JP2015151869A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2015151869A
JP2015151869A JP2014023742A JP2014023742A JP2015151869A JP 2015151869 A JP2015151869 A JP 2015151869A JP 2014023742 A JP2014023742 A JP 2014023742A JP 2014023742 A JP2014023742 A JP 2014023742A JP 2015151869 A JP2015151869 A JP 2015151869A
Authority
JP
Japan
Prior art keywords
filter
flow rate
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023742A
Other languages
Japanese (ja)
Inventor
角岡 卓
Taku Kadooka
卓 角岡
大塚 孝之
Takayuki Otsuka
孝之 大塚
橋本 浩成
Hiroshige Hashimoto
浩成 橋本
紀靖 小橋
Noriyasu Kobashi
紀靖 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014023742A priority Critical patent/JP2015151869A/en
Priority to PCT/JP2015/000470 priority patent/WO2015118856A1/en
Publication of JP2015151869A publication Critical patent/JP2015151869A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately avoid at least the abnormality of a filter when PM (Particulate Matter) collected with the filter by fuel-cut processing is oxidized to be removed in a spark ignition type internal combustion engine.SOLUTION: Fuel injection is stopped in the internal combustion engine and the opening of a throttle valve is set to be a predetermined opening, so that a normal flow rate of air is delivered into the filter and particulate matter is oxidize to be removed from the filter. Besides, if an estimated reaching temperature which the temperature of the filter reaches when the particulate matter is oxidized to be removed by the normal flow rate of air, is determined to exceed a predetermined abnormality determination temperature correlated with the abnormality of the filter, the flow rate of air actually flowing into the filter when the particulate matter is oxidized to be removed is reduced down to a temperature rise suppressing flow rate smaller than the normal flow rate of air.

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

内燃機関の排気通路に、排気中の粒子状物質(以下、PMともいう。)を捕集するフィルタを備えることがある。フィルタに捕集されているPM量(以下、PM捕集量ともいう。)が一定量に達すると、PMを酸化させて除去する処理を実施する。この処理をフィルタの再生という。フィルタに捕集されているPMが酸化除去されるためには、フィルタの温度が所定温度以上となっており、且つ、フィルタ内の酸素濃度が所定濃度以上となっていることが必要となる。   A filter for collecting particulate matter (hereinafter also referred to as PM) in the exhaust gas may be provided in the exhaust passage of the internal combustion engine. When the amount of PM collected in the filter (hereinafter also referred to as PM collection amount) reaches a certain amount, a process of oxidizing and removing PM is performed. This process is called filter regeneration. In order for the PM collected in the filter to be oxidized and removed, it is necessary that the temperature of the filter is equal to or higher than a predetermined temperature, and the oxygen concentration in the filter is equal to or higher than the predetermined concentration.

ところで、火花点火式のガソリン内燃機関では、通常は、理論空燃比またはリッチ空燃比で運転されているため、フィルタ内の酸素濃度が低い。そこで、PMの酸化除去のためにフィルタに酸素を供給するには、内燃機関の減速時等に燃料噴射を停止し燃料ガスを含まない空気をフィルタに供給するフューエルカット処理を行う必要がある。このとき、特許文献1に示す技術によれば、燃料噴射停止時における吸入空気量を増量し、フィルタに流れ込む空気流量の増量が行われる。これにより、フィルタに捕集されたPMの酸化除去が促進されることになる。   By the way, since a spark ignition type gasoline internal combustion engine is usually operated at a theoretical air-fuel ratio or a rich air-fuel ratio, the oxygen concentration in the filter is low. Therefore, in order to supply oxygen to the filter for PM oxidation removal, it is necessary to perform fuel cut processing for stopping fuel injection and supplying air containing no fuel gas to the filter when the internal combustion engine is decelerated. At this time, according to the technique disclosed in Patent Document 1, the amount of intake air when the fuel injection is stopped is increased, and the flow rate of air flowing into the filter is increased. Thereby, the oxidation removal of PM collected by the filter is promoted.

特開2003−269223号公報JP 2003-269223 A

排気通路に設けられたフィルタにより排気中のPM捕集を行う火花点火式のガソリン内燃機関において、その減速時にフューエルカット処理を行うことで捕集されたPMの酸化除去が可能となる。このとき従来技術に示すようにフューエルカット処理時のフィルタへの空気流量が増量されると、フィルタに捕集されているPM量によっては、そのPMの酸化反応熱によりフィルタが過昇温し、その破損や溶損等のフィルタの異常状態を引き起こしてしまう可能性がある。また、フィルタの上流側の排気通路には三元触媒などの排気浄化触媒が設けられる場合があり、当該排気浄化触媒が高温下に置かれている場合にフューエルカット処理によって酸素過剰な雰囲気に晒されると、排気浄化触媒の熱劣化が進行してしまう可能性がある。   In a spark ignition type gasoline internal combustion engine that collects PM in exhaust gas by a filter provided in an exhaust passage, the fuel cut process is performed during deceleration of the collected PM to remove the oxidized PM. At this time, as shown in the prior art, when the air flow rate to the filter at the time of fuel cut processing is increased, depending on the amount of PM collected in the filter, the filter overheats due to the oxidation reaction heat of the PM, There is a possibility of causing an abnormal state of the filter such as breakage or melting. In addition, an exhaust purification catalyst such as a three-way catalyst may be provided in the exhaust passage on the upstream side of the filter. When the exhaust purification catalyst is placed at a high temperature, it is exposed to an oxygen-excessive atmosphere by a fuel cut process. If this occurs, there is a possibility that thermal degradation of the exhaust purification catalyst will proceed.

そこで、本発明は、上記の問題点に鑑みてなされたものであり、火花点火式の内燃機関において、フューエルカット処理によりフィルタに捕集されたPMの酸化除去を行う際に、少なくともフィルタの異常状態を的確に回避し得る制御装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and in a spark ignition type internal combustion engine, at the time of performing oxidation removal of PM collected by a fuel cut process, at least an abnormality of the filter It is an object of the present invention to provide a control device that can avoid a state accurately.

本発明において、上記課題を解決するために、本出願人は、フューエルカット処理を行うことでPMの酸化処理によるフィルタの昇温の結果、その推定される到達温度がフィルタの異常状態を生じさせる温度に到達すると考えられる場合には、フューエルカット処理時のフィルタへの空気流量を、到達しない場合の空気流量よりも低減することとした。この構成により、フューエルカット処理によるフィルタの過昇温を回避可能とするとともに、捕集されたPM酸化除去の機会をいたずらに逸失させずフューエルカット処理の実行機
会を適切に確保することができる。
In the present invention, in order to solve the above-mentioned problem, the present applicant performs a fuel cut process, and as a result of the temperature rise of the filter by the oxidation process of PM, the estimated reached temperature causes an abnormal state of the filter. When it is considered that the temperature is reached, the air flow rate to the filter at the time of the fuel cut process is reduced from the air flow rate when the temperature is not reached. With this configuration, it is possible to avoid an excessive increase in the temperature of the filter due to the fuel cut process, and it is possible to appropriately secure an opportunity to execute the fuel cut process without unnecessarily losing the collected PM oxidation removal opportunity.

詳細には、本発明は、内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、前記内燃機関での燃料噴射を停止するとともに該内燃機関の吸気通路に設けられたスロットルバルブの開度を所定の開度に設定することで、前記フィルタに燃焼ガスを含まない空気を通常空気流量で送り込み、該フィルタに捕集された粒子状物質を酸化除去するPM除去手段と、前記通常空気流量での前記PM除去手段による粒子状物質の酸化除去が行われた場合に前記フィルタの温度が到達すると推定される推定到達温度が、該フィルタの異常状態と関連付けられた所定の異常判定温度を超えると判定されると、該PM除去手段による粒子状物質の酸化除去が行われる際に実際に該フィルタに流れ込む空気流量を、前記通常空気流量より少ない昇温抑制流量に低減する、流量制御手段と、を備える、内燃機関の制御装置である。   More specifically, the present invention is provided in an exhaust passage of an internal combustion engine, and is provided in a filter for collecting particulate matter in the exhaust, and in an intake passage of the internal combustion engine while stopping fuel injection in the internal combustion engine. PM removal means for sending air containing no combustion gas to the filter at a normal air flow rate by setting the opening of the throttle valve to a predetermined opening, and oxidizing and removing particulate matter collected by the filter And an estimated reached temperature estimated to reach the temperature of the filter when the particulate matter is oxidized and removed by the PM removal means at the normal air flow rate is a predetermined value associated with an abnormal state of the filter. If the particulate matter is determined to exceed the abnormal determination temperature, the air flow rate that actually flows into the filter when the particulate matter is oxidized and removed by the PM removal means is less than the normal air flow rate. Reduced to INoboru rise restraining flow comprises a flow control means, and a control device for an internal combustion engine.

上記内燃機関の制御装置では、PM除去手段により、いわゆるフューエルカット処理が行われることで、フィルタに捕集された粒子状物質の酸化除去が行われる。ここで、上記PM除去手段によってフューエルカット処理が行われるときは、内燃機関での燃料噴射が停止されるが、フィルタに流れ込む空気流量は、その際の内燃機関の運転状態に応じて決定される通常空気流量とされる。当該通常空気流量は、スロットルバルブの所定の開度が、予め設定されることにより、もしくは、フューエルカット処理時の内燃機関の運転状態と関連付けて決定されることにより、フューエルカット処理時に排気通路に生成される空気の流量であり、換言すれば、フューエルカット処理時に上記流量制御手段によりフィルタへ流れ込む空気流量に関する制御が行われない場合において、排気通路で生成される空気の流量である。フューエルカット処理時は、減速していく機関回転速度に応じて排気通路の空気流量は変動するが、このように変動する一連の空気流量が通常空気流量とされる。   In the control device for an internal combustion engine, so-called fuel cut processing is performed by the PM removing unit, so that the particulate matter collected by the filter is oxidized and removed. Here, when fuel cut processing is performed by the PM removal means, fuel injection in the internal combustion engine is stopped, but the air flow rate flowing into the filter is determined according to the operating state of the internal combustion engine at that time. Usually the air flow rate. The normal air flow rate is determined when the predetermined opening of the throttle valve is set in advance or in association with the operating state of the internal combustion engine at the time of the fuel cut process. This is the flow rate of air generated, in other words, the flow rate of air generated in the exhaust passage when the flow control means does not control the flow rate of air flowing into the filter during the fuel cut process. At the time of the fuel cut process, the air flow rate in the exhaust passage varies according to the engine rotational speed that is decelerating. A series of air flow rates that vary in this way is the normal air flow rate.

そして、本発明に係る内燃機関の制御装置では、上記PM除去手段によるフューエルカット処理が行われるときの、フィルタの過昇温を的確に回避するために、推定到達温度が所定の異常判定温度を超えるときは、流量制御手段により、フューエルカット処理時のフィルタへ流れ込む空気流量が上記通常空気流量から低減された昇温抑制流量に調整される。当該昇温抑制流量は、フィルタに空気が流れ込むことで生じるPM酸化熱量を抑制する目的で通常空気流量より減量された空気流量である。例えば、当該昇温抑制流量は、前記粒子状物質の酸化除去が実行された際の該実行開始からの前記フィルタの昇温量が、該実行開始時の該フィルタの温度と前記所定の異常判定温度との差分以下となるように設定されてもよい。このようなフューエルカット処理時の空気流量の制御構成を採用することで、フィルタの過昇温を的確に回避することができる。   In the control apparatus for an internal combustion engine according to the present invention, in order to accurately avoid the excessive temperature rise of the filter when the fuel cut processing by the PM removal means is performed, the estimated reached temperature is a predetermined abnormality determination temperature. When exceeding, the flow rate control means adjusts the flow rate of air flowing into the filter during the fuel cut process to the temperature rise suppression flow rate reduced from the normal air flow rate. The temperature increase suppression flow rate is an air flow rate that is reduced from the normal air flow rate for the purpose of suppressing the amount of PM oxidation heat generated when air flows into the filter. For example, the temperature increase suppression flow rate is determined based on whether the temperature increase amount of the filter from the start of execution when the particulate matter is oxidized and removed is the temperature of the filter at the start of execution and the predetermined abnormality determination. You may set so that it may become below the difference with temperature. By adopting such a control structure of the air flow rate during the fuel cut process, it is possible to accurately avoid the excessive temperature rise of the filter.

なお、上記推定到達温度は、内燃機関の機関回転速度等に関連する通常空気流量による酸素とフィルタに捕集されたPMとの酸化反応で発生する熱量を考慮して推定することができる。例えば、推定時のフィルタに捕集されたPMが通常空気流量の空気に晒されることによる昇温量と、通常空気流量及びPM捕集量との間に所定の相関が認められる場合には、その相関に従って昇温量を算出し、更に推定時のフィルタ温度を考慮することで推定到達温度の推定が可能となる。また、上記所定の異常判定温度としては、フィルタの異常状態の一形態であるフィルタ基材の溶損を生じ得るフィルタ温度や、また上記フィルタに何らかの排気浄化機能を有する触媒が担持されている場合には、フィルタの異常状態の別の形態である当該担持触媒の熱劣化が懸念される触媒温度等が例示できる。   The estimated temperature reached can be estimated in consideration of the amount of heat generated by the oxidation reaction between oxygen and PM collected by the filter due to the normal air flow rate related to the engine speed of the internal combustion engine. For example, in the case where a predetermined correlation is recognized between the temperature rise due to exposure of PM collected by the filter at the time of estimation to air of normal air flow rate, and the normal air flow rate and PM collection amount, By calculating the temperature rise amount according to the correlation and further considering the filter temperature at the time of estimation, the estimated reached temperature can be estimated. In addition, as the predetermined abnormality determination temperature, a filter temperature that may cause the filter substrate to melt, which is a form of an abnormal state of the filter, or a catalyst having some exhaust purification function is supported on the filter Examples thereof include a catalyst temperature at which thermal degradation of the supported catalyst, which is another form of the abnormal state of the filter, may occur.

ここで、上記内燃機関の制御装置は、前記内燃機関から前記フィルタに至るまでの前記排気通路に配置された一又は複数の排気浄化触媒のうち、該内燃機関に最も近い所定の排気浄化触媒の熱劣化の程度を取得する熱劣化程度取得手段を、更に備えてもよい。この所
定の排気浄化触媒は、内燃機関に最も近い位置に配置されることから、排気通路に配置される一又は複数の排気浄化触媒のうち、高温の排気に晒される頻度が高く、それ故に触媒温度が最も高く維持される可能性がある。そして、そのように触媒温度が高温化する傾向にある所定の排気浄化触媒に対して、フューエルカット処理により空気が流れ込むと、所定の排気浄化触媒の熱劣化が進行しやすくなる。一般に排気浄化触媒の熱劣化は不可逆的に進行するため、所定の排気浄化触媒における熱劣化程度がある程度進行している状態で、上記フューエルカット処理によって更に熱劣化程度が進行してしまうと、所定の排気浄化触媒の排気浄化機能が十分に発揮できない状態に陥ることになる。そこで、このような所定の排気浄化触媒の機能喪失を避けるために、前記流量制御手段は、前記熱劣化程度取得手段によって取得された前記所定の排気浄化触媒の熱劣化程度が所定の熱劣化程度以下であるときに、前記フィルタに捕集された粒子状物質の酸化除去のための所定条件が成立し、且つ前記推定到達温度が前記所定の異常判定温度を超えると判定されると、前記フィルタへの空気流量を前記昇温抑制流量に低減するように、すなわち昇温抑制流量でのフューエルカット処理を行うように構成されてもよい。
Here, the control device for the internal combustion engine includes a predetermined exhaust purification catalyst closest to the internal combustion engine among one or a plurality of exhaust purification catalysts arranged in the exhaust passage from the internal combustion engine to the filter. You may further provide the heat deterioration degree acquisition means which acquires the degree of heat deterioration. Since the predetermined exhaust purification catalyst is disposed at a position closest to the internal combustion engine, it is frequently exposed to high-temperature exhaust gas among one or more exhaust purification catalysts disposed in the exhaust passage. The temperature may be maintained highest. When air flows into the predetermined exhaust purification catalyst having such a tendency that the catalyst temperature tends to be increased by the fuel cut process, the thermal deterioration of the predetermined exhaust purification catalyst easily proceeds. In general, since the heat deterioration of the exhaust purification catalyst proceeds irreversibly, when the degree of heat deterioration in the predetermined exhaust purification catalyst has progressed to some extent, if the degree of heat deterioration further proceeds due to the fuel cut process, Thus, the exhaust gas purification catalyst of the exhaust gas purification catalyst cannot be fully used. Therefore, in order to avoid such a loss of function of the predetermined exhaust purification catalyst, the flow rate control means is configured such that the thermal deterioration degree of the predetermined exhaust purification catalyst acquired by the thermal deterioration degree acquisition means is a predetermined thermal deterioration degree. When it is determined that a predetermined condition for oxidizing and removing particulate matter collected by the filter is satisfied and the estimated reached temperature exceeds the predetermined abnormality determination temperature, the filter It may be configured to perform a fuel cut process at a temperature rise suppression flow rate so as to reduce the air flow rate to the temperature rise suppression flow rate.

なお、上記所定条件は、フューエルカット処理によりフィルタに供給されてくる空気によって、フィルタでの捕集PMの酸化除去が行われることを前提とした、該酸化除去に関する条件である。例えば、捕集PMが供給される空気により酸化されるためには、フィルタ温度がある程度の高温になっている必要があることを踏まえフィルタの温度に関する条件を所定条件として設定してもよく、また、フィルタに捕集されたPMを効率的に酸化除去するためには、フィルタにある程度の量のPMが捕集されていることが好ましいことを踏まえ、フィルタでのPM捕集量に関する条件を所定条件として設定してもよい。その他のフィルタでの捕集PMの酸化除去に関する条件を、当該所定条件として設定してもよい。   The predetermined condition is a condition relating to the oxidation removal on the premise that the collected PM is oxidized and removed by the air supplied to the filter by the fuel cut process. For example, in order for the trapped PM to be oxidized by the supplied air, the filter temperature may be set as a predetermined condition based on the fact that the filter temperature needs to be a certain high temperature. In order to efficiently oxidize and remove the PM collected by the filter, it is preferable that a certain amount of PM is collected by the filter, and the conditions regarding the amount of PM collected by the filter are predetermined. It may be set as a condition. Conditions regarding oxidation removal of collected PM by other filters may be set as the predetermined conditions.

更に、前記熱劣化程度取得手段によって取得された前記所定の排気浄化触媒の熱劣化程度が所定の熱劣化程度以下であるときに、前記所定条件が成立していない場合には、前記推定到達温度の値にかかわらず、前記内燃機関での燃料噴射を停止した状態での、前記フィルタへの燃焼ガスを含まない空気を送り込む処理、すなわちフューエルカット処理が行われないように、又はフューエルカット処理が禁止されるように、内燃機関の制御装置が構成されてもよい。このような構成を採用することで、所定の排気浄化触媒が熱劣化程度が所定の熱劣化程度であっても、不用意に所定の排気浄化触媒が空気に晒されることを抑制することができ、以て、所定の排気浄化触媒の劣化進行を可及的に抑制することが可能となる。   Furthermore, when the predetermined deterioration condition is not satisfied when the thermal deterioration level of the predetermined exhaust purification catalyst acquired by the thermal deterioration level acquisition means is equal to or lower than the predetermined thermal deterioration level, the estimated reached temperature Regardless of the value of the value, the process of feeding air that does not include combustion gas to the filter in a state where fuel injection in the internal combustion engine is stopped, that is, the fuel cut process is not performed, or the fuel cut process is performed. The control device for the internal combustion engine may be configured to be prohibited. By adopting such a configuration, it is possible to prevent the predetermined exhaust purification catalyst from being inadvertently exposed to air even if the predetermined exhaust purification catalyst has a predetermined degree of thermal deterioration. Thus, it is possible to suppress the progress of deterioration of the predetermined exhaust purification catalyst as much as possible.

また、前記フィルタは、そのフィルタ基材に前記所定の排気浄化触媒が担持されて、該フィルタによる粒子状物質の捕集能力と該所定の排気浄化触媒による排気浄化能力が発揮されるように形成されたフィルタであってもよい。この場合、内燃機関の最も近くに位置する排気浄化触媒が、前記フィルタに担持された所定の排気浄化触媒となり、フィルタ温度は、フィルタの異常状態と所定の排気浄化触媒の熱劣化の両者に関連することになる。   Further, the filter is formed so that the predetermined exhaust purification catalyst is supported on the filter base, and the particulate matter capturing ability by the filter and the exhaust purification ability by the predetermined exhaust purification catalyst are exhibited. It may be a filtered filter. In this case, the exhaust purification catalyst located closest to the internal combustion engine becomes the predetermined exhaust purification catalyst carried by the filter, and the filter temperature is related to both the abnormal state of the filter and the thermal deterioration of the predetermined exhaust purification catalyst. Will do.

ここで、上述までの内燃機関の制御装置において、前記昇温抑制流量に対応する前記スロットルバルブの開度は、前記通常空気流量に対応する該スロットルバルブの開度より閉じ側の開度であってもよい。その場合、前記流量制御手段は、前記スロットルバルブの開度を前記昇温抑制流量に対応する開度としてから、該スロットルバルブの開度に起因して前記内燃機関の気筒内で追加的に消費される該内燃機関の潤滑オイル量が、所定の消費量に到達するまでの所定オイル消費期間において、該昇温抑制流量での粒子状物質の酸化除去を実行してもよい。   Here, in the control device for an internal combustion engine described above, the opening degree of the throttle valve corresponding to the temperature increase suppression flow rate is the opening side closer to the closing side than the opening amount of the throttle valve corresponding to the normal air flow rate. May be. In this case, the flow rate control means sets the opening degree of the throttle valve to an opening degree corresponding to the temperature increase suppression flow rate, and then additionally consumes in the cylinder of the internal combustion engine due to the opening degree of the throttle valve. In a predetermined oil consumption period until the amount of lubricating oil of the internal combustion engine reaches a predetermined consumption amount, the particulate matter may be oxidized and removed at the temperature increase suppression flow rate.

吸気通路に設けられたスロットルバルブの開度を調整して、フューエルカット処理が行
われているときの吸気流量を調整することで、結果としてフィルタに流れ込む空気流量が制御可能となる。ここで、フューエルカット処理時の空気流量が流量制御手段によって昇温抑制流量とされる場合(以下、「昇温抑制フューエルカット時」という)、通常空気流量とされる場合(以下、「通常フューエルカット時)という)と比べてスロットルバルブの開度が閉じ側の開度となる。そのため、昇温抑制フューエルカット時においては、内燃機関の気筒内が、通常フューエルカット時と比べてより負圧になる傾向がある。その場合、気筒内につながる潤滑オイル経路(例えば、オイルパンから気筒内壁への経路)を経て、内燃機関で使用される潤滑オイルの蒸発が促進され、いたずらに潤滑オイルが消費されることになる。この促進された潤滑オイルの消費が、上記スロットルバルブの開度に起因した気筒内での追加的な消費に相当する。このような追加的な消費は、潤滑オイル消費量の増大を招くことになるため好ましくない。そこで、潤滑オイルの消費量抑制の観点から、上記追加的な消費量が所定の消費量に到達するまでの限られた期間である所定オイル消費期間において、上記流量制御手段による昇温抑制流量でのPM除去のためのフューエルカット処理を行うようにするものである。これにより、潤滑オイルの消費量抑制とフィルタでの捕集PMの酸化除去の両立を図ることができる。
By adjusting the opening degree of the throttle valve provided in the intake passage and adjusting the intake air flow rate when the fuel cut processing is performed, the air flow rate flowing into the filter can be controlled as a result. Here, when the air flow rate at the time of fuel cut processing is set to a temperature rise suppression flow rate by the flow rate control means (hereinafter referred to as “temperature increase suppression fuel cut time”), or to the normal air flow rate (hereinafter referred to as “normal fuel flow”). Therefore, the opening of the throttle valve becomes the opening on the closed side compared to that at the time of cut), so that the temperature inside the cylinder of the internal combustion engine is more negative than that at the time of normal fuel cut when the temperature increase suppression fuel cut is performed. In this case, evaporation of the lubricating oil used in the internal combustion engine is promoted through a lubricating oil path (for example, a path from the oil pan to the cylinder inner wall) connected to the cylinder, and the lubricating oil is mischievously misplaced. This accelerated consumption of lubricating oil corresponds to an additional consumption in the cylinder due to the opening of the throttle valve. Such additional consumption is undesirable because it leads to an increase in the consumption of lubricating oil, so from the viewpoint of suppressing the consumption of lubricating oil, the additional consumption until the predetermined consumption is reached. In a predetermined oil consumption period, which is a limited period, fuel cut processing for PM removal at a temperature rise suppression flow rate by the flow rate control means is performed. It is possible to achieve both the removal of oxidized PM collected by the filter.

ここで、上記の内燃機関の制御装置は、前記流量制御手段による前記昇温抑制流量での粒子状物質の酸化除去が実行されているときの、前記内燃機関の気筒内圧力又は前記スロットルバルブの下流側の前記吸気通路内圧力に基づいて、前記追加的に消費される該内燃機関の潤滑オイル量を推定するオイル消費量推定手段を、更に備えてもよい。ここで、スロットルバルブの下流側の吸気通路内圧力と、気筒内圧力との間には、吸気弁位置での吸気の通過流速が音速を超えない限りは、両圧力の差と吸気量との間に流体力学上の所定の関係が存在するため、吸気通路内圧力と気筒内圧力との間にも所定の相関を見出すことができる。そして、上記のとおり、気筒内で生じる負圧状態により追加的なオイル消費が発生することになるため、追加的に消費される内燃機関の潤滑オイル量を、気筒内圧力やスロットルバルブの下流側の吸気通路内圧力に基づいて推定することが可能となる。   Here, the control device for the internal combustion engine may be configured such that the internal pressure of the internal combustion engine or the throttle valve when the particulate matter is oxidized and removed at the temperature increase suppression flow rate by the flow rate control unit is reduced. Oil consumption estimation means for estimating the amount of lubricating oil of the internal combustion engine to be additionally consumed based on the pressure in the intake passage on the downstream side may be further provided. Here, between the pressure in the intake passage on the downstream side of the throttle valve and the pressure in the cylinder, the difference between the two pressures and the intake air amount are calculated unless the flow velocity of the intake air at the intake valve position exceeds the sonic velocity. Since a predetermined hydrodynamic relationship exists between them, a predetermined correlation can also be found between the intake passage pressure and the cylinder pressure. Further, as described above, additional oil consumption occurs due to the negative pressure state generated in the cylinder. Therefore, the amount of lubricating oil of the internal combustion engine that is additionally consumed is reduced to the downstream side of the cylinder pressure or the throttle valve. It is possible to estimate based on the pressure in the intake passage.

また、上述までの内燃機関の制御装置において、前記流量制御手段は、前記フィルタに捕集された粒子状物質の酸化除去が完了していない場合でも、前記所定オイル消費期間が経過すると、前記PM除去手段による粒子状物質の酸化除去の際の前記フィルタへの空気流量を前記昇温抑制流量から前記通常空気流量に強制的に変更してもよい。そして、当該内燃機関の制御装置は、前記通常空気流量への強制的な変更時における、前記通常空気流量での前記PM除去手段による粒子状物質の酸化除去に応じて前記フィルタの温度が到達すると推定される強制変更時推定到達温度が、前記所定の異常判定温度を超えると判定されると、該通常空気流量での前記PM除去手段による粒子状物質の酸化除去を停止するPM除去停止手段を、更に備えてもよい。   In the control device for an internal combustion engine described above, the flow rate control unit may perform the PM when the predetermined oil consumption period elapses even when the particulate matter collected by the filter is not oxidized and removed. The air flow rate to the filter when the particulate matter is oxidized and removed by the removing means may be forcibly changed from the temperature rise suppression flow rate to the normal air flow rate. And the control device of the internal combustion engine, when the temperature of the filter reaches according to the oxidation removal of the particulate matter by the PM removal means at the normal air flow rate at the time of forced change to the normal air flow rate When it is determined that the estimated reached temperature at the time of forced change exceeds the predetermined abnormality determination temperature, PM removal stopping means for stopping oxidation removal of particulate matter by the PM removal means at the normal air flow rate is provided. , May be further provided.

上記構成によれば、PM除去手段による捕集PMの酸化除去が行われる際に所定オイル消費期間が経過した場合には、捕集PMの酸化除去が完了していない場合であっても、フィルタへの空気流量が昇温抑制流量から通常空気流量に強制的に変更される。これは、上記のとおり、昇温抑制流量でのPM酸化除去を行うことに起因する潤滑オイル消費の増大を抑制するためである。一方で、この結果、強制変更後には、捕集PMの酸化除去を継続すべく、フィルタには相対的に多くの空気流量(通常空気流量)が流れ込むことになるため、フィルタの昇温傾向が、当該強制変更が行われる前よりも顕著となる可能性がある。そこで、当該強制変更が行われた場合には、改めて強制変更時点で推定されるフィルタの到達温度である強制変更時推定到達温度が、所定の異常判定温度を超えると判定される場合には、強制変更後の通常空気量でのPM酸化除去を停止することで、フィルタの過昇温による異常状態の発生を回避することが可能となる。   According to the above configuration, when the predetermined oil consumption period has elapsed when the collected PM is oxidized and removed by the PM removing means, the filter is removed even if the collected PM is not completely oxidized and removed. Is forcedly changed from the temperature rise suppression flow rate to the normal air flow rate. This is to suppress an increase in lubricating oil consumption resulting from performing PM oxidation removal at the temperature rise suppression flow rate as described above. On the other hand, as a result, after the forced change, a relatively large amount of air flow (normal air flow) flows into the filter in order to continue the oxidation removal of the collected PM. , There is a possibility that it becomes more prominent than before the forced change is made. Therefore, when the forced change is performed, when it is determined that the estimated change temperature at the forced change that is the temperature reached by the filter that is estimated again at the time of the forced change exceeds the predetermined abnormality determination temperature, By stopping the PM oxidation removal with the normal air amount after the forced change, it is possible to avoid the occurrence of an abnormal state due to excessive temperature rise of the filter.

本発明によれば、火花点火式の内燃機関において、フューエルカット処理によりフィルタに捕集されたPMの酸化除去を行う際に、少なくともフィルタの異常状態を的確に回避し得る制御装置を提供することが可能である。   According to the present invention, in a spark ignition type internal combustion engine, a control device capable of accurately avoiding at least an abnormal state of a filter when performing oxidation removal of PM collected by a fuel cut process. Is possible.

本発明の実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine which concerns on the Example of this invention, its intake system, and an exhaust system. 図1に示す内燃機関において実行されるフィルタ再生制御のフローを示した第1のフローチャートである。2 is a first flowchart showing a flow of filter regeneration control executed in the internal combustion engine shown in FIG. 1. 図2に示すフィルタ再生制御が行われているときの、アクセル状態、車速、フューエルカット処理要求、スロットル開度、フィルタ温度の推移を示す図である。It is a figure which shows transition of an accelerator state, a vehicle speed, a fuel cut process request | requirement, throttle opening, and filter temperature when filter regeneration control shown in FIG. 2 is performed. 図1に示す内燃機関において実行されるフィルタ再生制御のフローを示した第2のフローチャートである。FIG. 4 is a second flowchart showing a flow of filter regeneration control executed in the internal combustion engine shown in FIG. 1. 図1に示す内燃機関において実行されるフィルタ再生制御のフローを示した第3のフローチャートである。FIG. 6 is a third flowchart showing a flow of filter regeneration control executed in the internal combustion engine shown in FIG. 1. 図5に示すフィルタ再生制御が行われているときの、アクセル状態、車速、フューエルカット処理要求、スロットル開度、フィルタ温度、気筒内負圧の積算値の推移を示す図である。FIG. 6 is a diagram showing changes in an integrated value of an accelerator state, a vehicle speed, a fuel cut processing request, a throttle opening, a filter temperature, and a negative pressure in a cylinder when the filter regeneration control shown in FIG. 5 is performed.

以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified.

図1は、本実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。図1に示す内燃機関1は、火花点火式のガソリン機関である。内燃機関1は、たとえば車両に搭載される。ここで、内燃機関1には、吸気通路5が接続されている。吸気通路5の途中には、内燃機関1の吸入空気量を調整するスロットルバルブ6が設けられている。また、スロットルバルブ6の上流側の吸気通路5には、内燃機関1の吸入空気量を検出するエアフローメータ15が設けられ、また、スロットルバルブ6の下流側の吸気通路であって、内燃機関1の吸気弁の直上流近傍の吸気通路5には、そこでの吸気圧力を検出する圧力センサ16が設けられている。そして、内燃機関1には、内燃機関1へ燃料を供給する燃料噴射弁7が取り付けられている。なお、燃料噴射弁7は、内燃機関1の気筒内に燃料を噴射するものであってもよく、吸気通路5内に燃料を噴射するものであってもよい。また、内燃機関1には、気筒内に電気火花を発生させる点火プラグ8が設けられている。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to the present embodiment and its intake system and exhaust system. An internal combustion engine 1 shown in FIG. 1 is a spark ignition type gasoline engine. The internal combustion engine 1 is mounted on a vehicle, for example. Here, an intake passage 5 is connected to the internal combustion engine 1. A throttle valve 6 for adjusting the intake air amount of the internal combustion engine 1 is provided in the middle of the intake passage 5. An air flow meter 15 for detecting the intake air amount of the internal combustion engine 1 is provided in the intake passage 5 upstream of the throttle valve 6, and is an intake passage downstream of the throttle valve 6, which is an internal combustion engine 1. A pressure sensor 16 for detecting the intake pressure there is provided in the intake passage 5 immediately upstream of the intake valve. A fuel injection valve 7 that supplies fuel to the internal combustion engine 1 is attached to the internal combustion engine 1. The fuel injection valve 7 may inject fuel into the cylinder of the internal combustion engine 1 or may inject fuel into the intake passage 5. In addition, the internal combustion engine 1 is provided with a spark plug 8 that generates an electric spark in the cylinder.

また、内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、上流側から順に、排気浄化触媒である三元触媒3と、排気中の粒子状物質(PM)を捕集するフィルタ4とが備えられている。また、三元触媒3に加えて、吸蔵還元型NOx触媒、選択還元型NOx触媒等を、三元触媒3とフィルタ4との間の排気通路2に排気浄化の目的に応じて設けてもよい。そして、三元触媒3の上流側の排気通路2には、三元触媒3に流れ込む排気の空燃比を検出する空燃比センサ11が設けられ、三元触媒3の下流側の排気通路2には三元触媒3から流れ出る排気の温度を検出する温度センサ12が設けられている。また、フィルタ4の下流側にはフィルタ4から流れ出る排気の温度を検出する温度センサ13が設けられ、更に、フィルタ4の上流側の排気通路(すなわち、三元触媒3とフィルタ4との間の排気通路)における排気圧力とフィルタ4の下流側の排気通路における排気圧力との差圧を検出する差圧センサ14が設けられている。なお、空燃比センサ1
1は、排気中の酸素濃度を検出する酸素濃度センサとしてもよい。
An exhaust passage 2 is connected to the internal combustion engine 1. In the middle of the exhaust passage 2, a three-way catalyst 3 that is an exhaust purification catalyst and a filter 4 that collects particulate matter (PM) in the exhaust are provided in order from the upstream side. In addition to the three-way catalyst 3, an NOx storage reduction catalyst, a selective reduction type NOx catalyst, or the like may be provided in the exhaust passage 2 between the three-way catalyst 3 and the filter 4 in accordance with the purpose of exhaust purification. . The upstream side exhaust passage 2 of the three-way catalyst 3 is provided with an air-fuel ratio sensor 11 for detecting the air-fuel ratio of the exhaust gas flowing into the three-way catalyst 3. A temperature sensor 12 for detecting the temperature of the exhaust gas flowing out from the three-way catalyst 3 is provided. Further, a temperature sensor 13 for detecting the temperature of the exhaust gas flowing out from the filter 4 is provided on the downstream side of the filter 4, and further, an exhaust passage on the upstream side of the filter 4 (that is, between the three-way catalyst 3 and the filter 4). A differential pressure sensor 14 for detecting a differential pressure between the exhaust pressure in the exhaust passage) and the exhaust pressure in the exhaust passage downstream of the filter 4 is provided. Air-fuel ratio sensor 1
1 may be an oxygen concentration sensor for detecting the oxygen concentration in the exhaust gas.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。ECU10には、上記センサの他、運転者がアクセルペダルを踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ17、および機関回転数を検知するクランクポジションセンサ18が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力される。このような構成により、ECU10は、例えば、温度センサ12の出力に基づいて三元触媒3の触媒温度を取得でき、また温度センサ13の出力に基づいてフィルタ4の触媒温度を取得できる。更に、ECU10は、差圧センサ14の出力に基づいて、フィルタ4に捕集されたPM量を取得できる。また、ECU10は、アクセル開度センサ17の出力に基づいて、内燃機関1の機関負荷を取得でき、クランクポジションセンサ18の出力に基づいて、内燃機関1の機関回転速度を取得できる。   The internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 10 controls the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the driver's request. In addition to the above sensors, the ECU 10 includes an accelerator opening sensor 17 that outputs an electrical signal corresponding to the amount of depression of the accelerator pedal by the driver and detects the engine load, and a crank position sensor 18 that detects the engine speed. Connected via wiring, the output signals of these various sensors are input to the ECU 10. With such a configuration, for example, the ECU 10 can acquire the catalyst temperature of the three-way catalyst 3 based on the output of the temperature sensor 12 and can acquire the catalyst temperature of the filter 4 based on the output of the temperature sensor 13. Further, the ECU 10 can acquire the amount of PM collected by the filter 4 based on the output of the differential pressure sensor 14. Further, the ECU 10 can acquire the engine load of the internal combustion engine 1 based on the output of the accelerator opening sensor 17 and can acquire the engine rotation speed of the internal combustion engine 1 based on the output of the crank position sensor 18.

一方、ECU10には、スロットルバルブ6、燃料噴射弁7、点火プラグ8が電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。例えば、内燃機関1において負荷に応じた通常の出力制御が行われる場合、ECU10は、スロットルバルブ6の開度および空燃比センサ11の検出値に基づいて燃料噴射弁7からの燃料噴射量を制御する。また、内燃機関1の減速時(内燃機関1が搭載される車両の減速時としてもよい。)には、ECU10は、燃料噴射弁7からの燃料噴射の停止、すなわち、フューエルカット処理を実施する。フューエルカット処理については、後述する。   On the other hand, a throttle valve 6, a fuel injection valve 7, and a spark plug 8 are connected to the ECU 10 via electric wiring, and these devices are controlled by the ECU 10. For example, when normal output control according to the load is performed in the internal combustion engine 1, the ECU 10 controls the fuel injection amount from the fuel injection valve 7 based on the opening degree of the throttle valve 6 and the detected value of the air-fuel ratio sensor 11. To do. Further, when the internal combustion engine 1 is decelerated (the vehicle 10 in which the internal combustion engine 1 is mounted may be decelerated), the ECU 10 stops the fuel injection from the fuel injection valve 7, that is, performs a fuel cut process. . The fuel cut process will be described later.

このように構成される内燃機関1において、その運転に伴って排気に含まれるPMがフィルタ4に捕集され、そこに堆積していく。このように捕集されたPM量が増加すると排気通路2での排気圧力が上昇し、内燃機関1の運転に好ましくない影響を及ぼす可能性がある。そこで、ECU10は、フィルタ4に捕集されたPM量(以下、PM捕集量という。)を差圧センサ14の出力値から推定し、そのPM捕集量が所定量以上となったときに、その堆積しているPMの酸化除去が図られるように構成される。なお、PM捕集量は、別法として、過去の機関回転数及び機関負荷の履歴に基づいて推定してもよい。具体的には、フィルタ4の温度が、PMが酸化する温度以上となっているときに、フューエルカット処理を行いフィルタ4に多くの酸素を供給することで、捕集PMの酸化除去を行い、フィルタのPM捕集機能の再生が図られる。本実施例では、このフューエルカット処理によるフィルタのPM捕集機能の再生を、フィルタ再生と称する。   In the internal combustion engine 1 configured as described above, PM contained in the exhaust gas is collected by the filter 4 along with its operation and is accumulated there. When the amount of PM collected in this way increases, the exhaust pressure in the exhaust passage 2 increases, which may adversely affect the operation of the internal combustion engine 1. Therefore, the ECU 10 estimates the amount of PM collected by the filter 4 (hereinafter referred to as PM collection amount) from the output value of the differential pressure sensor 14, and when the PM collection amount becomes a predetermined amount or more. The PM is deposited and removed. Alternatively, the amount of PM trapped may alternatively be estimated based on the past engine speed and engine load history. Specifically, when the temperature of the filter 4 is equal to or higher than the temperature at which PM is oxidized, a fuel cut process is performed and a large amount of oxygen is supplied to the filter 4 to oxidize and remove the collected PM. The PM collection function of the filter can be regenerated. In the present embodiment, regeneration of the PM collection function of the filter by this fuel cut processing is referred to as filter regeneration.

このようにフィルタ4でのPM捕集量が所定量以上となったときにフューエルカット処理によって速やかにそのPMを酸化除去するのが好ましいが、その際にフィルタ4でのPMの酸化反応熱によりフィルタ温度が上昇し、フィルタ4のPM捕集機能が阻害される異常状態、すなわち過昇温によるフィルタ4の基材溶損が生じる恐れがある。そこで、本実施例では、フィルタ4に捕集されたPMを酸化除去するためにフューエルカット処理を行う場合に、フィルタ4が異常状態に陥ることを回避するためのフィルタ再生制御が行われる。   As described above, when the amount of PM trapped in the filter 4 becomes a predetermined amount or more, it is preferable to quickly oxidize and remove the PM by the fuel cut process, but at that time, due to the heat of oxidation reaction of the PM in the filter 4 There is a possibility that the substrate temperature of the filter 4 may be damaged due to an abnormal state in which the filter temperature rises and the PM collecting function of the filter 4 is hindered, that is, an excessive temperature rise. In this embodiment, therefore, filter regeneration control is performed to avoid the filter 4 from falling into an abnormal state when the fuel cut process is performed to oxidize and remove the PM collected by the filter 4.

以上を踏まえ、図2および図3に基づいて、本実施例に係るフィルタ4の再生制御について詳細に説明する。なお、当該フィルタ再生制御は、ECU10に格納された制御プログラムにより、所定間隔で繰り返し実行される。先ず、S101では、温度センサ13の出力に基づいてフィルタ温度Tgが取得されるとともに、差圧センサ14の出力に基づいてフィルタ4での捕集PM量Mpが取得される。具体的には、ECU10は、予め行われた実験等で特定された、フィルタ4の温度Tgとフィルタ4から流れ出る排気温度との相関、及びフィルタ4でのPM捕集量とフィルタ4の上下流の排気圧力差との相関をそれぞ
れ制御マップとしてメモリ内に保持し、S101の処理時に各制御マップにアクセスすることでフィルタ温度Tgと捕集PM量Mpが取得される。S101の処理が終了すると、S102へ進む。
Based on the above, the regeneration control of the filter 4 according to the present embodiment will be described in detail based on FIG. 2 and FIG. The filter regeneration control is repeatedly executed at predetermined intervals by a control program stored in the ECU 10. First, in S101, the filter temperature Tg is acquired based on the output of the temperature sensor 13, and the collected PM amount Mp in the filter 4 is acquired based on the output of the differential pressure sensor 14. Specifically, the ECU 10 specifies the correlation between the temperature Tg of the filter 4 and the exhaust gas temperature flowing out from the filter 4 specified in an experiment or the like performed in advance, and the amount of PM trapped in the filter 4 and the upstream and downstream of the filter 4. Each of the correlations with the exhaust pressure difference is held in the memory as a control map, and the filter temperature Tg and the collected PM amount Mp are acquired by accessing each control map during the processing of S101. When the process of S101 ends, the process proceeds to S102.

S102では、フューエルカット処理によってフィルタ4の再生処理を行うための所定条件が成立しているか否かが判定される。例えば、所定条件としては、フィルタ4でのPM捕集量が所定の閾量以上であって、且つ、フィルタ4の温度が所定の閾温度以上である場合に、所定条件が成立していると判定することができる。効果的な捕集PMの酸化除去を行うためには、フィルタ4においてある程度の量のPMが捕集されているのが好ましい。そこで、そのような好ましい量のPMが捕集されているか否かを判定するための閾量が、当該所定の閾量に相当する。また、フューエルカット処理によってフィルタ4に空気を送り込むことでその捕集PMを酸化させるためには、フィルタ4の温度がその酸化反応が促進する程度に高温状態になっている必要がある。そこで、フィルタ4の温度がそのような温度に至っているか否かを判定するための閾温度が、当該所定の閾温度に相当する。S102の処理で肯定判定されるとS103へ進み、否定判定されるとS107へ進む。   In S102, it is determined whether or not a predetermined condition for performing the regeneration process of the filter 4 is established by the fuel cut process. For example, as the predetermined condition, when the PM collection amount in the filter 4 is equal to or higher than a predetermined threshold amount and the temperature of the filter 4 is equal to or higher than the predetermined threshold temperature, the predetermined condition is satisfied. Can be determined. In order to effectively oxidize and remove the collected PM, it is preferable that a certain amount of PM is collected in the filter 4. Therefore, the threshold amount for determining whether or not such a preferable amount of PM is collected corresponds to the predetermined threshold amount. Further, in order to oxidize the collected PM by sending air into the filter 4 by the fuel cut process, the temperature of the filter 4 needs to be high enough to promote the oxidation reaction. Therefore, a threshold temperature for determining whether or not the temperature of the filter 4 has reached such a temperature corresponds to the predetermined threshold temperature. If a positive determination is made in the process of S102, the process proceeds to S103, and if a negative determination is made, the process proceeds to S107.

次に、S103では、この時点で通常のフューエルカット処理が行われフィルタ4に空気が流れ込んだと仮定した場合に、フィルタ4の温度が到達し得る温度、すなわち、フューエルカット処理時のフィルタ4の到達最高温度が推定される。なお、ここで言う温度推定のためのフューエルカット処理は、後述するS107に示す通常空気流量でのフューエルカット処理と同じ処理である。当該通常空気流量は、内燃機関1において通常のフューエルカット処理が行われる際に、スロットルバルブ6が予め決められた所定の開度A1(図3(d)を参照)に設定されることで、排気通路2に生成される空気流量であり、後述するS106の処理が行われる際の空気流量である昇温抑制流量とは区別される。   Next, in S103, when it is assumed that normal fuel cut processing is performed at this time and air flows into the filter 4, the temperature at which the filter 4 can reach, that is, the filter 4 at the time of the fuel cut processing. The maximum temperature reached is estimated. Note that the fuel cut process for temperature estimation referred to here is the same process as the fuel cut process at the normal air flow rate shown in S107 described later. When the normal fuel cut process is performed in the internal combustion engine 1, the normal air flow rate is set to a predetermined opening A1 (see FIG. 3D), which is determined in advance. This is a flow rate of air generated in the exhaust passage 2 and is distinguished from a temperature increase suppression flow rate that is an air flow rate when the processing of S106 described later is performed.

そして、この通常空気流量の空気がフィルタ4に流れ込むことで生じるフィルタ4の温度の昇温量が、当該通常空気流量から導出される、フィルタ4に流れ込む酸素量と、フィルタ4に捕集されたPM量と、フィルタ4の基材の熱容量等が考慮されて算出される。そして、この昇温量に、S103処理時のフィルタ4の温度、すなわちS101で取得されたフィルタ温度Tgを加味することで、フィルタ4の到達温度を推定することができる。なお、通常空気流量でのフューエルカット処理によるフィルタ4の昇温量を、該昇温量と通常空気流量とフィルタ4でのPM捕集量との相関を予め取得しそれを制御マップとしてECU10内のメモリに格納し、S103の処理時に当該制御マップにアクセスすることで算出することもできる。S103の処理が終了すると、S104へ進む。   Then, the temperature increase amount of the filter 4 generated by the air having the normal air flow rate flowing into the filter 4 was collected by the filter 4 and the oxygen amount flowing into the filter 4 derived from the normal air flow rate. The calculation is performed in consideration of the amount of PM and the heat capacity of the base material of the filter 4. Then, the temperature reached by the filter 4 can be estimated by adding the temperature of the filter 4 during the process of S103, that is, the filter temperature Tg acquired in S101, to this temperature increase amount. It should be noted that the temperature rise amount of the filter 4 by the fuel cut process at the normal air flow rate is obtained in advance in the ECU 10 as a control map by acquiring a correlation between the temperature rise amount, the normal air flow rate, and the PM trapped amount at the filter 4 in advance. And can be calculated by accessing the control map during the process of S103. When the process of S103 ends, the process proceeds to S104.

S104では、S103で推定されたフィルタ4の到達温度が異常判定温度T0以上であるか否かが判定される。この異常判定温度T0は、フィルタ4がPM捕集機能を十分に発揮し得ない状態になっているか否かを判定するための閾値であり、例えば、フィルタ4の基材溶損が生じ得るフィルタ温度や、またフィルタ4に何らかの排気浄化機能を有する触媒が担持されている場合には、その熱劣化が懸念される触媒温度等を、異常判定温度T0として設定することができる。S104で肯定判定されるとS105へ進み、否定判定されるとS107へ進む。   In S104, it is determined whether or not the temperature reached by the filter 4 estimated in S103 is equal to or higher than the abnormality determination temperature T0. This abnormality determination temperature T0 is a threshold value for determining whether or not the filter 4 is in a state in which the PM collection function cannot be sufficiently exhibited. In the case where a temperature or a catalyst having some exhaust purification function is carried on the filter 4, the catalyst temperature at which the thermal degradation is a concern can be set as the abnormality determination temperature T0. If a positive determination is made in S104, the process proceeds to S105, and if a negative determination is made, the process proceeds to S107.

S105では、フューエルカット処理を行った際に排気通路2での空気流量が昇温抑制流量となるスロットルバルブ6の開度A2(図3(d)を参照)が算出される。この昇温抑制流量は、仮にフューエルカット処理を行った場合に異常判定温度T0を超えると判定されるフィルタ4の温度が、当該所定の異常判定温度T0を超えないようにするための、フューエルカット処理時の排気通路2での空気流量である。フューエルカット処理時のフィルタ4の昇温量はフィルタ4に流れ込む空気流量と相関(以下、「昇温量に関する相関」という)するため、現在のフィルタ4の温度Tgと異常判定温度T0との差分である、
フィルタ4の昇温余裕量ΔTに基づいて、昇温抑制流量となるスロットルバルブ6の開度A2が算出される。具体的には、以下の式1に従って開度A2が算出される。
A2 = A1 × f(α,Ne)
α = 昇温余裕量ΔT/(S103で算出された推定到達温度における昇温量)
Ne:機関回転速度
なお、関数fは、上記昇温量に関する相関に基づいて表現された関数であり、推定到達温度における昇温量に対する昇温余裕量ΔTの比率αが小さくなるほど、フューエルカット時の空気流量が低減するようにスロットルバルブ6の開度をより閉じ側の開度とするための係数を出力する。またフューエルカット処理時の空気流量は、その際の内燃機関1の機関回転速度Neが高いほど大きくなるため、この点を考慮し、関数fは、フューエルカット処理時の機関回転速度Neが高いほど、スロットルバルブ6の開度をより閉じ側の開度とするように上記係数を出力する。したがって、昇温抑制流量に対応する開度A2は、通常空気流量に対応する開度A1より閉じ側の開度とされる。S105の処理が終了すると、S106へ進む。
In S105, the opening A2 of the throttle valve 6 (see FIG. 3 (d)) is calculated so that the air flow rate in the exhaust passage 2 becomes the temperature rise suppression flow rate when the fuel cut processing is performed. This temperature rise suppression flow rate is a fuel cut for preventing the temperature of the filter 4 that is determined to exceed the abnormality determination temperature T0 if the fuel cut processing is performed from exceeding the predetermined abnormality determination temperature T0. This is the air flow rate in the exhaust passage 2 during processing. The temperature rise amount of the filter 4 during the fuel cut process is correlated with the flow rate of air flowing into the filter 4 (hereinafter referred to as “correlation related to the temperature rise amount”). Is,
Based on the temperature increase margin ΔT of the filter 4, the opening A2 of the throttle valve 6 that is the temperature increase suppression flow rate is calculated. Specifically, the opening A2 is calculated according to the following formula 1.
A2 = A1 × f (α, Ne)
α = temperature increase margin ΔT / (temperature increase at the estimated reached temperature calculated in S103)
Ne: engine speed Note that the function f is a function expressed based on the correlation related to the temperature increase amount, and as the ratio α of the temperature increase margin ΔT to the temperature increase amount at the estimated reached temperature decreases, the fuel cut time A coefficient for setting the opening degree of the throttle valve 6 to a more closed side opening degree is output so that the air flow rate is reduced. Further, since the air flow rate during the fuel cut process increases as the engine rotational speed Ne of the internal combustion engine 1 increases, the function f takes into account this point, and the function f increases as the engine rotational speed Ne during the fuel cut process increases. Then, the coefficient is output so that the opening degree of the throttle valve 6 is set to the opening degree on the more closed side. Therefore, the opening degree A2 corresponding to the temperature rise suppression flow rate is set to the opening side closer to the opening degree A1 corresponding to the normal air flow rate. When the process of S105 ends, the process proceeds to S106.

S106では、スロットルバルブ6の開度をS105で算出された昇温抑制流量のための開度A2とした状態でのフューエルカット処理(F/C処理)が許可される。そして、内燃機関1において減速運転が行われているときに、または、その後内燃機関1において減速運転が行われるときに、スロットルバルブ6の開度が開度A2に設定されて、内燃機関1での燃料噴射が停止され、昇温抑制流量での空気がフィルタ4へ供給されることになる。これにより、フィルタ4に捕集されたPMが酸化除去されることになる。   In S106, fuel cut processing (F / C processing) is permitted in a state in which the opening of the throttle valve 6 is set to the opening A2 for the temperature rise suppression flow rate calculated in S105. When the internal combustion engine 1 is decelerating or when the internal combustion engine 1 is subsequently decelerated, the opening of the throttle valve 6 is set to the opening A2, and the internal combustion engine 1 The fuel injection is stopped, and the air at the temperature rise suppression flow rate is supplied to the filter 4. Thereby, the PM collected by the filter 4 is oxidized and removed.

また、S102で否定判定された場合、又はS104で否定判定された場合は、処理はS107に進み、S107では、スロットルバルブ6の開度を通常空気流量のための開度A1とした状態でのフューエルカット処理(F/C処理)が許可される。そして、その後、内燃機関1において減速運転が行われるときに、当該フューエルカット処理が実行され、フィルタ4に捕集されたPMが酸化除去されることになる。なお、S102で否定判定された場合においては、フィルタ再生の所定条件が成立していない場合であっても通常空気流量でのフューエルカット処理が行われることになるため、成り行きでのPMの酸化除去が行われることになる。   If a negative determination is made in S102 or a negative determination is made in S104, the process proceeds to S107. In S107, the opening of the throttle valve 6 is set to the opening A1 for the normal air flow rate. Fuel cut processing (F / C processing) is permitted. After that, when the deceleration operation is performed in the internal combustion engine 1, the fuel cut process is executed, and the PM collected by the filter 4 is oxidized and removed. If the negative determination is made in S102, the fuel cut process is performed at the normal air flow rate even if the predetermined condition for filter regeneration is not satisfied, so the PM is removed by oxidation at the event. Will be done.

ここで、図2に示すフィルタ再生制御が実行されたときのフィルタ4の温度推移について、図3に基づいて説明する。図3は、(a)内燃機関1でのアクセル状態、(b)内燃機関1が搭載された車両速度、(c)フューエルカット処理要求、(d)スロットルバルブ6の開度、(e)フィルタ4の温度の各推移を示している。図3に示す状況では、時刻t1のときにアクセル状態がアクセルオフ状態になり(図3(a)を参照)、車両(内燃機関1)が減速状態となる。このとき図2に示すフィルタ再生制御が行われ、処理がS106又はS107へと進むと、フューエルカット処理の要求フラグがオン状態となり(図3(c)を参照)、フューエルカット処理が行われることになる。   Here, the temperature transition of the filter 4 when the filter regeneration control shown in FIG. 2 is executed will be described with reference to FIG. FIG. 3 shows (a) an accelerator state in the internal combustion engine 1, (b) a vehicle speed at which the internal combustion engine 1 is mounted, (c) a fuel cut processing request, (d) an opening degree of the throttle valve 6, and (e) a filter. 4 shows each transition of temperature. In the situation shown in FIG. 3, the accelerator state becomes the accelerator-off state at time t1 (see FIG. 3A), and the vehicle (internal combustion engine 1) enters the deceleration state. At this time, when the filter regeneration control shown in FIG. 2 is performed and the process proceeds to S106 or S107, the request flag for the fuel cut process is turned on (see FIG. 3C), and the fuel cut process is performed. become.

このとき処理がS106へ進んだ場合には、図3(d)の線L1で示すようにスロットルバルブ6の開度がA2に設定され、処理がS107へ進んだ場合には、図3(d)の線L2で示すようにスロットルバルブ6の開度がA1に設定される。これにより、線L1の場合には排気通路2に昇温抑制流量での空気がフィルタ4に流れ込み、線L2の場合には排気通路2に通常空気流量での空気がフィルタ4に流れ込むことになる。この結果、昇温抑制流量でのフューエルカット処理が行われたときは、図3(e)の線L3で示すように、フィルタ4の温度は異常判定温度T0を超えない範囲で温度上昇することになる。なお、仮に本願発明が適用されない従来技術では、フューエルカット処理によりフィルタ温度が過昇温する可能性があるにもかかわらず通常空気流量での空気がフィルタ4に流れ込むことになるため、図3(e)の線L4で示すように、フィルタ4の温度は異常判定温度T
0を超えて上昇してしまうことになる。
If the process proceeds to S106 at this time, the opening of the throttle valve 6 is set to A2 as indicated by the line L1 in FIG. 3D, and if the process proceeds to S107, the process proceeds to FIG. ), The opening of the throttle valve 6 is set to A1. As a result, in the case of the line L1, air at the temperature rising suppression flow rate flows into the filter 4 into the exhaust passage 2, and in the case of the line L2, air at the normal air flow rate flows into the filter 4 into the exhaust passage 2. . As a result, when the fuel cut process is performed at the temperature rise suppression flow rate, the temperature of the filter 4 rises within a range that does not exceed the abnormality determination temperature T0, as indicated by the line L3 in FIG. become. In the prior art to which the present invention is not applied, air at a normal air flow rate flows into the filter 4 even though the filter temperature may be excessively increased by the fuel cut process. As indicated by line L4 in e), the temperature of the filter 4 is the abnormality determination temperature T.
It will rise beyond zero.

このように本フィルタ再生制御によれば、フューエルカット処理によりフィルタ4の温度が異常判定温度T0を超えて上昇すると判定される場合には、スロットルバルブ6の開度がより閉じ側の開度A2に設定されて、昇温抑制流量での空気がフィルタ4に流れ込むことになる。この結果、内燃機関1では、実際にフィルタに捕集されたPMを酸化除去する際には、フィルタ4の過昇温を回避し、フィルタ4に異常状態が発生することを的確に回避することができる。なお、フューエルカット処理によりフィルタ4の温度が異常判定温度T0を超えて上昇しないと判定される場合には、従来通り、スロットルバルブ6の開度が開度A1に設定されて、通常空気流量での空気がフィルタ4に流れ込むことになる。そのため、フィルタ4の過昇温が懸念されない場合には効率的なPMの酸化除去が図られることになる。   As described above, according to this filter regeneration control, when it is determined by the fuel cut processing that the temperature of the filter 4 rises above the abnormality determination temperature T0, the opening of the throttle valve 6 is set to the opening A2 on the more closed side. Therefore, the air at the temperature rise suppression flow rate flows into the filter 4. As a result, in the internal combustion engine 1, when the PM actually collected in the filter is oxidized and removed, the excessive temperature rise of the filter 4 is avoided and the occurrence of an abnormal state in the filter 4 is accurately avoided. Can do. When it is determined by the fuel cut process that the temperature of the filter 4 does not increase beyond the abnormality determination temperature T0, the opening of the throttle valve 6 is set to the opening A1 as usual, and the normal air flow rate is set. Air flows into the filter 4. Therefore, when there is no concern about overheating of the filter 4, efficient PM oxidation removal is achieved.

<変形例1>
上記実施例のフィルタ再生制御では、フューエルカット処理時の空気流量が、所定条件の成立および推定到達温度に従って制御されたが、その他の条件も考慮してフューエルカット処理時の空気流量の制御を行うようにしてもよい。例えば、内燃機関1の排気系には、フィルタ4の上流側に三元触媒3が設置されているが、三元触媒3は、その触媒温度が比較的高いときに多くの酸素に晒されるとその熱劣化が促進し、その排気浄化機能が発揮され得ない状態に至る可能性がある。そのため、排気通路2に空気を流しフィルタ4での捕集PMを酸化除去するフューエルカット処理が実行されると、三元触媒3が熱劣化するおそれがあることになる。そこで、図4に基づいて、三元触媒3の熱劣化抑制を考慮したフィルタ再生制御を示す本変形例について説明する。
<Modification 1>
In the filter regeneration control of the above embodiment, the air flow rate at the time of the fuel cut processing is controlled in accordance with the establishment of the predetermined condition and the estimated reached temperature, but the air flow rate at the time of the fuel cut processing is controlled in consideration of other conditions. You may do it. For example, in the exhaust system of the internal combustion engine 1, a three-way catalyst 3 is installed on the upstream side of the filter 4, but the three-way catalyst 3 is exposed to a large amount of oxygen when the catalyst temperature is relatively high. The thermal deterioration is accelerated, and there is a possibility that the exhaust purification function cannot be exhibited. For this reason, when the fuel cut process is performed in which air is passed through the exhaust passage 2 and the PM collected by the filter 4 is oxidized and removed, the three-way catalyst 3 may be thermally deteriorated. Therefore, based on FIG. 4, a description will be given of this modification showing filter regeneration control in consideration of suppression of thermal deterioration of the three-way catalyst 3.

図4は、本変形例に係るフィルタ再生制御のフローを示すものである。本制御では、先ずS201で、三元触媒3の劣化抑制制御が要求されているか否かが判定される。具体的には、上記の通り三元触媒3の触媒温度が比較的高いときにフューエルカット処理により多くの酸素が供給されると、三元触媒3の熱劣化が促進されてしまうことを考慮して、S201では、三元触媒3の触媒温度が、この酸素供給による熱劣化が懸念される所定の触媒温度より高い場合には、三元触媒3の劣化抑制制御が要求されていると判定(肯定判定)される。このことは、三元触媒3が、フューエルカット処理により排気浄化機能を喪失する可能性があることを意味している。S201で肯定判定されるとS202へ進み、否定判定されるとS210へ進む。   FIG. 4 shows a flow of filter regeneration control according to this modification. In this control, first, in S201, it is determined whether or not deterioration suppression control of the three-way catalyst 3 is requested. Specifically, in consideration of the fact that, when the catalyst temperature of the three-way catalyst 3 is relatively high as described above, if a large amount of oxygen is supplied by the fuel cut process, thermal degradation of the three-way catalyst 3 is promoted. Thus, in S201, when the catalyst temperature of the three-way catalyst 3 is higher than a predetermined catalyst temperature at which thermal deterioration due to the oxygen supply is a concern, it is determined that the deterioration suppression control of the three-way catalyst 3 is requested ( Affirmative). This means that the three-way catalyst 3 may lose the exhaust purification function by the fuel cut process. If a positive determination is made in S201, the process proceeds to S202, and if a negative determination is made, the process proceeds to S210.

S202では、三元触媒3の熱劣化程度が推定される。具体的には、温度センサ12の出力から取得される三元触媒3の触媒温度履歴に基づいて、その熱劣化程度が推定される。三元触媒3の熱劣化はその触媒温度が比較的高温となると進行することから、その温度履歴に基づき熱劣化程度が推定可能である。S202の処理が終了すると、S203へ進む。   In S202, the degree of thermal degradation of the three-way catalyst 3 is estimated. Specifically, the degree of thermal deterioration is estimated based on the catalyst temperature history of the three-way catalyst 3 acquired from the output of the temperature sensor 12. Since the thermal degradation of the three-way catalyst 3 proceeds when the catalyst temperature becomes relatively high, the degree of thermal degradation can be estimated based on the temperature history. When the process of S202 ends, the process proceeds to S203.

S203では、S202で推定された三元触媒3の熱劣化程度が、所定の熱劣化程度以下か否かが判定される。当該所定の熱劣化程度は、仮にフューエルカット処理が実行されることで三元触媒3の熱劣化程度が進行してしまい、三元触媒3の排気浄化機能が十分に発揮できない状態に陥る可能性があると判断するための熱劣化程度に関する閾値である。当該所定の熱劣化程度は、三元触媒3に求める排気浄化機能の程度等を考慮して適宜設定すればよい。そして、S203で肯定判定されるとS204へ進み、S203で否定判定されるとS211へ進む。   In S203, it is determined whether or not the degree of thermal degradation of the three-way catalyst 3 estimated in S202 is equal to or less than a predetermined degree of thermal degradation. The predetermined degree of thermal degradation may cause the three-way catalyst 3 to deteriorate due to the fuel cut process being performed, and the exhaust purification function of the three-way catalyst 3 may not be fully exhibited. It is a threshold value related to the degree of thermal degradation for determining that there is. The predetermined degree of thermal deterioration may be appropriately set in consideration of the degree of exhaust purification function required for the three-way catalyst 3 and the like. If a positive determination is made in S203, the process proceeds to S204, and if a negative determination is made in S203, the process proceeds to S211.

次に、S204以降の処理について説明する。S204では、上記S101と同じように、温度センサ13の出力に基づいてフィルタ温度Tgが取得されるとともに、差圧セン
サ14の出力に基づいてフィルタ4での捕集PM量Mpが取得される。その後、S205では、フューエルカット処理によってフィルタ4の再生処理を行うための所定条件が成立しているか否かが判定される。なお、S205における所定条件は、上記S102における所定条件と同じ条件であってもよく、別法として、S102で所定条件として設定されている所定の閾量や所定の閾温度の値を変えた条件であってもよい。そして、S205で肯定判定されるとS206へ進み、否定判定されるとS211へ進む。
Next, the processing after S204 will be described. In S204, the filter temperature Tg is acquired based on the output of the temperature sensor 13, and the collected PM amount Mp in the filter 4 is acquired based on the output of the differential pressure sensor 14, as in S101. Thereafter, in S205, it is determined whether or not a predetermined condition for performing the regeneration process of the filter 4 is satisfied by the fuel cut process. Note that the predetermined condition in S205 may be the same as the predetermined condition in S102. Alternatively, a condition in which the value of the predetermined threshold amount or the predetermined threshold temperature set as the predetermined condition in S102 is changed. It may be. If a positive determination is made in S205, the process proceeds to S206, and if a negative determination is made, the process proceeds to S211.

なお、図4に示すS206〜S210の処理は、それぞれ図2に示したS103〜S107の処理に実質的に相当するため、本願明細書では、S206〜S210の各処理の詳細については割愛する。そして、S203で否定判定された場合、又はS205で否定判定された場合は、処理はS211に進み、フューエルカット処理が禁止される。したがって、この状態で内燃機関1において減速運転が行われても、フューエルカット処理は行われないことになる。ここで、S203で否定判定された場合には、三元触媒3の熱劣化程度が比較的高い状態にあるため、フューエルカット処理が禁止されることで、三元触媒3を熱的に保護することができる。また、S205で否定判定された場合は、三元触媒3の熱劣化程度が所定の熱劣化程度以下であり、その機能喪失まで幾分の余裕があったとしても、フューエルカット処理自体が禁止されるため、三元触媒3が不用意に空気に晒されることが抑制され、三元触媒3の劣化進行を可及的に抑制することが可能となる。   Note that the processes of S206 to S210 shown in FIG. 4 substantially correspond to the processes of S103 to S107 shown in FIG. 2, respectively, and therefore the details of the processes of S206 to S210 are omitted in this specification. If a negative determination is made in S203 or a negative determination is made in S205, the process proceeds to S211 and the fuel cut process is prohibited. Therefore, even if the deceleration operation is performed in the internal combustion engine 1 in this state, the fuel cut process is not performed. Here, when a negative determination is made in S203, since the degree of thermal degradation of the three-way catalyst 3 is relatively high, the fuel cut process is prohibited, thereby protecting the three-way catalyst 3 thermally. be able to. Further, when a negative determination is made in S205, the fuel cut process itself is prohibited even if the degree of thermal degradation of the three-way catalyst 3 is equal to or less than the predetermined degree of thermal degradation and there is some allowance for the loss of function. Therefore, the three-way catalyst 3 is prevented from being exposed to air inadvertently, and the progress of deterioration of the three-way catalyst 3 can be suppressed as much as possible.

このように図4に示すフィルタ再生制御によれば、フューエルカット処理により三元触媒3が排気浄化機能を喪失してしまうことを確実に回避するとともに、当該喪失の可能性が無い場合には、通常空気流量又は抑制昇温流量でのフューエルカット処理が行われることで、フィルタ4の過昇温を好適に抑制しながらその捕集PMの酸化除去を実現することができる。なお、上記の例ではS201で三元触媒3の温度を考慮し、且つS203でその劣化状態を考慮しているが、三元触媒3をより余裕をもって熱劣化から保護するために、三元触媒3の温度に関するS201の判定を行うことなく、S202の処理とともにS203の判定のみが行われたうえで、上述したS204以降の処理が行われるようにしてもよい。   As described above, according to the filter regeneration control shown in FIG. 4, it is reliably avoided that the three-way catalyst 3 loses the exhaust purification function by the fuel cut process, and when there is no possibility of the loss, By performing the fuel cut process at the normal air flow rate or the suppressed temperature increase flow rate, it is possible to realize the oxidation removal of the collected PM while suitably suppressing the excessive temperature increase of the filter 4. In the above example, the temperature of the three-way catalyst 3 is considered in S201 and the deterioration state is considered in S203. However, in order to protect the three-way catalyst 3 from thermal deterioration with a more margin, the three-way catalyst is considered. Without performing the determination of S201 regarding the temperature of 3, the determination of S203 may be performed together with the processing of S202, and then the processing after S204 described above may be performed.

<変形例2>
上記実施例に係る内燃機関1の排気系には、三元触媒3とフィルタ4とを個別の構成としたが、その態様に代えて、フィルタの基材に三元触媒を担持し、両者を一体に構成してもよい。この態様では、一体に構成されたフィルタの温度が、その担持された三元触媒の熱劣化と、フィルタの異常状態に関連することを踏まえて、図2、図4に示すフィルタ再生制御を行うのが好ましい。
<Modification 2>
In the exhaust system of the internal combustion engine 1 according to the above embodiment, the three-way catalyst 3 and the filter 4 are configured separately. However, instead of the mode, the three-way catalyst is supported on the filter base material, You may comprise integrally. In this aspect, the filter regeneration control shown in FIGS. 2 and 4 is performed based on the fact that the temperature of the integrally configured filter is related to the thermal deterioration of the supported three-way catalyst and the abnormal state of the filter. Is preferred.

上記実施例で示した昇温抑制流量でのフューエルカット処理を行っている場合、スロットルバルブ6の開度A2は、通常空気流量でのフューエルカット処理を行う場合の開度A1よりも閉じ側の開度とされる。この結果、昇温抑制流量でのフューエルカット処理時の内燃機関1の気筒内圧力は、通常空気流量でのフューエルカット処理時の気筒内圧力よりも負圧の状態となる。そのため、気筒内壁面や、気筒とピストンの間のクリアランス等から、内壁面上やオイルパンに存在する潤滑オイルの蒸発が促進され、その消費量が増大していくことになる。そこで、本実施例では、フィルタ再生制御でのフューエルカット処理の実行による潤滑オイルの消費抑制を図るためのオイル消費抑制制御について、図5に基づいて説明する。当該オイル消費抑制制御は、ECU10に格納された制御プログラムにより、所定間隔で繰り返し実行される。   When the fuel cut processing at the temperature rise suppression flow shown in the above embodiment is performed, the opening A2 of the throttle valve 6 is closer to the closing side than the opening A1 when the fuel cut processing at the normal air flow is performed. It is an opening. As a result, the pressure in the cylinder of the internal combustion engine 1 at the time of the fuel cut process at the temperature rise suppression flow rate is in a negative pressure state than the pressure in the cylinder at the time of the fuel cut process at the normal air flow rate. For this reason, evaporation of the lubricating oil existing on the inner wall surface and in the oil pan is promoted from the inner wall surface of the cylinder, the clearance between the cylinder and the piston, and the consumption thereof increases. In this embodiment, therefore, oil consumption suppression control for suppressing consumption of lubricating oil by executing fuel cut processing in filter regeneration control will be described with reference to FIG. The oil consumption suppression control is repeatedly executed at predetermined intervals by a control program stored in the ECU 10.

先ず、S301では、昇温抑制流量でのフューエルカット処理が実行中であるか否かが判定される。ここで否定判定されると本制御は終了され、一方で肯定判定されるとS30
2へ進む。S302では、上述した昇温抑制流量でのフューエルカット処理により促進された潤滑オイルの消費量である、追加オイル消費量の積算値S1が推定される。具体的には、上記の通り追加オイル消費量は、気筒内の圧力(負圧)に起因するものであるから、この気筒内の負圧の積算値を追加オイル消費量の積算値S1に関連付けることで、当該積算値S1を算出することができる。なお、気筒内の圧力は、図示しない筒内圧センサによって検出することが可能である。また、別法として、スロットルバルブ6の下流側の吸気通路5内の負圧(圧力センサ16によって検出される負圧)の積算値を追加オイル消費量の積算値S1に関連付けることで、当該積算値S1を算出してもよい。これは、内燃機関1において吸気弁における空気流速が音速を超えない限りでは、気筒内負圧と当該吸気通路5内の負圧とは、流体力学上の相関を見出すことができることによる。S302の処理が終了すると、S303へ進む。
First, in S301, it is determined whether or not the fuel cut process at the temperature rise suppression flow rate is being executed. If a negative determination is made here, the present control is terminated, whereas if a positive determination is made, S30.
Go to step 2. In S302, the integrated value S1 of the additional oil consumption amount, which is the consumption amount of the lubricating oil promoted by the fuel cut process at the above-described temperature rise suppression flow rate, is estimated. Specifically, as described above, the additional oil consumption amount is caused by the pressure (negative pressure) in the cylinder. Therefore, the integrated value of the negative pressure in the cylinder is associated with the integrated value S1 of the additional oil consumption amount. Thus, the integrated value S1 can be calculated. The pressure in the cylinder can be detected by a cylinder pressure sensor (not shown). Alternatively, the integrated value of the negative pressure (negative pressure detected by the pressure sensor 16) in the intake passage 5 on the downstream side of the throttle valve 6 is related to the integrated value S1 of the additional oil consumption, whereby the integrated value is obtained. The value S1 may be calculated. This is because, in the internal combustion engine 1, as long as the air flow velocity at the intake valve does not exceed the speed of sound, the in-cylinder negative pressure and the negative pressure in the intake passage 5 can find a hydrodynamic correlation. When the process of S302 ends, the process proceeds to S303.

S303では、S302で推定された追加オイル消費量の積算量S1が、基準となる所定の消費量S0以上であるか否かが判定される。当該所定の消費量S0は、促進された潤滑オイルの消費を継続する期間(本発明に係る所定オイル消費期間に相当する)、換言すれば昇温抑制流量でのフューエルカット処理を継続する期間を決定するための閾値である。したがって、S303で肯定判定されるとS304へ進み、否定判定されるとS302以降の処理が繰り返される。   In S303, it is determined whether or not the integrated amount S1 of the additional oil consumption estimated in S302 is equal to or greater than a predetermined consumption S0 serving as a reference. The predetermined consumption amount S0 is a period for continuing the accelerated consumption of the lubricating oil (corresponding to the predetermined oil consumption period according to the present invention), in other words, a period for continuing the fuel cut process at the temperature rise suppression flow rate. This is a threshold value for determination. Therefore, if an affirmative determination is made in S303, the process proceeds to S304, and if a negative determination is made, the processes in and after S302 are repeated.

次にS304では、この時点で仮に、空気流量が昇温抑制流量より大きい通常空気流量でのフューエルカット処理が行われ、その通常空気流量での空気がフィルタ4に流れ込んだと仮定した場合に、フィルタ4の温度が到達し得る温度が推定される。当該推定については、上述したS103での処理と本質的には同じであるが、この時点におけるフィルタ4の温度と、それまでに行われてきた昇温抑制流量でのフューエルカット処理により酸化除去されたPM量を考慮した、この時点においてフィルタ4に残っているPM量とを利用して上記推定が行われる。S304の処理が終了するとS305へ進む。S305では、上記S104と同じように、S304で推定されたフィルタ4の到達温度が異常判定温度T0以上であるか否かが判定される。   Next, in S304, if it is assumed that at this point in time, fuel cut processing is performed at a normal air flow rate that is greater than the temperature rise suppression flow rate, and air at the normal air flow rate flows into the filter 4, The temperature that the temperature of the filter 4 can reach is estimated. The estimation is essentially the same as the process in S103 described above, but is oxidized and removed by the fuel cut process at the temperature of the filter 4 at this time point and the temperature increase suppression flow rate that has been performed so far. The above estimation is performed using the PM amount remaining in the filter 4 at this time point in consideration of the PM amount. When the process of S304 ends, the process proceeds to S305. In S305, as in S104, it is determined whether or not the temperature reached by the filter 4 estimated in S304 is equal to or higher than the abnormality determination temperature T0.

そして、S305で肯定判定されると、この時点で通常空気流量でのフューエルカット処理を行うとフィルタ4が過昇温することを意味する。そこで、この場合は、処理はS307へ進み、実行中のフューエルカット処理そのものを停止し、本制御を終了する。一方で、S305で否定判定されると、この時点で通常空気流量でのフューエルカット処理を行ってもフィルタ4が過昇温しないことを意味する。そこで、この場合は、処理はS306へ進み、それまで行われている昇温抑制流量でのフューエルカット処理を強制的に終了させ、通常空気流量でのフューエルカット処理を行うようにする。   If the determination in step S305 is affirmative, it means that if the fuel cut process at the normal air flow rate is performed at this time, the filter 4 is overheated. Therefore, in this case, the process proceeds to S307, the fuel cut process itself being executed is stopped, and this control is terminated. On the other hand, if a negative determination is made in S305, it means that the temperature of the filter 4 does not excessively increase even if the fuel cut processing at the normal air flow rate is performed at this time. Therefore, in this case, the process proceeds to S306, where the fuel cut process at the temperature rise suppression flow rate that has been performed is forcibly terminated, and the fuel cut process at the normal air flow rate is performed.

ここで、図5に示すオイル消費抑制制御が実行されたときの(a)内燃機関1でのアクセル状態、(b)内燃機関1が搭載された車両速度、(c)フューエルカット処理要求、(d)スロットルバルブ6の開度、(e)フィルタ4の温度、(f)吸気通路5内の負圧の積算値の各推移を示している。なお図6に示す状況では、時刻t1のときにアクセル状態がアクセルオフ状態になり(図6(a)を参照)、車両(内燃機関1)が減速状態となる。このとき図2に示すフィルタ再生制御が行われ、処理がS106又はS107へと進むと、フューエルカット処理の要求フラグがオン状態となり(図6(c)を参照)、フューエルカット処理が行われることになる。なお、図6(d)には、昇温抑制流量でのフューエルカット処理が行われている場合の、スロットルバルブ6の開度の推移が示されている。   Here, (a) the accelerator state in the internal combustion engine 1 when the oil consumption suppression control shown in FIG. 5 is executed, (b) the vehicle speed at which the internal combustion engine 1 is mounted, (c) the fuel cut processing request, ( d) Changes in the opening of the throttle valve 6, (e) the temperature of the filter 4, and (f) the integrated value of the negative pressure in the intake passage 5 are shown. In the situation shown in FIG. 6, the accelerator state becomes the accelerator-off state at time t <b> 1 (see FIG. 6A), and the vehicle (internal combustion engine 1) enters the deceleration state. At this time, when the filter regeneration control shown in FIG. 2 is performed and the process proceeds to S106 or S107, the fuel cut request flag is turned on (see FIG. 6C), and the fuel cut process is performed. become. FIG. 6D shows a change in the opening degree of the throttle valve 6 when the fuel cut process is performed at the temperature increase suppression flow rate.

ここで、図6(f)に示すように吸気通路5内の負圧の積算値が基準となる積算値SP0(基準となる所定の消費量S0に対応する負圧積算値)に到達した時刻t3において、
上記オイル消費抑制制御のS306の処理が行われたとする。すると、この時点でスロットルバルブ6の開度がA2からA1に切り替えられることで、それまで行われていた昇温抑制流量でのフューエルカット処理から通常空気流量でのフューエルカット処理に切り替えられることになる。ただし、図6(e)に示すように、時刻t3以降に通常空気流量でのフューエルカット処理が行われても、フィルタ4の温度は異常判定温度T0にまで到達することは回避される。
Here, as shown in FIG. 6F, the time at which the integrated value of the negative pressure in the intake passage 5 reaches the reference integrated value SP0 (the negative pressure integrated value corresponding to the predetermined predetermined consumption S0). At t3
It is assumed that the process of S306 of the oil consumption suppression control is performed. Then, at this time, the opening degree of the throttle valve 6 is switched from A2 to A1, so that the fuel cut process at the temperature increase suppression flow rate that has been performed so far can be switched to the fuel cut process at the normal air flow rate. Become. However, as shown in FIG. 6 (e), the temperature of the filter 4 is prevented from reaching the abnormality determination temperature T0 even if the fuel cut processing at the normal air flow rate is performed after time t3.

このように本オイル消費抑制制御によれば、昇温抑制流量でのフューエルカット処理が一定の期間に限られることで、当該処理に起因する潤滑オイルの消費増大を一定の範囲に収めることができ、捕集PMの酸化除去と、潤滑オイルの消費量抑制とのバランスを図ることができる。また、上記のように強制的に昇温抑制流量でのフューエルカット処理から通常空気流量でのフューエルカット処理に切り替えた場合でも、S304、S305の処理を行うことで、フィルタ4が過昇温することを的確に回避することができる。   Thus, according to the present oil consumption suppression control, the fuel cut process at the temperature increase suppression flow rate is limited to a certain period, so that the increase in the consumption of lubricating oil resulting from the process can be kept within a certain range. It is possible to achieve a balance between the oxidation removal of the collected PM and the suppression of the consumption amount of the lubricating oil. Further, even when the fuel cut process at the temperature increase suppression flow rate is forcibly switched to the fuel cut process at the normal air flow rate as described above, the process of S304 and S305 causes the filter 4 to overheat. This can be avoided accurately.

なお、上記実施例では、S303で肯定判定されるとS304〜S307の処理が行われるが、それに代えてS303で肯定判定されると、直接それまで行われてきたフューエルカット処理を停止してもよい。この場合、昇温抑制流量でのフューエルカット処理が行われている場合、フューエルカット処理自体は追加オイル消費量の積算値S1が所定の消費量S0に到達するまでの期間のみ実行されることになる。   In the above embodiment, if an affirmative determination is made in S303, the processing of S304 to S307 is performed. Instead, if an affirmative determination is made in S303, even if the fuel cut processing that has been performed directly is stopped. Good. In this case, when the fuel cut process is performed at the temperature rise suppression flow rate, the fuel cut process itself is executed only during the period until the integrated value S1 of the additional oil consumption reaches the predetermined consumption S0. Become.

1 内燃機関
2 排気通路
3 三元触媒
4 フィルタ
5 吸気通路
6 スロットルバルブ
7 燃料噴射弁
8 点火プラグ
10 ECU
11 空燃比センサ
12 温度センサ
13 温度センサ
14 差圧センサ
15 エアフローメータ
16 圧力センサ
17 アクセル開度センサ
18 クランクポジションセンサ
1 Internal combustion engine 2 Exhaust passage 3 Three way catalyst 4 Filter 5 Intake passage 6 Throttle valve 7 Fuel injection valve 8 Spark plug 10 ECU
11 Air-fuel ratio sensor 12 Temperature sensor 13 Temperature sensor 14 Differential pressure sensor 15 Air flow meter 16 Pressure sensor 17 Accelerator opening sensor 18 Crank position sensor

Claims (8)

内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、
前記内燃機関での燃料噴射を停止するとともに該内燃機関の吸気通路に設けられたスロットルバルブの開度を所定の開度に設定することで、前記フィルタに燃焼ガスを含まない空気を通常空気流量で送り込み、該フィルタに捕集された粒子状物質を酸化除去するPM除去手段と、
前記通常空気流量での前記PM除去手段による粒子状物質の酸化除去が行われた場合に前記フィルタの温度が到達すると推定される推定到達温度が、該フィルタの異常状態と関連付けられた所定の異常判定温度を超えると判定されると、該PM除去手段による粒子状物質の酸化除去が行われる際に実際に該フィルタに流れ込む空気流量を、前記通常空気流量より少ない昇温抑制流量に低減する、流量制御手段と、
を備える、内燃機関の制御装置。
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
By stopping the fuel injection in the internal combustion engine and setting the opening degree of the throttle valve provided in the intake passage of the internal combustion engine to a predetermined opening degree, the air containing no combustion gas is supplied to the normal air flow rate. PM removal means for feeding in and removing particulate matter collected by the filter by oxidation,
When the particulate matter is oxidized and removed by the PM removal means at the normal air flow rate, the estimated reached temperature estimated to reach the temperature of the filter is a predetermined abnormality associated with the abnormal state of the filter. When it is determined that the determination temperature is exceeded, the air flow rate that actually flows into the filter when particulate matter is oxidized and removed by the PM removal unit is reduced to a temperature increase suppression flow rate that is less than the normal air flow rate. Flow rate control means;
An internal combustion engine control device comprising:
前記内燃機関から前記フィルタに至るまでの前記排気通路に配置された一又は複数の排気浄化触媒のうち、該内燃機関に最も近い所定の排気浄化触媒の熱劣化の程度を取得する熱劣化程度取得手段を、更に備え、
前記流量制御手段は、前記熱劣化程度取得手段によって取得された前記所定の排気浄化触媒の熱劣化程度が所定の熱劣化程度以下であるときに、前記フィルタに捕集された粒子状物質の酸化除去のための所定条件が成立し、且つ前記推定到達温度が前記所定の異常判定温度を超えると判定されると、前記フィルタへの空気流量を前記昇温抑制流量に低減する、
請求項1に記載の内燃機関の制御装置。
Obtaining the degree of thermal deterioration for obtaining the degree of thermal degradation of a predetermined exhaust purification catalyst closest to the internal combustion engine among one or a plurality of exhaust purification catalysts arranged in the exhaust passage from the internal combustion engine to the filter Means further comprising
The flow rate control means oxidizes the particulate matter collected in the filter when the degree of thermal deterioration of the predetermined exhaust purification catalyst acquired by the degree of thermal deterioration acquisition means is equal to or less than a predetermined degree of thermal deterioration. When it is determined that a predetermined condition for removal is satisfied and the estimated reached temperature exceeds the predetermined abnormality determination temperature, the air flow rate to the filter is reduced to the temperature increase suppression flow rate.
The control apparatus for an internal combustion engine according to claim 1.
前記熱劣化程度取得手段は、前記所定の排気浄化触媒の温度が、酸素供給により該所定の排気浄化触媒に熱劣化が生じると想定される所定の触媒温度より高い場合に、該所定の排気浄化触媒の熱劣化の程度を取得する、
請求項2に記載の内燃機関の制御装置。
The thermal deterioration degree acquisition means is configured to obtain the predetermined exhaust purification catalyst when the temperature of the predetermined exhaust purification catalyst is higher than a predetermined catalyst temperature that is assumed to cause thermal deterioration in the predetermined exhaust purification catalyst due to oxygen supply. Get the degree of thermal degradation of the catalyst,
The control apparatus for an internal combustion engine according to claim 2.
前記フィルタは、そのフィルタ基材に前記所定の排気浄化触媒が担持されて、該フィルタによる粒子状物質の捕集能力と該所定の排気浄化触媒による排気浄化能力が発揮されるように形成されたフィルタである、
請求項2又は請求項3に記載の内燃機関の制御装置。
The filter is formed such that the predetermined exhaust purification catalyst is supported on the filter base material, and the particulate matter capturing ability of the filter and the exhaust purification ability of the predetermined exhaust purification catalyst are exhibited. Is a filter,
The control device for an internal combustion engine according to claim 2 or claim 3.
前記昇温抑制流量は、前記粒子状物質の酸化除去が実行された際の該実行開始からの前記フィルタの昇温量が、該実行開始時の該フィルタの温度と前記所定の異常判定温度との差分以下となるように設定される、
請求項1から請求項4の何れか1項に記載の内燃機関の制御装置。
The temperature increase suppression flow rate is determined by the temperature increase amount of the filter from the start of execution when the particulate matter is oxidized and removed, and the temperature of the filter at the start of execution and the predetermined abnormality determination temperature. Set to be less than or equal to
The control device for an internal combustion engine according to any one of claims 1 to 4.
前記昇温抑制流量に対応する前記スロットルバルブの開度は、前記通常空気流量に対応する該スロットルバルブの開度より閉じ側の開度であって、
前記流量制御手段は、前記スロットルバルブの開度を前記昇温抑制流量に対応する開度としてから、該スロットルバルブの開度に起因して前記内燃機関の気筒内で追加的に消費される該内燃機関の潤滑オイル量が、所定の消費量に到達するまでの所定オイル消費期間において、該昇温抑制流量での粒子状物質の酸化除去を実行する、
請求項1から請求項5の何れか1項に記載の内燃機関の制御装置。
The opening degree of the throttle valve corresponding to the temperature increase suppression flow rate is an opening degree on the closing side from the opening degree of the throttle valve corresponding to the normal air flow rate,
The flow rate control means sets the opening degree of the throttle valve to an opening degree corresponding to the temperature increase suppression flow rate, and is additionally consumed in the cylinder of the internal combustion engine due to the opening degree of the throttle valve. In a predetermined oil consumption period until the lubricating oil amount of the internal combustion engine reaches a predetermined consumption amount, the particulate matter is oxidized and removed at the temperature increase suppression flow rate.
The control device for an internal combustion engine according to any one of claims 1 to 5.
前記流量制御手段による前記昇温抑制流量での粒子状物質の酸化除去が実行されているときの、前記内燃機関の気筒内圧力又は前記スロットルバルブの下流側の前記吸気通路内圧力に基づいて、前記追加的に消費される該内燃機関の潤滑オイル量を推定するオイル消
費量推定手段を、更に備える、
請求項6に記載の内燃機関の制御装置。
Based on the pressure in the cylinder of the internal combustion engine or the pressure in the intake passage on the downstream side of the throttle valve when the particulate matter is oxidized and removed at the temperature increase suppression flow rate by the flow rate control means, Oil consumption estimation means for estimating the amount of lubricating oil of the internal combustion engine that is additionally consumed is further provided.
The control apparatus for an internal combustion engine according to claim 6.
前記流量制御手段は、前記フィルタに捕集された粒子状物質の酸化除去が完了していない場合でも、前記所定オイル消費期間が経過すると、前記粒子状物質の酸化除去の際の前記フィルタへの空気流量を前記昇温抑制流量から前記通常空気流量に強制的に変更し、
前記内燃機関の制御装置は、
前記通常空気流量への強制的な変更時において、前記通常空気流量での前記PM除去手段による粒子状物質の酸化除去が行われた場合に前記フィルタの温度が到達すると推定される強制変更時推定到達温度が、前記所定の異常判定温度を超えると判定されると、該通常空気流量での該PM除去手段による粒子状物質の酸化除去を停止するPM除去停止手段を、更に備える、
請求項6又は請求項7に記載の内燃機関の制御装置。
Even when the particulate matter collected by the filter is not completely oxidized and removed, the flow rate control means can be applied to the filter when the particulate matter is removed by oxidation after the predetermined oil consumption period has elapsed. Forcibly changing the air flow rate from the temperature rise suppression flow rate to the normal air flow rate,
The control device for the internal combustion engine includes:
At the time of forced change to the normal air flow rate, when the particulate matter is oxidized and removed by the PM removal means at the normal air flow rate, it is estimated that the temperature of the filter is reached. When it is determined that the ultimate temperature exceeds the predetermined abnormality determination temperature, PM removal stopping means for stopping oxidation removal of particulate matter by the PM removal means at the normal air flow rate is further provided.
The control apparatus for an internal combustion engine according to claim 6 or 7.
JP2014023742A 2014-02-10 2014-02-10 Control device for internal combustion engine Pending JP2015151869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014023742A JP2015151869A (en) 2014-02-10 2014-02-10 Control device for internal combustion engine
PCT/JP2015/000470 WO2015118856A1 (en) 2014-02-10 2015-02-03 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023742A JP2015151869A (en) 2014-02-10 2014-02-10 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015151869A true JP2015151869A (en) 2015-08-24

Family

ID=52589728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023742A Pending JP2015151869A (en) 2014-02-10 2014-02-10 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2015151869A (en)
WO (1) WO2015118856A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035498A1 (en) * 2014-09-05 2016-03-10 日立オートモティブシステムズ株式会社 Engine control apparatus
JP2016070084A (en) * 2014-09-26 2016-05-09 トヨタ自動車株式会社 Internal combustion engine control unit
JP2021099049A (en) * 2019-12-20 2021-07-01 株式会社デンソーテン On-vehicle device and filter regeneration control method
JP7389726B2 (en) 2020-08-31 2023-11-30 株式会社Subaru Regeneration control device and regeneration control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070728B1 (en) * 2017-09-06 2019-08-30 Psa Automobiles Sa METHOD FOR PROTECTING A PARTICLE FILTER IN AN EXHAUST LINE DURING REGENERATION
JP2021092205A (en) * 2019-12-11 2021-06-17 トヨタ自動車株式会社 Exhaust emission control system of internal combustion engine
CN112901324A (en) * 2021-01-22 2021-06-04 上海星融汽车科技有限公司 Particle catcher carrier high-temperature burning detection method, system and diagnosis equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852351B2 (en) 2002-03-13 2006-11-29 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7137246B2 (en) * 2002-04-24 2006-11-21 Ford Global Technologies, Llc Control for diesel engine with particulate filter
JP2005155500A (en) * 2003-11-26 2005-06-16 Toyota Motor Corp Exhaust gas control apparatus for internal combustion engine
JP2006029239A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Exhaust emission control filter overheat prevention device
JP4155256B2 (en) * 2004-09-30 2008-09-24 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US8407988B2 (en) * 2009-09-29 2013-04-02 Ford Global Technologies, Llc Particulate filter regeneration in an engine coupled to an energy conversion device
US9097167B2 (en) * 2011-12-07 2015-08-04 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035498A1 (en) * 2014-09-05 2016-03-10 日立オートモティブシステムズ株式会社 Engine control apparatus
JP2016056696A (en) * 2014-09-05 2016-04-21 日立オートモティブシステムズ株式会社 Engine control device
US10215077B2 (en) 2014-09-05 2019-02-26 Hitachi Automotive Systems, Ltd Engine control apparatus
JP2016070084A (en) * 2014-09-26 2016-05-09 トヨタ自動車株式会社 Internal combustion engine control unit
JP2021099049A (en) * 2019-12-20 2021-07-01 株式会社デンソーテン On-vehicle device and filter regeneration control method
JP7389726B2 (en) 2020-08-31 2023-11-30 株式会社Subaru Regeneration control device and regeneration control method

Also Published As

Publication number Publication date
WO2015118856A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP6036855B2 (en) Exhaust gas purification device for internal combustion engine
JP2015151869A (en) Control device for internal combustion engine
JP4075755B2 (en) Method for suppressing filter overheating of internal combustion engine
JP2015010470A (en) Exhaust emission control device for internal combustion engine
JP2009074426A (en) Controller of internal combustion engine
JP2004124855A (en) Exhaust emission control device for internal combustion engine
JP5999264B2 (en) Control method for internal combustion engine
JP2018112158A (en) Exhaust emission control device for internal combustion engine
JP4591165B2 (en) Exhaust gas purification system for internal combustion engine
JP2015031166A (en) Exhaust emission control device for internal combustion engine
JP2007154732A (en) Control system of internal combustion engine
JP2006083726A (en) Exhaust emission control system for internal combustion engine
JP2005120986A (en) Exhaust emission control system for internal combustion engine
JP4033189B2 (en) Exhaust gas purification device for internal combustion engine
JP4155182B2 (en) Exhaust gas purification device for internal combustion engine
JP5142050B2 (en) Exhaust gas purification device for internal combustion engine
JP2008069737A (en) Exhaust emission control system for internal combustion engine
JP2006063801A (en) Exhaust emission control device for internal combustion engine
JP2005188476A (en) Exhaust emission control device for internal combustion engine
JP2006097658A (en) Exhaust emission control system for internal combustion engine
JP7334643B2 (en) engine system
JP4650245B2 (en) Exhaust gas purification system for internal combustion engine
JP2012233463A (en) Device for detecting defect in exhaust purificastion system
JP2014134160A (en) Internal combustion engine exhaust gas purification device
JP2008014165A (en) Exhaust emission control system for internal combustion engine