JP2018044081A - Composite molded body and method for producing the same - Google Patents

Composite molded body and method for producing the same Download PDF

Info

Publication number
JP2018044081A
JP2018044081A JP2016180454A JP2016180454A JP2018044081A JP 2018044081 A JP2018044081 A JP 2018044081A JP 2016180454 A JP2016180454 A JP 2016180454A JP 2016180454 A JP2016180454 A JP 2016180454A JP 2018044081 A JP2018044081 A JP 2018044081A
Authority
JP
Japan
Prior art keywords
composite molded
molded body
powder
mixture
feather
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016180454A
Other languages
Japanese (ja)
Inventor
豊 河原
Yutaka Kawahara
豊 河原
弘 柳場
Hiroshi Yanagiba
弘 柳場
津田 祐一
Yuichi Tsuda
祐一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO UMOU KOGYO KK
Gunma University NUC
Original Assignee
TOYO UMOU KOGYO KK
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO UMOU KOGYO KK, Gunma University NUC filed Critical TOYO UMOU KOGYO KK
Priority to JP2016180454A priority Critical patent/JP2018044081A/en
Publication of JP2018044081A publication Critical patent/JP2018044081A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite molded body which has a sufficient strength even when a ratio of a woody material is high, does not use an artificial chemical substance, and is safe for human bodies, and to provide a method for producing the same.SOLUTION: A method for producing a composite molded body includes: a step of making feather keratin amorphous by powdering; a step of powdering the woody material; a step of adding and mixing distilled water to the powder of the woody material to obtain a first mixture; a step of adding the powder of the feather keratin to the first mixture and kneading the resultant substance to obtain a second mixture; a step of placing a plate having a hole in the central portion on a first resin substrate having heat resistance, filling the hole of the plate with the second mixture, covering the plate with a second resin substrate having heat resistance, and further sandwiching the plate sandwiched between the first resin substrate and the second resin substrate with two metal plates; and a step of pressure-bonding the plate in a state in which the second mixture is heated by hot pressing to recrystallize the feather keratin.SELECTED DRAWING: None

Description

本発明は、木質材料粉末が羽毛ケラチンで接着されてなる複合成形体及びその製造方法に関する。   The present invention relates to a composite molded body in which a wood material powder is bonded with feather keratin and a method for producing the same.

従来、間伐材を再生利用する技術として、木質材料粉末(木粉)とプラスチックを主原料に、これらを加熱しながら練り混ぜて成形した材料である混練型WPC(Wood Plastic Composite:木材プラスチック複合材)が用いられている(例えば、非特許文献1参照)。混練型WPCにおける木粉の使用比率(木質含有率)は、50質量%前後が一般的であり、木質含有率が高くなる程混練型WPCの強度が低下する傾向にある。非特許文献1は、この木粉自体に改質処理を施すことにより、木質含有率を70質量%まで高めている。   Conventionally, as a technology to recycle thinned wood, wood plastic powder (wood powder) and plastic are the main raw materials, and these are kneaded WPC (Wood Plastic Composite): wood plastic composite material ) Is used (see, for example, Non-Patent Document 1). The use ratio (wood content) of wood powder in the kneading type WPC is generally around 50% by mass, and the strength of the kneading type WPC tends to decrease as the wood content increases. Non-Patent Document 1 increases the wood content to 70% by mass by subjecting this wood powder itself to a modification treatment.

上記非特許文献1に示される混練型WPCの製造方法では、木粉の含有率(充填率)は70%が限界であり、成形した材料の曲げ強度は31〜32MPaに過ぎない。また、木粉とポリプロピレンとを混合した射出成形では、プラスチックの融点が165℃以上であることを考慮すると、接着性を確保するために成形時の加熱温度を190℃以上にする必要があるが、木材では細胞間を連結する中間ラメラに含まれるヘミセルロースが190℃以上の高温で熱分解し細胞間の接続を弱めるため、190℃以上の高温での成形では木材組織は破壊され強度低下につながるおそれがあり、好ましくない。更に、190℃以上の高温での成形では木粉の褐色化によって成形材料の木質感が消失し、製品開発において障害となるおそれがある。また、混練型WPCの成形においては、例えば、木粉とプラスチックの相溶化剤として無水マレイン酸変性ポリプロピレンを添加する等、何らかの人工的な化学物質を添加することが必要とされ、この結果、マンションなどの気密性の高い空間に従来の混練型WPCを用いた場合、化学物質アレルギーによる被害が発生するおそれがあり、特に乳幼児に対しては大きな問題となっている。このため、山林の間伐材の有効活用を図り、人体への安全性が確保され、再生木材として十分な強度を持ち、かつ木質材料との高い接着性を確保することのできるWPC用の接着性材料の開発が求められている。   In the manufacturing method of the kneading-type WPC shown in Non-Patent Document 1, the content (filling rate) of wood powder is 70%, and the bending strength of the molded material is only 31 to 32 MPa. In addition, in the injection molding in which wood powder and polypropylene are mixed, considering that the melting point of the plastic is 165 ° C. or higher, the heating temperature during molding needs to be 190 ° C. or higher in order to ensure adhesion. In wood, the hemicellulose contained in the intermediate lamella that connects cells is thermally decomposed at a high temperature of 190 ° C or higher and weakens the connection between cells. There is a fear and it is not preferable. Further, in molding at a high temperature of 190 ° C. or higher, the wood texture of the molding material disappears due to browning of the wood powder, which may be an obstacle in product development. Further, in the molding of the kneading type WPC, it is necessary to add some artificial chemical substance such as adding maleic anhydride-modified polypropylene as a compatibilizer for wood powder and plastic. When a conventional kneading type WPC is used in a highly airtight space such as, there is a risk of damage caused by chemical substance allergies, which is a big problem especially for infants. For this reason, the forestry woods are effectively used, the safety to the human body is ensured, the strength is sufficient as recycled wood, and the adhesiveness for WPC that can ensure high adhesion to wood materials Development of materials is required.

このようなWPC用の接着用材料として、シルク、ケラチンなどのバイオマス由来のタンパクの可能性が考えられ、特許文献1には、絹タンパク質とサク蚕絹粉末、竹粉末及び竹繊維からなる群より選択される1以上の材料とを含む混合物を成形することが開示されており、特許文献2には、廃棄羽毛の有効活用を目的とするケラチンの樹脂化技術が開示されており、特許文献3には、タンパクの樹脂化に関して、パルス通電焼結装置を用いて、温度・圧力を調整して絹フィブロインの樹脂化に成功したことが開示されている。   As such WPC adhesive materials, there is a possibility of proteins derived from biomass such as silk and keratin, and Patent Document 1 includes a group consisting of silk protein and sardine silk powder, bamboo powder and bamboo fiber. It is disclosed that a mixture containing one or more selected materials is formed. Patent Document 2 discloses a technique for converting keratin into resin for the purpose of effectively using waste feathers. Discloses that, with respect to protein resinization, silk fibroin was successfully resinized by adjusting the temperature and pressure using a pulse current sintering apparatus.

特開第2008−231147号公報(請求項1、段落[0024]、[0038]、[0042])JP 2008-231147 A (Claim 1, paragraphs [0024], [0038], [0042]) 特開第2015−160850号公報(請求項1、段落[0013]、[0024]、[0027])JP-A-2015-160850 (Claim 1, paragraphs [0013], [0024], [0027]) 特開第2007−277481号公報(段落[0031]〜[0035])JP 2007-277481 A (paragraphs [0031] to [0035])

長谷川 祐 著「混練型WPCの高木質化について」林産試だより、2013年3月号4−6頁Yu Hasegawa “High-quality wood-mixed WPC” News from Hayashi Trial, March 2013, pages 4-6

しかしながら、特許文献1では、竹繊維の構造を利用して60MPaの曲げ強度を実現しているだけで、竹粉末を絹フィブロインと複合した場合はわずか26MPaの曲げ強度しか得られない。また、絹フィブロインの非晶・結晶の状態に関しては記述がなく、従来のニカワの代替として絹フィブロインが使用されたと考える。更に、成形装置に関しても、実施例にはパルス通電装置という特殊な装置が挙げられており、一般的なホットプレス装置で成形可能としているが、具体的には記載されていない。特許文献2では、羽毛ケラチンの再結晶化については触れておらず、架橋結合の形成が樹脂化の原因とされている。また、樹脂化は特殊な装置を用いて行っている。特許文献3では、材料特性に関する記述がなく、熱伝導性のみが議論されている。   However, in Patent Document 1, only a bending strength of 60 MPa is realized by using the structure of bamboo fiber, and when the bamboo powder is combined with silk fibroin, only a bending strength of 26 MPa can be obtained. In addition, there is no description regarding the amorphous or crystalline state of silk fibroin, and it is thought that silk fibroin was used as an alternative to conventional glue. Further, regarding the forming apparatus, a special apparatus called a pulse energizing apparatus is mentioned in the embodiment, and it can be formed by a general hot press apparatus, but is not specifically described. Patent Document 2 does not mention recrystallization of feather keratin, and the formation of a cross-linked bond is the cause of resinification. Moreover, resinification is performed using a special apparatus. In Patent Document 3, there is no description regarding material properties, and only thermal conductivity is discussed.

本発明の目的は、木質材料の比率が高くても十分な強度を有する、人工的な化学物質を使用せず、人体に安全な複合成形体及びその製造方法を提供することである。   An object of the present invention is to provide a composite molded body that has sufficient strength even when the ratio of the woody material is high and does not use an artificial chemical substance and is safe for the human body, and a method for manufacturing the same.

本発明の第1の観点は、木質材料粉末が羽毛ケラチンで接着されてなることを特徴とする複合成形体である。   A first aspect of the present invention is a composite molded body in which a wood material powder is bonded with feather keratin.

本発明の第2の観点は、第1の観点に基づく発明であって、前記羽毛ケラチンが羽毛の粉末からなる複合成形体である。   A second aspect of the present invention is an invention based on the first aspect, wherein the feather keratin is a composite molded body made of feather powder.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、三点曲げ試験による強度が少なくとも30MPa以上の範囲にある複合成形体である。   The 3rd viewpoint of this invention is invention based on the 1st or 2nd viewpoint, Comprising: The composite molded object which the intensity | strength by a three-point bending test exists in the range of 30 MPa or more.

本発明の第4の観点は、羽毛ケラチンを粉末にすることにより非晶化させる工程と、木質材料を粉末にする工程と、前記木質材料の粉末に蒸留水を添加して混合することにより第1の混合物を得る工程と、前記第1の混合物に前記羽毛ケラチンの粉末を添加して混練することにより第2の混合物を得る工程と、中央部に孔の空いた金属製のプレートを耐熱性のある第1樹脂基板の上に置き、前記プレートの孔の中に前記第2の混合物を充填し、前記プレートの上に耐熱性のある第2樹脂基板を被せ、前記第1樹脂基板及び前記第2樹脂基板で挟み込んだ前記プレートを2枚の金属板で更に挟み込む工程と、ホットプレスにより前記第2の混合物を加熱した状態で加圧圧着することにより羽毛ケラチンを再結晶化させる工程と、を有することを特徴する複合成形体の製造方法である。   According to a fourth aspect of the present invention, there is provided a step of making a feather keratin into an amorphous state by powdering, a step of turning a wooden material into powder, and adding and mixing distilled water to the powder of the wooden material. A step of obtaining a mixture of 1, a step of obtaining a second mixture by adding and kneading the feather keratin powder to the first mixture, and a metal plate having a hole in the center portion Placed on the first resin substrate, filled with the second mixture in the holes of the plate, covered with a heat-resistant second resin substrate on the plate, the first resin substrate and the A step of further sandwiching the plate sandwiched between the second resin substrates between two metal plates, a step of recrystallizing feather keratin by pressure-pressing in a state where the second mixture is heated by a hot press, Having Chosuru a method for producing a composite molded body.

本発明の第5の観点は、第4の観点に基づく発明であって、前記加圧圧着が、温度130〜190℃、圧力10〜30MPa、時間60秒〜150秒の範囲で行われる複合成形体の製造方法である。   A fifth aspect of the present invention is the invention based on the fourth aspect, wherein the pressure bonding is performed at a temperature of 130 to 190 ° C., a pressure of 10 to 30 MPa, and a time of 60 seconds to 150 seconds. It is a manufacturing method of a body.

本発明の第6の観点は、第4又は第5の観点に基づく発明であって、前記羽毛ケラチンと前記木質材料との成分の割合が(1〜2):(8〜9)である複合成形体の製造方法である。   6th viewpoint of this invention is invention based on 4th or 5th viewpoint, Comprising: The ratio of the component of the said feather keratin and the said woody material is (1-2) :( 8-9) It is a manufacturing method of a molded object.

本発明の第7の観点は、第4〜6の観点のいずれかに基づく発明であって、前記蒸留水の前記羽毛ケラチンに対する割合が10〜100質量%である複合成形体の製造方法である。   A seventh aspect of the present invention is an invention based on any one of the fourth to sixth aspects, and is a method for producing a composite molded body in which the ratio of the distilled water to the feather keratin is 10 to 100% by mass. .

本発明の第8の観点は、第4〜7の観点のいずれかに基づく発明であって、前記木質材料の粉末の最大粒径が125μm以下からなる複合成形体の製造方法である。   An eighth aspect of the present invention is an invention based on any one of the fourth to seventh aspects, and is a method of manufacturing a composite molded body having a maximum particle size of the wood material powder of 125 μm or less.

本発明の第9の観点は、第4〜8の観点に基づく発明であって、前記羽毛ケラチンの粉末の最大繊維長が125μm以下からなる複合成形体の製造方法である。   A ninth aspect of the present invention is an invention based on the fourth to eighth aspects, and is a method for producing a composite molded body in which the maximum fiber length of the feather keratin powder is 125 μm or less.

本発明の第1の観点の複合成形体では、木質材料粉末が羽毛ケラチンで接着されてなるため、樹脂化するための人工的な化学物質を必要とせず、人体に安全である。即ち、安価かつ安全に木質材料とケラチン由来の複合成形体を得ることができる。また。羽毛ケラチンの溶解度パラメータと木質材料に含まれるリグニンの溶解度パラメータとは近いため、親和性が高く、羽毛ケラチンを木質材料と混合する時に相溶化剤を添加する必要がない。   In the composite molded body according to the first aspect of the present invention, the woody material powder is bonded with feather keratin, so that an artificial chemical substance for converting to resin is not required and is safe for the human body. In other words, a composite material derived from a wood material and keratin can be obtained inexpensively and safely. Also. Since the solubility parameter of feather keratin and the solubility parameter of lignin contained in the wood material are close to each other, the affinity is high, and it is not necessary to add a compatibilizing agent when mixing feather keratin with the wood material.

本発明の第2の観点の複合成形体では、羽毛粉末の主成分がβケラチンからなるため、適当量の水分を添加することでホットプレス成形中に効率良く水熱反応によって樹脂化と同時に架橋結合が生じ、安定な樹脂を生成できる。   In the composite molded body according to the second aspect of the present invention, the main component of the feather powder is β-keratin. Therefore, by adding an appropriate amount of water, the resin powder is cross-linked simultaneously with the resinization by hydrothermal reaction efficiently during hot press molding. Bonding occurs and a stable resin can be produced.

本発明の第3の観点の複合成形体では、三点曲げ試験による強度が30MPa以上の範囲にあることから、木粉の充填率が非特許文献1の木粉の充填率70質量%より高くても、より高い曲げ強度を実現することができる。   In the composite molded body according to the third aspect of the present invention, since the strength by the three-point bending test is in a range of 30 MPa or more, the filling rate of the wood flour is higher than the filling rate of 70% by mass of the non-patent document 1. Even higher bending strength can be realized.

本発明の第4の観点の複合成形体の製造方法では、木粉と複合化した羽毛粉末の主成分であるケラチンが粉末化のときの機械力によって非晶化されており、この複合体に適当量の水を添加してホットプレス装置により加熱した状態で、ケラチンの再結晶化が生じることと、同時に、添加した水によるケラチンの水熱反応による分子間の架橋結合の形成がケラチン樹脂を木粉間で安定化させるため、再生木材として十分な強度を持つ材料を得ることができる。   In the method for producing a composite molded body according to the fourth aspect of the present invention, keratin, which is the main component of feather powder combined with wood flour, is amorphousized by mechanical force during powderization. Keratin recrystallization occurs when an appropriate amount of water is added and heated by a hot press apparatus, and at the same time, the formation of intermolecular crosslinks due to the hydrothermal reaction of keratin with the added water results in the keratin resin. In order to stabilize between the wood flour, a material having sufficient strength as recycled wood can be obtained.

本発明の第5の観点の複合成形体の成形方法では、190℃以下の温度で複合成形体が成形されるので、複合成形体に含まれる木材組織が破壊されることで複合体の強度低下が生じることを防ぐことができる。   In the molding method of the composite molded body according to the fifth aspect of the present invention, the composite molded body is molded at a temperature of 190 ° C. or lower. Therefore, the strength of the composite is reduced by destroying the wood structure contained in the composite molded body. Can be prevented.

本発明の第6の観点の複合成形体では、羽毛ケラチンと木質材料との成分の割合が(1〜2):(8〜9)であることから、木質材料粉末の充填率を、非特許文献1に記載された従来の木粉とプラスチックを主原料とした混練型WPCの70質量%よりも高くすることができる。   In the composite molded body according to the sixth aspect of the present invention, the ratio of the components of feather keratin and the wood material is (1-2) :( 8-9). It can be made higher than 70% by mass of the conventional kneaded WPC described in Document 1 using wood flour and plastic as main raw materials.

本発明の第7の観点の複合成形体では、蒸留水の羽毛ケラチンに対する割合が10〜100質量%であることから、水熱反応が可能になるとともに、過剰の水分を除去する必要がない。   In the composite molded body according to the seventh aspect of the present invention, the ratio of distilled water to feather keratin is 10 to 100% by mass, so that hydrothermal reaction is possible and it is not necessary to remove excess water.

本発明の第8の観点の複合成形体の製造方法では、木質材料の粉末の最大粒径が125μm以下からなることから、様々な形状の金型のプレス成形に対応できる。   In the method for producing a composite molded body according to the eighth aspect of the present invention, since the maximum particle size of the wood material powder is 125 μm or less, it is possible to cope with press molding of molds having various shapes.

本発明の第9の観点の複合成形体の製造方法では、βケラチンを主成分とする羽毛の最大繊維長が125μm以下からなるため、様々な形状の金型のプレス成形に対応できる。   In the method for producing a composite molded body according to the ninth aspect of the present invention, since the maximum fiber length of feathers mainly composed of β-keratin is 125 μm or less, it can be applied to press molding of molds having various shapes.

本発明の複合成形体の製造方法を示す図である。It is a figure which shows the manufacturing method of the composite molded object of this invention. 本発明の複合成形体を製造する際のプレス成形の条件を示す図である。It is a figure which shows the conditions of press molding at the time of manufacturing the composite molded object of this invention. 広角X線回折像を示す図である。It is a figure which shows a wide angle X-ray diffraction image.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

図1に示すように、本発明の複合成形体の製造方法は、先ず、木質材料(杉材)を用意する。この木質材料を平均粒径が500μm以下の範囲、好ましくは平均粒径が125μm以下の範囲になるように機械力によって粉砕して粉末にする。平均粒径が500μm以上では羽毛粉末との混練が不十分となるためである。次に、化学薬品で処理されていない羽毛を用意する。この羽毛に含まれるβケラチンの微結晶を機械力によって破壊する。十分に破壊が進めば、添付図3の未処理羽毛のWAXDの結晶ピーク(c)が消失すると同時に、粉砕を遊星型ボールミルで行えば、羽毛の平均繊維長は125μm以下の範囲になるまで細かく裁断される。羽毛の主成分であるβケラチンに含まれる微結晶の破壊(非晶化)が不十分な場合は、水熱反応による樹脂化のときの再結晶化や架橋結合の形成が十分に進まなくなり、木粉間のケラチン樹脂による接合が十分に達成されず、成形後の複合体の強度は30MPaを超えることが出来なくなる。本発明では、平均粒径および繊維長が125μm以下の範囲になるまで粉砕を行うために遊星型ボールミルを用いたが、粉砕装置は遊星型ボールミルに限らない。平均粒径および繊維長が125μm以下の範囲となり、かつ、粉砕によって羽毛の主成分であるβケラチンに含まれる微結晶の非晶化が十分に達成されれば、いずれの粉砕方式を用いても良い。なお、木質材料の平均粒径の測定は、走査型電子顕微鏡により撮影した画像を解析して平均粒径を求める、あるいは、レーザ回折/散乱式粒子径分布測定装置で求めた球相当径を平均粒径と見なすことにより行い、羽毛の平均繊維長の測定は、走査型電子顕微鏡により撮影した画像を解析して平均繊維長を求めることによって行った。   As shown in FIG. 1, the manufacturing method of the composite molded body of the present invention first prepares a wood material (cedar wood). This wood material is pulverized by mechanical force into a powder so that the average particle size is in the range of 500 μm or less, preferably in the range of 125 μm or less. This is because when the average particle size is 500 μm or more, the kneading with the feather powder becomes insufficient. Next, prepare feathers that have not been treated with chemicals. The β-keratin microcrystals contained in the feathers are broken by mechanical force. If the destruction proceeds sufficiently, the WAXD crystal peak (c) of untreated feathers in FIG. 3 disappears. At the same time, if the grinding is performed with a planetary ball mill, the average fiber length of the feathers becomes finer to a range of 125 μm or less. Cut. If the microcrystals contained in β-keratin, which is the main component of feathers, are not sufficiently destroyed (non-crystallized), recrystallization and cross-linking during resinification by hydrothermal reaction will not proceed sufficiently. Joining of wood flour with keratin resin is not sufficiently achieved, and the strength of the composite after molding cannot exceed 30 MPa. In the present invention, a planetary ball mill is used to perform pulverization until the average particle diameter and fiber length are in the range of 125 μm or less. However, the pulverizer is not limited to the planetary ball mill. Any pulverization method can be used as long as the average particle size and fiber length are in the range of 125 μm or less, and the crystallites contained in β-keratin, the main component of feathers, are sufficiently amorphized by pulverization. good. The average particle size of the wood material is measured by analyzing an image taken with a scanning electron microscope to obtain the average particle size, or by averaging the equivalent sphere diameters obtained with a laser diffraction / scattering particle size distribution measuring device. The measurement of the average fiber length of feathers was performed by determining the average fiber length by analyzing an image taken with a scanning electron microscope.

次いで、得られた木質材料の粉末(木粉)をビニール袋に入れ、蒸留水を添加して均一に混合し、第1の混合物を得る。蒸留水は、後で添加する羽毛粉末100質量%に対して10〜100質量%、好ましくは30〜50質量%の範囲になるように添加する。10質量%未満では架橋剤としての機能を有する水の量が少なすぎて混合物の樹脂化が生じないという問題が生じ、100質量%を超えると、第2の混合物の混練に不都合が生じると同時にプレス成形時に適切な水熱反応の確保が困難となり、混合物が十分に樹脂化しないためである。第1の混合物に、更に羽毛粉末を添加して均一に混練することにより、ペースト状の第2の混合物を得る。   Next, the obtained wood material powder (wood powder) is put in a plastic bag, and distilled water is added and mixed uniformly to obtain a first mixture. Distilled water is added so as to be in the range of 10 to 100% by mass, preferably 30 to 50% by mass with respect to 100% by mass of feather powder to be added later. If the amount is less than 10% by mass, there is a problem that the amount of water having a function as a crosslinking agent is too small to cause resinification of the mixture, and if it exceeds 100% by mass, inconvenience occurs in kneading the second mixture. This is because it is difficult to ensure an appropriate hydrothermal reaction during press molding, and the mixture is not sufficiently resinized. Further, feather powder is added to the first mixture and uniformly kneaded to obtain a paste-like second mixture.

得られた第2の混合物を、図示しないホットプレス装置により熱プレス成形する。この場合、中央に四角の空いたステンレス製の高さ0.5mm程度のプレートを用意し、このプレートをこのプレートより一回り大きな250℃程度の耐熱性のある第1樹脂基板の上に置き、この状態でプレートの孔の中に前述した混合物を充填して、第1樹脂基板と同形同大で同質の第2樹脂基板を被せる。第1及び第2樹脂基板で挟み込んだ混合物が充填されたプレートを、更に第1及び第2樹脂基板と同形同大の2枚のステンレス板で挟み込んでホットプレス装置に入れて熱プレス成形する。熱プレス成形は、温度130〜190℃の範囲内で行う。130℃以下では水熱反応が生じにくく均一な複合成形体が成形されない可能性があり、190℃以上では木材組織が熱分解されるおそれがあるからである。また、熱プレス成形は、少なくとも10MPa以上の圧力で、好ましくは10〜30MPaの範囲内の一定圧力で行われる。圧力が10MPa未満であると、均一な複合成形体が成形されない可能性があるからであり、圧力が30MPaを超えると成形体に亀裂が生じやすくなるからである。熱プレス成形の時間は、60秒〜150秒とすることが好ましい。熱プレス成形の時間が60秒未満であるとケラチンの再結晶化・架橋結合の形成が不十分となり成形体が安定な成形ができない可能性があるからであり、150秒を超えると水熱反応が過度に進行して成形体が脆くなる可能性があるからである。次いで、熱プレス成形によって得られたフィルム状の複合成形体をホットプレス装置から取り出し、型から外さず、固まるまで成形体が変形しないように型枠の上から荷重をかける、コールドプレス成形を行った。   The obtained second mixture is hot press-molded by a hot press apparatus (not shown). In this case, a stainless steel plate with a square height of about 0.5 mm is prepared in the center, and this plate is placed on a first resin substrate having a heat resistance of about 250 ° C. that is slightly larger than this plate, In this state, the above-mentioned mixture is filled in the holes of the plate, and a second resin substrate having the same shape and size as the first resin substrate is covered. The plate filled with the mixture sandwiched between the first and second resin substrates is further sandwiched between two stainless plates of the same shape and the same size as the first and second resin substrates, placed in a hot press apparatus, and subjected to hot press molding. . Hot press molding is performed within a temperature range of 130 to 190 ° C. If the temperature is 130 ° C. or lower, a hydrothermal reaction is unlikely to occur and a uniform composite molded body may not be formed. If the temperature is 190 ° C. or higher, the wood structure may be thermally decomposed. The hot press molding is performed at a pressure of at least 10 MPa, preferably at a constant pressure in the range of 10 to 30 MPa. This is because if the pressure is less than 10 MPa, a uniform composite molded body may not be molded, and if the pressure exceeds 30 MPa, cracks are likely to occur in the molded body. The hot press molding time is preferably 60 seconds to 150 seconds. If the hot press molding time is less than 60 seconds, keratin recrystallization and cross-linking formation may be insufficient, and the molded body may not be stably molded. This is because the molded body may become brittle due to excessive progress. Next, the film-like composite molded body obtained by hot press molding is taken out from the hot press apparatus, and is not removed from the mold, and a cold press molding is performed so that a load is applied from above the mold frame so that the molded body does not deform until it hardens. It was.

次に本発明の実施例を比較例及び参考例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples and reference examples.

<実施例1>
杉材を用意し、遊星型ボールミル(P-6型、フリチュ社製)に入れ、粒径が100μm程度になるまで粉砕して粉末にした。次に、中国産の水鳥の羽毛を用意し、この羽毛を化学薬品で処理することなく、ロータースピードミル(PULVERISETTE14、フリチュ社製)に入れ粗粉砕したのち、遊星型ボールミル(P-6型、フリチュ社製)に入れ、繊維長が100μm程度になるまで粉砕して羽毛粉末にした。基準のフルイとして125μmのメッシュを用いることにより、杉材粉末の粒径及び羽毛粉末の繊維長を125μ未満に制御した。杉材粉末をビニール袋に入れ、室温の蒸留水を添加し、杉材粉末と蒸留水とを十分に混合して第1の混合物を得た。蒸留水は後で追加する羽毛粉末100質量%に対して40質量%となるように添加した。第1の混合物に、杉材粉末と羽毛粉末との割合が9:1となるように羽毛粉末を添加し混練し、第2の混合物を得た。得られた第2の混合物を図示しないホットプレス装置(TOYOSEIKI製mini TEST PRESS 10)により熱プレス成形した。ホットプレス装置で熱プレス成形するに際し、中央に40mm×40mmの正方形の孔の空いたステンレス製の厚さ0.5mmのプレート(金型)を用意し、このプレートを100mm×100mm×0.05mmの大きさのPTFE(テフロン(登録商標))製の第1樹脂基板の上に置き、この状態でプレートの孔の中に得られた混合物を充填して、第1樹脂基板と同形同大で同質の第2樹脂基板を被せた。第1及び第2樹脂基板で挟み込んだ混合物が充填されたプレートを、更に第1及び第2樹脂基板と同形同大の厚さ0.1mmの2枚のステンレス板で挟み込んだ。このように用意された試料をホットプレス装置に入れ、予熱時間60秒間、プレス時間90秒間で、表1に示す条件で熱プレス成形した。
<Example 1>
A cedar material was prepared, put into a planetary ball mill (P-6 type, manufactured by Fritsch), and pulverized to a powder size of about 100 μm. Next, Chinese waterfowl feathers were prepared, and the feathers were put into a rotor speed mill (PULVERISETTE 14, manufactured by Fritsch) without being treated with chemicals, and then coarsely crushed. Then, a planetary ball mill (P-6 type, Into a feather powder by pulverizing until the fiber length is about 100 μm. By using a 125 μm mesh as the reference sieve, the particle size of the cedar powder and the fiber length of the feather powder were controlled to be less than 125 μm. Cedar powder was placed in a plastic bag, distilled water at room temperature was added, and the cedar powder and distilled water were thoroughly mixed to obtain a first mixture. Distilled water was added to 40% by mass with respect to 100% by mass of feather powder to be added later. To the first mixture, feather powder was added and kneaded so that the ratio of cedar wood powder to feather powder was 9: 1 to obtain a second mixture. The obtained second mixture was subjected to hot press molding using a hot press apparatus (mini TEST PRESS 10 manufactured by TOYOSEIKI) (not shown). When hot press forming with a hot press machine, a stainless steel plate (die) with a square hole of 40 mm x 40 mm in the center and a thickness of 0.5 mm is prepared. This plate is 100 mm x 100 mm x 0.05 mm. Placed on a first resin substrate made of PTFE (Teflon (registered trademark)) of the same size, and in this state, the obtained mixture is filled in the holes of the plate, and the same shape and size as the first resin substrate Then, a second resin substrate of the same quality was covered. The plate filled with the mixture sandwiched between the first and second resin substrates was further sandwiched between two stainless plates having the same shape and size as the first and second resin substrates and a thickness of 0.1 mm. The sample prepared in this way was put into a hot press apparatus and subjected to hot press molding under the conditions shown in Table 1 with a preheating time of 60 seconds and a pressing time of 90 seconds.

<比較例1>
羽毛粉末に対する蒸留水の添加量を40質量%にし木粉を含まない試料について、実施例1と同じ熱プレス条件で成形物を得た。
<Comparative Example 1>
About the sample which made the addition amount of distilled water with respect to feather powder 40 mass%, and does not contain wood flour, the molding was obtained on the same hot press conditions as Example 1. FIG.

<参考例1〜3>
一般的に、木粉の含有量が低い程WPCの曲げ強度が高くなる傾向にある。参考例1は、非特許文献1に記載のトドマツ木粉とポリプロピレン(PP)との配合比率が70:30(w/w)である混練型WPCの曲げ強度、参考例2は、非特許文献1に記載のトドマツ木粉とポリプロピレン(PP)との配合比率が55:44(w/w)である市販の混練型WPCの曲げ強度、参考例3は、「木質構造設計規準・同解説・許容応力度・許容耐力設計法」(日本建築学会編、日本建築学会、2006,pp.157−159)に記載の甲種杉構造材(成長方向)の曲げ強度を示す。
<Reference Examples 1-3>
Generally, the lower the wood flour content, the higher the bending strength of WPC. Reference Example 1 is a bending strength of a kneaded WPC having a blending ratio of Todomatsu wood flour and polypropylene (PP) described in Non-Patent Document 1 of 70:30 (w / w). Reference Example 2 is a non-patent document The bending strength of a commercially available kneaded WPC having a blending ratio of Todomatsu wood powder and polypropylene (PP) described in 1 to 55:44 (w / w), Reference Example 3 is “Wood structure design criteria, same commentary. The bending strength of the class A cedar structure material (growth direction) described in “Allowable Stress / Allowable Strength Design Method” (edited by Architectural Institute of Japan, Architectural Institute of Japan, 2006, pp.157-159) is shown.

実施例1及び比較例1で得られた複合成形体およびケラチン樹脂ボードについて、三点曲げ試験による強度を測定した。なお、三点曲げ試験は島津製作所(株)製 AG−10TG万能試験機を使用して測定した。   The composite molded body and keratin resin board obtained in Example 1 and Comparative Example 1 were measured for strength by a three-point bending test. The three-point bending test was measured using an AG-10TG universal testing machine manufactured by Shimadzu Corporation.

実施例の製造条件及び得られた複合成形体およびケラチン樹脂ボードの曲げ強度の測定結果を表1に示す。   Table 1 shows the manufacturing conditions of the examples and the measurement results of the bending strength of the obtained composite molded body and keratin resin board.

<比較試験と評価>
実施例1で得られた複合成形体の3点曲げ試験による曲げ強度は、33.2±3.22Mpaであった。これは、木粉70質量%のWPCの曲げ強度31〜32MPaに匹敵する。実施例1では、成形前に水を添加して水熱反応によるケラチン分子鎖間の架橋反応を誘発させケラチンの再結晶化を十分に行わせ樹脂化できたことによると考えられる。なお、一般的に、木粉の含有量が低い程WPCの曲げ強度が高くなる傾向にある。これは、比較例1及び参考例1〜3から明らかである。
<Comparison test and evaluation>
The bending strength of the composite molded body obtained in Example 1 by a three-point bending test was 33.2 ± 3.22 Mpa. This is comparable to the bending strength of 31 to 32 MPa of 70% by weight of WPC. In Example 1, it is considered that water was added before molding to induce a cross-linking reaction between keratin molecular chains by a hydrothermal reaction, and keratin was sufficiently recrystallized to be resinized. In general, the lower the wood powder content, the higher the bending strength of WPC. This is apparent from Comparative Example 1 and Reference Examples 1 to 3.

羽毛(羽軸)、羽毛粉末、及び羽毛樹脂について、広角X線回折(Wide Angle X−ray Diffraction)による構造解析を行った。広角X線回折はX線回折装置型式RINT RAPID I、理学電機社製を使用して測定した。この結果を図3に示す。図3に示すように、WAXDによる構造解析において、羽毛粉末では、羽毛羽軸で見られる微結晶回折ピーク(c)が消失している。これは、粉末化のときのせん断力による微結晶の破壊(非晶化)が原因であると考えられる。非晶化により、水熱反応による架橋結合の形成が容易となり強固な樹脂化によって木粉との接着性が向上する。   Structural analysis was performed on the feathers (feather shaft), feather powder, and feather resin by wide angle X-ray diffraction (Wide Angle X-ray Diffraction). Wide angle X-ray diffraction was measured using an X-ray diffractometer model RINT RAPID I, manufactured by Rigaku Corporation. The result is shown in FIG. As shown in FIG. 3, in the structure analysis by WAXD, the fine crystal diffraction peak (c) seen in the feather feather shaft disappears in the feather powder. This is considered to be caused by the breakage (amorphization) of microcrystals due to the shearing force during pulverization. Amorphization makes it easy to form a cross-linked bond by a hydrothermal reaction, and the adhesiveness to the wood flour is improved by making the resin strong.

また、羽毛樹脂のWAXD構造解析では、羽毛ケラチンの樹脂化処理による再結晶化が観測できる。即ち、未処理羽毛の結晶ピーク(c)は、粉末化によってトレースレベルにまで消失したが、樹脂化後、(c’)の位置に結晶ピークとして再び現れることから再結晶化が生じたことがわかる。一方、未処理羽毛のピーク(a)は、粉末化しても位置や強度に変化はほとんどなく、樹脂化によって位置が(a’)へシフトした。これは非晶構造も樹脂化(架橋結合の形成)によって変化したことを示している。   In addition, in the WAXD structure analysis of feather resin, recrystallization due to feather keratin resinization treatment can be observed. That is, the crystal peak (c) of the untreated feathers disappeared to the trace level by pulverization, but after recrystallization, it reappears as a crystal peak at the position (c ′). Recognize. On the other hand, the peak (a) of untreated feathers hardly changed in position and strength even when powdered, and the position shifted to (a ′) due to resinization. This indicates that the amorphous structure was also changed by resinification (formation of a cross-linked bond).

木質材料粉末が羽毛ケラチンで接着されてなる複合成形体である実施例1では、従来の木粉とプラスチックを主原料としたWPCよりも木質材料の比率が高くても十分な機械的強度が得られ、プラスチックに比べ、羽毛ケラチンは接着性に優れていることが明らかとなった。また、これにより、人工的な化学物質を使用せず、人体に安全な複合成形体及びその製造方法を提供することができる。   In Example 1, which is a composite molded body in which the wood material powder is bonded with feather keratin, sufficient mechanical strength can be obtained even if the ratio of the wood material is higher than that of the conventional wood powder and plastic WPC. It was revealed that feather keratin is superior in adhesiveness compared to plastic. In addition, this makes it possible to provide a composite molded body that is safe for the human body and a method for manufacturing the same without using an artificial chemical substance.

Claims (9)

木質材料粉末が羽毛ケラチンで接着されてなることを特徴とする複合成形体。   A composite molded body comprising a wood material powder bonded with feather keratin. 前記羽毛ケラチンが羽毛の粉末からなる請求項1記載の複合成形体。   The composite molded body according to claim 1, wherein the feather keratin is made of feather powder. 三点曲げ試験による強度が少なくとも30MPa以上の範囲にある請求項1又は2に記載の複合成形体。   The composite molded article according to claim 1 or 2, wherein the strength by a three-point bending test is in a range of at least 30 MPa or more. 羽毛ケラチンを粉末にすることにより非晶化させる工程と、
木質材料を粉末にする工程と、
前記木質材料の粉末に蒸留水を添加して混合することにより第1の混合物を得る工程と、
前記第1の混合物に前記羽毛ケラチンの粉末を添加して混練することにより第2の混合物を得る工程と、
中央部に孔の空いた金属製のプレートを耐熱性のある第1樹脂基板の上に置き、前記プレートの孔の中に前記第2の混合物を充填し、前記プレートの上に耐熱性のある第2樹脂基板を被せ、前記第1樹脂基板及び前記第2樹脂基板で挟み込んだ前記プレートを2枚の金属板で更に挟み込む工程と、
ホットプレスにより前記第2の混合物を加熱した状態で加圧圧着することにより前記羽毛ケラチンを再結晶化させる工程と、
を有することを特徴する複合成形体の製造方法。
A process of making feather keratin amorphized by powdering;
A process of making woody material into powder,
Obtaining a first mixture by adding distilled water to the wood material powder and mixing;
Adding the feather keratin powder to the first mixture and kneading to obtain a second mixture;
A metal plate with a hole in the center is placed on a heat-resistant first resin substrate, the second mixture is filled in the holes of the plate, and the plate has heat resistance. Covering the second resin substrate and further sandwiching the plate sandwiched between the first resin substrate and the second resin substrate with two metal plates;
Recrystallizing the feather keratin by pressure-bonding in a state where the second mixture is heated by hot pressing;
The manufacturing method of the composite molded object characterized by having.
前記加圧圧着が、温度130〜190℃、圧力10〜30MPa、時間60〜150秒の範囲で行われる請求項4に記載の複合成形体の製造方法。   The method for producing a composite molded body according to claim 4, wherein the pressure bonding is performed at a temperature of 130 to 190 ° C., a pressure of 10 to 30 MPa, and a time of 60 to 150 seconds. 前記羽毛ケラチンと前記木質材料との成分の割合が(1〜2):(8〜9)である請求項4又は5に記載の複合成形体の製造方法。   The method for producing a composite molded body according to claim 4 or 5, wherein a ratio of the components of the feather keratin and the wood material is (1-2) :( 8-9). 前記蒸留水の前記羽毛ケラチンに対する割合が10〜100質量%である請求項4〜6のいずれか1項に記載の複合成形体の製造方法。   The method for producing a composite molded body according to any one of claims 4 to 6, wherein a ratio of the distilled water to the feather keratin is 10 to 100% by mass. 前記木質材料の粉末の最大粒径が125μm以下からなる請求項4〜7のいずれか1項に記載の複合成形体の製造方法。   The method for producing a composite molded body according to any one of claims 4 to 7, wherein a maximum particle size of the wood material powder is 125 µm or less. 前記羽毛ケラチンの粉末の最大繊維長が125μm以下からなる請求項4〜8のいずれか1項に記載の複合成形体の製造方法。   The method for producing a composite molded body according to any one of claims 4 to 8, wherein a maximum fiber length of the feather keratin powder is 125 µm or less.
JP2016180454A 2016-09-15 2016-09-15 Composite molded body and method for producing the same Pending JP2018044081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180454A JP2018044081A (en) 2016-09-15 2016-09-15 Composite molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180454A JP2018044081A (en) 2016-09-15 2016-09-15 Composite molded body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2018044081A true JP2018044081A (en) 2018-03-22

Family

ID=61694473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180454A Pending JP2018044081A (en) 2016-09-15 2016-09-15 Composite molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2018044081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325873B1 (en) 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325873B1 (en) 2022-12-27 2023-08-15 株式会社リファインバースグループ Production method and production system using keratin-containing powder, method for producing keratin-containing powder, and thermosetting compact

Similar Documents

Publication Publication Date Title
JP4081579B2 (en) Lignocellulosic material and use thereof
Verma et al. Experimental investigations on thermal properties of coconut shell particles in DAP solution for use in green composite applications
CN102827455B (en) Poly(ether-ether-ketone)-based dental special material with high bonding strength and preparation method thereof
Bai et al. Processing and characterization of a polylactic acid/nanoclay composite for laser sintering
CN105038165A (en) Bio-based thermoplastic elastomer with shape memory function and preparation method thereof
JP2018510250A (en) Activated lignin composition, production method thereof and use thereof
Li et al. Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers
JP2008081735A (en) Bamboo powder and/or wood powder-thermoplastic resin composite
JP2018044081A (en) Composite molded body and method for producing the same
CN101323130A (en) Heat pressing production method of polyethylene fiber-plant fibre compound material
EP3523371A1 (en) A thermoplastic mounting medium and a method of its manufacture
Nayak et al. The effect of reinforcing sisal fibers on the mechanical and thermal properties of polypropylene composites
TWI389380B (en) An isolator material for fuel cell and a method for manufacturing the same
JP6494985B2 (en) Bioplastic manufacturing method and bioplastic molded body
Suherman et al. Properties of Kenaf fibers/epoxy biocomposites: flexural strength and impact strength
KR101897110B1 (en) Method of manufacturing paste composition for radiating heat by using carbon fiber waste, method of manufacturing thin film for radiating heat by using the same and thin film for radiating heat comprising the same
CN102391579A (en) Foaming material prepared by blending plant straw filled polypropylene/polyethylene and preparation process
JP6252944B2 (en) Method for producing keratin-derived bioplastic molded body
US11554515B2 (en) Methods and compositions for preparing particle boards
JP2010173876A (en) Method for producing carbon material
RU2422273C1 (en) Method of forming articles from epoxy resin
Antonov et al. Formation of a bioactive material for selective laser sintering from a mixture of powdered polylactide and nano-hydroxyapatite in supercritical carbon dioxide
Othman et al. Effect of clamshells filler loading on the tensile properties of polyhydroxybutyrate
Arantes et al. Development and characterization of recycled-HDPE/EVA foam reinforced with babassu coconut epicarp fiber residues
CN111286187A (en) Method for preparing self-repairing composite material and self-repairing composite material prepared by same