JP2015148012A - Method for concentrating rare earth element from rare earth element-containing product - Google Patents

Method for concentrating rare earth element from rare earth element-containing product Download PDF

Info

Publication number
JP2015148012A
JP2015148012A JP2015022378A JP2015022378A JP2015148012A JP 2015148012 A JP2015148012 A JP 2015148012A JP 2015022378 A JP2015022378 A JP 2015022378A JP 2015022378 A JP2015022378 A JP 2015022378A JP 2015148012 A JP2015148012 A JP 2015148012A
Authority
JP
Japan
Prior art keywords
rare earth
phase
earth element
enriched
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015022378A
Other languages
Japanese (ja)
Other versions
JP5977385B2 (en
Inventor
山口 勉功
Benko Yamaguchi
勉功 山口
英弘 関本
Hidehiro Sekimoto
英弘 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Iwate University
Original Assignee
JX Nippon Mining and Metals Corp
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp, Iwate University filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015022378A priority Critical patent/JP5977385B2/en
Publication of JP2015148012A publication Critical patent/JP2015148012A/en
Application granted granted Critical
Publication of JP5977385B2 publication Critical patent/JP5977385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for concentrating rare earth elements from a rare earth element-containing product at high concentration ratio.SOLUTION: There is provided a method for concentrating rare earth elements from a rare earth element-containing product including a process 1 for heating and melting the rare earth element-containing product in a co-presence of BOto form a BOphase and a rare earth element rich phase more than the BOphase under the BOphase.

Description

本発明は希土類元素含有物質から希土類元素を濃縮する方法に関する。とりわけ本発明は希土類磁石から希土類元素を濃縮する方法に関する。   The present invention relates to a method for concentrating rare earth elements from a rare earth element-containing substance. In particular, the present invention relates to a method for concentrating rare earth elements from rare earth magnets.

希土類元素は永久磁石、水素吸蔵合金、固体レーザー、ディスプレイ用蛍光体、蛍光灯、セラミックコンデンサ、センサー、燃料電池、着色剤等に使用されている。希土類元素はパソコン、スマートフォン及び電気自動車などを取り扱うハイテク産業に欠かせない物質であり、昨今の電子機器の高度化に伴ってその需要が高まっているが、希少元素であるために産出量が少なく、価格も高騰している。そのため、このようなハイテク機器から希土類を回収し、リサイクルするための技術開発が望まれている。   Rare earth elements are used in permanent magnets, hydrogen storage alloys, solid lasers, phosphors for displays, fluorescent lamps, ceramic capacitors, sensors, fuel cells, colorants, and the like. Rare earth elements are indispensable materials for high-tech industries that handle personal computers, smartphones, electric vehicles, etc., and their demand is increasing with the recent advancement of electronic devices, but they are rare elements, so their output is low. The price is also rising. Therefore, it is desired to develop a technology for collecting and recycling rare earths from such high-tech equipment.

従来の希土類元素の回収方法は、湿式法と乾式法に分けることができる。湿式法では希土類を使用した機器を破砕してスクラップとし、これを酸により溶解し、固液分離や溶媒抽出によって各希土類元素に分離する方法が一般的である。湿式法を開示した文献としては、特許文献1〜3、非特許文献1等が挙げられる。また、乾式法としては、希土類含有物を還元後、CaF2等のフッ化物フラックスと共に加熱溶融し、フラックス中に酸化物や炭素などの不純物を抽出する方法を開示した特許文献4〜6等が挙げられる。非特許文献2には、Nd−Fe−B系磁石から酸化ホウ素を用いたガラススラグ法によってNdが抽出され、酸化ホウ素を主成分とするNd含有ガラススラグ相とFe−B合金とに分離されることが記載されている。 Conventional methods for recovering rare earth elements can be divided into wet methods and dry methods. In the wet method, a method is generally used in which equipment using rare earth is crushed to scrap, dissolved with acid, and separated into each rare earth element by solid-liquid separation or solvent extraction. References disclosing the wet method include Patent Documents 1 to 3, Non-Patent Document 1, and the like. Also, as a dry method, Patent Documents 4 to 6 and the like that disclose a method of reducing a rare earth-containing material and heating and melting it together with a fluoride flux such as CaF 2 to extract impurities such as oxide and carbon in the flux are disclosed. Can be mentioned. In Non-Patent Document 2, Nd is extracted from an Nd-Fe-B magnet by a glass slag method using boron oxide, and separated into an Nd-containing glass slag phase mainly composed of boron oxide and an Fe-B alloy. It is described that.

特開昭62−83433号公報JP-A-62-83433 特公平5−14777号公報Japanese Patent Publication No. 5-14777 特開平5−287405号公報JP-A-5-287405 特開2001−335815号公報JP 2001-335815 A 特開2002−12921号公報JP 2002-12921 A 米国特許第5,174,811号明細書US Pat. No. 5,174,811

町田憲一、“金属”、Vol.79、アグネ技術センター、2009年、pp.29−35Kenichi Machida, “Metal”, Vol. 79, Agne Technical Center, 2009, pp. 29-35 T.Saito他、“ガラススラグ法による廃Nd-Fe-B合金からのNd抽出(The extraction of Nd from waste Nd-Fe-B alloys by the glass slag method)”、ジャーナルオブアロイズアンドコンパウンズ(Journal of ALLOYS AND COMPOUNDS)、エルビア(Elsevier), 353(2003) pp.189-193T. Saito et al., “The extraction of Nd from waste Nd—Fe—B alloys by the glass slag method”, Journal of Alloys and Compounds ( Journal of ALLOYS AND COMPOUNDS), Elsevier, 353 (2003) pp.189-193

湿式法では酸や沈澱剤を大量に使用するという問題や浸出に時間を要するという問題があることから乾式法が有望であるが、上述した方法以外にも有益な方法や改善策が存在すると考えられる。希土類元素の回収技術は未だ発展途上にあり、多くの選択肢を提供しておくことが今後の技術開発の可能性を広げる観点から望ましいであろう。   In the wet method, the dry method is promising because of the problem of using a large amount of acid and a precipitant and the time required for leaching, but there are thought to be useful methods and improvements other than those described above. It is done. Rare earth element recovery technology is still in the process of development, and it is desirable to provide many options from the viewpoint of expanding the possibilities of future technology development.

ここで、非特許文献2に記載されている酸化ホウ素を使用する方法は興味深いが、酸化ホウ素のガラススラグ相にNdを抽出することはできても、Ndが十分に濃縮されているとはいえない。また、非特許文献2は鉄中からの希土類の除去を検討したもので、希土類の回収を前提としていない。本発明は上記事情に鑑みてなされたものであり、希土類元素含有物から希土類元素をより高い濃縮率で濃縮する方法を提供することを課題の一つとする。   Here, although the method using boron oxide described in Non-Patent Document 2 is interesting, although Nd can be extracted into the glass slag phase of boron oxide, it can be said that Nd is sufficiently concentrated. Absent. Non-Patent Document 2 examines the removal of rare earth from iron and does not assume the recovery of rare earth. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for concentrating rare earth elements from a rare earth element-containing material at a higher concentration rate.

本発明者は上記課題を解決するために鋭意検討したところ、以下の知見を得た。希土類元素含有物質を酸化ホウ素(B23)フラックスの共存下で加熱溶融させると、希土類元素とB23を主体とした二元系融体が出現する。この二元系融体は所定条件下では更にB23相と、その下のB23相よりも希土類元素が富化された相にきれいに二液分離する。更に、希土類元素含有物質中にFeが含まれている場合、Fe相が別途生成する。そのため、この現象を利用すれば、例えば希土類磁石をB23相と希土類元素が富化したRexy−B23相とFe相に分離することができる。加熱溶融を炭素等の融点降下剤の共存下で行えば分離性は更に良くなる。この点、非特許文献2ではB23を用いているが、上述した二液相分離を利用していない点で大きく異なる。 The present inventor has made extensive studies to solve the above problems, and has obtained the following knowledge. When a rare earth element-containing substance is heated and melted in the presence of boron oxide (B 2 O 3 ) flux, a binary melt mainly composed of rare earth elements and B 2 O 3 appears. The binary melts further B 2 and O 3 phase, rare earth elements than B 2 O 3 phase below it cleanly two-liquid separated phase enriched in certain conditions. Furthermore, when the rare earth element-containing material contains Fe, an Fe phase is separately generated. Therefore, by utilizing this phenomenon, it is possible, for example a rare earth magnet B 2 O 3 phase and a rare earth element is separated into Re x O y -B 2 O 3 phase and Fe phase enriched. Separation is further improved by heating and melting in the presence of a melting point depressant such as carbon. In this respect, B 2 O 3 is used in Non-Patent Document 2, but is greatly different in that the two-liquid phase separation described above is not used.

本発明は上記知見を基礎として完成したものであり、一側面において、希土類元素含有物質をB23の共存下で加熱溶融し、B23相と、B23相よりも下方にB23相よりも希土類元素が富化された相とを形成する工程1を含む希土類元素含有物質からの希土類元素濃縮方法である。 The present invention has been completed on the basis of the above findings, in one aspect, by heating and melting a rare earth element-containing material in the presence of B 2 O 3, the lower and B 2 O 3 phase, than B 2 O 3 phase And a method of enriching a rare earth element from a rare earth element-containing material, comprising the step 1 of forming a phase enriched with a rare earth element rather than a B 2 O 3 phase.

本発明に係る希土類元素濃縮方法の一実施形態においては、工程1は、1150〜1600℃で10〜360分保持した後、冷却することを含む。   In one embodiment of the rare earth element enrichment method according to the present invention, step 1 includes holding at 1150 to 1600 ° C. for 10 to 360 minutes and then cooling.

本発明に係る希土類元素濃縮方法の別の一実施形態においては、希土類元素含有物質が鉄を含有し、工程1では前記希土類元素が富化された相の下方に又は当該相に包囲されるように、B23相及び前記希土類元素が富化された相の何れの相よりも鉄が富化された相を更に形成する。 In another embodiment of the rare earth element enrichment method according to the present invention, the rare earth element-containing material contains iron, and in step 1, the rare earth element-enriched phase is surrounded by or under the phase. In addition, an iron-enriched phase is further formed than any of the B 2 O 3 phase and the phase enriched with the rare earth element.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、工程1を融点降下剤の共存下で行う。   In still another embodiment of the rare earth element concentration method according to the present invention, step 1 is performed in the presence of a melting point depressant.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、融点降下剤が炭素である。   In still another embodiment of the rare earth element enrichment method according to the present invention, the melting point depressant is carbon.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、炭素の供給源がFe−C合金である。   In yet another embodiment of the rare earth element enrichment method according to the present invention, the carbon source is an Fe-C alloy.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、工程1を酸化剤の共存下で行う。   In still another embodiment of the rare earth element concentration method according to the present invention, step 1 is performed in the presence of an oxidizing agent.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、酸化剤が酸化鉄である。   In still another embodiment of the rare earth element enrichment method according to the present invention, the oxidizing agent is iron oxide.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、B23相中の希土類元素の総質量に対する前記希土類元素が富化された相中の希土類元素の総質量の比が10以上である。 In yet another embodiment of the rare earth element enrichment method according to the present invention, the ratio of the total mass of the rare earth element in the phase enriched with the rare earth element to the total mass of the rare earth element in the B 2 O 3 phase is 10 or more.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、希土類元素にNd、Dy及びPrから選択される少なくとも一種が含まれる。   In still another embodiment of the rare earth element enrichment method according to the present invention, the rare earth element includes at least one selected from Nd, Dy, and Pr.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、希土類元素含有物質は希土類磁石を原料とする。   In yet another embodiment of the rare earth element enrichment method according to the present invention, the rare earth element-containing material is made from a rare earth magnet.

本発明に係る希土類元素濃縮方法の更に別の一実施形態においては、希土類磁石がネオジム磁石である。   In still another embodiment of the rare earth element enrichment method according to the present invention, the rare earth magnet is a neodymium magnet.

本発明によれば、希土類元素が含まれる材料から希土類元素を高濃縮することができるようになる。そのため、本発明は例えば希土類磁石等の希土類元素を含有する使用済み製品から各成分を分離回収し、リサイクルするための要素技術として極めて有益である。   According to the present invention, a rare earth element can be highly concentrated from a material containing the rare earth element. Therefore, the present invention is extremely useful as an elemental technology for separating and recovering each component from a used product containing rare earth elements such as a rare earth magnet and recycling it.

本発明に係る方法によって加熱処理した後の試料(例1)の断面写真の例である。It is an example of the cross-sectional photograph of the sample (Example 1) after heat-processing by the method which concerns on this invention.

本発明に係る希土類元素含有物質からの希土類元素濃縮方法の一実施形態においては、希土類元素含有物質をB23の共存下で加熱溶融し、B23相と、B23相よりも下方にあってB23相よりも希土類元素が富化された相(以下、「希土類富化相」という。)とを形成する工程1を含む。 In one embodiment of the rare earth element concentration method of a rare earth element-containing substance according to the present invention, a rare earth element-containing material is heated and melted in the presence of B 2 O 3, and B 2 O 3 phase, B 2 O 3 phase And a phase 1 that is lower than the B 2 O 3 phase and is enriched in the rare earth element (hereinafter referred to as “rare earth enriched phase”).

(1.希土類元素含有物質)
希土類元素含有物質としては、希土類元素、すなわちSc(スカンジウム)、Y(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)の17元素の何れか1種以上を含有する物質であれば特に制限はない。典型的な実施形態においては、希土類元素含有物質にはNd、Pr、Sm及びDyから選択される少なくとも一種が含まれる。希土類元素含有物質は混合物、化合物、焼結物、合金、及びこれらの組み合わせなど種々の形態を取ることができる。
(1. Rare earth element-containing substances)
As the rare earth element-containing substance, rare earth elements, that is, Sc (scandium), Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium) , Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium) If it is a substance containing 1 or more types, there will be no restriction | limiting in particular. In a typical embodiment, the rare earth-containing material includes at least one selected from Nd, Pr, Sm and Dy. The rare earth-containing material can take various forms such as a mixture, a compound, a sintered product, an alloy, and a combination thereof.

本発明が処理対象とする希土類元素含有物質の典型例を挙げると、希土類元素は永久磁石、水素吸蔵合金、固体レーザー、ディスプレイ用蛍光体、蛍光灯、セラミックコンデンサ、センサー、燃料電池、着色剤等に使用されることから、これらの使用済み製品や、製品の製造過程で排出される端材などである。また、希土類元素含有物質は粉状や塊状を含め、何れの形状でも構わないので、加熱溶融前に予め粉砕する必要はない。従って、廃棄されたそのままの形態で処理することもできる。但し、磁石を処理するときは、安全性の観点から、加熱等の方法によって予め消磁しておくことが好ましい。   Typical examples of rare earth-containing materials to be treated by the present invention include rare earth elements such as permanent magnets, hydrogen storage alloys, solid lasers, phosphors for displays, fluorescent lamps, ceramic capacitors, sensors, fuel cells, colorants, etc. These are used products and scrap materials discharged in the manufacturing process of products. Moreover, since the rare earth element-containing substance may be in any shape including powder and lump, it is not necessary to pulverize it before heating and melting. Therefore, it can also be processed in the discarded form. However, when processing the magnet, it is preferable to demagnetize in advance by a method such as heating from the viewpoint of safety.

希土類元素を用いて作られる永久磁石は希土類磁石と呼ばれており、ネオジム磁石(例:Nd−Fe−B系)、サマリウムコバルト磁石(例:Sm−Co系)、プラセオジム磁石(例:Pr−Co系)、サマリウム鉄窒素磁石(例:Sm−Fe−N系)等が知られている。希土類磁石はモーター、自動車、MRI、ハードディスク、ヘッドホン等への利用が多い。希土類磁石には希土類元素の他に鉄が含まれていることが多い。湿式法を用いた場合には、鉄分を酸浸出するのに多くの時間及びコストを費やす必要があったが、後述するように、本発明に係る方法によれば、酸浸出することなく、鉄を相分離可能である。   Permanent magnets made from rare earth elements are called rare earth magnets, and are neodymium magnets (eg, Nd—Fe—B series), samarium cobalt magnets (eg: Sm—Co series), praseodymium magnets (eg, Pr— Co-based), samarium iron-nitrogen magnets (example: Sm-Fe-N-based), and the like are known. Rare earth magnets are often used in motors, automobiles, MRI, hard disks, headphones, and the like. Rare earth magnets often contain iron in addition to rare earth elements. When the wet method is used, it is necessary to spend a lot of time and cost for acid leaching of iron, but as described later, according to the method of the present invention, iron leaching can be performed without acid leaching. Can be phase separated.

また、製品によっては耐食性や電磁波シールド性を高めるために各種のめっきが施されているものもある。めっきは予め研磨等で除去した方が希土類富化相の純度を高める点で好ましいが、ニッケル、銅、クロム、リンなど主要なめっき成分は鉄と挙動を同じくするので、希土類富化相への混入は僅かである。そのため、経済性も考慮すれば、めっきを除去することなく加熱溶融に供する方が実用的である。   Some products are subjected to various types of plating in order to improve corrosion resistance and electromagnetic shielding properties. It is preferable to remove the plating in advance by polishing or the like in terms of increasing the purity of the rare earth-enriched phase, but the main plating components such as nickel, copper, chromium and phosphorus have the same behavior as iron, so There is little contamination. For this reason, it is more practical to heat and melt without removing the plating, considering the economy.

(2.希土類希土類富化相形成)
希土類元素含有物質をB23フラックスの共存下で加熱溶融すると、希土類元素とB23を主体とした二元系融体が出現する。加熱溶融温度を適正化することにより、この融体は比重差によって上部のB23相と、下部の希土類富化相とに二液分離する。二液分離に適した温度は1150〜1600℃であり、後述するFe相中への希土類元素の分配率を下げるためには、1400℃以下が好ましく、1250℃以下がより好ましい。加熱溶融温度が高すぎると二液分離しないために、B23と希土類元素の混在した相が生成するのみであり、希土類元素の十分な濃縮ができない。
(2. Formation of rare earth-rare earth-enriched phase)
When a rare earth element-containing substance is heated and melted in the presence of a B 2 O 3 flux, a binary melt mainly composed of a rare earth element and B 2 O 3 appears. By optimizing the heating and melting temperature, this melt is separated into two liquids by the specific gravity difference into an upper B 2 O 3 phase and a lower rare earth-enriched phase. The temperature suitable for the two-component separation is 1150 to 1600 ° C., and is preferably 1400 ° C. or less and more preferably 1250 ° C. or less in order to lower the distribution ratio of the rare earth element in the Fe phase described later. If the heating and melting temperature is too high, the two-component separation is not performed, so that only a phase in which B 2 O 3 and a rare earth element are mixed is generated, and the rare earth element cannot be sufficiently concentrated.

高い分離性を得る観点からは、上記温度範囲に10分以上保持し溶融状態にすることが好ましく、60分以上保持することがより好ましい。但し、保持時間が長すぎても理論的な分配比を超えた効果は生じないことから、経済性を考慮すれば、保持時間は360分以下とするのが好ましく、240分以下とするのがより好ましい。   From the viewpoint of obtaining high separability, it is preferable that the temperature range be maintained for 10 minutes or more to be in a molten state, and it is more preferable to hold for 60 minutes or more. However, since the effect exceeding the theoretical distribution ratio does not occur even if the holding time is too long, considering the economy, the holding time is preferably 360 minutes or less, and preferably 240 minutes or less. More preferred.

希土類富化相中の希土類元素はB23とRe23の液体が均一に溶け合った形態で存在していると考えられ、希土類富化相とB23富化相の二液相分離を発生させるために(これより低い値だと化合物固体と液相、または化合物固相のみとなる。)2モルの希土類元素に対して3モルのB23が必要である。そのため、B23は、希土類元素含有物質に含まれる希土類元素に対して少なくとも1.5倍のモル比で共存させることが望ましく、希土類富化相を生成させるためには1.5倍以上のB23が必要な理由から1.5倍以上のモル比で共存させることが好ましい。上限は特に設定されないが、余剰なB23の存在によりエネルギー消費が多くなるので、B23は希土類元素含有物質に含まれる希土類元素に対して5以下のモル比とするのが好ましく、4以下のモル比とするのがより好ましい。 The rare earth element in the rare earth-enriched phase is considered to exist in a form in which the B 2 O 3 and Re 2 O 3 liquids are uniformly dissolved, and the two liquids of the rare earth-enriched phase and the B 2 O 3 -enriched phase In order to cause phase separation (lower values would result in compound solid and liquid phase or compound solid phase only), 3 mol of B 2 O 3 is required for 2 mol of rare earth elements. Therefore, it is desirable that B 2 O 3 coexists with a rare earth element contained in the rare earth element-containing substance at a molar ratio of at least 1.5 times, and in order to generate a rare earth-enriched phase, it is 1.5 times or more. It is preferable to coexist at a molar ratio of 1.5 times or more because of the necessity of B 2 O 3 . The upper limit is not particularly set, but energy consumption increases due to the presence of excess B 2 O 3 , and therefore B 2 O 3 is preferably set to a molar ratio of 5 or less with respect to the rare earth element contained in the rare earth element-containing substance. More preferably, the molar ratio is 4 or less.

二液分離させた後、上記温度範囲よりも高い温度に加熱することは二液分離性を悪化させるので避けるべきであるが、当該温度範囲に保持する前にいったん当該温度範囲よりも高温に加熱しておくことは鉄など高融点物質中に混入している希土類元素を溶かし出す上で有効である。従って、加熱溶融時の温度変化としては、二液分離に好適な上記温度範囲に加熱し、その後冷却する場合と、均質な融体を形成するために二液分離に好適な上記温度範囲よりも高温(例えば1600℃以上)に加熱して、次いで、温度を低下させて二液分離に好適な上記温度範囲に保持し、その後冷却する場合がある。   Heating to a temperature higher than the above temperature range after two-component separation should be avoided as it degrades the two-component separation, but once heated to a temperature higher than the temperature range before maintaining the temperature range. It is effective to dissolve rare earth elements mixed in a high melting point material such as iron. Therefore, the temperature change at the time of heating and melting is higher than the above temperature range suitable for two-component separation in order to form a homogeneous melt by heating to the above temperature range suitable for two-component separation and then cooling. There is a case where heating is performed at a high temperature (for example, 1600 ° C. or higher), and then the temperature is decreased to maintain the above temperature range suitable for two-component separation, followed by cooling.

23相は典型的にはB23を80質量%以上、より典型的にはB23を90質量%以上含有する。希土類富化相はB23相よりも希土類元素が富化された相であり、典型的にはB23を30〜70質量%、より典型的にはB23を40〜60質量%、更により典型的にはB23を40〜50質量%含有する。本発明の一実施形態によれば、B23相中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比を10以上とすることができ、好ましくは20以上とすることができ、より好ましくは25以上とすることができ、例えば10〜40とすることができ、20〜30とすることもできる。 B 2 O 3 phase is typically B 2 O 3 of 80 wt% or more, more typically contain B 2 O 3 90 wt% or more. The rare earth-enriched phase is a phase enriched with rare earth elements rather than the B 2 O 3 phase, typically 30 to 70% by mass of B 2 O 3 , more typically 40 to 40% of B 2 O 3 . 60% by weight, still more typically 40-50% by weight of B 2 O 3 . According to one embodiment of the present invention, the ratio of the total mass of rare earth elements in the rare earth-enriched phase to the total mass of rare earth elements in the B 2 O 3 phase can be 10 or more, preferably 20 or more. More preferably 25 or more, for example, 10 to 40, or 20 to 30.

希土類元素含有物質が鉄を含有するときは、希土類富化相の下方に又は希土類富化相に包囲されるように、B23相及び希土類富化相の何れの相よりも鉄が富化された相(以下、「Fe相」という。)を更に形成することができる。一般に、Fe相は希土類富化相よりも比重が大きいので、下方に位置するが、鉄の量が少ないと鉄が丸まってしまい、希土類富化相に包囲されるように、Fe相が形成される。本発明の一実施形態によれば、B23相中のFeの総質量に対するFe相中のFeの総質量の比を100以上とすることができ、好ましくは500以上とすることができ、より好ましくは1000以上とすることができ、例えば100〜2000とすることができ、500〜1500とすることもできる。また、本発明の一実施形態によれば、希土類富化相中のFeの総質量に対するFe相中のFeの総質量の比を10以上とすることができ、好ましくは50以上とすることができ、より好ましくは100以上とすることができ、例えば10〜200とすることができ、50〜150とすることもできる。 When the rare earth-containing material contains iron, it is richer in iron than either the B 2 O 3 phase or the rare earth-enriched phase so that it is below the rare earth-enriched phase or surrounded by the rare earth-enriched phase. It is possible to further form a transformed phase (hereinafter referred to as “Fe phase”). Generally, the Fe phase has a higher specific gravity than the rare earth-enriched phase, so it is located below, but when the amount of iron is small, the iron is rounded, and the Fe phase is formed so that it is surrounded by the rare earth-enriched phase. The According to an embodiment of the present invention, the ratio of the total mass of Fe in the Fe phase to the total mass of Fe in the B 2 O 3 phase can be 100 or more, preferably 500 or more. More preferably, it can be 1000 or more, for example, it can be set to 100-2000, and can also be set to 500-1500. Further, according to one embodiment of the present invention, the ratio of the total mass of Fe in the Fe phase to the total mass of Fe in the rare earth-enriched phase can be 10 or more, preferably 50 or more. More preferably, it can be set to 100 or more, for example, can be set to 10-200, and can also be set to 50-150.

更に、本発明の一実施形態によれば、Fe相中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比を10以上とすることができ、好ましくは100以上とすることができ、より好ましくは1000以上とすることができ、例えば10〜3000とすることができ、1000〜3000とすることもできる。   Furthermore, according to one embodiment of the present invention, the ratio of the total mass of rare earth elements in the rare earth-enriched phase to the total mass of rare earth elements in the Fe phase can be 10 or more, preferably 100 or more. More preferably 1000 or more, for example, 10 to 3000, or 1000 to 3000.

鉄の融点は1538℃と高いことから、二液分離の効率と溶解時のエネルギー低減を考慮すると、融点降下剤の共存下で工程1を実施するのが好ましい。融点降下剤としては、鉄の融点を下げることのできる物質であれば特に制限はないが、炭素、リン、ボロン、シリコン、硫黄、ヒ素、アンチモンなどが挙げられる。これらは単独で使用することもでき、二種類以上を組み合わせて使用することもできる。   Since the melting point of iron is as high as 1538 ° C., considering the efficiency of two-component separation and energy reduction during dissolution, it is preferable to carry out step 1 in the presence of a melting point depressant. The melting point depressant is not particularly limited as long as it is a substance capable of lowering the melting point of iron, and examples thereof include carbon, phosphorus, boron, silicon, sulfur, arsenic, and antimony. These can also be used independently and can also be used in combination of 2 or more types.

融点降下剤の中でも炭素は、鉄の酸化を防ぎ、鉄がB23相へ移動するのを防止する効果があり、分離性が向上するので好ましい。炭素の供給源としては、限定的ではないが、加熱炉に炭素るつぼを使用すること、炉壁を炭素コーティングすること、銑鉄等のFe−C合金、コークス、グラファイト、プラスチック、有機物等を添加剤として反応系に添加すること、二酸化炭素、炭化水素系ガスなどの炭素源を吹き込むこと等が挙げられる。コークスやグラファイトは加熱溶融時に酸化し、ほとんどはガスとなって系外に排出されるので、各相に対する汚染物質となる心配も少ない一方で、系外に排出されやすいので融点降下や酸化防止効果としては弱くなる。一方、Fe−C合金の場合、炭素が合金中に組み込まれており、加熱溶融中も容易には系外に排出されないので、融点降下や酸化防止効果はコークスやグラファイトに比べて高い。そして、Feは分離性がよいので添加することによる弊害はない。よって、炭素の供給源としてFe−C合金が優れている。 Among melting point depressants, carbon is preferable because it has an effect of preventing the oxidation of iron, preventing the iron from moving to the B 2 O 3 phase, and improving the separability. The source of carbon is not limited, however, it is possible to use a carbon crucible in the heating furnace, coat the furnace wall with carbon, Fe-C alloy such as pig iron, coke, graphite, plastic, organic matter, etc. And adding a carbon source such as carbon dioxide or hydrocarbon gas to the reaction system. Coke and graphite are oxidized when heated and melted, and most of them are discharged out of the system as a gas, so there is little concern about becoming a pollutant for each phase. As it becomes weaker. On the other hand, in the case of an Fe—C alloy, carbon is incorporated in the alloy and is not easily discharged out of the system even during heating and melting, so that the melting point drop and the antioxidant effect are higher than those of coke and graphite. And since Fe is separable, there is no harmful effect caused by adding it. Therefore, an Fe—C alloy is excellent as a carbon supply source.

融点降下剤の添加量は、溶融温度が最も低くなるという理由により共晶点の組成付近とすることが好ましい。融点降下剤として炭素を使用する場合は、炭素飽和の状態、すなわち融体中にそれ以上炭素が溶け込まない状態で加熱溶融を行うことが融点降下や酸化防止効果の観点で好ましい。   The addition amount of the melting point depressant is preferably in the vicinity of the composition of the eutectic point because the melting temperature is the lowest. When carbon is used as the melting point depressant, it is preferable from the viewpoint of melting point depressing and antioxidation effects to perform heat melting in a carbon saturated state, that is, in a state where no further carbon is dissolved in the melt.

加熱溶融時の雰囲気は特に制限はなく、大気雰囲気下で実施すれば足りる。しかしながら、鉄の酸化を防止する観点からは、Arや窒素などの不活性雰囲気下で実施するのが好ましい。鉄が酸化するとB23相へ移行し易くなるからである。 The atmosphere at the time of heating and melting is not particularly limited, and it is sufficient to carry out in an air atmosphere. However, from the viewpoint of preventing iron oxidation, it is preferably carried out in an inert atmosphere such as Ar or nitrogen. This is because when iron is oxidized, it becomes easy to shift to the B 2 O 3 phase.

鉄の酸化は回避すべきである一方で、希土類元素の酸化を促進することは、相分離性を良くする観点で好ましい。また、ネオジム磁石にはホウ素が含まれているが、このホウ素を酸化することによりB23とすることが望まれる。そこで、工程1を鉄の酸化が促進されない程度の酸化性条件下で加熱溶融を行うことが好ましい。このような観点からみた本発明に適した酸化剤としては、空気、二酸化炭素、酸化鉄(三酸化二鉄、四酸化三鉄)、酸化鉄を含む複合酸化物、酸化ボロン、一酸化炭素、亜硫酸ガス等が挙げられ、回収される鉄の不純物を低減する観点から空気、二酸化炭素、酸化鉄が好ましい。 While oxidation of iron should be avoided, promoting oxidation of rare earth elements is preferable from the viewpoint of improving phase separation. Moreover, although the neodymium magnet contains boron, it is desirable to oxidize this boron to B 2 O 3 . Therefore, it is preferable to heat and melt the process 1 under oxidizing conditions that do not promote the oxidation of iron. From this viewpoint, the oxidizing agent suitable for the present invention includes air, carbon dioxide, iron oxide (diiron trioxide, triiron tetroxide), complex oxide containing iron oxide, boron oxide, carbon monoxide, A sulfurous acid gas etc. are mentioned, and air, a carbon dioxide, and iron oxide are preferable from a viewpoint of reducing the impurity of the iron collect | recovered.

酸化剤の添加量は、鉄を酸化させない理由により希土類元素に対して酸素量が1.5〜2.0倍のモル比とすることが好ましい。   The addition amount of the oxidizing agent is preferably a molar ratio of 1.5 to 2.0 times the amount of oxygen with respect to the rare earth element for the reason of not oxidizing iron.

ここで、非特許文献2との違いについて述べると、非特許文献2では不活性雰囲気の実験であり、適切な酸化剤も添加されていないことから、添加したB23が磁石中の希土類金属と次の反応をすることにより還元され、以下の反応式に従って鉄中のボロン濃度が増加する。
Nd2Fe14B+B23=Nd23+3Fe2B+8Fe
このことから非特許文献2の方法では、鉄中のホウ素は全くといっていいほど除去できない。鉄の再利用を考えると、鉄中にホウ素が含まれない本方法が望ましいと考えられる。この点、本発明によれば、上述した希土類元素を酸化し、鉄は酸化させないような酸化性条件下で加熱溶融を行うことにより、Fe相中にホウ素はほとんど混入しないようにすることが可能である。
Here, the difference from Non-Patent Document 2 will be described. Since Non-Patent Document 2 is an experiment in an inert atmosphere and no appropriate oxidant is added, the added B 2 O 3 is added to the rare earth in the magnet. It is reduced by the following reaction with the metal, and the boron concentration in iron increases according to the following reaction formula.
Nd 2 Fe 14 B + B 2 O 3 = Nd 2 O 3 + 3Fe 2 B + 8Fe
For this reason, in the method of Non-Patent Document 2, boron in iron cannot be removed at all. Considering the reuse of iron, it is considered desirable to use this method in which boron is not contained in iron. In this regard, according to the present invention, it is possible to hardly mix boron in the Fe phase by performing heat melting under oxidizing conditions that oxidize the rare earth elements described above and do not oxidize iron. It is.

(3.分離回収)
各相が形成された後は、溶融状態にある間に各相を分液することにより、希土類富化相を含めて各相を分離回収することができる。B23相は工程1に再利用することができる。分液の方法としては、比重の重い相から順番に炉底から排出する方法がある。比重の軽い相は炉の上部から抽出してもよい。また、冷却して固化させてから、相の境界に沿ってカッター等で切断してもよい。冷却する際は、分離性を挙げるために、固化するまでは徐冷するのが好ましい。
(3. Separation and recovery)
After each phase is formed, each phase including the rare earth-enriched phase can be separated and recovered by separating each phase while it is in a molten state. The B 2 O 3 phase can be reused in step 1. As a method of liquid separation, there is a method of discharging from the bottom of the furnace in order from a phase with a higher specific gravity. The light phase may be extracted from the top of the furnace. Moreover, after cooling and solidifying, it may cut | disconnect with a cutter etc. along the boundary of a phase. When cooling, it is preferable to slowly cool until solidification in order to increase separability.

分離回収された希土類富化相は公知の任意の処理に供することができる。例えば、シュウ酸、塩酸、硫酸等を用いた酸浸出を行って希土類元素を溶解した後、水酸化アンモニウム、硫酸化アンモニウム、水酸化ナトリウム等を添加してpH調整することによって希土類元素の塩を析出する。酸化ホウ素は液中に溶解したままであるので、固液分離することによって希土類元素の塩を回収可能である。上述した乾式処理によって、予め鉄が除去されているので、浸出に要する酸の量は格段に小さくて済む。その後、溶融塩電解やCa還元などの方法によって希土類元素を単体として回収することができる。希土類元素の塩を焼成することで希土類酸化物として回収することもできる。   The rare earth-enriched phase separated and recovered can be subjected to any known treatment. For example, after leaching with oxalic acid, hydrochloric acid, sulfuric acid or the like to dissolve the rare earth element, the salt of the rare earth element is adjusted by adding ammonium hydroxide, ammonium sulfate, sodium hydroxide or the like to adjust the pH. Precipitate. Since boron oxide remains dissolved in the liquid, the salt of the rare earth element can be recovered by solid-liquid separation. Since the iron is previously removed by the dry treatment described above, the amount of acid required for leaching is much smaller. Thereafter, the rare earth element can be recovered as a simple substance by a method such as molten salt electrolysis or Ca reduction. It can also be recovered as a rare earth oxide by firing a salt of a rare earth element.

<例1>
加熱して消磁した市販のネオジム磁石を鉄乳鉢によって粉砕し実験に供した。ネオジム磁石にはNi−Cu−Niの三層めっきが施されていたが、表面を研磨してめっき層を除去した。ICP−AESを用いて決定されためっき除去後の試料の組成を表1に示す。
<Example 1>
A commercially available neodymium magnet that had been demagnetized by heating was crushed with an iron mortar and used for the experiment. The neodymium magnet was subjected to Ni—Cu—Ni three-layer plating, but the surface was polished to remove the plating layer. Table 1 shows the composition of the sample after plating removal determined by using ICP-AES.

(単位:質量%) (Unit: mass%)

ネオジム磁石試料(5.0g)、B23(10g)、Fe23(1.2g)を、Cを4.3質量%含むFe−C合金(7.5g)と共に炭素るつぼへ装入した。Fe23はネオジム磁石中の希土類元素とホウ素を酸化させるために加えた。試料を1170℃で1時間、アルゴン雰囲気中で加熱保持した後、アルゴンガスを吹き付けて急冷した。相の分離を目視で確認した後、各相成分をICP−AESを用いて分析した。 A neodymium magnet sample (5.0 g), B 2 O 3 (10 g), and Fe 2 O 3 (1.2 g) are loaded into a carbon crucible together with an Fe—C alloy (7.5 g) containing 4.3% by mass of C. I entered. Fe 2 O 3 was added to oxidize rare earth elements and boron in the neodymium magnet. The sample was heated and held at 1170 ° C. for 1 hour in an argon atmosphere, and then quenched by blowing argon gas. After visually confirming phase separation, each phase component was analyzed using ICP-AES.

上記実験によって得られた試料の写真を図1に示す。図1から分かるように、試料が三相に分離している。表2に示す各相の分析結果からみて、これら三相は鉛直方向に上から順にネオジムを1.25質量%程度含むB23相、黒緑色のネオジム、ジスプロシウム、プラセオジム等の希土類元素が富化されたNd23−B23相、そして最下相の希土類元素をほとんど含んでいないFe−C合金相であった。 A photograph of the sample obtained by the above experiment is shown in FIG. As can be seen from FIG. 1, the sample is separated into three phases. From the analysis results of each phase shown in Table 2, these three phases are rare earth elements such as B 2 O 3 phase containing about 1.25% by mass of neodymium in the vertical direction from the top, black-green neodymium, dysprosium, praseodymium and the like. It was an enriched Nd 2 O 3 —B 2 O 3 phase and an Fe—C alloy phase containing almost no rare earth element in the lowest phase.

(単位:質量%) (Unit: mass%)

表2より、B23相中の希土類元素の総質量に対する希土類富化相(Nd2O3-B2O3相)中の希土類元素の総質量の比は25.7であり、Fe相(Fe-C合金相)中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比は596.4であった。上記実験結果より、磁石中の希土類元素をNd23−B23相へ濃縮することが可能であることが分かる。表中で、Fe−C合金相におけるB23が「−」となっているが、これはB23としては検出されなかったという意味である。なお、Bとしては0.27質量%検出された。 From Table 2, the total weight ratio of rare earth elements in the rare earth-rich phase with respect to the total mass (Nd 2 O 3 -B 2 O 3 phases) of rare earth elements B 2 O 3 phase is 25.7, Fe The ratio of the total mass of the rare earth element in the rare earth-enriched phase to the total mass of the rare earth element in the phase (Fe—C alloy phase) was 596.4. From the above experimental results, it can be seen that the rare earth element in the magnet can be concentrated to the Nd 2 O 3 —B 2 O 3 phase. In the table, B 2 O 3 in the Fe—C alloy phase is “−”, which means that it was not detected as B 2 O 3 . In addition, 0.27 mass% was detected as B.

<例2>
例1と同様のネオジム磁石を粉砕せずに塊の状態で実験に供した。ネオジム磁石にはNi−Cu−Niの三層めっきが施されていたが、表面を研磨してめっき層を除去した。ネオジム磁石試料(20g)及びB23(10g)を、Cを4.3質量%含むFe−C合金(20g)と共に炭素るつぼへ挿入した。試料を1170℃で21.5時間、二酸化炭素雰囲気中で加熱保持した後、アルゴンガスを吹き付けて急冷した。相の分離を目視で確認した後、各相成分をICP−AESを用いて分析した。各相の分析結果を表3に示す。表3からみて、これら三相は鉛直方向に上から順にネオジムを0.14質量%程度含むB23相、黒緑色のネオジム、ジスプロシウム、プラセオジム等の希土類元素が富化されたNd23−B23相、そして最下相の希土類元素をほとんど含んでいないFe−C合金相であった。その結果、例1と同様に、鉛直方向に上から順にB23相、Nd23−B23相、及びFe−C合金相の三相に分離したことが分かった。
<Example 2>
The same neodymium magnet as in Example 1 was subjected to the experiment in a lump state without being crushed. The neodymium magnet was subjected to Ni—Cu—Ni three-layer plating, but the surface was polished to remove the plating layer. A neodymium magnet sample (20 g) and B 2 O 3 (10 g) were inserted into a carbon crucible together with an Fe—C alloy (20 g) containing 4.3 mass% of C. The sample was heated and held in a carbon dioxide atmosphere at 1170 ° C. for 21.5 hours, and then quenched by blowing argon gas. After visually confirming phase separation, each phase component was analyzed using ICP-AES. Table 3 shows the analysis results of each phase. As seen from Table 3, these three phases are Nd 2 O enriched with rare earth elements such as B 2 O 3 phase containing about 0.14% by mass of neodymium in the vertical direction, black-green neodymium, dysprosium, praseodymium. 3 -B 2 O 3 phase and a rare earth element in the bottom phase was Fe-C alloy phase contains little. As a result, as in Example 1, it was found that the sample was separated into three phases of B 2 O 3 phase, Nd 2 O 3 —B 2 O 3 phase, and Fe—C alloy phase in order from the top in the vertical direction.

(単位:質量%) (Unit: mass%)

例2において、B23相中の希土類元素の総質量に対する希土類富化相(Nd2O3-B2O3相)中の希土類元素の総質量の比は254.8であり、Fe相(Fe-C合金相)中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比は1528.8倍であった。 In Example 2, the total weight ratio of rare earth elements in the rare earth-rich phase with respect to the total mass (Nd 2 O 3 -B 2 O 3 phases) of rare earth elements B 2 O 3 phase is 254.8, Fe The ratio of the total mass of the rare earth element in the rare earth-enriched phase to the total mass of the rare earth element in the phase (Fe—C alloy phase) was 1528.8 times.

<例3>
例1と同様のネオジム磁石を鉄乳鉢によって粉砕し実験に供した。ネオジム磁石にはNi−Cu−Niの三層めっきが施されていたが、表面を研磨してめっき層を除去した。ネオジム磁石試料(5g)及びB23(10g)を炭素るつぼへ挿入した。試料を1350℃で2時間、次いで1170℃で1時間、二酸化炭素雰囲気中で加熱保持した後、アルゴンガスを吹き付けて急冷した。相の分離を目視で確認した後、各相成分をICP−AESを用いて分析した。結果を表4に示す。
<Example 3>
The same neodymium magnet as in Example 1 was crushed with an iron mortar and used for the experiment. The neodymium magnet was subjected to Ni—Cu—Ni three-layer plating, but the surface was polished to remove the plating layer. A neodymium magnet sample (5 g) and B 2 O 3 (10 g) were inserted into a carbon crucible. The sample was heated and held in a carbon dioxide atmosphere at 1350 ° C. for 2 hours and then at 1170 ° C. for 1 hour, and then quenched by blowing argon gas. After visually confirming phase separation, each phase component was analyzed using ICP-AES. The results are shown in Table 4.

(単位:質量%) (Unit: mass%)

表4より、例1と同様に、鉛直方向に上からB23相、Nd23−B23相、及びFe−C合金相の三相に分離したことが分かる。溶解したネオジウム磁石を構成する合金が炭素るつぼ、または二酸化炭素中の炭素と反応し、Fe−C合金相を形成したと考えられる。B23相中の希土類元素の総質量に対する希土類富化相(Nd2O3-B2O3相)中の希土類元素の総質量の比は119.1であり、Fe相(Fe-C合金相)中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比は532.0であった。上記実験結果より、磁石中の希土類元素をNd23−B23相へ濃縮することが可能であることが分かる。この結果から、銑鉄を添加しなくても加熱溶融温度を高めることで希土類元素を濃縮可能であることが分かる。 From Table 4, it can be seen that, similarly to Example 1, it was separated from the top in the vertical direction into three phases of B 2 O 3 phase, Nd 2 O 3 —B 2 O 3 phase, and Fe—C alloy phase. It is considered that the alloy constituting the melted neodymium magnet reacted with carbon crucible or carbon in carbon dioxide to form an Fe-C alloy phase. The total weight ratio of rare earth elements in the rare earth-rich phase with respect to the total mass (Nd 2 O 3 -B 2 O 3 phases) of rare earth elements B 2 O 3 phase is 119.1, Fe phase (Fe- The ratio of the total mass of the rare earth elements in the rare earth-enriched phase to the total mass of the rare earth elements in the (C alloy phase) was 532.0. From the above experimental results, it can be seen that the rare earth element in the magnet can be concentrated to the Nd 2 O 3 —B 2 O 3 phase. From this result, it can be seen that the rare earth element can be concentrated by increasing the heating and melting temperature without adding pig iron.

<例4>
例1と同様のネオジム磁石を鉄乳鉢によって粉砕し実験に供した。ネオジム磁石にはNi−Cu−Niの三層めっきが施されていたが、表面を研磨してめっき層を除去した。ネオジム磁石試料(5g)及びB23(10g)を炭素るつぼへ挿入した。試料を1450℃で3時間、二酸化炭素雰囲気中で加熱保持した後、アルゴンガスを吹き付けて急冷した。相の分離を目視で確認した後、各相成分をICP−AESを用いて分析した。
<Example 4>
The same neodymium magnet as in Example 1 was crushed with an iron mortar and used for the experiment. The neodymium magnet was subjected to Ni—Cu—Ni three-layer plating, but the surface was polished to remove the plating layer. A neodymium magnet sample (5 g) and B 2 O 3 (10 g) were inserted into a carbon crucible. The sample was heated and held at 1450 ° C. for 3 hours in a carbon dioxide atmosphere, and then quenched by blowing argon gas. After visually confirming phase separation, each phase component was analyzed using ICP-AES.

その結果、例1と同様に、鉛直方向に上からB23相、Nd23−B23相、及びFe−C合金相の三相に分離したことが分かった。表5に各相の分析結果を示す。しかしながら、例1と比較して、Fe−C合金相のNd、Dy及びPr濃度が上昇した。 As a result, in the same manner as in Example 1, it was found that the three phases of the B 2 O 3 phase, the Nd 2 O 3 —B 2 O 3 phase, and the Fe—C alloy phase were separated from the top in the vertical direction. Table 5 shows the analysis results of each phase. However, compared with Example 1, the Nd, Dy, and Pr concentrations of the Fe—C alloy phase increased.

(単位:質量%) (Unit: mass%)

表5より、B23相中の希土類元素の総質量に対する希土類富化相(Nd2O3-B2O3相)中の希土類元素の総質量の比は34.5であり、Fe相(Fe-C合金相)中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比は63.6であった。上記実験結果より、磁石中の希土類元素をNd23−B23相へ濃縮することが可能であることが分かる。但し、本実施例では加熱温度が高く、Fe相に希土類元素が多く分配されたため、Fe相(Fe-C合金相)中の希土類元素の総質量に対する希土類富化相中の希土類元素の総質量の比が、例1〜例3に比べて低かった。 From Table 5, the total weight ratio of rare earth elements in the rare earth-rich phase with respect to the total mass (Nd 2 O 3 -B 2 O 3 phases) of rare earth elements B 2 O 3 phase is 34.5, Fe The ratio of the total mass of the rare earth element in the rare earth-enriched phase to the total mass of the rare earth element in the phase (Fe—C alloy phase) was 63.6. From the above experimental results, it can be seen that the rare earth element in the magnet can be concentrated to the Nd 2 O 3 —B 2 O 3 phase. However, in this example, since the heating temperature was high and a large amount of rare earth elements were distributed in the Fe phase, the total mass of rare earth elements in the rare earth-enriched phase relative to the total mass of rare earth elements in the Fe phase (Fe-C alloy phase) The ratio of was lower than those of Examples 1 to 3.

Claims (10)

希土類元素含有物質をB23の共存下で加熱溶融し、B23相と、B23相よりも下方にB23相よりも希土類元素が富化された相とを形成する工程1を含む希土類元素含有物質からの希土類元素濃縮方法。 The rare earth element-containing material is heated and melted in the presence of B 2 O 3, and B 2 O 3 phase, B 2 O 3 rare earth elements than B 2 O 3 phase below the phase and phase-enriched A method for concentrating rare earth elements from a rare earth-containing material, comprising the step 1 of forming. 工程1は、1150〜1600℃で10〜360分保持した後、冷却することを含む請求項1に記載の方法。   The method according to claim 1, wherein step 1 includes holding at 1150 to 1600 ° C. for 10 to 360 minutes and then cooling. 工程1を融点降下剤の共存下で行う請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein step 1 is carried out in the presence of a melting point depressant. 融点降下剤が炭素である請求項3に記載の方法。   The method of claim 3 wherein the melting point depressant is carbon. 炭素の供給源がFe−C合金である請求項4に記載の方法。   The method of claim 4, wherein the source of carbon is an Fe-C alloy. 工程1を酸化剤の共存下で行う請求項1〜5の何れか一項に記載の方法。   The method as described in any one of Claims 1-5 which performs the process 1 in coexistence of an oxidizing agent. 酸化剤が酸化鉄である請求項6に記載の方法。   The method according to claim 6, wherein the oxidizing agent is iron oxide. 23相中の希土類元素の総質量に対する前記希土類元素が富化された相中の希土類元素の総質量の比が10以上である請求項1〜7の何れか一項に記載の方法。 The method according to any one of claims 1 to 7 wherein the rare earth element to the total weight is 10 or more the ratio of the total mass of the rare earth elements in phase enriched in rare earth elements B 2 O 3 phase . 希土類元素にNd、Dy及びPrから選択される少なくとも一種が含まれる請求項1〜8の何れか一項に記載の方法。   The method according to claim 1, wherein the rare earth element includes at least one selected from Nd, Dy, and Pr. 希土類元素含有物質は希土類磁石を原料とする請求項1〜9の何れか一項に記載の方法。   The method according to any one of claims 1 to 9, wherein the rare earth element-containing substance is a rare earth magnet.
JP2015022378A 2015-02-06 2015-02-06 Method for enriching rare earth elements from rare earth-containing materials Active JP5977385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022378A JP5977385B2 (en) 2015-02-06 2015-02-06 Method for enriching rare earth elements from rare earth-containing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022378A JP5977385B2 (en) 2015-02-06 2015-02-06 Method for enriching rare earth elements from rare earth-containing materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012069827A Division JP5767993B2 (en) 2012-03-26 2012-03-26 Method for enriching rare earth elements from rare earth-containing materials

Publications (2)

Publication Number Publication Date
JP2015148012A true JP2015148012A (en) 2015-08-20
JP5977385B2 JP5977385B2 (en) 2016-08-24

Family

ID=53891608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022378A Active JP5977385B2 (en) 2015-02-06 2015-02-06 Method for enriching rare earth elements from rare earth-containing materials

Country Status (1)

Country Link
JP (1) JP5977385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227639A (en) * 2012-03-26 2013-11-07 Jx Nippon Mining & Metals Corp Method for enriching rare earth element from rare earth element-containing substance
WO2017122556A1 (en) 2016-01-12 2017-07-20 三菱マテリアル株式会社 Method for separating rare-earth elements from iron, and rare-earth element-containing slag
JP2021143394A (en) * 2020-03-12 2021-09-24 株式会社神戸製鋼所 Recovery method of valuable metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068082A (en) * 2002-08-06 2004-03-04 Chiba Inst Of Technology Method for recovering rare-earth metal
WO2010098381A1 (en) * 2009-02-27 2010-09-02 国立大学法人大阪大学 Method for recovering rare earth elements from re-tm-based mixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068082A (en) * 2002-08-06 2004-03-04 Chiba Inst Of Technology Method for recovering rare-earth metal
WO2010098381A1 (en) * 2009-02-27 2010-09-02 国立大学法人大阪大学 Method for recovering rare earth elements from re-tm-based mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014051555; SAITO T 他4名: 'The extraction of Nd from waste Nd-Fe-B alloys by the glass slag method' Journal of Alloys and Compounds Vol.353 No.1/2, 20030407, Page.189-193 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227639A (en) * 2012-03-26 2013-11-07 Jx Nippon Mining & Metals Corp Method for enriching rare earth element from rare earth element-containing substance
WO2017122556A1 (en) 2016-01-12 2017-07-20 三菱マテリアル株式会社 Method for separating rare-earth elements from iron, and rare-earth element-containing slag
KR20180100325A (en) 2016-01-12 2018-09-10 미쓰비시 마테리알 가부시키가이샤 A method for separating rare earth element and iron and a rare earth element-containing slag
US11279987B2 (en) 2016-01-12 2022-03-22 Mitsubishi Materials Corporation Separation method of rare earth element and iron and rare earth element-containing slag
JP2021143394A (en) * 2020-03-12 2021-09-24 株式会社神戸製鋼所 Recovery method of valuable metal
JP7378900B2 (en) 2020-03-12 2023-11-14 株式会社神戸製鋼所 How to recover valuable metals

Also Published As

Publication number Publication date
JP5977385B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
Yang et al. REE recovery from end-of-life NdFeB permanent magnet scrap: a critical review
Saito et al. The extraction of Nd from waste Nd–Fe–B alloys by the glass slag method
JP5327409B2 (en) Recovery method of rare earth elements
JP5767993B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP5647750B2 (en) Rare earth recovery method from rare earth element containing alloys
JP2012041588A (en) Separation method and separation system for rare earth element by chloride volatilization method
JP5149164B2 (en) Method for recovering useful materials from rare earth-iron-boron magnet scrap
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
CN103898400B (en) A kind of method reclaiming neodymium-iron-boron magnetic material
Rasheed et al. Review of the liquid metal extraction process for the recovery of Nd and Dy from permanent magnets
JP5905782B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP6229846B2 (en) Separation and recovery method of rare earth elements and iron
JP3894061B2 (en) Rare earth magnet scrap and / or sludge remelting method, magnet alloy and rare earth sintered magnet
KR20150042018A (en) Refining method of rare-earth metals by vacuum molten process and apparatus for the manufacturing
JP2014145099A (en) Rare earth element collection method
JP2019026871A (en) Manufacturing method of rare earth fluoride
JP6769437B2 (en) A useful method for separating light rare earth elements and heavy rare earth elements
JPH0790411A (en) Production of high-purity rare earth metal
Bian et al. Recovery of rare earth elements from NdFeB magnet scraps by pyrometallurgical processes
JP6425018B2 (en) Separation and recovery method of rare earth elements
JP2016186121A (en) Method for recovering rare earth element from rare earth element-containing product
JP2002012921A (en) Method for regenerating rare earth magnet scrap
JPS61153201A (en) Method for regenerating scrap of magnet containing rare earth element
JP2021175818A (en) Method of recovering rare earth oxide from rare earth element-containing substance
JP2014181370A (en) Method of recovering rare earth element and method of recycling steel ingredient

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5977385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250