうち、アトマイズ法により製造されたものであるのが好ましく用いられ、水アトマイズ法または高速回転水流アトマイズ法により製造されたものであるのがより好ましく用いられる。アトマイズ法は、溶融金属(溶湯)を、高速で噴射された流体(液体または気体)に衝突させることにより、溶湯を微粉化するとともに冷却して、金属粉末を製造する方法である。金属粉末をこのようなアトマイズ法によって製造することにより、極めて微小な粉末を効率よく製造することができる。また、得られる粉末の粒子形状が表面張力の作用により球形状に近くなる。このため、粉末冶金法において金属粉末を成形したとき充填率の高い成形体が得られる。その結果、機械的特性に優れたブランク材1が得られる。
なお、アトマイズ法として、水アトマイズ法を用いた場合、溶融金属に向けて噴射される水(以下、「アトマイズ水」という。)の圧力は、特に限定されないが、好ましくは75MPa以上120MPa以下(750kgf/cm以上1200kgf/cm以下)程度とされ、より好ましくは、90MPa以上120MPa以下(900kgf/cm以上1200kgf/cm以下)程度とされる。
また、アトマイズ水の水温も、特に限定されないが、好ましくは1℃以上20℃以下程度とされる。
さらに、アトマイズ水は、溶湯の落下経路上に頂点を有し、外径が下方に向かって漸減するような円錐状に噴射される場合が多い。この場合、アトマイズ水が形成する円錐の頂角θは、10°以上40°以下程度であるのが好ましく、15°以上35°以下程度であるのがより好ましい。これにより、前述したような組成の金属粉末を、確実に製造することができる。
また、水アトマイズ法(特に高速回転水流アトマイズ法)によれば、とりわけ速く溶湯を冷却することができる。このため、機械的特性および被削性に優れ、かつ均質なブランク材1が得られる。
また、アトマイズ法において溶湯を冷却する際の冷却速度は、1×10℃/s以上であるのが好ましく、1×10℃/s以上であるのがより好ましい。このような急速な冷却により、金属結晶の粒径がとりわけ小さな金属粉末が得られる。
加えて、原材料を溶融して溶融金属を得る際には、ブランク材1の構成材料の融点をTmとしたとき、原材料の溶融温度をTm+50℃以上Tm+300℃以下程度に設定するのが好ましく、Tm+100℃以上Tm+200℃以下程度に設定するのがより好ましい。これにより、溶融金属を流体に衝突させて微粉化する際、合金の生成を一定に制御し易くなる。すなわち、結晶組織の肥大化を抑えつつ、純度の高い(酸素含有量の少ない)合金を生成し易くなる。このため、とりわけブランク材1の製造に適した金属粉末を製造することができる。
このようにして得られた金属粉末を、各種成形法により成形して、成形体を得る。成形方法としては、例えば、プレス成形法、押出成形法、射出成形法等が挙げられる。
その後、得られた成形体を、脱脂、焼成することにより、焼結体(ブランク材1)が得られる。焼成温度は、合金組成に応じて適宜設定されるが、一例として900℃以上1400℃以下程度とされる。
また、このようにして得られた焼結体に対し、さらにHIP処理(熱間等方加圧処理)等を施すようにしてもよい。これにより、焼結体のさらなる高密度化を図り、より機械的特性に優れたブランク材1を得ることができる。
HIP処理の条件としては、例えば、温度が850℃以上1200℃以下、時間が1時間以上10時間以下程度とされる。
また、加圧力は、50MPa以上であるのが好ましく、100MPa以上であるのがより好ましい。
なお、ブランク材1は、粉末製造時から金属材料中にNを固溶させ、その粉末を用いて得られた焼結体で構成されている。このため、ブランク材1には、ほぼ一様にNが分布しており、物性についてもほぼ一様にすることができる。したがって、かかるブランク材1から複数のメタルフレームを削り出すとき、各メタルフレームの特性を揃えることができ、個体差を抑制することができる。
具体的には、例えば、ブランク材1の厚さが10mm以上あるとき、ブランク材1の厚さ方向に沿った断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部とする。
このとき、内層部におけるNの濃度は、表層部におけるNの濃度の50%以上200%以下であるのが好ましく、60%以上175%以下であるのがより好ましく、75%以上150%以下であるのがさらに好ましい。内層部におけるNの濃度が前記下限値を下回ったり、前記上限値を上回ったりすると、内層部と表層部とで物性が異なるため、ブランク材1に切削加工を施すとき、切削の途中で被削性が変化するおそれがある。このため、削り出されるメタルフレームの寸法精度が低下するおそれがある。また、メタルフレームの機械的特性も部分的に異なってしまうおそれがある。
なお、内層部および表層部におけるNの濃度は、電子線マイクロアナライザー(EPMA)によるNの定量分析に基づいて求めることができる。このとき、ブランク材1の表面から内部にかけて線分析を行うことにより、ブランク材1の厚さ方向におけるNの濃度分布が得られるので、上述した内層部および外装部におけるNの濃度を効率よく求めることができる。
また、このようなブランク材1は、内層部におけるビッカース硬度は、表層部におけるビッカース硬度の67%以上150%以下であるのが好ましく、75%以上125%以下であるのがより好ましい。内層部におけるNの濃度が前記下限値を下回ったり、前記上限値を上回ったりすると、内層部と表層部とで硬度が異なるため、やはりブランク材1に切削加工を施すとき、切削の途中で切削性が変化するおそれがある。このため、削り出されるメタルフレームの寸法精度が低下するおそれがある。
この他、ブランク材1は、内層部と表層部とで、種々の物性の差(例えば、後述する切削抵抗の差)が小さいものとなる。
このようなブランク材1の均質性は、前述したように、ブランク材1が粉末冶金により製造された焼結体で構成されていることに加え、粉末製造時から金属材料中にNを固溶させ、その粉末を用いて粉末冶金法により製造された焼結体で構成されていることに由来していると考えられる。粉末製造時に金属材料中にNを固溶させるには、例えば、原料に含まれるCo、Cr、MoおよびSiのうちの少なくとも1種をあらかじめ窒化させておく方法、原料を溶融する際または溶融した後に溶融金属(溶湯)を窒素ガス雰囲気中に保持する方法、溶融金属中に窒素ガスを注入する(バブリングさせる)方法等が用いられる。
また、金属粉末を成形してなる成形体や、それを焼結してなる焼結体を、窒素ガス雰囲気中で加熱する、あるいは、窒素ガス雰囲気中でHIP処理を施すことにより、Nを合金中に含浸させる方法もある(窒化処理)。しかしながら、この方法では、成形体や焼結体の表層部から内層部まで均等に窒化することは難しく、仮にできたとしても窒化速度を抑えながら極めて長い時間をかけて行う必要があるため、ブランク材の製造効率の観点で問題がある。
なお、粉末中にNを固溶させて得られた成形体を脱脂、焼成する場合には、窒素ガスやアルゴンガス等の不活性ガス中で脱脂、焼成することにより、固溶させたNの濃度の変動を抑えることができる。
この他、ブランク材1の均質性には、Siの含有率に対するNの含有率の割合(N/Si)が関与していると考えられる。すなわち、N/Siが前記範囲内にあるとき、Siが固溶したことによる結晶構造の歪みが、Nが固溶することによって抑えられ、その結果、ブランク材1の均質性が高められると考えられる。
前述したように、ブランク材1は、表層部と内層部とで切削抵抗の差が小さいという特徴を有する。このため、ブランク材1に切削加工を施している途中で切削抵抗が変わってしまうのを抑制し、削り出されるメタルフレームの寸法精度が低下してしまうのを抑制することができる。
具体的には、例えば、ブランク材1が板状をなしていて、その厚さが10mm以上あるとき、ブランク材1の厚さ方向に沿った断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部とする。
このとき、内層部における切削抵抗は、表層部における切削抵抗の50%以上200%以下であるのが好ましく、60%以上175%以下であるのがより好ましく、75%以上150%以下であるのがさらに好ましい。これにより、ブランク材1を切削抵抗のバラツキに伴う加工精度の低下を抑制することができる。なお、内層部における切削抵抗が前記下限値を下回ると、内層部における切削抵抗と表層部における切削抵抗との差が大きくなるので、ブランク材1と加工ツールとの位置関係によっては、加工精度が低下するおそれがある。つまり、内層部における切削抵抗が表層部における切削抵抗よりも非常に小さいため、例えば表層部を加工していた加工ツールが徐々に内層部へと移動してきたときに、切削抵抗が小さくなって、駆動力と切削結果との関係性が崩れてしまい、意図しない加工が生じるおそれがある。一方、内層部における切削抵抗が前記上限値を上回る場合も、同様に、ブランク材1と加工ツールとの位置関係によっては、加工精度が低下するおそれがある。つまり、内層部における切削抵抗が表層部における切削抵抗よりも非常に大きいため、例えば表層部を加工していた加工ツールが徐々に内層部へと移動してきたときに、切削抵抗が大きくなって、駆動力と切削結果との関係性が崩れてしまい、意図しない加工が生じるおそれがある。
また、ブランク材1は、湿式切削加工のみならず、乾式切削加工においても、比較的切削抵抗が抑えられる点で有用である。すなわち、ブランク材1は、湿式切削加工における切削抵抗と乾式切削加工における切削抵抗との差が小さいという特徴を有する。したがって、ブランク材1から削り出されるメタルフレームの形状によっては、乾式切削加工であっても寸法精度の高いメタルフレームを削り出すことができる。
具体的には、湿式切削加工における切削抵抗を1としたとき、乾式切削加工における切削抵抗は2以下であるのが好ましく、1.5以下であるのがより好ましい。乾式切削加工における切削抵抗が、湿式切削加工における切削抵抗に対して前記範囲内であれば、乾式切削加工によっても十分に寸法精度の高いメタルフレームを削り出すことができるので、このようなブランク材1は、容易に切削加工が可能である点で有用である。
乾式切削加工によれば、切削液を用いる必要がないため、削り出されたメタルフレームを洗浄する手間が省けるという利点がある。特にメタルフレームのように体内に留置されるものの場合、切削液の残存は極力避ける必要があるため、乾式切削加工を採用できることは、削り出されるメタルフレーム等の安全性の観点からも有効である。
なお、ブランク材1に対する湿式切削加工では、油性の切削液ではなく、水溶性の切削液を用いた場合も、良好な切削結果が得られる。水溶性の切削液は、比較的容易に除去することが可能なため、洗浄する手間を抑えることができる。さらに、ブランク材1は、微量の切削液で加工するセミドライ加工(MQL加工)においても、良好な切削結果が得られるため、切削液の使用量を大幅に抑えつつ、寸法精度の高いメタルフレームを削り出すことが可能である。
[歯科用の陶材焼付用メタルフレーム]
次に、本発明の歯科用の陶材焼付用メタルフレームの実施形態について説明する。
図7は、図1に示すブランク材に対し、本発明の歯科用の陶材焼付用メタルフレームの実施形態を削り出す加工を施した後の状態を示す斜視図、図8は、図7のA−A線断面図、図9は、本発明の歯科用の陶材焼付用メタルフレームの実施形態を示す縦断面図である。
図7に示す切削加工後のブランク材1’は、ブランク材1に対して切削加工を施すことにより、メタルフレーム2が削り出された状態のものである。メタルフレーム2は、インレー、クラウン、ブリッジ、金属床、義歯、インプラント、アバットメント、フィクスチャー、スクリュー等の歯科用補綴物の基材として用いられる部材である。したがって、メタルフレーム2によって歯科用補綴物の大まかな形状が決定されることになるため、削り出されるメタルフレーム2の形状は、一般に、製造される歯科用補綴物の形状に対応したものとなる。そして、メタルフレーム2の表面に陶材層が設けられることにより、後述する歯科用補綴物が得られる。
なお、ここでは特に陶材焼付用メタルフレームに関して説明するが、本発明に係るメタルフレームは、陶材焼付に供されないもの、例えばインレー、クラウン、ブリッジ、金属床、義歯、インプラント、アバットメント、フィクスチャー、スクリュー等の歯科用金属部品も含むものである。
切削加工には、いかなる切削機械をも用いることができる。例えば、マシニングセンター、フライス盤、ボール盤、旋盤等が挙げられる。このうち、CAMシステムに組み込まれた切削機械が好ましく用いられる。かかる切削機械によれば、CADシステム等により取得されたモデルを、加工結果に忠実に反映させることができるので、特に患者にとって装着違和感の少ない歯科用補綴物の実現に寄与することができる。
図7、8に示す切削加工後のブランク材1’は、ブランク材1に由来する平板部3と、この平板部3に形成された貫通孔4によって取り囲むように削り出されたメタルフレーム2と、を備えている。メタルフレーム2と平板部3との間は、図8に示すように、わずかな接続部5で接続されており、最終的にはこの接続部5を切断することによって、切削加工後のブランク材1’からメタルフレーム2を分離することができる。
図9に示すメタルフレーム2は、図7、8に示す切削加工後のブランク材1’から分離された状態を示すものである。なお、図9に示すメタルフレーム2の形状は一例であり、歯科用補綴物の種類に応じてメタルフレーム2は様々な形状を有することとなる。
なお、得られたメタルフレーム2に対し、必要に応じて研磨処理を施すようにしてもよい。研磨処理としては、例えば、バレル研磨、サンドブラスト等が挙げられる。
さらに、得られたメタルフレーム2に対し、必要に応じて二次加工を施すようにしてもよい。二次加工としては、例えば、切削、研削のような機械加工、レーザー加工、電子線加工、ウォータージェット加工、放電加工、プレス加工、押出加工、圧延加工、鍛造加工、曲げ加工、絞り加工、引き抜き加工、転造加工、せん断加工等が挙げられる。
こうして得られたメタルフレーム2は、前述したように、ブランク材1の優れた被削性に伴い、寸法精度の高いものとなる。このようなメタルフレーム2は、患部に対して少ない違和感で装着可能なものとなり、患者への負担を最小限に抑えられるとともに、後述するようにしてメタルフレーム2の表面に陶材層が設けられた際、陶材層の高い密着性と高い審美性とを実現し得るものとなる。
また、メタルフレーム2は、耐食性が高いことから、生体への適合性に優れたものとなる。
さらには、メタルフレーム2は、機械的特性に優れていることから、噛む力によっても変形し難く、耐久性に優れたものとなる。
なお、切削加工後のブランク材1’からメタルフレーム2を分離した後、残った平板部3は、他のメタルフレーム2の切削にも用いられる他、新たなブランク材1を製造するための原材料としてリサイクルされることも可能である。すなわち、残った平板部3を溶融し、アトマイズ法等により粉末化することで、ブランク材1の製造に用いられる金属粉末(本発明の粉末冶金用金属粉末)が得られる。
[歯科用補綴物]
次に、本発明の歯科用補綴物の実施形態について説明する。
図10は、本発明の歯科用補綴物の実施形態を示す縦断面図である。
図10に示す歯科用補綴物10は、メタルフレーム2と、その表面の一部を覆うように設けられた陶材層6と、を備えている。
陶材層6は、歯科用補綴物10の審美性を担う部位であり、一般的には、歯の色に近い色を呈している。
陶材層6の構成材料としては、例えば、長石、石英、陶土、金属酸化物等の各種セラミックス系材料の他、各種樹脂材料等が挙げられる。このうち、審美性やメタルフレーム2との密着性といった観点からセラミックス系材料が好ましく用いられる。具体的には、アルミナ、シリカ、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化鉄、マグネシア、ジルコニア、チタニア、酸化アンチモン、酸化セリウム等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。
このような構成材料を含むスラリーがメタルフレーム2の表面に塗布され、その後、焼付処理が施されることによって陶材層6が形成される。
このうち、陶材層6の構成材料は、アルミナを含むことが好ましい。アルミナを含むセラミックス材料がメタルフレーム2の表面に焼き付けられると、陶材層6とメタルフレーム2との界面近傍にムライト相が生じる。このムライト相は、セラミックス材料側に含まれたアルミナとメタルフレーム2側に含まれたSiまたは酸化ケイ素とが混じり合うことによって生成されると考えられる。このため、ムライト相を介して陶材層6とメタルフレーム2とが強固に密着し、陶材層6が剥離し難く、信頼性の高い歯科用補綴物が得られる。また、ムライト相が生じることにより、焼付処理の際に、メタルフレーム2に対するセラミックス材料の濡れ性が向上すると考えられる。このため、かかる観点からも、陶材層6の密着性が高まると考えられ、さらには、ムラなく陶材層6を焼き付けることができる。
陶材層6の構成材料におけるアルミナの含有率は、2質量%以上50質量%以下程度であるのが好ましく、4質量%以上35質量%以下程度であるのがより好ましく、6質量%以上25質量%以下程度であるのがさらに好ましい。アルミナの含有率を前記範囲内に設定することにより、陶材層6とメタルフレーム2との密着性を高めるのに必要かつ十分なアルミナが確保されるとともに、陶材層6自体の機械的特性も高くなるため、より信頼性の高い歯科用補綴物10が得られる。
したがって、アルミナの含有率が前記下限値を下回ると、陶材層6とメタルフレーム2との間に十分な量のムライト相が生じないため、セラミックス材料の濡れ性が低下し、陶材層6の密着性が低下するおそれがあり、一方、アルミナの含有率が前記上限値を上回ると、陶材層6が脆くなる等、機械的特性が低下し易いため、やはり陶材層6の密着性が低下するおそれがある。
また、陶材層6の平均厚さは、特に限定されないが、0.05mm以上3mm以下程度であるのが好ましく、0.2mm以上2mm以下程度であるのがより好ましい。陶材層6の平均厚さを前記範囲内に設定することで、メタルフレーム2に対する陶材層6の密着性をより高めることができる。また、陶材層6に必要かつ十分な遮光性が付与されるので、メタルフレーム2の色が透け難くなり、審美性に優れた歯科用補綴物10が得られる。
陶材層6の形成にあたっては、まず、陶材層6の構成材料をボールミルや遊星ミル等により細かく粉砕する。その後、必要に応じて800℃以上1100℃以下、30分以上60分以下程度の範囲内で熱処理を施す。
こうして得られた粉砕物と、分散媒に分散させることにより、スラリー状またはペースト状に調製される。これにより、陶材層6の形成に必要なスラリーやペーストが得られる。分散媒としては、水、プロピレングリコール、エチレングリコール、グリセリン、ポリメチルメタクリレート、ポリビニルアセテート、ニトロセルロース、エチルセルロース等が挙げられる。
得られたスラリーやペーストをメタルフレーム2の表面に塗布し、焼付処理を施す。焼付温度は、陶材層6の構成材料に応じて適宜設定されるが、例えば500℃以上1000℃以下に設定される。このようにして歯科用補綴物10が得られる。
以上、本発明の歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物について、好適な実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、前記実施形態では、歯科用の被切削加工用ブランク材から複数の歯科用の陶材焼付用メタルフレームを削り出す場合について説明したが、本発明はこのような場合に限定されず、1つのブランク材から1つのメタルフレームを削り出す場合にも適用可能である。
次に、本発明の具体的実施例について説明する。
1.歯科用の被切削加工用ブランク材の製造
(サンプルNo.1)
[1]まず、原材料を高周波誘導炉で溶融するとともに、水アトマイズ法により粉末化して金属粉末を得た。次いで、目開き150μmの標準ふるいを用いて分級した。得られた金属粉末の合金組成を表1に示す。なお、Nは、Crに結合させた状態(窒化クロムの状態)で原材料に含ませた。また、合金組成の特定には、SPECTRO社製固体発光分光分析装置(スパーク発光分析装置)、モデル:SPECTROLAB、タイプ:LAVMB08Aを用いた。また、C(炭素)の定量分析には、LECO社製炭素・硫黄分析装置、CS−200を用いた。
[2]次に、有機バインダーを水に溶解してバインダー溶液を調製した。なお、バインダー溶液における有機バインダーの量は、金属粉末1kg当たり10gとした。また、バインダー溶液における水の量は、有機バインダー1g当たり50gとした。
[3]次に、金属粉末を造粒装置の処理容器内に投入した。そして、処理容器内の金属粉末に向けて造粒装置のスプレーノズルからバインダー溶液を噴霧しつつ、金属粉末をスプレードライ法により造粒し、造粒粉末を得た。
[4]次に、得られた造粒粉末を用い、以下の成形条件で成形して成形体を得た。
<成形条件>
・成形方法:圧粉成形
・成形圧力:300MPa(3t/cm
[5]次に、この成形体を以下の脱脂条件で脱脂し、脱脂体を得た。
<脱脂条件>
・加熱温度 :470℃
・加熱時間 :1時間
・加熱雰囲気:窒素雰囲気
[6]次に、得られた脱脂体を、以下の焼成条件で焼成し、焼結体(歯科用の被切削加工用ブランク材)を得た。得られた歯科用の被切削加工用ブランク材は、直径100mm、厚さ15mmの円盤状であった。
<焼成条件>
・加熱温度 :1300℃
・加熱時間 :3時間
・加熱雰囲気:アルゴン雰囲気
(サンプルNo.2〜16)
製造条件を表1に示す条件にした以外は、それぞれサンプルNo.1の場合と同様にして歯科用の被切削加工用ブランク材を得た。
(サンプルNo.17〜20)
原材料を高周波誘導炉で溶融する際、溶融金属中に窒素ガスを注入した。この際、注入時間を適宜変更することにより、Nの含有率を変えるようにした。
そして、それ以外の製造条件を表1に示すようにした以外は、それぞれサンプルNo.1の場合と同様にして歯科用の被切削加工用ブランク材を得た。
(サンプルNo.21〜24)
まず、Nを含まない原材料を用いて、それぞれサンプルNo.1の場合と同様にして金属粉末を得た。
次に、この金属粉末を用いるとともに、焼成条件の加熱雰囲気をアルゴン50体積%と窒素50体積%の混合ガス雰囲気に替えるようにした以外は、それぞれサンプルNo.1の場合と同様に焼結体を得た。この際、窒素ガスの分圧を適宜変更することにより、金属粉末中に含まれるNの含有率を変えるようにした。
そして、それ以外の製造条件を表1に示すようにした以外は、それぞれサンプルNo.1の場合と同様にして歯科用の被切削加工用ブランク材を得た。
(サンプルNo.25、26)
原材料を高周波誘導炉で溶融する際、溶融金属中に窒素ガスを注入した。この際、注入時間を適宜変更することにより、金属粉末中に含まれるNの含有率を変えるようにした。
そして、それ以外の製造条件を表1に示すようにした以外は、それぞれサンプルNo.1の場合と同様にして歯科用の被切削加工用ブランク材を得た。
(サンプルNo.27〜29)
原材料を高周波誘導炉で溶融する際、溶融金属中に窒素ガスを注入した後、ブランク材の形状の型に溶融金属を流し込み、鋳造体を得た。この際、注入時間を適宜変更することにより、金属粉末中に含まれるNの含有率を変えるようにした。
そして、それ以外の製造条件を表1に示すようにした以外は、それぞれサンプルNo.1の場合と同様にして歯科用の被切削加工用ブランク材を得た。
以上の各サンプルNo.の歯科用の被切削加工用ブランク材の製造条件を表1、2に示す。
Figure 2015163732
Figure 2015163732
また、各表においては、各サンプルNo.の金属粉末および歯科用の被切削加工用ブランク材のうち、本発明に相当するものについては「実施例」、本発明に相当しないものについては「比較例」と示した。
2.歯科用の被切削加工用ブランク材の評価
2.1 全Si量および酸化ケイ素として含まれるSiの含有率の測定
各サンプルNo.の歯科用の被切削加工用ブランク材について、重量法およびICP発光分光法により、全Si量および酸化ケイ素として含まれるSiの含有率を測定した。測定結果を表3に示す。
2.2 X線回折法による結晶構造の評価
各サンプルNo.の歯科用の被切削加工用ブランク材について、X線回折法による結晶構造解析に供した。そして、得られたX線回折パターンに含まれていた各ピークの高さや位置を、ICDDカードに掲載されたデータベースと照合することにより、ブランク材に含まれる結晶構造の同定を行った。その上で、Coに起因するピークのうち最も高いピークの高さを1としたときの、CoMoに起因するピークのうち最も高いピークの高さの比率を算出した。算出結果を表3に示す。
2.3 空孔、デンドライト相および結晶組織のアスペクト比の評価
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、テストピースの切削面を研磨し、得られた研磨面を走査型電子顕微鏡で観察して観察像上において空孔が占める領域を特定した。そして、空孔が占める領域の平均径(これを空孔の平均径とみなす)を計測するとともに、観察像の全面積に対する空孔が占める領域の面積の割合(面積率)を算出した。
また、観察像に樹枝状組織がどの程度存在しているかどうかを確認することにより、デンドライト相の存在の程度を以下の評価基準にしたがって評価した。
<デンドライト相の評価基準>
◎:デンドライト相がほとんど存在しない
○:デンドライト相がわずかに存在する(面積率10%以下)
△:デンドライト相がやや多く存在する(面積率10%超20%以下)
×:デンドライト相が非常に多く存在する(面積率20%超)
また、得られた研磨面を走査型電子顕微鏡で観察し、観察像上において結晶組織のアスペクト比の平均値を算出した。
以上の評価結果を表3に示す。
2.4 N濃度の評価
各サンプルNo.の歯科用の被切削加工用ブランク材を厚さ方向に沿って切断し、切断面を研磨した。
次いで、研磨面のうち、ブランク材の表面から内部にかけて、電子線マイクロアナライザー(EPMA)による線分析を行った。そして、ブランク材の厚さ方向におけるNの濃度分布を求めた。
次いで、表面から0.3mmの位置のN濃度を表層部のN濃度とし、表面から5mmの位置のN濃度を内層部のN濃度として求め、表層部のN濃度に対する内層部のN濃度の割合を求めた。算出結果を表3に示す。
2.5 ビッカース硬度の測定
各サンプルNo.の歯科用の被切削加工用ブランク材を厚さ方向に沿って切断し、切断面を研磨した。
次いで、研磨面のうち、ブランク材の表面から0.3mmの位置のビッカース硬度を測定し、これを表層部のビッカース硬度とした。また、ブランク材の表面から5mmの位置のビッカース硬度を測定し、これを内層部のビッカース硬度とした。
次いで、表層部のビッカース硬度に対する内層部のビッカース硬度の割合を求めた。算出結果を表3に示す。
また、表層部のビッカース硬度の測定値については、表4に示す。
なお、ダイヤモンド圧子の試験荷重は、100gfとした。
2.6 耐食性の評価
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、得られたテストピースについて、JIS T 6118(2012)に規定された歯科メタルセラミック修復用貴金属材料の耐食性の試験方法に準拠して溶出金属イオン量を測定した。
そして、測定した結果を、以下の評価基準に基づいて評価した。
<耐食性の評価基準>
◎:耐食性が非常に大きい(溶出金属イオン量が非常に少ない)
○:耐食性が大きい(溶出金属イオン量が少ない)
△:耐食性が小さい(溶出金属イオン量が多い)
×:耐食性が非常に小さい(溶出金属イオン量が非常に多い)
以上の評価結果を表4に示す。
2.7 0.2%耐力、伸びおよびヤング率の測定
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、得られたテストピースについて、JIS T 6118(2012)に規定された歯科メタルセラミック修復用貴金属材料の機械的性質の試験方法に準拠して0.2%耐力および伸びを測定した。
また、JIS T 6004(2012)に規定された歯科用金属材料の試験方法に準拠してヤング率を求めた。
測定した結果を表4に示す。
2.8 疲労強度の測定
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、得られたテストピースについて、JIS T 0309(2009)に規定された試験方法に準拠した疲労強度を測定した。
測定した結果を表4に示す。
2.9 被削性の評価
2.9.1 切削屑の長さに基づく評価
各サンプルNo.の歯科用の被切削加工用ブランク材について、以下のようにして被削性を評価した。
まず、得られたブランク材にボール盤を用いて穴を切削加工した。次いで、切削加工において発生した切削屑を回収し、その平均長さを測定した。そして、測定した切削屑の平均長さを以下の評価基準にしたがって評価した。なお、切削加工には直径2mmの超硬合金製ドリルを用い、回転数は毎分420回転とした。また、切削油は使用しなかった。
<被削性の評価基準>
◎:切削屑の平均長さが5mm未満(被削性が特に良好)
○:切削屑の平均長さが5mm以上10mm未満(被削性が良好)
△:切削屑の平均長さが10mm以上(被削性がやや不良)
×:切削屑の平均長さが10mm以上でかつ切削屑が螺旋状になっている(被削性が不良)
以上の評価結果を表4に示す。
2.9.2 切削抵抗に基づく評価
各実施例および各比較例で得られた歯科用の被切削加工用ブランク材について、以下のようにして被削性を評価した。
まず、得られたブランク材を三成分切削動力計の測定部に固定した。
次いで、図6に示す軌跡に沿って加工ツールを走査するようにマシニングセンターでブランク材の表層部に切削加工を施した。そして、切削加工中に測定した三成分の切削抵抗のうち、最大の値を求め、以下の評価基準にしたがって評価した。
<切削抵抗の評価基準>
◎:切削抵抗が200N以下である
〇:切削抵抗が200N超250N以下である
△:切削抵抗が250N超300N以下である
×:切削抵抗が300N超である
以上の評価結果を表4に示す。
一方、図6に示す軌跡に沿って加工ツールを走査するようにマシニングセンターでブランク材の内層部に切削加工を施した。そして、切削加工中に測定した三成分の切削抵抗のうち、最大の値を求めた。
次いで、先に求めた表層部の切削抵抗に対する内層部の切削抵抗の割合を算出した。算出した結果を表4に示す。
2.10 熱膨張係数の評価
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、得られたテストピースについて、JIS Z 2285(2003)に規定された試験方法に準拠して熱膨張の温度依存性を求めた。このとき、温度の上昇と下降とを繰り返すことにより、熱膨張の温度依存性の安定性、すなわち熱膨張係数の安定性を確認した。そして、以下の評価基準にしたがって熱膨張係数の安定性を評価した。
<熱膨張係数の安定性の評価基準>
◎:熱膨張係数が特に安定している
○:熱膨張係数が安定している
△:熱膨張係数がやや不安定である
×:熱膨張係数が不安定である
以上の評価結果を表4に示す。
Figure 2015163732
Figure 2015163732
表3、4から明らかなように、各実施例に相当する歯科用の被切削加工用ブランク材は、耐食性に優れたものであることがわかった。また、適度なビッカース硬度を有し、0.2%耐力、伸びおよびヤング率が比較的大きいことが認められた。
また、内層部と表層部とでN濃度の差や硬度の差が比較的小さいことも認められた。
さらに、被削性も優れていることから、切削加工に供された際、少ない切削抵抗で円滑な切削加工を行うことができ、かつ、その切削抵抗のバラツキが小さいことから、目的とする形状を効率よく削り出すことが可能なものであると認められる。加えて、内層部と表層部とで切削抵抗の差が十分に小さいことが認められたことから、かかる観点からも、各実施例で得られた歯科用の被切削加工用ブランク材は、目的とする形状を効率よく削り出すことが可能なものであると認められる。
また、各実施例に相当する歯科用の被切削加工用ブランク材は、一定量の酸化ケイ素および空孔を含むとともに、デンドライト相はほとんど含まないことが認められた。
一方、各比較例に相当する歯科用の被切削加工用ブランク材は、耐食性、機械的特性および被削性が低いことがわかった。
3.歯科用補綴物の製造
各サンプルNo.の歯科用の被切削加工用ブランク材から、切削加工によりテストピースを削り出した。
次いで、得られたテストピースの表面にオペーク陶材のペーストを塗布し、焼成した。これにより、歯科用補綴物のテストピースを得た。
なお、オペーク陶材のペースト(アルミナ含有率15質量%)には、株式会社松風製「ヴィンテージMP」を使用した。また、焼成温度は950℃とし、この温度で2分間維持するようにした。また、焼成雰囲気は減圧雰囲気とした。
4.歯科用補綴物の評価
各サンプルNo.のブランク材から削り出されたテストピースにオペーク陶材を焼き付けてなる歯科用補綴物のテストピースについて、JIS T 6120(2001)に規定された歯科メタルセラミック修復物の剥離・クラック発生強さ試験に準拠して破壊力を加えるとともに、以下の評価基準にしたがって陶材層の密着性を評価した。
<剥離・クラック発生強さ試験の評価基準>
◎:サンプルNo.27のブランク材から得られたテストピースの2倍超である
○:サンプルNo.27のブランク材から得られたテストピースの1.5倍超2倍以下である
△:サンプルNo.27のブランク材から得られたテストピースの1倍超1.5倍以下である
×:サンプルNo.27のブランク材から得られたテストピースの1倍以下である
以上の評価結果を表4に示す。
表4から明らかなように、各実施例に相当する歯科用補綴物は、各比較例に相当する歯科用補綴物に比べて、陶材層の密着性が高いことが認められた。
また、各実施例に相当する歯科用補綴物を切断し、断面に対して電子線マイクロアナライザーの面分析を行った。その結果、陶材層とメタルフレームとの界面にムライトが層状に存在していることが認められた。
また、各実施例に相当するブランク材に対し、以下の条件でHIP処理を施した。
<HIP処理条件>
・加熱温度 :1100℃
・加熱時間 :2時間
・加圧力 :100MPa
次いで、HIP処理を施したブランク材について、上述した2.9のようにして被削性を評価した。その結果、HIP処理を施したブランク材の被削性は、HIP処理を施していないブランク材の被削性に比べてやや低下した。この詳細な理由は明確ではないが、理由の1つとして、HIP処理に伴ってブランク材の硬度が上昇したことが挙げられる。
5.N濃度と硬度との関係の評価
まず、表5に示す合金組成を有する各サンプルNo.30〜36の歯科用の被切削加工用ブランク材を製造した。
次いで、前述した「2.5 ビッカース硬度の測定」の要領で、各サンプルNo.30〜36の歯科用の被切削加工用ブランク材の表層部と内層部のビッカース硬度を測定した。測定結果を表5および図11に示す。
Figure 2015163732
表5および図11から明らかなように、ブランク材中のN濃度とビッカース硬度との間には、特定のN濃度で硬度が極小となる関係性が認められた。前述したように、硬度が小さくなることで、ブランク材の靭性が高くなり、引張強さや耐力等の向上が図られる。また、N濃度の測定の結果、全体のN濃度が変化しても、表層部と内層部との間でN濃度が大きく異なることはなかった。
1、1’……歯科用の被切削加工用ブランク材
2……メタルフレーム
3……平板部
4……貫通孔
5……接続部
6……陶材層
7……三成分切削動力計
71……測定部
72……固定具
73……加工ツール
74……ステージ
10……歯科用補綴物
11……上面
12……下面
TR……軌跡

Claims (13)

  1. Coが主成分であり、
    Crが26質量%以上35質量%以下の割合で含まれ、
    Moが5質量%以上12質量%以下の割合で含まれ、
    Siが0.3質量%以上2.0質量%以下の割合で含まれ、
    Nが0.09質量%以上0.5質量%以下の割合で含まれ、
    金属粉末の焼結体で構成されていることを特徴とする歯科用の被切削加工用ブランク材。
  2. 当該被切削加工用ブランク材の断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部としたとき、
    前記内層部におけるN濃度が、前記表層部におけるN濃度の50%以上200%以下である請求項1に記載の歯科用の被切削加工用ブランク材。
  3. 当該被切削加工用ブランク材の断面のうち、表面からの深さが0.3mmの位置を表層部とし、表面からの深さが5mmの位置を内層部としたとき、
    前記内層部におけるビッカース硬度が、前記表層部におけるビッカース硬度の67%以上150%以下である請求項1または2に記載の歯科用の被切削加工用ブランク材。
  4. 前記内層部のビッカース硬度が200以上480以下である請求項2または3に記載の歯科用の被切削加工用ブランク材。
  5. 前記Siの含有率に対する前記Nの含有率の割合は、0.1以上0.8以下である請求項1ないし4のいずれか1項に記載の歯科用の被切削加工用ブランク材。
  6. 前記Siのうちの一部は酸化ケイ素として含まれており、
    前記Siのうちの前記酸化ケイ素として含まれるSiの比率は、10質量%以上90質量%以下である請求項1ないし5のいずれか1項に記載の歯科用の被切削加工用ブランク材。
  7. 前記酸化ケイ素は、前記焼結体の粒界に偏析している請求項6に記載の歯科用の被切削加工用ブランク材。
  8. CuKα線を用いたX線回折法により得られたX線回折パターンにおいて、ICDDカードに基づいて同定されたCoに起因するピークのうち最も高いピークの高さを1としたとき、ICDDカードに基づいて同定されたCoMoに起因するピークのうち最も高いピークの高さの比率は、0.01以上0.5以下である請求項1ないし7のいずれか1項に記載の歯科用の被切削加工用ブランク材。
  9. 当該歯科用の被切削加工用ブランク材の0.2%耐力が450MPa以上であり、伸びが2%以上であり、ヤング率が150GPa以上である請求項1ないし8のいずれか1項に記載の歯科用の被切削加工用ブランク材。
  10. Coが主成分であり、
    Crが26質量%以上35質量%以下の割合で含まれ、
    Moが5質量%以上12質量%以下の割合で含まれ、
    Siが0.3質量%以上2.0質量%以下の割合で含まれ、
    Nが0.09質量%以上0.5質量%以下の割合で含まれ、
    歯科用の被切削加工用ブランク材の製造に用いられることを特徴とする粉末冶金用金属粉末。
  11. Coが主成分であり、
    Crが26質量%以上35質量%以下の割合で含まれ、
    Moが5質量%以上12質量%以下の割合で含まれ、
    Siが0.3質量%以上2.0質量%以下の割合で含まれ、
    Nが0.09質量%以上0.5質量%以下の割合で含まれ、
    金属粉末の焼結体で構成されている歯科用の被切削加工用ブランク材から削り出されたことを特徴とする歯科用の陶材焼付用メタルフレーム。
  12. 請求項11に記載の歯科用の陶材焼付用メタルフレームと、
    前記歯科用の陶材焼付用メタルフレームの表面に設けられた陶材層と、
    を有することを特徴とする歯科用補綴物。
  13. 前記陶材層は、アルミナを含むものであり、
    前記歯科用の陶材焼付用メタルフレームと前記陶材層との間に位置するムライト相をさらに有する請求項12に記載の歯科用補綴物。
JP2014208338A 2014-01-31 2014-10-09 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物 Active JP6492512B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014208338A JP6492512B2 (ja) 2014-01-31 2014-10-09 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物
CN201510038206.8A CN104818410B (zh) 2014-01-31 2015-01-26 牙科用的被切削加工用坯材以及粉末冶金用金属粉末
EP15153311.4A EP2902513A1 (en) 2014-01-31 2015-01-30 Blank material to be cut for dentistry, metal powder for powder metallurgy, metal frame for porcelain fusing for dentistry, and dental prosthesis
US14/609,861 US9655698B2 (en) 2014-01-31 2015-01-30 Blank material to be cut for dentistry, metal powder for powder metallurgy, metal frame for porcelain fusing for dentistry, and dental prosthesis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014018073 2014-01-31
JP2014018073 2014-01-31
JP2014208338A JP6492512B2 (ja) 2014-01-31 2014-10-09 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物

Publications (2)

Publication Number Publication Date
JP2015163732A true JP2015163732A (ja) 2015-09-10
JP6492512B2 JP6492512B2 (ja) 2019-04-03

Family

ID=52464172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208338A Active JP6492512B2 (ja) 2014-01-31 2014-10-09 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物

Country Status (4)

Country Link
US (1) US9655698B2 (ja)
EP (1) EP2902513A1 (ja)
JP (1) JP6492512B2 (ja)
CN (1) CN104818410B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019524323A (ja) * 2016-08-10 2019-09-05 イボクラール ビバデント アクチェンゲゼルシャフト 義歯あるいは部分義歯の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12407U1 (de) * 2010-07-02 2012-05-15 Stephan Lampl Zahnfrontverblendungskörper
JP6170922B2 (ja) * 2012-07-31 2017-07-26 クラレノリタケデンタル株式会社 歯科用ミルブランクの製造方法
CN107598151B (zh) * 2017-08-24 2019-12-13 成都科宁达材料有限公司 一种含Ta的牙科用3D打印钴铬钼合金粉末及其制备方法
WO2019065777A1 (ja) * 2017-09-26 2019-04-04 クラレノリタケデンタル株式会社 歯科用ミルブランクおよびその製造方法
ES2902184T3 (es) * 2018-08-14 2022-03-25 Dentsply Sirona Inc Prótesis dental
KR101973729B1 (ko) * 2019-02-21 2019-04-29 주식회사 디맥스 세라믹 임플란트와 크라운의 다공성 표면을 형성하기 위한 지르코니아 슬러리의 제조방법 및 이를 이용한 임플란트 제조방법
CN115161516B (zh) * 2022-07-18 2023-03-21 嘉兴数字三维智能制造研究院有限公司 一种用于齿科专用钴铬合金粉末材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328475A (ja) * 2005-05-26 2006-12-07 Yamahachi Shizai Kogyo Kk Co−Cr合金ペレット及びその製造方法
JP2010150587A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp 粉末冶金用金属粉末の製造方法および粉末冶金用金属粉末
JP2012101070A (ja) * 2010-11-09 2012-05-31 Degudent Gmbh 成形体を製造する方法および未焼成材料

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943190A (en) * 1962-09-08 1963-12-04 Permadent Products Corp Fused porcelain-to-metal teeth
US5462575A (en) * 1993-12-23 1995-10-31 Crs Holding, Inc. Co-Cr-Mo powder metallurgy articles and process for their manufacture
JP3916098B2 (ja) 1997-06-10 2007-05-16 英夫 小倉 歯科鋳造用陶材焼付貴金属合金
US6896846B1 (en) * 2001-11-02 2005-05-24 University Of Notre Dame Synthesis of orthopaedic implant materials
JP4309402B2 (ja) 2006-02-17 2009-08-05 有限会社フェスタデンタルテクノロジー インプラント上部構造物の製作方法
US8623272B2 (en) * 2007-03-21 2014-01-07 The Argen Corporation Non-magnetic cobalt-palladium dental alloy
JP5311941B2 (ja) 2007-11-13 2013-10-09 セイコーエプソン株式会社 粉末冶金用金属粉末、焼結体および焼結体の製造方法
US8110035B2 (en) * 2008-05-30 2012-02-07 Dentsply International Inc. Integrated porcelain system for a dental prosthesis
EP2559535A3 (en) * 2008-09-26 2016-09-07 Mikro Systems Inc. Systems, devices, and/or methods for manufacturing castings
EP2184030A1 (en) * 2008-11-10 2010-05-12 3M Innovative Properties Company Method of producing a dental restoration, dental restoration and use thereof
DE102009039102B4 (de) * 2009-08-27 2022-01-27 Wdt-Wolz-Dental-Technik Gmbh Verfahren zur Herstellung von Zahnteilen aus Dentalmetallpulver
JP5585237B2 (ja) 2010-06-24 2014-09-10 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
EP2450000A1 (en) * 2010-11-09 2012-05-09 3M Innovative Properties Company Process for producing a dental article, article obtainable by this process and uses thereof
WO2012087999A1 (en) * 2010-12-22 2012-06-28 3M Innovative Properties Company Methods of making multilayer anatomical all-ceramic dental appliances
WO2012134606A1 (en) * 2011-03-25 2012-10-04 The Argen Corporation Non-magnetic noble alloy containing ruthenium, cobalt and chromium
JP5585572B2 (ja) 2011-12-13 2014-09-10 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
JP5630430B2 (ja) 2011-12-13 2014-11-26 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
CN103215475B (zh) * 2013-04-26 2015-10-28 中国科学院金属研究所 一种外科植入用钴基合金及其应用
JP6484976B2 (ja) * 2013-09-27 2019-03-20 セイコーエプソン株式会社 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328475A (ja) * 2005-05-26 2006-12-07 Yamahachi Shizai Kogyo Kk Co−Cr合金ペレット及びその製造方法
JP2010150587A (ja) * 2008-12-24 2010-07-08 Seiko Epson Corp 粉末冶金用金属粉末の製造方法および粉末冶金用金属粉末
JP2012101070A (ja) * 2010-11-09 2012-05-31 Degudent Gmbh 成形体を製造する方法および未焼成材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019524323A (ja) * 2016-08-10 2019-09-05 イボクラール ビバデント アクチェンゲゼルシャフト 義歯あるいは部分義歯の製造方法

Also Published As

Publication number Publication date
US20150216636A1 (en) 2015-08-06
CN104818410B (zh) 2018-05-08
CN104818410A (zh) 2015-08-05
EP2902513A1 (en) 2015-08-05
JP6492512B2 (ja) 2019-04-03
US9655698B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
JP6492512B2 (ja) 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物
JP6484976B2 (ja) 歯科用の被切削加工用ブランク材、粉末冶金用金属粉末、歯科用の陶材焼付用メタルフレームおよび歯科用補綴物
US20190321147A1 (en) Method for manufacturing a dental prosthesis
JP5617381B2 (ja) チタン焼結体およびチタン焼結体の製造方法
JP4321637B2 (ja) 歯科用インプラントの製造方法
JP2009028361A (ja) 歯科用インプラントおよび歯科用インプラントの製造方法
Zinelis Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM)
US20150125821A1 (en) Process for producing a zirconia based dental implant
JP6492513B2 (ja) 歯科用の鋳造用ビレット材、粉末冶金用金属粉末、歯科用金属部品の製造方法および歯科用補綴物の製造方法
US20150216637A1 (en) Dental component, metal powder for powder metallurgy, and method for producing dental component
Myszka et al. Comparison of dental prostheses cast and sintered by SLM from Co-Cr-Mo-W alloy
JP6314886B2 (ja) 粉末冶金用金属粉末、コンパウンド、造粒粉末および焼結体の製造方法
US20100240006A1 (en) Dental scaler tip for dental implant and manufacturing method of dental scaler tip
JP6459058B2 (ja) Mo合金ターゲット
JP3867903B2 (ja) 歯列矯正部材の製造方法
JP2019173155A (ja) TiW合金ターゲットおよびその製造方法
JP5487562B2 (ja) 歯科用インプラントの製造方法
JP2015160107A (ja) 歯科用インプラントおよび歯科用インプラントの製造方法
JP6911651B2 (ja) チタン焼結体、装飾品および時計
Pekkan et al. Effect of different sintering conditions on microstructural characterisation of Co-Cr metal laser powder
JP2015146892A (ja) 歯科用矯正ブラケット、歯科用合金材料、粉末冶金用金属粉末および歯科用矯正ブラケットの製造方法
JPWO2014034736A1 (ja) 歯冠材料及びその製造方法
JP2015160106A (ja) 歯科用アンカーおよび歯科用アンカーの製造方法
KR20200068910A (ko) 치과도재소부용 비귀금속 합금 조성물
JP2016108178A (ja) ガラスブロック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150