JP2015160850A - Method for producing bioplastic molded body derived from keratin - Google Patents

Method for producing bioplastic molded body derived from keratin Download PDF

Info

Publication number
JP2015160850A
JP2015160850A JP2014034762A JP2014034762A JP2015160850A JP 2015160850 A JP2015160850 A JP 2015160850A JP 2014034762 A JP2014034762 A JP 2014034762A JP 2014034762 A JP2014034762 A JP 2014034762A JP 2015160850 A JP2015160850 A JP 2015160850A
Authority
JP
Japan
Prior art keywords
mixture
powder
molded body
distilled water
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014034762A
Other languages
Japanese (ja)
Other versions
JP6252944B2 (en
Inventor
豊 河原
Yutaka Kawahara
豊 河原
伸治 平井
Shinji Hirai
伸治 平井
俊博 葛谷
Toshihiro Kuzutani
俊博 葛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muroran Institute of Technology NUC
Gunma University NUC
Original Assignee
Muroran Institute of Technology NUC
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muroran Institute of Technology NUC, Gunma University NUC filed Critical Muroran Institute of Technology NUC
Priority to JP2014034762A priority Critical patent/JP6252944B2/en
Publication of JP2015160850A publication Critical patent/JP2015160850A/en
Application granted granted Critical
Publication of JP6252944B2 publication Critical patent/JP6252944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for resinifying keratin protein inexpensively and safely without using a chemical.SOLUTION: A bioplastic molded body derived from keratin is produced by: pulverizing chemically untreated feather, wool, hair, and animal hair by mechanical force into powder until a fiber length becomes 500 μm or less; adding distilled water to the powder so that an amount of distilled water becomes 0 to 30 mass% relative to 100 mass% of a mixture of the powder and the distilled water, followed by stirring uniformly; and heat pressure molding the mixture, followed by drying. The heat pressure molding is performed in a vacuum of 6.0 Pa or less using a pulse energization sintering apparatus under a pressure of at least 20 MPa and at a temperature in a range of 120 to 140°C, or in an air atmosphere using a hot press under a pressure of 10 to 30 MPa and at a temperature in a range of 130 to 160°C.

Description

本発明は、羽毛、羊毛等のケラチンタンパク質を化学薬品を使用することなく樹脂化するケラチン由来のバイオプラスチック成形体の製造方法に関する。本明細書で「バイオプラスチック」とは、石油でなく有機物から作られたプラスチックをいう。   The present invention relates to a method for producing a keratin-derived bioplastic molded body in which keratin proteins such as feathers and wool are resinized without using chemicals. As used herein, “bioplastic” refers to a plastic made of organic matter rather than petroleum.

ニワトリの食肉生産過程で廃棄されるニワトリの羽毛を有効活用するために、ニワトリの羽毛をアクリル酸メチルなどの化学薬品で処理してバイオプラスチックを作り出す(樹脂化する)ことに成功した記事が紹介されている(例えば、非特許文献1)。   In order to effectively utilize chicken feathers that are discarded in the meat production process of chicken, an article that succeeded in producing (plasticizing) bioplastic by treating chicken feathers with chemicals such as methyl acrylate is introduced. (For example, Non-Patent Document 1).

またシルクフィブロインに代わる安価なタンパク質として従来から廃棄物として焼却処分されてきたニワトリの羽毛由来のケラチンをパルス通電焼結装置を用いて樹脂化する試みがなされている(例えば非特許文献2参照。)。この方法では、出発原料として中国産水鳥由来の羽毛をアルカリにより加水分解した非結晶性の羽毛由来ケラチン粉末を用いて、このケラチン粉末100質量%に対して0〜5質量%の蒸留水を加えて混合したものを黒鉛ジグに充填し、パルス通電焼結装置で6.0Pa以下の真空中、20MPaの加圧下で353〜443K(80〜170℃)の温度で0〜0.3ks(0〜5分)の時間保持した後、直ちに冷却することにより成形体を作製している。   Attempts have also been made to resinize keratin derived from chicken feathers that have been incinerated as waste as an inexpensive protein to replace silk fibroin using a pulse current sintering apparatus (see, for example, Non-Patent Document 2). ). In this method, 0 to 5% by mass of distilled water is added to 100% by mass of this keratin powder, using amorphous feather-derived keratin powder obtained by hydrolyzing feathers derived from Chinese waterfowl with alkali as a starting material. The graphite jig was filled and mixed in a graphite jig, and at a pressure of 353 to 443 K (80 to 170 ° C.) under a pressure of 20 MPa in a vacuum of 6.0 Pa or less with a pulse current sintering apparatus, 0 to 0.3 ks (0 to 0.3 ks) After being held for 5 minutes, the molded body is produced by cooling immediately.

一方、羽毛を予め薬品処理しない方法として、粒径40μm以下、好ましくは20μm以下の羽毛の微粉末を出発原料として用い、所定量の水を混合してホットプレスすることにより曲げ強度などの優れた成形体を形成する方法が開示されている(例えば、特許文献1参照。)。この方法では、羽毛に対して30〜50質量%の水又はアルコール水溶液を混合したスラリー状混合物を80kg/cm(8MPa)、好ましくは90〜120kg/cm(9〜12MPa)の圧力で95℃以上、好ましくは105℃以下の温度でホットプレス成形することにより含水量5〜9質量%の成形体を得ている。上記方法では上記スラリー中に尿素のような変性剤、アルデヒドのような架橋剤を加えることもできる。上記方法では、羽毛粉末に水分を加えてホットプレス成形することにより、水が可塑剤及び結合剤として作用して組成物が溶融化し一体化すると考えられている。 On the other hand, as a method in which feathers are not treated with chemicals in advance, fine powder of feathers having a particle size of 40 μm or less, preferably 20 μm or less is used as a starting material, and a predetermined amount of water is mixed and hot-pressed to provide excellent bending strength and the like. A method of forming a molded body is disclosed (for example, see Patent Document 1). In this way, a slurry-like mixture obtained by mixing 30 to 50% by weight of water or an aqueous alcohol solution with respect to feather 80kg / cm 2 (8MPa), preferably at a pressure of 90~120kg / cm 2 (9~12MPa) 95 A molded body having a water content of 5 to 9% by mass is obtained by hot press molding at a temperature of not lower than ° C., preferably not higher than 105 ° C. In the above method, a denaturing agent such as urea and a crosslinking agent such as aldehyde can be added to the slurry. In the above method, it is considered that water is added to the feather powder and hot press-molded, so that water acts as a plasticizer and a binder to melt and integrate the composition.

特許第2844431号公報(段落[0005]〜[0009]、[0012]〜[0036])Japanese Patent No. 2844431 (paragraphs [0005] to [0009], [0012] to [0036])

Yiqi Yang "Tough plastic film made from waste chicken feathers" 第241回「National Meeting & Exposition of the American Chemical Society」2011年4月5日, http://gigazine.net/news/20110405●plastic●made●from●chicken●feathers/(●はアンダーバーである。)Yiqi Yang "Tough plastic film made from waste chicken feathers" 241th "National Meeting & Exposition of the American Chemical Society" April 5, 2011, http://gigazine.net/news/20110405 ● plastic ● made ● from ● chicken ● feathers / (● is an underscore.) 河原豊他「ケラチンタンパク質が樹脂化した成形体の作製」Fiber Preprint, Japan, Vol.66 (2011), No. 1 (Annual Meeting)Yutaka Kawahara et al. “Preparation of molded product of keratin protein” Fiber Preprint, Japan, Vol.66 (2011), No. 1 (Annual Meeting)

上記非特許文献1に示される方法は、アクリル系のモノマー(アクリル酸メチル)を使用したタンパク質の改変技術であり、樹脂化するためにはモノマーを重合する工程を要し、製造コストの面で不利であるとともに、有機溶媒に起因して安全性などの課題があった。また上記非特許文献2に示される方法も出発原料として、加水分解した非結晶性の羽毛由来ケラチン粉末を用いているため、十分な樹脂化を行うことができなかった。これは、製造工程途中で中和して噴霧する時に塩が混入するためと考えられる。更に上記特許文献1に示される方法では、羽毛に対して30〜50質量%の水を混合してスラリー状の混合物にするため、水の添加量が多過ぎ、ホットプレスにより過剰の液体を流出させる必要があった。また95〜105℃の温度でプレスするため、水熱反応が生じにくく、そのために水の代わりにアルコール水溶液を用いるか、或いは変性剤、架橋剤を併用しないと樹脂化しにくい不具合があった。上記特許文献1に示される方法では、羽毛の粒径を40μm以下の微粉末にするときに粉末同士がだんご状になってしまう不具合があった。   The method shown in Non-Patent Document 1 is a protein modification technique using an acrylic monomer (methyl acrylate), and requires a step of polymerizing the monomer in order to make a resin. In addition to disadvantages, there were problems such as safety due to the organic solvent. In addition, since the method shown in Non-Patent Document 2 also uses hydrolyzed non-crystalline feather-derived keratin powder as a starting material, sufficient resinization cannot be performed. This is considered because salt mixes when neutralizing and spraying in the middle of a manufacturing process. Furthermore, in the method disclosed in Patent Document 1, 30 to 50% by mass of water is mixed with the feathers to form a slurry-like mixture, so that the amount of water added is too large, and excess liquid flows out by hot pressing. It was necessary to let them. In addition, since pressing is performed at a temperature of 95 to 105 ° C., a hydrothermal reaction hardly occurs. For this reason, there is a problem that it is difficult to make a resin unless an alcohol aqueous solution is used instead of water or a modifier and a crosslinking agent are used in combination. The method disclosed in Patent Document 1 has a problem in that the powders become dumped when the feather particle size is reduced to 40 μm or less.

本発明の目的は、化学薬品を使用することなく、安価かつ安全にケラチン由来のバイオプラスチック成形体を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a keratin-derived bioplastic molded body inexpensively and safely without using chemicals.

本発明の第1の観点は、化学薬品で処理されていない羽毛、羊毛、毛髪又は獣毛を繊維長が500μm以下になるまで機械力によって粉砕して粉末にし、前記粉末に蒸留水を粉末と蒸留水との混合物100質量%に対して0〜30質量%の範囲になるように添加し均一に混合し、この混合物を6.0Pa以下の真空中でパルス通電焼結装置を用いて少なくとも20MPaの圧力下、120〜140℃の範囲の温度で熱圧成形した後、乾燥してケラチン由来のバイオプラスチック成形体を製造する方法である。   According to a first aspect of the present invention, feathers, wool, hair, or animal hair that has not been treated with a chemical is pulverized by mechanical force until the fiber length is 500 μm or less, and powdered with distilled water. It is added so as to be in the range of 0 to 30% by mass with respect to 100% by mass of the mixture with distilled water and uniformly mixed, and this mixture is at least 20 MPa using a pulse current sintering apparatus in a vacuum of 6.0 Pa or less. Is a method of producing a keratin-derived bioplastic molded body by hot-press molding at a temperature in the range of 120 to 140 ° C. under the above pressure.

本発明の第2の観点は、化学薬品で処理されていない羽毛、羊毛、毛髪又は獣毛を繊維長が125μm未満になるまで機械力によって粉砕して粉末にし、前記粉末に蒸留水を粉末と蒸留水との混合物100質量%に対して40〜50質量%の範囲になるように添加し均一に混合し、この混合物を大気雰囲気下ホットプレスを用いて10〜30MPaの圧力下、130〜160℃の範囲の温度で熱圧成形した後、乾燥してケラチン由来のバイオプラスチック成形体を製造である。   According to a second aspect of the present invention, feathers, wool, hair, or animal hair that has not been treated with chemicals is pulverized by mechanical force until the fiber length is less than 125 μm, and powdered with distilled water. It added so that it might become the range of 40-50 mass% with respect to 100 mass% of mixtures with distilled water, it mixed uniformly, and this mixture was 130-160 under the pressure of 10-30 MPa using the hot press in an atmospheric condition. After hot pressing at a temperature in the range of ° C., it is dried to produce a keratin-derived bioplastic molded body.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記羽毛、羊毛、毛髪又は獣毛をボールミル又はジェットミルにより粉末にする製造方法である。   A third aspect of the present invention is an invention based on the first or second aspect, wherein the feather, wool, hair, or animal hair is powdered by a ball mill or a jet mill.

本発明の第4の観点は、羽毛、羊毛、毛髪又は獣毛から製造されたバイオプラスチック成形体であって、成形体表面におけるビッカース硬度が20〜40HVの範囲にあるケラチン由来のバイオプラスチック成形体である。   A fourth aspect of the present invention is a bioplastic molded body produced from feathers, wool, hair or animal hair, and a keratin-derived bioplastic molded body having a Vickers hardness of 20 to 40 HV in the surface of the molded body. It is.

本発明の第1の観点の製造方法では、樹脂化するための化学薬品を必要とせず、環境を汚染しない。即ち、安価かつ安全にケラチン由来のバイオプラスチック成形体を得ることができる。また蒸留水を粉末と蒸留水との混合物100質量%に対して0〜30質量%の範囲になるように粉末に添加し均一に混合するため、特許文献1の発明より水の添加量を少なくして、水熱反応が可能になるとともに、過剰の水分を除去する必要がない。また繊維長が500μm以下になるまで、より好ましくは100μm以下になるまで機械力によって粉砕して粉末にするため、粉末が微粉にならず、粉末化するときに粉末がだんご状にならない利点がある。パルス通電焼結装置で混合物を最初に真空下に置くことで成形品の構造の均一化の効果を奏する。またパルス通電焼結装置の所定の熱圧条件により、装置内に水熱反応が生じ、羽毛、羊毛、毛髪又は獣毛のケラチンを構成するアミノ酸残基をラジカル化させることにより、特別に架橋剤を使用することなく、水が架橋剤の役目をして、複数の分子鎖間に3次元的に架橋結合を形成させる。この結果、ケラチンが高分子量化して樹脂化することができる。   The manufacturing method according to the first aspect of the present invention does not require chemicals for resinification and does not pollute the environment. That is, a keratin-derived bioplastic molded body can be obtained inexpensively and safely. Further, since distilled water is added to the powder so as to be in a range of 0 to 30% by mass with respect to 100% by mass of the mixture of the powder and distilled water, the amount of water added is smaller than that of the invention of Patent Document 1. Thus, a hydrothermal reaction is possible and it is not necessary to remove excess water. Further, since the powder is pulverized by mechanical force until the fiber length is 500 μm or less, more preferably 100 μm or less, the powder does not become a fine powder, and there is an advantage that the powder does not become a ball shape when powdered. . By first placing the mixture under vacuum in a pulse current sintering apparatus, the effect of uniformizing the structure of the molded product is obtained. In addition, a specific heat-pressure condition of the pulse current sintering apparatus causes a hydrothermal reaction in the apparatus, and radicalizes the amino acid residues constituting keratin of feathers, wool, hair, or animal hair, thereby creating a special crosslinking agent. Without using water, water acts as a cross-linking agent to form a three-dimensional cross-linking bond between a plurality of molecular chains. As a result, keratin can be made high molecular weight and resinized.

本発明の第2の観点の製造方法では、特許文献1のように羽毛、羊毛、毛髪又は獣毛を粒径が40μm以下に微粉砕せずに、繊維長125μmまでの粗粉砕の状態でホットプレスを行うため、ホットプレスの上述した所定の熱圧条件により、パルス通電焼結装置と同様にホットプレス内で効率良く水熱反応が生じる。   In the production method of the second aspect of the present invention, as in Patent Document 1, feathers, wool, hair or animal hair is not pulverized to a particle size of 40 μm or less, and is hot in a coarsely pulverized state up to a fiber length of 125 μm. Since the pressing is performed, a hydrothermal reaction is efficiently generated in the hot press in the same manner as in the pulse current sintering apparatus under the above-described predetermined hot pressure condition of the hot press.

具体的には、本発明では、水熱反応によりシスチンがデヒドロアラニンに変性する。デヒドロアラニンの二重結合は反応性が高く、他の残基と様々な架橋反応を生じることが推測される。従来、デヒドロアラニンへの変性は、アルカリ存在下で生じるものと考えられていたが、本発明者らは、この変性が単純な水熱処理によっても生じることを知見した。この架橋反応が生じていると推測されるのは、樹脂が褐色になっていることによる。即ち、デヒドロアラニン残基は、二重結合を有するので、生成すれば、無色のケラチンは褐色になることによる。ここで水熱処理とは対象となる物質に水を添加して熱処理することをいう。   Specifically, in the present invention, cystine is denatured to dehydroalanine by a hydrothermal reaction. It is speculated that the double bond of dehydroalanine is highly reactive and causes various crosslinking reactions with other residues. Conventionally, the modification to dehydroalanine was thought to occur in the presence of alkali, but the present inventors have found that this modification is also caused by a simple hydrothermal treatment. It is estimated that this crosslinking reaction has occurred because the resin is brown. That is, since the dehydroalanine residue has a double bond, colorless keratin turns brown when it is produced. Here, hydrothermal treatment refers to heat treatment by adding water to a target substance.

また出発原料が毛髪又は獣毛の場合、このケラチンには結晶領域と非晶領域が存在し、コンポジットの形態をとる。結晶領域は温度、圧力の条件によって必ずしも非晶化しない。この非晶化しない部分はバイオプラスチック成形体のマトリックスを補強する強化材になる。   When the starting material is hair or animal hair, the keratin has a crystalline region and an amorphous region and takes a composite form. The crystal region does not necessarily become amorphous depending on temperature and pressure conditions. This non-amorphous portion becomes a reinforcing material that reinforces the matrix of the bioplastic molded body.

本発明の第3の観点の製造方法では、ボールミル又はジェットミルにより羽毛、羊毛、毛髪又は獣毛を粉末にするので、特許文献1の発明と異なり、所望の繊維長である500μm以下になるまで、より好ましくは100μm以下になるまで機械力によって粉砕した粉末が得られ、だんご状にならない。また仮に粉末を得るために羽毛、羊毛、毛髪又は獣毛をアルカリで加水分解して溶解し、これを噴霧して微粉化した場合にはケラチンの低分子量化を生じてバイオプラスチック成形体の力学特性が劣るのに対して、ボールミル又はジェットミルの機械的粉砕により、ケラチンの高分子量化を達成できる。   In the manufacturing method of the third aspect of the present invention, since feathers, wool, hair or animal hair is powdered by a ball mill or a jet mill, unlike the invention of Patent Document 1, until the desired fiber length is 500 μm or less. More preferably, a powder pulverized by mechanical force is obtained until it becomes 100 μm or less, and it does not become a dumpling. In order to obtain powder, feathers, wool, hair or animal hair is hydrolyzed with alkali and dissolved, and when this is sprayed into a fine powder, the molecular weight of keratin is reduced, resulting in the mechanical properties of the bioplastic molding. Although the properties are inferior, high molecular weight of keratin can be achieved by mechanical grinding of a ball mill or jet mill.

本発明の第4の観点のバイオプラスチック成形体は、成形体表面におけるビッカース硬度が20〜40HVの範囲にある。   The bioplastic molded body according to the fourth aspect of the present invention has a Vickers hardness of 20 to 40 HV on the surface of the molded body.

本発明の成形体の硬さが増加することを羊毛の例に挙げて説明する。羊毛のαヘリックスからなる結晶は、コイル形状の結晶の外側(放射状)に、デヒドロアラニンに変性するシスチン結合が配列し、マトリックスと連結されている。このため結晶を取り巻くイオウが、シスチン結合が解離することにより、デヒドロアラニンに変性しても、αヘリックスの結晶構造は保持される可能性が高いと考えられる。一方、イオウ含有量の多い非晶マトリックスには、デヒドロアラニンが多く生成してマトリックス内部を強化するとともに、マトリックスはαヘリックスの外側に放射状に配列したデヒドロアラニンと架橋して、結局、結晶と強化された非晶がコンポジットを形成する。本発明では、樹脂が強化されるのは、デヒドロアラニンによってもたらされた架橋結合に加えて、結晶が樹脂の強化材として機能しているためと考えられる。βケラチンの羽毛に関しても同様な機構が生じていると考えられる。   The increase in the hardness of the molded product of the present invention will be described using wool as an example. A crystal composed of an α-helix of wool has a cystine bond that denatures dehydroalanine on the outside (radial) of the coil-shaped crystal and is linked to a matrix. For this reason, even if the sulfur surrounding the crystal is denatured to dehydroalanine due to the dissociation of the cystine bond, the crystal structure of the α helix is highly likely to be retained. On the other hand, in the amorphous matrix with a high sulfur content, a large amount of dehydroalanine is formed to strengthen the inside of the matrix, and the matrix is cross-linked with dehydroalanine radially arranged outside the α helix, eventually strengthening with crystals. The formed amorphous forms a composite. In the present invention, the resin is strengthened because the crystals function as a reinforcing material for the resin in addition to the cross-linking caused by dehydroalanine. A similar mechanism is considered to occur for the feathers of β-keratin.

実施例1〜14のバイオプラスチック成形体の製造方法を示す図である。It is a figure which shows the manufacturing method of the bioplastic molded object of Examples 1-14. 実施例1〜7で用いるパルス通電焼結装置の模式図である。It is a schematic diagram of the pulse electric current sintering apparatus used in Examples 1-7. 実施例1〜7で得られたバイオプラスチック成形体の外観写真図である。It is an external appearance photograph figure of the bioplastic molding obtained in Examples 1-7. 実施例1〜3で得られたバイオプラスチック成形体の誘電率の測定結果を示す図である。It is a figure which shows the measurement result of the dielectric constant of the bioplastic molded object obtained in Examples 1-3. 実施例4〜5で得られたバイオプラスチック成形体の誘電率の測定結果を示す図である。It is a figure which shows the measurement result of the dielectric constant of the bioplastic molding obtained in Examples 4-5. 実施例6〜7で得られたバイオプラスチック成形体の誘電率の測定結果を示す図である。It is a figure which shows the measurement result of the dielectric constant of the bioplastic molding obtained in Examples 6-7.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本発明のバイオプラスチック成形体の製造方法は、先ず、化学薬品で処理されていない羽毛、羊毛、毛髪又は獣毛を用意する。この羽毛、羊毛、毛髪又は獣毛を繊維長が500μm以下、より好ましくは100μm以下になるまで機械力によって粉砕して粉末にする。繊維長が上記値になるまでを基準として粉末化するのは、あまり細かい粉末にすると粉末化する際に粉末がだんご状になってしまうからである。また上限値を超えると、粉末ではなく短繊維状になるため均一な成形体を得るための原料の充填作業が阻害されること、それに加えて未粉砕又は不完全な粉砕、例えば羽毛形態では水が十分に粉体内部に供給されないために水熱反応が生じないからである。本発明では、粉砕はボールミルやジェットミルを用いることが好ましい。   As shown in FIG. 1, in the method for producing a bioplastic molded body of the present invention, first, feathers, wool, hair, or animal hair not treated with chemicals are prepared. This feather, wool, hair or animal hair is pulverized into powder by mechanical force until the fiber length is 500 μm or less, more preferably 100 μm or less. The reason why the fiber length is pulverized until the fiber length reaches the above value is that if the powder length is too fine, the powder becomes dumped when pulverized. If the upper limit is exceeded, short fibers, not powder, impair raw material filling operations to obtain a uniform molded body, and in addition, unmilled or incomplete grinding, such as water in the feather form This is because the hydrothermal reaction does not occur because the powder is not sufficiently supplied into the powder. In the present invention, it is preferable to use a ball mill or a jet mill for the pulverization.

次いで、得られた粉末に蒸留水を添加して均一に混合する。パルス通電焼結装置を用いる場合、蒸留水は、混合物100質量%に対して0〜30質量%の範囲、好ましくは5〜15質量%の範囲になるように添加する。ホットプレスを用いる場合、蒸留水は、混合物100質量%に対して40〜50質量%の範囲になるように添加する。蒸留水の添加量が下限値未満では架橋剤としての機能を有する水の量が少なすぎ、混合物の樹脂化が生じないためである。上限値を超えると、次のパルス通電焼結装置又はホットプレス等の熱圧成形時において混合物の加水分解が進行して適切な水熱反応が生じず、やはり混合物の樹脂化しないためである。例えば、蒸留水を粉末化した毛繊維に滴下しながら混合し、その混合物が小麦粉の粘土のような練り物にすることが好ましい。   Next, distilled water is added to the obtained powder and mixed uniformly. When using a pulse electric current sintering apparatus, distilled water is added so that it may become the range of 0-30 mass% with respect to 100 mass% of mixtures, Preferably it is the range of 5-15 mass%. When using a hot press, distilled water is added so that it may become the range of 40-50 mass% with respect to 100 mass% of mixtures. This is because if the amount of distilled water added is less than the lower limit, the amount of water having a function as a crosslinking agent is too small, and the mixture is not resinized. If the upper limit value is exceeded, hydrolysis of the mixture proceeds at the time of hot press molding such as the next pulse current sintering apparatus or hot press, and an appropriate hydrothermal reaction does not occur, and the mixture is not converted into a resin. For example, it is preferable that distilled water is mixed while being dropped onto powdered hair fibers, and the mixture is made into a kneaded product such as clay of wheat flour.

得られた混合物を図2に示すパルス通電焼結装置10又は図示しないホットプレスにより熱圧成形する。パルス通電焼結装置10は、黒鉛製型11と、導電性の耐熱金属で構成された一対の押し板12a、12bと、一対の電極14a、14bと、一対の導電性のある押し棒15a、15bと、一対の通電部16a、16bと、焼結用の電源17とを備える。   The obtained mixture is hot-press-molded by the pulse electric current sintering apparatus 10 shown in FIG. 2 or a hot press (not shown). The pulse current sintering apparatus 10 includes a graphite mold 11, a pair of push plates 12a and 12b made of a conductive heat-resistant metal, a pair of electrodes 14a and 14b, a pair of conductive push rods 15a, 15b, a pair of energization parts 16a and 16b, and a power source 17 for sintering.

この通電焼結装置10は、真空チャンバー18内に設置される。黒鉛製型11は、得られた混合物Aを収容して加圧しながら焼結する円筒形黒鉛製ダイ11aとこのダイ内に挿入して混合物Aを加圧する黒鉛製の一対の円柱状パンチ11b、11cとにより構成される。一対の押し板12a、12bは、パンチ11b、11cに押し当てられる。黒鉛製型11は、一対の押し板12a、12bを介して、一対の電極12a、12bの間に挟まれた状態で設置される。ダイ内の混合物Aには、一対の電極14a、14b、一対の押し棒15a、15b及び一対の通電部16a、16bを介してパルス電流が電源17から流れるようになっている。パルス通電焼結装置10は、図示しない焼結温度を制御するための熱電対、型内及び真空チャンバー内の圧力を検出する圧力センサを更に備える。   The electric sintering apparatus 10 is installed in the vacuum chamber 18. The graphite mold 11 includes a cylindrical graphite die 11a that contains the obtained mixture A and sinters while pressing, and a pair of graphite punches 11b that are inserted into the die and pressurize the mixture A, 11c. The pair of pressing plates 12a and 12b is pressed against the punches 11b and 11c. The graphite mold 11 is installed in a state of being sandwiched between a pair of electrodes 12a and 12b via a pair of push plates 12a and 12b. In the mixture A in the die, a pulse current flows from the power source 17 through the pair of electrodes 14a and 14b, the pair of push rods 15a and 15b, and the pair of energization portions 16a and 16b. The pulse current sintering apparatus 10 further includes a thermocouple for controlling a sintering temperature (not shown), and a pressure sensor for detecting the pressure in the mold and the vacuum chamber.

上記パルス通電焼結装置を用いてバイオプラスチック成形体を製造する方法について説明する。先ず、図2に示す真空チャンバー18を大気圧にした状態にし、ダイ11aと下部パンチ11cが形成する空間部に、通電焼結の対象としての混合物Aを冷間で収容する。通電焼結する前のこの状態で真空チャンバー18内を室温で減圧し、6.0Pa以下、好ましくは4Pa以下の真空状態にする。この真空圧にならない状態で加圧すると発泡が起こり、成形品の構造が不均一となるためである。次いでダイ11aの内径内に上部パンチ11bを挿入する。図示しない油圧ユニットを用いて押し棒15aに荷重をかけ、少なくとも20MPaの圧力で、好ましくは20〜40MPaの範囲内の一定圧力で混合物Aを加圧する。圧力が20MPa未満であると、成形品の構造の不均一化の不具合を生じる。   A method for producing a bioplastic molded body using the pulse current sintering apparatus will be described. First, the vacuum chamber 18 shown in FIG. 2 is brought into an atmospheric pressure state, and the mixture A as an object of current sintering is accommodated cold in a space formed by the die 11a and the lower punch 11c. In this state before the current sintering, the inside of the vacuum chamber 18 is depressurized at room temperature to a vacuum state of 6.0 Pa or less, preferably 4 Pa or less. This is because if the pressure is applied in a state where the vacuum pressure is not reached, foaming occurs and the structure of the molded product becomes non-uniform. Next, the upper punch 11b is inserted into the inner diameter of the die 11a. A load is applied to the push rod 15a using a hydraulic unit (not shown), and the mixture A is pressurized at a pressure of at least 20 MPa, preferably a constant pressure in the range of 20 to 40 MPa. If the pressure is less than 20 MPa, there is a problem that the structure of the molded product is not uniform.

この状態を維持しながら、5〜50℃/分の範囲の速度で昇温し、40〜200℃の温度、好ましくは110〜150の温度の範囲まで加熱し、0〜500秒間保持する。温度が下限値未満であると、水熱反応が不十分となり成形品の構造形成に不具合があり、上限値を超えると、原料の著しい熱分解が発生する不具合がある。加熱は電源17に接続された一対の電極14a、14bを介してダイ11aに充填した混合物Aに通電して、ジュール熱により混合物A自体を発熱させることにより混合物Aを焼結する。ジュール熱は、特に電気抵抗の高い部位、即ち混合物Aを構成する粉末の粒子同士の界面で発生する。加熱後、5〜50℃/分の速度で降温する。続いて押し棒15aへの加圧を取り除き、真空チャンバー18内を大気圧にする。上部パンチ11bをダイ11aから抜いて通電焼結されたバイオプラスチック成形体を取り出す。ここで図示しない熱電対及び圧力センサにより通電焼結は制御される。更に続いて、この成形体をその水分率が1%以下の範囲になるまで乾燥する。ダイ11aにより形成される空間が円柱状であれば、円板状のバイオプラスチック成形体が得られる。   While maintaining this state, the temperature is raised at a rate in the range of 5 to 50 ° C./min, heated to a temperature of 40 to 200 ° C., preferably 110 to 150, and held for 0 to 500 seconds. When the temperature is less than the lower limit, the hydrothermal reaction is insufficient, and there is a problem in the structure formation of the molded product. When the temperature exceeds the upper limit, there is a problem that significant thermal decomposition of the raw material occurs. For heating, the mixture A filled in the die 11a is energized through a pair of electrodes 14a and 14b connected to the power source 17, and the mixture A itself is heated by Joule heat to sinter the mixture A. Joule heat is generated at a portion having a particularly high electrical resistance, that is, at the interface between powder particles constituting the mixture A. After heating, the temperature is lowered at a rate of 5 to 50 ° C./min. Subsequently, the pressure applied to the push rod 15a is removed, and the inside of the vacuum chamber 18 is brought to atmospheric pressure. The upper punch 11b is removed from the die 11a, and the bioplastic molded body subjected to current sintering is taken out. Here, the current sintering is controlled by a thermocouple and a pressure sensor (not shown). Subsequently, the molded body is dried until the moisture content falls within the range of 1% or less. If the space formed by the die 11a is cylindrical, a disk-shaped bioplastic molded body is obtained.

得られた混合物を図示しないホットプレスにより熱圧成形する場合には、中央に四角又は円形の孔の空いたステンレス製の厚さ100μm程度のプレートを用意し、このプレートをこのプレートより一回り大きな250℃程度の耐熱性のある第1樹脂基板の上に置き、この状態でプレートの孔の中に前述した混合物を充填して、第1樹脂基板と同形同大で同質の第2樹脂基板を被せる。第1及び第2樹脂基板で挟み込んだ混合物が充填されたプレートを、更に第1及び第2樹脂基板と同形同大の2枚のステンレス板で挟み込んでホットプレスに入れて熱圧成形する。このホットプレスによりフィルム状のバイオプラスチック成形体が得られる。   When the obtained mixture is hot-pressed by a hot press (not shown), a plate made of stainless steel with a square or circular hole having a thickness of about 100 μm is prepared, and this plate is slightly larger than this plate. A second resin substrate having the same shape and size as the first resin substrate is placed on the first resin substrate having a heat resistance of about 250 ° C., and in this state, the above-mentioned mixture is filled in the holes of the plate. Put on. The plate filled with the mixture sandwiched between the first and second resin substrates is further sandwiched between two stainless steel plates having the same shape and size as the first and second resin substrates, and is hot-pressed into a hot press. A film-like bioplastic molded body is obtained by this hot pressing.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

実施例1〜7では、パルス通電焼結装置を用いて円板状のバイオプラスチック成形体を作製した例を説明する。その製造条件を表1に、得られたバイオプラスチック成形体の特性、外観状況を表2に示す。   In Examples 1 to 7, an example will be described in which a disk-shaped bioplastic molded body was produced using a pulse current sintering apparatus. The production conditions are shown in Table 1, and the characteristics and appearance of the obtained bioplastic molded article are shown in Table 2.

実施例8〜14及び比較例1〜4では、ホットプレスを用いてフィルム状のバイオプラスチック成形体を作製した例を説明する。その製造条件及び得られたバイオプラスチック成形体の特性を表3に示す。   In Examples 8 to 14 and Comparative Examples 1 to 4, an example in which a film-like bioplastic molded body was produced using a hot press will be described. Table 3 shows the production conditions and characteristics of the obtained bioplastic molded body.

<実施例1>
産廃グレードの羊毛を用意し、この羊毛を化学薬品で処理することなく、平均球径4mmのジルコニア球を用いた遊星型ボールミル(P-6型、フリチュ社製)に入れ、実施例1と同じボールミルに入れ、繊維長が100μm程度になるまで粉砕して羊毛粉末にした。基準のフルイとして125μmのメッシュを用いることによりこの羊毛粉末の繊維長を125μm未満に制御した。乳鉢にこの羊毛粉末を入れ、室温の蒸留水を滴下しながら羊毛粉末と蒸留水とを十分に混合して混合物を得た。蒸留水は混合物100質量%に対して15質量%となるように添加した。この混合物を図2に示すパルス通電焼結装置10を用いて焼結させた後、乾燥してバイオプラスチック成形体を得た。焼結前の真空度は6.0Pa、加圧圧力は20MPa、昇温速度20℃/分、焼結温度130℃、焼結保持時間0分、降温速度30℃/分であった。乾燥は温度60℃で72時間維持することにより行った。これにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 1>
Prepared industrial grade wool and put it in a planetary ball mill (P-6, manufactured by Fritsch) using zirconia balls with an average sphere diameter of 4 mm without treating it with chemicals. It was put in a ball mill and pulverized to a wool powder until the fiber length became about 100 μm. The fiber length of the wool powder was controlled to be less than 125 μm by using a 125 μm mesh as a reference sieve. The wool powder was put in a mortar, and the mixture was obtained by thoroughly mixing the wool powder and distilled water while dropping distilled water at room temperature. Distilled water was added at 15% by mass with respect to 100% by mass of the mixture. This mixture was sintered using a pulse current sintering apparatus 10 shown in FIG. 2 and then dried to obtain a bioplastic molded body. The degree of vacuum before sintering was 6.0 Pa, the applied pressure was 20 MPa, the temperature rising rate was 20 ° C./min, the sintering temperature was 130 ° C., the sintering holding time was 0 minutes, and the temperature decreasing rate was 30 ° C./min. Drying was performed by maintaining the temperature at 60 ° C. for 72 hours. As a result, a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm was obtained.

<実施例2>
羊毛粉末に対する蒸留水の添加量を10質量%にした以外、実施例1と同じ方法で混合物を得た。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 2>
A mixture was obtained in the same manner as in Example 1 except that the amount of distilled water added to the wool powder was 10% by mass. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<実施例3>
羊毛粉末に対する蒸留水の添加量を0質量%にした以外、即ち羊毛粉末に蒸留水を添加しない以外、実施例1と同じ方法で混合物を得た。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 3>
A mixture was obtained in the same manner as in Example 1 except that the amount of distilled water added to the wool powder was 0% by mass, that is, no distilled water was added to the wool powder. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<実施例4>
中国産の水鳥の羽毛を用意し、この羽毛を化学薬品で処理することなく、実施例1と同じボールミルに入れ、羽毛粉末にした。基準のフルイとして125μmのメッシュを用いることによりこの羽毛粉末の繊維長を125μm未満に制御した。乳鉢にこの羽毛粉末を入れ、室温の蒸留水を滴下しながら羽毛粉末と蒸留水とを十分に混合して混合物を得た。蒸留水は混合物100質量%に対して10質量%となるように添加した。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 4>
A waterfowl feather made in China was prepared, and this feather was put into the same ball mill as in Example 1 without being treated with chemicals to obtain a feather powder. The fiber length of the feather powder was controlled to be less than 125 μm by using a 125 μm mesh as a reference sieve. The feather powder was put in a mortar, and the feather powder and distilled water were thoroughly mixed while dropping distilled water at room temperature to obtain a mixture. Distilled water was added to 10% by mass with respect to 100% by mass of the mixture. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<実施例5>
羽毛粉末に対する蒸留水の添加量を0質量%にした以外、実施例4と同じ方法で混合物を得た。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 5>
A mixture was obtained in the same manner as in Example 4 except that the amount of distilled water added to the feather powder was 0% by mass. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<実施例6>
基準のフルイとして125μmのメッシュを用いることにより繊維長を125μm未満の羽毛粉末にした以外、実施例4と同じように蒸留水は混合物100質量%に対して10質量%となるように添加する方法で混合物を得た。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 6>
A method in which distilled water is added to 10% by mass with respect to 100% by mass of the mixture as in Example 4 except that a 125 μm mesh is used as a standard sieve and the feather length is less than 125 μm. To obtain a mixture. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<実施例7>
羽毛粉末に対する蒸留水の添加量を0質量%にした以外、実施例6と同じ方法で混合物を得た。またこの混合物を実施例1と同様にしてパルス通電焼結させ、乾燥させることにより厚さ4mm、直径15mmの円板状のバイオプラスチック成形体を得た。
<Example 7>
A mixture was obtained in the same manner as in Example 6 except that the amount of distilled water added to the feather powder was 0% by mass. Further, this mixture was subjected to pulse current sintering in the same manner as in Example 1 and dried to obtain a disk-shaped bioplastic molded body having a thickness of 4 mm and a diameter of 15 mm.

<比較測定その1>
実施例1〜7で得られたバイオプラスチック成形体を図3に示す。これらの成形体について、円板状の成形体端縁から0.5mmおける箇所(a点)、1.5mmおける箇所(b点)、2.5mmにおける箇所(c点)、及び円板状の成形体中心から1.5mmおける箇所(d点)、0.5mmにおける箇所(e点)の各ビッカース硬度を測定した。なお、ビッカース硬度はマイクロビッカース硬度計,FM-700、フューチャアテック社製を使用して測定した。また、実施例1〜7で得られたバイオプラスチック成形体の誘電率を測定した結果を図4〜図6に示す。図4〜図6において、No.1〜No.7は、実施例1〜実施例7をそれぞれ意味する。なお、誘電率は、LCRメーター(LCRハイテスタ3532-50、日置電機社製)を使用して測定した。
<Comparison measurement 1>
The bioplastic moldings obtained in Examples 1 to 7 are shown in FIG. About these molded objects, the location (point a) at 0.5 mm from the edge of the disc-shaped molded product (point a), location at 1.5 mm (point b), location at 2.5 mm (point c), and disc-shaped Each Vickers hardness was measured at 1.5 mm from the center of the molded body (d point) and 0.5 mm (e point). The Vickers hardness was measured using a micro Vickers hardness meter, FM-700, manufactured by Futurea Tech. Moreover, the result of having measured the dielectric constant of the bioplastic molding obtained in Examples 1-7 is shown in FIGS. 4 to 6, No. 1 to No. 7 mean Examples 1 to 7, respectively. The dielectric constant was measured using an LCR meter (LCR Hitester 3532-50, manufactured by Hioki Electric Co., Ltd.).

<評価その1>
実施例1〜7で得られたバイオプラスチック成形体のビッカース硬度は羊毛が20.4〜33.2HVの範囲にあり、羽毛が22.8〜37.4HVの範囲にあり、銀よりも少し柔らかい程度であることが判った。図4〜図6から明らかなように、比誘電率はフィブロイの樹脂より高くなる傾向があった。
<Evaluation 1>
The Vickers hardness of the bioplastic moldings obtained in Examples 1 to 7 is in the range of 20.4 to 33.2 HV for wool, in the range of 22.8 to 37.4 HV for feathers, and slightly softer than silver. It turns out that it is a grade. As apparent from FIGS. 4 to 6, the relative permittivity tended to be higher than that of the Fibroy resin.

<実施例8〜14、比較例1〜4>
中国産の水鳥の羽毛を用意し、この羽毛を化学薬品で処理することなく、実施例1と同じボールミルに入れ、羽毛粉末にした。基準のフルイとして125μmのメッシュを用いることによりこの羽毛粉末の繊維長を125μm以下に制御した。乳鉢にこの羽毛粉末を入れ、室温の蒸留水を滴下しながら羊毛粉末と蒸留水とを十分に混合して混合物を得た。蒸留水は混合物100質量%に対して表3に示す割合(質量%)となるように添加した。得られた混合物を図示しないホットプレス(TOYOSEIKI製 mini TEST PRESS 10)により熱圧成形した。ホットプレスで熱圧成形するに際し、中央に20mm×20mmの正方形の孔の空いたステンレス製の厚さ100μmのプレートを用意し、このプレートを100mm×100mm×0.05mmの大きさのPTFE(商標名テフロン)製の第1樹脂基板の上に置き、この状態でプレートの孔の中に得られた混合物を充填して、第1樹脂基板と同形同大で同質の第2樹脂基板を被せた。第1及び第2樹脂基板で挟み込んだ混合物が充填されたプレートを、更に第1及び第2樹脂基板と同形同大の厚さ0.1mmの2枚のステンレス板で挟み込んだ。このように用意された試料をホットプレスに入れ、加熱時間240秒間、プレス時間90秒間で、表3に示す条件で熱圧成形した。このホットプレスにより厚さ0.1mm、20mm×20mmの正方形のフィルム状のバイオプラスチック成形体を得た。
<Examples 8-14, Comparative Examples 1-4>
A waterfowl feather made in China was prepared, and this feather was put into the same ball mill as in Example 1 without being treated with chemicals to obtain a feather powder. The fiber length of the feather powder was controlled to 125 μm or less by using a 125 μm mesh as a reference sieve. The feather powder was put in a mortar, and the mixture was obtained by thoroughly mixing the wool powder and distilled water while dropping distilled water at room temperature. Distilled water was added so as to have a ratio (mass%) shown in Table 3 with respect to 100 mass% of the mixture. The obtained mixture was hot-press molded with a hot press (not shown) (TOYOSEIKI mini TEST PRESS 10). When hot-pressing with a hot press, a stainless steel plate with a thickness of 20 mm x 20 mm and a square hole with a thickness of 100 μm is prepared. This plate is made of PTFE (trademark) having a size of 100 mm x 100 mm x 0.05 mm. Place it on the first resin substrate made of name Teflon, fill the obtained mixture into the hole of the plate in this state, and cover the second resin substrate with the same shape and size as the first resin substrate It was. The plate filled with the mixture sandwiched between the first and second resin substrates was further sandwiched between two stainless plates having the same shape and size as the first and second resin substrates and a thickness of 0.1 mm. The sample thus prepared was put into a hot press and subjected to hot press molding under the conditions shown in Table 3 with a heating time of 240 seconds and a pressing time of 90 seconds. By this hot pressing, a square film-like bioplastic molded body having a thickness of 0.1 mm and 20 mm × 20 mm was obtained.

<比較測定その2>
実施例8〜14及び比較例1〜4で得られたバイオプラスチック成形体について、(4)最大応力、および(5)破断伸びを、小型万能レオメータ(島津製作所(株)製) EZ-Testを用いてそれぞれ測定した。
<Comparison measurement 2>
For the bioplastic molded bodies obtained in Examples 8 to 14 and Comparative Examples 1 to 4, (4) Maximum stress and (5) Elongation at break were measured using a small all-purpose rheometer (manufactured by Shimadzu Corporation) EZ-Test. Each was measured.

<評価その2>
比較例1〜4で得られたバイオプラスチック成形体は、蒸留水の添加量が40質量%を下回ると、樹脂として固まらず、プラスチック成形体にならず、プレス後の引張強度が測定不能であった。これに対して、実施例8〜15で得られたバイオプラスチック成形体の引張強度は最大応力が15.24〜62.98MPa、破断伸びが1.71〜4.68%であり、プラスチック成形体が得られた。実施例8〜11で得られたバイオプラスチック成形体はホットプレスの温度上昇とともに、最大応力が上昇し、引張強度が増加する傾向が見られた。また実施例12〜14で得られたバイオプラスチック成形体は圧力と最大応力との関係から20MPaの圧力で最大応力値が最大となり、最適な圧力が存在することが判った。
<Evaluation 2>
When the amount of distilled water added was less than 40% by mass, the bioplastic molded bodies obtained in Comparative Examples 1 to 4 did not harden as a resin and did not become a plastic molded body, and the tensile strength after pressing was not measurable. It was. On the other hand, the tensile strength of the bioplastic molded bodies obtained in Examples 8 to 15 was 15.24 to 62.98 MPa at the maximum stress and 1.71 to 4.68% at break elongation. was gotten. In the bioplastic molded bodies obtained in Examples 8 to 11, the maximum stress increased and the tensile strength increased as the temperature of the hot press increased. In addition, it was found that the bioplastic molded bodies obtained in Examples 12 to 14 had a maximum stress value at a pressure of 20 MPa from the relationship between the pressure and the maximum stress, and an optimum pressure existed.

Claims (4)

化学薬品で処理されていない羽毛、羊毛、毛髪又は獣毛を繊維長が500μm以下になるまで機械力によって粉砕して粉末にし、前記粉末に蒸留水を粉末と蒸留水との混合物100質量%に対して0〜30質量%の範囲になるように添加し均一に混合し、この混合物を6.0Pa以下の真空中でパルス通電焼結装置を用いて少なくとも20MPaの圧力下、120〜140℃の範囲の温度で熱圧成形した後、乾燥してケラチン由来のバイオプラスチック成形体を製造する方法。   Feather, wool, hair, or animal hair that has not been treated with chemicals is pulverized by mechanical force until the fiber length is 500 μm or less, and is made into a powder. Distilled water is mixed with the powder to 100% by mass. The mixture was added so as to be in the range of 0 to 30% by mass and uniformly mixed, and the mixture was heated at 120 to 140 ° C. under a pressure of at least 20 MPa using a pulse current sintering apparatus in a vacuum of 6.0 Pa or less. A method for producing a bioplastic molded body derived from keratin by hot pressing at a temperature in the range and then drying. 化学薬品で処理されていない羽毛、羊毛、毛髪又は獣毛を繊維長が125μm以下になるまで機械力によって粉砕して粉末にし、前記粉末に蒸留水を粉末と蒸留水との混合物100質量%に対して40〜50質量%の範囲になるように添加し均一に混合し、この混合物を大気雰囲気下ホットプレスを用いて10〜30MPaの圧力下、130〜160℃の範囲の温度で熱圧成形した後、乾燥してケラチン由来のバイオプラスチック成形体を製造する方法。   Feather, wool, hair or animal hair that has not been treated with chemicals is pulverized by mechanical force until the fiber length is 125 μm or less, and the powder is distilled water to 100% by mass of the mixture of powder and distilled water. The mixture is added so as to be in the range of 40 to 50% by mass and uniformly mixed, and this mixture is subjected to hot pressing at a temperature in the range of 130 to 160 ° C. under a pressure of 10 to 30 MPa using a hot press in an air atmosphere. And then drying to produce a keratin-derived bioplastic molded body. 前記羽毛、羊毛、毛髪又は獣毛をボールミル又はジェットミルにより粉末にする請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the feather, wool, hair or animal hair is powdered by a ball mill or a jet mill. 羽毛、羊毛、毛髪又は獣毛から製造されたバイオプラスチック成形体であって、成形体表面におけるビッカース硬度が20〜40HVの範囲にあるバイオプラスチック成形体。   A bioplastic molded body produced from feathers, wool, hair or animal hair, wherein the molded body surface has a Vickers hardness of 20 to 40 HV.
JP2014034762A 2014-02-26 2014-02-26 Method for producing keratin-derived bioplastic molded body Active JP6252944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034762A JP6252944B2 (en) 2014-02-26 2014-02-26 Method for producing keratin-derived bioplastic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034762A JP6252944B2 (en) 2014-02-26 2014-02-26 Method for producing keratin-derived bioplastic molded body

Publications (2)

Publication Number Publication Date
JP2015160850A true JP2015160850A (en) 2015-09-07
JP6252944B2 JP6252944B2 (en) 2017-12-27

Family

ID=54184191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034762A Active JP6252944B2 (en) 2014-02-26 2014-02-26 Method for producing keratin-derived bioplastic molded body

Country Status (1)

Country Link
JP (1) JP6252944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110132A (en) * 2015-12-17 2017-06-22 国立大学法人室蘭工業大学 Animal fiber molding and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325873B1 (en) 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695071A (en) * 1979-12-28 1981-08-01 Itakura Booru Yuugen Molding of ball core
JPH08245807A (en) * 1995-03-10 1996-09-24 Agency Of Ind Science & Technol Molded feather and production thereof
JP2001302800A (en) * 2000-04-24 2001-10-31 Tokai Bussan Kk Novel minute powder derived from keratin and method for its manufacturing
JP2002167513A (en) * 2000-11-30 2002-06-11 Joichi Koga Process for preparing molding material by using keratin fiber as raw material, and use of molding material made by this preparing process
WO2006101223A1 (en) * 2005-03-25 2006-09-28 National Institute Of Agrobiological Sciences Dielectric body and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695071A (en) * 1979-12-28 1981-08-01 Itakura Booru Yuugen Molding of ball core
JPH08245807A (en) * 1995-03-10 1996-09-24 Agency Of Ind Science & Technol Molded feather and production thereof
JP2001302800A (en) * 2000-04-24 2001-10-31 Tokai Bussan Kk Novel minute powder derived from keratin and method for its manufacturing
JP2002167513A (en) * 2000-11-30 2002-06-11 Joichi Koga Process for preparing molding material by using keratin fiber as raw material, and use of molding material made by this preparing process
WO2006101223A1 (en) * 2005-03-25 2006-09-28 National Institute Of Agrobiological Sciences Dielectric body and method for producing same
US20090051071A1 (en) * 2005-03-25 2009-02-26 National Institute Of Agrobiological Sciences Dielectric substance and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110132A (en) * 2015-12-17 2017-06-22 国立大学法人室蘭工業大学 Animal fiber molding and method for producing the same

Also Published As

Publication number Publication date
JP6252944B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
Aman et al. Spark plasma sintering kinetics of pure α‐alumina
JP6252944B2 (en) Method for producing keratin-derived bioplastic molded body
Schwertz et al. Consolidation by spark plasma sintering of polyimide and polyetheretherketone
CN104723567B (en) A kind of forming method of modified Teflon plastic products
CN106631074A (en) High-calcium-oxide-content calcium oxide material and preparation method thereof
US11701804B2 (en) Method for producing a part from a particulate natural material and part obtained by such a method
Siahsarani et al. Compressive shape memory behavior of spring‐shaped polylactic acid alloy type
CN108264364A (en) A kind of titanium coating calcia material and preparation method thereof
JP6494985B2 (en) Bioplastic manufacturing method and bioplastic molded body
CN103862049A (en) Ni-Ti porous material mini-sized part and sintering method thereof
CN105295269B (en) A kind of preparation method for filling graphite polytetrafluoroethylmaterial material
JP2015108126A (en) Method for recycling fluororesin
CN115448704B (en) Forming method of ceramic blank
CN104014796A (en) Injection molding method for metal powder
JPH0593086A (en) Method for producing porous molded article of polytetrafluoroethylene
KR20040027447A (en) Porous carbon material and porous carbon material product obtained by using the same
RU2404055C2 (en) Method of producing articles from powder polymer materials (versions)
Ramli et al. Powder injection molding of SS316L/HA composite: rheological properties and mechanical properties of the green part
CN106396673A (en) Processing technology of ceramic cutter
CN106396672A (en) Production method of ceramic cutte
CN104383594B (en) A kind of preparation method of polybutylene succinate/hydroxylapatite composite biological ceramic material
JP2018044081A (en) Composite molded body and method for producing the same
Fáberová et al. FRACTURE CHARACTERISTICS OF THE COMPOSITE MATERIAL BASED ON Fe–THERMOSETTING RESIN PREPARED BY POWDER METALLURGY
Chomsirigul et al. Influence of specimen dimensions and temperature on the debinding behavior of alumina feedstock
Gustaw et al. Gelation of whey proteins by microwave heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6252944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360