JP2015146227A - Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell - Google Patents

Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell Download PDF

Info

Publication number
JP2015146227A
JP2015146227A JP2014017602A JP2014017602A JP2015146227A JP 2015146227 A JP2015146227 A JP 2015146227A JP 2014017602 A JP2014017602 A JP 2014017602A JP 2014017602 A JP2014017602 A JP 2014017602A JP 2015146227 A JP2015146227 A JP 2015146227A
Authority
JP
Japan
Prior art keywords
conductive film
film
cnt
conductive coating
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014017602A
Other languages
Japanese (ja)
Inventor
明彦 吉原
Akihiko Yoshihara
明彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014017602A priority Critical patent/JP2015146227A/en
Publication of JP2015146227A publication Critical patent/JP2015146227A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a conductive coating with excellent conductivity and coating strength, the conductive coating, a conductive film comprising the conductive coating, and an electrode for dye-sensitized solar cell comprising the conductive coating or the conductive film.SOLUTION: A method of producing a conductive coating comprises a step of preparing a dispersion liquid in which an amount of desorption of carbon monoxide is 1000-10000 μmol/g and an amount of desorption of carbon dioxide is 500-5000 μmol/g at 150-950°C in temperature-programmed desorption method, a step of forming a coating from the dispersion liquid, and a step of bringing the coating into contact with a reductant for reduction.

Description

本発明は、導電膜の製造方法、導電膜、導電性フィルム及び色素増感太陽電池用電極に関する。   The present invention relates to a method for producing a conductive film, a conductive film, a conductive film, and an electrode for a dye-sensitized solar cell.

近年、タッチパネル、太陽電池、燃料電池等の電子機器や電子部材に用いる電極の、導電層や触媒層の構成材料等として、炭素系材料が広く用いられてきている。例えば、特許文献1には、一次電池及び二次電池などの電気化学デバイス、特にリチウム電池に有用な材料として、フッ素化多層炭素ナノ材料が提案されている。   In recent years, carbon-based materials have been widely used as constituent materials for conductive layers and catalyst layers of electrodes used in electronic devices and electronic members such as touch panels, solar cells, and fuel cells. For example, Patent Document 1 proposes a fluorinated multilayer carbon nanomaterial as a material useful for electrochemical devices such as primary batteries and secondary batteries, particularly lithium batteries.

特表2009−515813号公報Special table 2009-515813

しかし、特許文献1に記載のカーボンナノチューブは、分散性に乏しく、また、それを用いて形成した膜の体積抵抗率は未だ十分に低いとは言えなかった。   However, the carbon nanotube described in Patent Document 1 has poor dispersibility, and the volume resistivity of a film formed using the carbon nanotube has not been sufficiently low.

本発明の目的は、導電性及び膜強度に優れた導電膜の製造方法、前記導電膜、前記導電膜を備えた導電性フィルム、及び前記導電膜又は前記導電性フィルムを備えた色素増感太陽電池用電極を提供することにある。   The objective of this invention is the manufacturing method of the electrically conductive film excellent in electroconductivity and film | membrane strength, the said electrically conductive film, the electrically conductive film provided with the said electrically conductive film, and the dye-sensitized sun provided with the said electrically conductive film or the said electrically conductive film. The object is to provide an electrode for a battery.

本発明者は、上記課題を解決することを目的として鋭意検討を行った結果、昇温脱離法における150〜950℃での一酸化炭素の脱離量と二酸化炭素の脱離量が所定範囲にあるカーボンナノチューブを用い、該カーボンナノチューブを含む分散液を成膜し、膜の状態で還元することにより、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies aimed at solving the above problems, the present inventors have found that the desorption amount of carbon monoxide and the desorption amount of carbon dioxide at 150 to 950 ° C. in the temperature programmed desorption method are within a predetermined range. The present inventors have found that the above-mentioned problems can be solved by forming a dispersion containing the carbon nanotubes in the film, and reducing the film in the state of the film, thereby completing the present invention.

すなわち、本発明は、
〔1〕昇温脱離法における150〜950℃での、一酸化炭素の脱離量が1000〜10000μmol/gであり、かつ二酸化炭素の脱離量が500〜5000μmol/gのカーボンナノチューブを含む分散液を調製する工程、前記分散液から膜を形成する工程、及び前記膜を還元剤と接触させて還元する工程、とを含む導電膜の製造方法、
〔2〕前記〔1〕記載の製造方法により製造される導電膜、
〔3〕基材上に前記〔2〕に記載の導電膜を備えた導電性フィルム、
〔4〕前記〔2〕に記載の導電膜又は前記〔3〕に記載の導電性フィルムを備えた色素増感太陽電池用電極、
を、提供する。
That is, the present invention
[1] including carbon nanotubes having a carbon monoxide desorption amount of 1000 to 10,000 μmol / g and a carbon dioxide desorption amount of 500 to 5000 μmol / g at 150 to 950 ° C. in the temperature programmed desorption method. A method for producing a conductive film, comprising: a step of preparing a dispersion; a step of forming a film from the dispersion; and a step of bringing the film into contact with a reducing agent and reducing the film.
[2] A conductive film produced by the production method according to [1],
[3] A conductive film comprising the conductive film according to [2] on a substrate,
[4] A dye-sensitized solar cell electrode comprising the conductive film according to [2] or the conductive film according to [3],
I will provide a.

本発明によれば、導電性及び膜強度に優れた導電膜を製造可能な導電膜の製造方法を提供することができる。また、本発明によれば、前記導電膜、前記導電膜を備えた導電性フィルム、及び前記導電膜又は前記導電性フィルムを備えた色素増感太陽電池用電極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrically conductive film which can manufacture the electrically conductive film excellent in electroconductivity and film | membrane intensity | strength can be provided. Moreover, according to this invention, the electrode for dye-sensitized solar cells provided with the said electrically conductive film, the electroconductive film provided with the said electrically conductive film, and the said electrically conductive film or the said electroconductive film can be provided.

1.導電膜の製造方法
本発明の導電膜の製造方法は、昇温脱離法における150〜950℃での、一酸化炭素の脱離量が1000〜10000μmol/gであり、かつ二酸化炭素の脱離量が500〜5000μmol/gのカーボンナノチューブを含む分散液を調製する工程、前記分散液から膜を形成する工程、及び前記膜を還元剤と接触させて還元する工程、とを含むことを特徴とする。
以下、本発明の導電膜の製造方法に用いられるカーボンナノチューブ、分散液、還元剤及び該方法で製造される導電膜について項分けして詳細に説明する。
1. Manufacturing method of conductive film The manufacturing method of the conductive film of the present invention is that carbon monoxide desorption amount is 1000 to 10000 μmol / g at 150 to 950 ° C. in the temperature programmed desorption method, and carbon dioxide is desorbed. A step of preparing a dispersion containing carbon nanotubes in an amount of 500 to 5000 μmol / g, a step of forming a film from the dispersion, and a step of reducing the membrane by bringing it into contact with a reducing agent. To do.
Hereinafter, the carbon nanotubes used in the method for producing a conductive film of the present invention, the dispersion, the reducing agent, and the conductive film produced by the method will be described in detail.

(カーボンナノチューブ)
本発明の導電膜の製造方法に使用されるカーボンナノチューブ(以下「CNT」とも表記する)は、昇温脱離法における150〜950℃での、一酸化炭素(CO)の脱離量が1000〜10000μmol/gであり、かつ二酸化炭素(CO)の脱離量が500〜5000μmol/gであるものである。
(carbon nanotube)
Carbon nanotubes (hereinafter also referred to as “CNT”) used in the method for producing a conductive film of the present invention have a carbon monoxide (CO) desorption amount of 1000 to 150 ° C. in a temperature programmed desorption method. The desorption amount of carbon dioxide (CO 2 ) is 500 to 5000 μmol / g.

昇温脱離法(Temperature Programmed Desorption)において発生するガス中のCOとCOは、CNT表面に結合している、水酸基、カルボキシル基、ケトン基、ラクトン基、アルデヒド基及びメチル基などの種々の官能基に由来する。前記CNTは、上記の通りのCOとCOの脱離量を有しており、その表面には、特に水酸基とカルボキシル基が多く存在しているものと推定される。前記CNTは、かかる特性を有することから、例えば、種々の溶媒への分散性に優れている。また、導電性に優れており、体積抵抗率が非常に低い膜を形成可能である。本発明の導電膜の製造方法に使用するCNTの効果を高める観点から、COの脱離量は、好ましくは1500〜8000μmol/g、より好ましくは1800〜6000μmol/gであり、COの脱離量は、好ましくは800〜4000μmol/g、より好ましくは1000〜3500μmol/gである。 CO and CO 2 in the gas generated in the temperature programmed desorption method are variously bonded to the CNT surface, such as hydroxyl group, carboxyl group, ketone group, lactone group, aldehyde group and methyl group. Derived from a functional group. The CNT has the amount of CO and CO 2 desorbed as described above, and it is presumed that many hydroxyl groups and carboxyl groups are present on the surface thereof. Since the CNT has such characteristics, it is excellent in dispersibility in various solvents, for example. In addition, it is possible to form a film having excellent conductivity and a very low volume resistivity. From the viewpoint of enhancing the effect of CNT used in the method for producing a conductive film of the present invention, the amount of CO desorption is preferably 1500 to 8000 μmol / g, more preferably 1800 to 6000 μmol / g, and CO 2 desorption. The amount is preferably 800 to 4000 μmol / g, more preferably 1000 to 3500 μmol / g.

昇温脱離法におけるCOとCOの脱離量は、公知の方法により求めることができる。すなわち、まず、所定の昇温脱離装置内において、CNTに熱処理を施すことにより、当該CNTの表面から吸着水脱離させる。次いで、この熱処理が施されたCNTをヘリウムガス等の不活性ガス中で所定の温度まで加熱していき当該CNTの表面からの官能基(含酸素原子化合物など)の脱離に伴って発生するCOとCOとをそれぞれ定量する。
昇温脱離法における150〜950℃での、COの脱離量又はCOの脱離量は、CNTを150℃まで加熱し、その後、当該CNTをさらに加熱して、その温度が950℃に上昇するまでの間に脱離した、COの総量又はCOの総量として求められる。
The desorption amount of CO and CO 2 in the temperature programmed desorption method can be determined by a known method. That is, first, heat treatment is performed on the CNTs in a predetermined temperature-programmed desorption device to desorb adsorbed water from the surface of the CNTs. Next, the heat-treated CNT is heated to a predetermined temperature in an inert gas such as helium gas, and is generated along with desorption of functional groups (oxygen-containing atomic compounds, etc.) from the surface of the CNT. Quantify CO and CO 2 respectively.
The amount of CO desorption or CO 2 desorption at 150 to 950 ° C. in the temperature-programmed desorption method is such that the CNT is heated to 150 ° C., and then the CNT is further heated so that the temperature is 950 ° C. It is determined as the total amount of CO or the total amount of CO 2 that has been desorbed during the period until it rises.

前記CNTは、例えば、本発明におけるCOとCOの脱離量を満たさない、任意のCNT(以下、「原料CNT」という場合がある。)の表面を、硝酸まなどの強酸やオゾン、フッ素ガスなどにより処理することで製造することができる。COとCOの脱離量は、以下に従いCNTの処理条件を適宜変更することで調整することができる。
本発明の導電膜の製造方法は、CNTとして、前記規定の範囲内のCOとCOの脱離量を有するものを使用することにより、分散液中のCNTの分散性を高め、以って、導電性、膜強度の高い導電膜を製造し得るものである。
The CNT is, for example, a surface of an arbitrary CNT that does not satisfy the desorption amount of CO and CO 2 in the present invention (hereinafter sometimes referred to as “raw material CNT”), strong acid such as nitric acid, ozone, fluorine, etc. It can be manufactured by processing with gas or the like. The desorption amount of CO and CO 2 can be adjusted by appropriately changing the processing conditions of CNT according to the following.
The method for producing a conductive film of the present invention increases the dispersibility of CNTs in a dispersion by using a CNT having a desorption amount of CO and CO 2 within the specified range. A conductive film having high conductivity and high film strength can be produced.

[原料CNT]
前記原料CNTとしては、単層のものであっても、多層のものであってもよいが、得られる導電膜や導電性フィルムの性能(例えば、導電性及び機械的特性)を向上させる観点から、単層から5層のものが好ましく、単層のものがより好ましい。
[Raw material CNT]
The raw material CNT may be a single layer or a multilayer, but from the viewpoint of improving the performance (for example, conductivity and mechanical properties) of the obtained conductive film and conductive film. A single layer to five layers are preferable, and a single layer is more preferable.

原料CNTは、その平均直径(Av)と直径の標準偏差(σ)が、通常、0.60>(3σ/Av)>0.20、好ましくは0.60>(3σ/Av)>0.50を満たすものが好適である。ここで、直径とは原料CNTの外径を意味する。また、平均直径(Av)及び直径の標準偏差(σ)は、透過型電子顕微鏡での観察下に、無作為に選択されたカーボンナノチューブ100本の直径を測定した際の平均値及び標準偏差として求められる(後述する平均長さも、同様の方法で長さの測定を行い、その平均値として求められる。)。原料CNTとしては、そのようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。   The average diameter (Av) and standard deviation (σ) of the diameter of the raw material CNT are usually 0.60> (3σ / Av)> 0.20, preferably 0.60> (3σ / Av)> 0. Those satisfying 50 are preferred. Here, the diameter means the outer diameter of the raw material CNT. The average diameter (Av) and the standard deviation of diameter (σ) are the average value and standard deviation when measuring the diameter of 100 randomly selected carbon nanotubes under observation with a transmission electron microscope. (The average length described later is also obtained as an average value by measuring the length in the same manner.) As the raw material CNTs, those having a normal distribution when the diameter measured in this way is plotted on the horizontal axis and the frequency is plotted on the vertical axis and approximated by Gaussian are usually used.

原料CNTの平均直径(Av)は、通常、0.5nm以上、15nm以下が好ましく、1nm以上、10nm以下がより好ましい。
また、原料CNTの平均長さは、好ましくは0.1μm〜1cm、より好ましくは0.1μm〜1mmである。原料CNTの平均長さが上記範囲内にあると、本発明の製造方法に使用されるCNTの配向性が高まり、導電膜の形成を容易に行うことができる。
The average diameter (Av) of the raw material CNT is usually preferably 0.5 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
Moreover, the average length of raw material CNT becomes like this. Preferably they are 0.1 micrometer-1 cm, More preferably, they are 0.1 micrometer-1 mm. When the average length of the raw material CNT is within the above range, the orientation of the CNT used in the production method of the present invention is enhanced, and the conductive film can be easily formed.

原料CNTの比表面積としては、窒素ガス吸着によるBET比表面積が、通常、600m/g以上、好ましくは700m/g以上であり、その上限が、通常、2500m/gであり、かつ水蒸気吸着によるBET比表面積が、通常、0.01〜50m/g、好ましくは0.1〜30m/gである。また、窒素ガス吸着によるBET比表面積に対する水蒸気吸着によるBET比表面積の比(水蒸気吸着によるBET比表面積/窒素ガス吸着によるBET比表面積)が、通常、0.0001〜0.2、好ましくは0.0005〜0.15である。それらの比表面積は、例えば、「BELSORP(登録商標)−max」(日本ベル社製)を用いて測定することができる。
また、原料CNTの、昇温脱離法における150〜950℃での、CO脱離量としては、通常、100〜2000μmol/gであり、かつCO脱離量としては、通常、1〜3000μmol/gである。
原料CNTの比表面積及びCOとCOの脱離量が上記範囲内にあると、本発明の導電膜の製造方法に使用するCNTの分散性が高まり好適である。
As the specific surface area of the raw material CNT, the BET specific surface area by nitrogen gas adsorption is usually 600 m 2 / g or more, preferably 700 m 2 / g or more, the upper limit is usually 2500 m 2 / g, and water vapor The BET specific surface area by adsorption is usually 0.01 to 50 m 2 / g, preferably 0.1 to 30 m 2 / g. The ratio of the BET specific surface area by water vapor adsorption to the BET specific surface area by nitrogen gas adsorption (BET specific surface area by water vapor adsorption / BET specific surface area by nitrogen gas adsorption) is usually 0.0001 to 0.2, preferably 0.00. 0005 to 0.15. Those specific surface areas can be measured using, for example, “BELSORP (registered trademark) -max” (manufactured by Nippon Bell Co., Ltd.).
The CO desorption amount of the raw material CNT at 150 to 950 ° C. in the temperature programmed desorption method is usually 100 to 2000 μmol / g, and the CO 2 desorption amount is usually 1 to 3000 μmol. / G.
When the specific surface area of the raw material CNT and the desorption amount of CO and CO 2 are within the above ranges, the dispersibility of the CNT used in the method for producing a conductive film of the present invention is preferably increased.

また、原料CNTは、複数の微小孔を有するのが好ましい。中でも、孔径が2nmよりも小さいマイクロ孔を有するのが好ましく、その存在量は、下記の方法で求めたマイクロ孔容積で、好ましくは0.4mL/g以上、より好ましくは0.43mL/g以上、更に好ましくは0.45mL/g以上であり、上限としては、通常、0.65mL/g程度である。原料CNTが上記のようなマイクロ孔を有することは、本発明の導電膜の製造方法に使用するCNTの分散性を高める観点から好ましい。なお、マイクロ孔容積は、例えば、原料CNTの調製方法及び調製条件を適宜変更することで調整することができる。
ここで、「マイクロ孔容積(Vp)」は、SGCNTの液体窒素温度(77K)での窒素吸着等温線を測定し、相対圧P/P0=0.19における窒素吸着量をVとして、式(I):Vp=(V/22414)×(M/ρ)より、算出することができる。なお、Pは吸着平衡時の測定圧力、P0は測定時の液体窒素の飽和蒸気圧であり、 式(I)中、Mは吸着質(窒素)の分子量28.010、ρは吸着質(窒素)の77Kにおける密度0.808g/cmである。マイクロ孔容積は、例えば、「BELSORP(登録商標)−mini」(日本ベル(株)製)を使用して求めることができる。
The raw material CNT preferably has a plurality of micropores. Among them, it is preferable to have micropores having a pore size smaller than 2 nm, and the abundance thereof is a micropore volume determined by the following method, preferably 0.4 mL / g or more, more preferably 0.43 mL / g or more. More preferably, it is 0.45 mL / g or more, and the upper limit is usually about 0.65 mL / g. It is preferable from the viewpoint of improving the dispersibility of the CNT used in the method for producing a conductive film of the present invention that the raw material CNT has the above-described micropores. In addition, a micropore volume can be adjusted by changing suitably the preparation method and preparation conditions of raw material CNT, for example.
Here, the “micropore volume (Vp)” is a formula in which the nitrogen adsorption isotherm at the liquid nitrogen temperature (77 K) of SGCNT is measured, and the nitrogen adsorption amount at relative pressure P / P0 = 0.19 is V. I): Vp = (V / 22414) × (M / ρ). P is the measurement pressure at the time of adsorption equilibrium, P0 is the saturated vapor pressure of liquid nitrogen at the time of measurement, and in formula (I), M is the molecular weight of adsorbate (nitrogen) 28.010, and ρ is the adsorbate (nitrogen). ) At 77K with a density of 0.808 g / cm 3 . The micropore volume can be determined using, for example, “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).

以上の特性を有する原料CNTとしては、以下のスーパーグロース法により得られるCNT(以下、SGCNTという場合がある。)を用いるのが好ましい。
SGCNTは、例えば、表面にカーボンナノチューブ製造用触媒層(以下、「CNT製造用触媒層」という場合がある。)を有する基材(以下、「CNT製造用基材」という場合がある。)上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりカーボンナノチューブを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)において、基材表面への触媒層の形成をウェットプロセスにより行い、原料ガスとしてアセチレンを主成分とするガス(例えば、アセチレンを50体積%以上含むガス)を用いることで、効率的に製造することができる。
As the raw material CNT having the above characteristics, it is preferable to use CNT obtained by the following super-growth method (hereinafter sometimes referred to as SGCNT).
SGCNT is, for example, on a substrate (hereinafter also referred to as “CNT production substrate”) having a carbon nanotube production catalyst layer (hereinafter also referred to as “CNT production catalyst layer”) on its surface. In addition, when a raw material compound and a carrier gas are supplied to synthesize carbon nanotubes by chemical vapor deposition (CVD), a small amount of oxidant is present in the system, so that the catalyst layer for CNT production In a method of dramatically improving catalyst activity (super growth method; see International Publication No. 2006/011655), a catalyst layer is formed on a substrate surface by a wet process, and acetylene as a main component is used as a raw material gas. By using a gas (for example, a gas containing 50% by volume or more of acetylene), it can be efficiently produced.

表面を酸化する場合は、硝酸などの強酸やオゾン、フッ素などのガスで処理することや酸素ガスの雰囲気下で加熱するなど公知の酸化方法で適時行えばよい。
[硝酸処理]
原料CNTの処理に硝酸を用いる場合、使用する硝酸は、硝酸を含めば、その形態は特に限定されず発煙硝酸も含む。通常、純度5%以上、好ましくは50%以上、より好ましくは80%以上のものが用いられる。原料CNT100質量部に対し、通常、硝酸を200〜10000質量部添加する。その際、得られた混合物を超音波処理し、原料CNTを分散させてもよい。次いで、得られた混合物を加熱してもよい。加熱方法は通常用いられる方法なら特に限定されないが、オイルバスやマントルヒーターでの加熱、マイクロ波を照射して加熱する方法など適時選択すればよい。加熱は常圧またはオートクレーブ中など加圧下で実施してもよい。加熱は、通常、常圧の場合、30〜120℃で0.1〜50時間、加圧の場合、30〜200℃で0.1〜50時間程度行う。一方、マイクロ波照射による加熱は、通常、常圧の場合、30〜120℃で、加圧の場合、30〜200℃で、前記混合物が加熱されるようにマイクロ波の出力を設定して、0.01〜24時間程度行う。いずれの場合も、加熱は一段階で行っても二段階以上で行ってもよい。また、加熱時には、前記混合物を任意の撹拌手段により撹拌するのが好ましい。
以上により、原料CNTの表面が硝酸処理されるが、当該処理終了後の混合物は非常に高温であるため、室温まで冷却する。次いで、硝酸を、例えば、デカンテーションにより除去し、処理後のCNTを、例えば、水で洗浄する。当該洗浄は、通常、洗浄液が中性になるまで行う。
In the case of oxidizing the surface, a known oxidation method such as treatment with a strong acid such as nitric acid, a gas such as ozone or fluorine, or heating in an oxygen gas atmosphere may be performed in a timely manner.
[Nitric acid treatment]
When nitric acid is used for the treatment of the raw material CNT, the form of nitric acid to be used is not particularly limited as long as it includes nitric acid, and fuming nitric acid is also included. Usually, those having a purity of 5% or more, preferably 50% or more, more preferably 80% or more are used. Usually, 200 to 10,000 parts by mass of nitric acid is added to 100 parts by mass of the raw material CNT. At that time, the obtained mixture may be subjected to ultrasonic treatment to disperse the raw material CNT. The resulting mixture may then be heated. The heating method is not particularly limited as long as it is a commonly used method, but may be selected as appropriate, such as heating with an oil bath or mantle heater, or heating by irradiating microwaves. Heating may be performed under normal pressure or under pressure such as in an autoclave. In general, heating is performed at 30 to 120 ° C. for 0.1 to 50 hours in the case of normal pressure, and in the case of pressurization, the heating is performed at 30 to 200 ° C. for about 0.1 to 50 hours. On the other hand, heating by microwave irradiation is usually set at 30 to 120 ° C. for normal pressure, and 30 to 200 ° C. for pressurization, setting the microwave output so that the mixture is heated, Perform for about 0.01 to 24 hours. In either case, heating may be performed in one step or in two or more steps. Moreover, it is preferable to stir the said mixture by arbitrary stirring means at the time of a heating.
As described above, the surface of the raw material CNT is treated with nitric acid. Since the mixture after the treatment is very hot, it is cooled to room temperature. Next, nitric acid is removed by, for example, decantation, and the treated CNTs are washed with, for example, water. The cleaning is usually performed until the cleaning liquid becomes neutral.

CNTの表面を硝酸処理することで、前記含酸素原子官能基の他、ニトロ基 (?NO)がCNTの表面に結合すると推定される。当該ニトロ基の存在は、本発明の導電膜の製造方法で使用されるCNTの導電性及び分散性の向上に大きく寄与する。 By treating the surface of CNT with nitric acid, it is presumed that in addition to the oxygen-containing functional group, a nitro group (? NO 2 ) binds to the surface of CNT. The presence of the nitro group greatly contributes to the improvement of the conductivity and dispersibility of the CNT used in the method for producing a conductive film of the present invention.

[フッ素処理]
原料CNTの処理にフッ素ガスを用いる場合、使用するフッ素ガスとしては高純度のものが好ましいが、フッ素ガス中のフッ素濃度は、通常、1質量%以上あればよく、チッ素、アルゴン及びヘリウムなどの不活性ガスにより希釈されていても、また、テトラフルオロエタンやヘキサフルオロエタンのようなフルオロカーボン類;フッ化水素、三フッ化チッ素及び五フッ化ヨウ素等の無機フッ化物;酸素;水蒸気などを含んでいてもよい。本発明の導電膜の製造方法に使用するCNTの製造効率を高める観点から、フッ素ガス中のフッ素濃度としては、好ましくは2質量%以上、より好ましくは10質量%以上、特に好ましくは99質量%以上である。
[Fluorine treatment]
When fluorine gas is used for the treatment of the raw material CNT, high-purity fluorine gas is preferably used. However, the fluorine concentration in the fluorine gas is usually 1% by mass or more, such as nitrogen, argon and helium. Even if diluted with an inert gas, fluorocarbons such as tetrafluoroethane and hexafluoroethane; inorganic fluorides such as hydrogen fluoride, nitrogen trifluoride and iodine pentafluoride; oxygen; water vapor, etc. May be included. From the viewpoint of increasing the production efficiency of CNTs used in the method for producing a conductive film of the present invention, the fluorine concentration in the fluorine gas is preferably 2% by mass or more, more preferably 10% by mass or more, and particularly preferably 99% by mass. That's it.

原料CNTとフッ素ガスとの接触は公知の方法により行うことができる。例えば、ニッケル又はニッケルを含む合金や黒鉛などの、フッ素に耐蝕性を有する材料で製造された反応器中に原料CNTを封入し、フッ素ガスを導入して接触させればよい。   The contact between the raw material CNT and the fluorine gas can be performed by a known method. For example, the raw material CNT may be sealed in a reactor made of a material having corrosion resistance to fluorine, such as nickel or an alloy containing nickel or graphite, and fluorine gas may be introduced and contacted.

原料CNTと接触させる際のフッ素ガスの圧力としては、通常、0.002〜1.0MPa、好ましくは0.005〜0.5MPaである。かかる範囲であれば、原料CNTにフッ素ガスを効率的に接触させることができる。反応ガスとしては、高純度のフッ素ガスを窒素やアルゴンなどの不活性ガスに希釈して使用するのが安全性と反応性の制御の点で好ましい。   The pressure of the fluorine gas when contacting with the raw material CNT is usually 0.002 to 1.0 MPa, preferably 0.005 to 0.5 MPa. If it is this range, fluorine gas can be efficiently contacted with raw material CNT. As the reaction gas, it is preferable to use a high-purity fluorine gas diluted with an inert gas such as nitrogen or argon in terms of safety and reactivity control.

原料CNTとフッ素ガスとの接触は、バッチ式で行ってもよく、断続的にフッ素ガスを置換しながら行うセミバッチ式で行ってもよく、又は流通式で行ってもよい。また、原料CNTとフッ素ガスとを均一に接触させるために反応器に適当な撹拌機構を設けるのが好ましい。撹拌機構としては、各種撹拌翼による撹拌、反応器を機械的に回転あるいは振動させる方法、原料CNTを気体の流通により流動させる方法などが挙げられる。   The contact between the raw material CNT and the fluorine gas may be performed in a batch mode, a semi-batch mode in which the fluorine gas is intermittently replaced, or a flow mode. Moreover, it is preferable to provide an appropriate stirring mechanism in the reactor in order to bring the raw material CNT and fluorine gas into uniform contact. Examples of the stirring mechanism include stirring by various stirring blades, a method of mechanically rotating or vibrating the reactor, and a method of flowing the raw material CNT by flowing gas.

原料CNTとフッ素ガスとを接触させる際の温度は、通常、100〜500℃の範囲である。反応時間を短縮し、CNTを構成するカーボンとフッ素とを効率よく反応させる観点から、好ましくは100〜450℃、より好ましくは200〜400℃である。接触時間は、接触方式や接触条件にもよるが、特に限定されず、10秒間から100時間の範囲内で設定すればよい。   The temperature at which the raw material CNT is brought into contact with the fluorine gas is usually in the range of 100 to 500 ° C. From the viewpoint of shortening the reaction time and efficiently reacting the carbon constituting the CNT and fluorine, the temperature is preferably 100 to 450 ° C, more preferably 200 to 400 ° C. The contact time depends on the contact method and contact conditions, but is not particularly limited, and may be set within a range of 10 seconds to 100 hours.

原料CNTとフッ素ガスとを接触させた後、得られた処理後CNTに物理吸着している不要なフッ素ガスや接触時に生じたフッ化水素(HF)を除去するため、処理後CNTを水で洗浄する。洗浄は、例えば、処理後CNTに十分量の水を加え、室温で適宜攪拌した後、ろ過する作業を繰り返し、洗浄排水中にフッ素が実質的に検出されなくなる程度まで行う。
以上の工程により、本発明の導電膜の製造方法に使用可能なCNTが得られる。
After contacting the raw material CNT with fluorine gas, the treated CNT is treated with water in order to remove unnecessary fluorine gas physically adsorbed on the obtained treated CNT and hydrogen fluoride (HF) generated upon contact. Wash. Washing is performed, for example, by adding a sufficient amount of water to the treated CNTs, stirring appropriately at room temperature, and then filtering, until the fluorine is substantially not detected in the washing waste water.
Through the above steps, CNTs usable in the method for producing a conductive film of the present invention are obtained.

本発明の導電膜の製造方法においては、上記CNTと共に金属ナノ構造体を添加してもよい。金属ナノ構造体とは、金属又は金属化合物からなる微小構造体であり、導電性を有するものを指す。
あるいは、上記CNTに金属を担持させ、金属複合材料の形態で添加してもよい。金属複合材料とは、CNTとめっき処理可能な金属とを複合化したものであり、これを使用することで、製造される導電膜の導電性を高めることができる。
上記の金属ナノ構造体または金属複合材料に使用される金属としては、銅、ニッケル、錫、白金、クロム、亜鉛、及びこれらの複合金属等が挙げられ、特に優れた導電性及び熱伝導性を有する銅が好適に使用可能である。
In the manufacturing method of the electrically conductive film of this invention, you may add a metal nanostructure with the said CNT. The metal nanostructure is a microstructure made of a metal or a metal compound and refers to a conductive material.
Alternatively, a metal may be supported on the CNT and added in the form of a metal composite material. The metal composite material is a composite of CNT and a metal that can be plated, and by using this, the conductivity of the manufactured conductive film can be increased.
Examples of the metal used in the metal nanostructure or the metal composite material include copper, nickel, tin, platinum, chromium, zinc, and composite metals thereof. The copper which it has can be used conveniently.

(分散液)
本発明の分散液は、前記CNTを含んでなる。前記CNTは、溶媒への分散性に優れたものであることから、その分散液を製造するにあたり、分散剤を必要としない。従って、当該分散液は、通常、前記CNTと溶媒とからなる。
(Dispersion)
The dispersion of the present invention comprises the CNT. Since the CNTs are excellent in dispersibility in a solvent, a dispersant is not required for producing the dispersion. Therefore, the dispersion liquid usually consists of the CNT and a solvent.

分散液の調製に用いる溶媒としては、水;メタノール、エタノール、プロパノール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、1,3−ジメチル−2イミダゾリジノン等のアミド類;ジメチルスルホキシド、スルホラン等の含イオウ系溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。   Solvents used for preparing the dispersion include water; alcohols such as methanol, ethanol and propanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; N, N-dimethylformamide, N, N -Amides such as dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; and the like. These solvents can be used alone or in combination of two or more.

なお、前記分散液には、所望により、結着剤、導電助剤、分散剤、界面活性剤等を含有させてもよい。これらは公知のものを適宜使用すればよい。   The dispersion may contain a binder, a conductive aid, a dispersant, a surfactant and the like as desired. These may be appropriately known ones.

前記分散液は、例えば、前記CNTを溶媒中で混合し、該CNTを分散させることで得ることができる。
混合処理や分散処理は、例えば、ナノマイザー、アルティマイザー、超音波分散機、ボールミル、サンドグラインダー、ダイノミル、スパイクミル、DCPミル、バスケットミル、ペイントコンディショナー、高速攪拌装置等を用いる方法を利用すればよい。
The dispersion can be obtained, for example, by mixing the CNTs in a solvent and dispersing the CNTs.
For the mixing process and dispersion process, for example, a method using a nanomizer, an optimizer, an ultrasonic disperser, a ball mill, a sand grinder, a dyno mill, a spike mill, a DCP mill, a basket mill, a paint conditioner, a high-speed stirring device, or the like may be used. .

前記分散液中、前記CNTの含有量は、特に限定されないが、好ましくは0.001〜10質量%である。
前記分散液は、CNTが均一に分散しており、CNTの導電膜の製造に適するものである。
The content of the CNT in the dispersion is not particularly limited, but is preferably 0.001 to 10% by mass.
In the dispersion, CNTs are uniformly dispersed, and are suitable for manufacturing a conductive film of CNTs.

(導電膜)
本発明の導電膜は、前記CNTを含む前記分散液を成膜された膜を、還元剤により還元することで製造される。導電膜の厚さは、通常、5nm〜100μmの範囲である。導電膜は、長尺の連続シートであってもよい。導電膜の比重としては、通常、0.3〜3.0g/cmが好適である。
(Conductive film)
The conductive film of the present invention is produced by reducing a film formed with the dispersion containing the CNTs with a reducing agent. The thickness of the conductive film is usually in the range of 5 nm to 100 μm. The conductive film may be a long continuous sheet. The specific gravity of the conductive film is usually preferably from 0.3 to 3.0 g / cm 3 .

(導電膜の製造方法の各工程)
以下、前記分散液から導電膜を製造する各工程について項分けして説明する。
[未還元膜の成膜工程]
本発明の導電膜の製造工程においては、まず、前記分散液を、例えば、任意の支持体上に塗布し、得られた塗膜を乾燥して、未還元膜を成膜する。支持体が多孔性である場合、前記分散液を、該支持体を介して濾過し、得られた濾過物を乾燥してもよい。
未還元膜は、前記支持体を付加した状態で後述の還元工程に供してもよく、前記支持体を除去した状態で後述の還元工程に供してもよい。
(Each process of the manufacturing method of an electrically conductive film)
Hereinafter, each process for producing a conductive film from the dispersion will be described.
[Deposition process of unreduced film]
In the process for producing a conductive film of the present invention, first, the dispersion is applied on, for example, an arbitrary support, and the obtained coating film is dried to form an unreduced film. When the support is porous, the dispersion may be filtered through the support and the obtained filtrate may be dried.
The unreduced membrane may be subjected to a reduction process described later with the support added, or may be subjected to a reduction process described below with the support removed.

前記支持体としては、未還元膜の製造中、膜を十分に固定することができ、かつ、膜形成後、容易に除去できるものであれば特に制限されない。例えば、PTFE(ポリテトラフルオロエチレン)シート、PET(ポリエチレンテレフタレート)シート等の合成樹脂シートや、セルロース、ニトロセルロース、ろ紙、アルミナ等の多孔性シートが挙げられる。   The support is not particularly limited as long as it can sufficiently fix the film during the production of the non-reduced film and can be easily removed after the film is formed. Examples thereof include synthetic resin sheets such as PTFE (polytetrafluoroethylene) sheets and PET (polyethylene terephthalate) sheets, and porous sheets such as cellulose, nitrocellulose, filter paper, and alumina.

支持体上に分散液を塗布する際は、公知の塗布方法を採用できる。塗布方法としては、ディッピング法、ロールコート法、グラビアコート法、ナイフコート法、エアナイフコート法、ロールナイフコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等が挙げられる。   When applying the dispersion on the support, a known application method can be employed. Examples of the coating method include a dipping method, a roll coating method, a gravure coating method, a knife coating method, an air knife coating method, a roll knife coating method, a die coating method, a screen printing method, a spray coating method, and a gravure offset method.

得られた塗膜又は濾過物を乾燥させる際は、公知の乾燥方法を採用できる。乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等が挙げられる。乾燥温度は特に限定されないが、通常、室温〜200℃、乾燥時間は特に限定されないが、通常、0.1〜150分である。乾燥雰囲気下は、空気中、窒素やアルゴンなど不活性ガス中、真空中など適時選択してよい。   When drying the obtained coating film or filtration thing, a well-known drying method is employable. Examples of the drying method include a hot air drying method, a hot roll drying method, and an infrared irradiation method. The drying temperature is not particularly limited, but is usually room temperature to 200 ° C., and the drying time is not particularly limited, but is usually 0.1 to 150 minutes. The dry atmosphere may be selected as appropriate, such as in air, in an inert gas such as nitrogen or argon, or in a vacuum.

前記未還元膜を前記分散液により形成することで、製造される本発明の導電膜は分散剤を含まないものとして得ることができる。従って、導電性を高めるために分散剤の除去を行う必要がなく、本発明の導電膜はそのまま導電性に優れたものとなる。   By forming the unreduced film with the dispersion, the conductive film of the present invention to be produced can be obtained as containing no dispersant. Therefore, it is not necessary to remove the dispersant in order to increase the conductivity, and the conductive film of the present invention is excellent in conductivity as it is.

上記未還元膜としては、特に、前記SGCNTを用いてなるものが好ましい。上述のように、SGCNTの平均直径(Av)は、好ましくは0.5nm以上、15nm以下である。また、その平均長さは、好ましくは0.1μm〜1cmである。上記未還元膜を、このような形状的特徴を有するSGCNTを用いて形成すると、カーボンナノチューブが互いに交差して網目状構造を形成した構造を有する導電膜を容易に得ることができる。   As the unreduced film, a film using SGCNT is particularly preferable. As described above, the average diameter (Av) of SGCNT is preferably 0.5 nm or more and 15 nm or less. Moreover, the average length becomes like this. Preferably they are 0.1 micrometer-1 cm. When the non-reduced film is formed using SGCNT having such shape characteristics, a conductive film having a structure in which carbon nanotubes cross each other to form a network structure can be easily obtained.

[未還元膜の還元工程]
ついで、前記未還元膜を、還元剤を用いて還元し、本発明の導電膜を形成する。還元剤としては、特に制限されるものではないが、例えば、水素化ホウ素化合物、金属水素化物、有機還元溶媒、水素ガスや不活性ガス中での加熱などが挙げられる。水素化ホウ素化合物としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素テトラブチルアンモニウム、水素化トリメトキシホウ素ナトリウム、及びこれらの混合物が挙げられる。金属水素化物としては、例えば、水素化ホウ素系金属水素化物、水素化アルミニウム、水素化ナトリウム、水素化ジイソブチルアルミニウム、水素化リチウムアルミニウムなどが挙げられ、好ましくは水素化ナトリウム、水素化ジイソブチルアルミニウム、水素化リチウムアルミニウムが挙げられる。これらの金属水素化物は、単独で使用されてもよく、これらの混合物として使用されてもよい。水素ガスを用いてCNTを還元する場合には、遷移金属触媒を用いるか、高温下で還元反応を進めることが好ましい。本発明の一実施形態による有機還元溶媒は、特に制限されないが、例えば、ヒドラジン(NHNH)、グリコール系溶媒、ジオール系溶媒、及びこれらの混合物が挙げられる。ここで、グリコール系溶媒の具体例としては、特に制限されないが、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが好ましく挙げられる。ジオール系溶媒の具体例としては、特に制限されないが、1,3−プロパンジオール、1,3−ブタンジオールなどが好ましく挙げられる。
[Reduction process of unreduced film]
Next, the non-reduced film is reduced using a reducing agent to form the conductive film of the present invention. Although it does not restrict | limit especially as a reducing agent, For example, the heating in a borohydride compound, a metal hydride, an organic reduction solvent, hydrogen gas, or inert gas etc. are mentioned. Examples of the borohydride compound include sodium borohydride, tetrabutylammonium borohydride, sodium trimethoxyborohydride, and mixtures thereof. Examples of the metal hydride include borohydride metal hydride, aluminum hydride, sodium hydride, diisobutylaluminum hydride, lithium aluminum hydride and the like, preferably sodium hydride, diisobutylaluminum hydride, hydrogen Lithium aluminum halide. These metal hydrides may be used alone or as a mixture thereof. When reducing CNTs using hydrogen gas, it is preferable to use a transition metal catalyst or to proceed the reduction reaction at a high temperature. The organic reducing solvent according to an embodiment of the present invention is not particularly limited, and examples thereof include hydrazine (NH 2 NH 2 ), glycol-based solvents, diol-based solvents, and mixtures thereof. Here, specific examples of the glycol solvent are not particularly limited, but preferred examples include ethylene glycol, diethylene glycol, and triethylene glycol. Specific examples of the diol solvent are not particularly limited, but 1,3-propanediol, 1,3-butanediol and the like are preferable.

前記未還元膜を前記還元剤と反応させ、未還元膜を還元して導電膜を形成する。還元剤の量は、特に制限されないが、CNTに対して0.003〜3000質量%とすることが好ましく、0.03〜500質量%とすることがより好ましい。なお、具体的な還元剤の量は、還元剤の種類により異なる。   The unreduced film is reacted with the reducing agent, and the unreduced film is reduced to form a conductive film. The amount of the reducing agent is not particularly limited, but is preferably 0.003 to 3000% by mass and more preferably 0.03 to 500% by mass with respect to CNT. The specific amount of the reducing agent varies depending on the type of the reducing agent.

還元剤と未還元膜との反応時間及び反応温度は、特に制限されないが、25〜300℃で1〜24時間反応させることが好ましい。なお、具体的な温度及び時間は、還元剤の種類によって異なる。なお、未還元膜が還元されたことは、還元工程前後に、例えば、X線光電子分析装置(XPS)を用いて膜表面のC=OおよびCOOHに相当するピーク強度を測定し、比較することで確認できる。還元工程後においては、前記ピーク強度は減少する。   The reaction time and reaction temperature between the reducing agent and the unreduced film are not particularly limited, but it is preferable to react at 25 to 300 ° C. for 1 to 24 hours. The specific temperature and time vary depending on the type of reducing agent. The reduction of the unreduced film is measured by comparing the peak intensity corresponding to C = O and COOH on the film surface using, for example, an X-ray photoelectron analyzer (XPS) before and after the reduction process. It can be confirmed with. After the reduction step, the peak intensity decreases.

前記未還元膜が支持体を付加した状態で還元工程に供された場合、支持体から還元後の膜を剥離することで、本発明の導電膜を得ることができる。   When the unreduced film is subjected to a reduction process with a support added, the conductive film of the present invention can be obtained by peeling the reduced film from the support.

本発明の導電膜の製造方法は、分散性の高いCNTを用いて成膜することで、膜強度の高い未還元膜を得ることができ、さらに、この未還元膜を還元することで導電性の高い導電膜を形成し得るものである。   According to the method for producing a conductive film of the present invention, an unreduced film having high film strength can be obtained by forming a film using highly dispersible CNTs, and further, the conductive film can be made conductive by reducing the unreduced film. A highly conductive film can be formed.

2.導電性フィルム
前記導電膜を、所定の基材を用意し、この基材に、ホットプレス等で圧着させることで、当該基材上に本発明の導電膜を備えたからなる導電性フィルムを形成することができる。この場合、未還元膜形成時に使用した支持体から導電膜を剥離せずに基材に圧着させ、圧着後に前記支持体を導電膜から剥離してもよい。
または、支持体として、所定の基材等を用い、その上に前記分散液を塗布し、得られた塗膜を乾燥、還元することで、当該基材上に本発明の導電膜を備えた導電性フィルムを形成してもよい。
2. Conductive film A predetermined base material is prepared for the conductive film, and the base film is pressure-bonded to the base material by hot pressing or the like to form a conductive film comprising the conductive film of the present invention on the base material. be able to. In this case, the conductive film may be pressure-bonded to the substrate without being peeled from the support used at the time of forming the non-reduced film, and the support may be peeled off from the conductive film after pressure bonding.
Alternatively, a predetermined base material or the like is used as a support, the dispersion liquid is applied thereon, and the obtained coating film is dried and reduced to provide the conductive film of the present invention on the base material. A conductive film may be formed.

基材としては、特に限定されることなく、製造する導電膜の用途に応じて既知の基材を用いることができる。具体的には、例えば得られた導電膜を透明導電膜として使用する場合には、基材としては、樹脂基材、ガラス基材などを挙げることができる。樹脂基材としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロースなどよりなる基材を挙げることができる。ガラス基材としては、通常のソーダガラスよりなる基材を挙げることができる。   The substrate is not particularly limited, and a known substrate can be used depending on the use of the conductive film to be produced. Specifically, for example, when the obtained conductive film is used as a transparent conductive film, examples of the substrate include a resin substrate and a glass substrate. Resin base materials include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, polymethyl methacrylate, and alicyclic. The base material which consists of an acrylic resin, a cycloolefin resin, a triacetyl cellulose etc. can be mentioned. Examples of the glass substrate include a substrate made of ordinary soda glass.

3.導電膜を用いた製品
ここで、本発明の導電膜は、分散剤を用いて調製したので導電膜中でCNTが良好に分散しており、且つ、洗浄工程及び分解工程を経て調製されているので分散剤の含有量が低減されている。従って、本発明の導電膜は、CNTの含有量が少なくても所望の導電性及び機械的特性を得ることができるので、透明性にも優れている。即ち、本発明の導電膜は、太陽電池やタッチパネルなどの透明導電膜として特に好適に用いることができる。
なお、本発明の導電膜は、任意にオーバーコート層等の既知の機能層を積層してから各種製品に使用することもできる。ここで、オーバーコート層等の機能層の導電膜上への積層は、既知の手法を用いて行なうことができる。
3. Product using conductive film Here, the conductive film of the present invention was prepared using a dispersant, so that CNTs were well dispersed in the conductive film, and were prepared through a cleaning process and a decomposition process. Therefore, the content of the dispersant is reduced. Therefore, the conductive film of the present invention is excellent in transparency because desired conductivity and mechanical properties can be obtained even if the CNT content is low. That is, the electrically conductive film of this invention can be used especially suitably as transparent electrically conductive films, such as a solar cell and a touch panel.
In addition, the electrically conductive film of this invention can also be used for various products, after laminating | stacking known functional layers, such as an overcoat layer arbitrarily. Here, lamination of a functional layer such as an overcoat layer on the conductive film can be performed using a known technique.

(タッチパネル)
具体的には、本発明の導電膜は、透明基板上に形成されて静電容量式タッチパネルなどのタッチパネルのタッチセンサーを構成する導電層として好適に用いることができる。
(Touch panel)
Specifically, the conductive film of the present invention can be suitably used as a conductive layer that is formed on a transparent substrate and constitutes a touch sensor of a touch panel such as a capacitive touch panel.

(太陽電池)
また、本発明の導電膜は、色素増感型太陽電池などの太陽電池の電極を構成する導電層や触媒層として用いることができる。より具体的には、本発明の導電膜は、色素増感型太陽電池の光電極を構成する導電層や、色素増感型太陽電池の対向電極(触媒電極)を構成する導電層及び/または触媒層として用いることができる。
(Solar cell)
Moreover, the electrically conductive film of this invention can be used as a conductive layer and a catalyst layer which comprise the electrode of solar cells, such as a dye-sensitized solar cell. More specifically, the conductive film of the present invention includes a conductive layer constituting a photoelectrode of a dye-sensitized solar cell, a conductive layer constituting a counter electrode (catalyst electrode) of the dye-sensitized solar cell, and / or It can be used as a catalyst layer.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、物性等の評価は、以下の方法により行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. The physical properties were evaluated by the following methods.

(1)昇温脱離法による評価
日本ベル社製の全自動昇温脱離スペクトル装置「TPD−1−ATw」に導電膜を設置し、キャリヤーガス(He)を50mL/分で流通させた。CO及びCOの脱離量は、5℃/分の昇温速度で150℃から950℃に昇温して導電膜を加熱し、その間に生じたCO及びCOを四重極質量分析計で検出し、得られたCO及びCOのガス量からCNTの1gあたりから生ずるガスの量(μmol)を計算し、CO及びCOの脱離量をそれぞれ求めた。
(2)分散性
イオン交換水又はエタノール5mLにCNTを0.001g加え、超音波分散機で60分間分散させ、以下の評価基準に従って分散性を目視で評価した。
〔評価基準〕
○:目で見える凝集物が存在しない
×:目で見える凝集物が存在する
(3)体積抵抗率
導電率計(三菱アナリテック社製、製品名「ロレスタ(登録商標)GP」)により四端子法にて測定した。
〔評価基準〕
○:導電率が還元後に向上した
×:導電率が還元後に低下した
(1) Evaluation by temperature-programmed desorption method A conductive film was placed on a fully automatic temperature-programmed desorption spectrometer “TPD-1-ATw” manufactured by Bell Japan, and carrier gas (He) was circulated at 50 mL / min. . The amount of CO and CO 2 desorbed was raised from 150 ° C. to 950 ° C. at a rate of temperature increase of 5 ° C./min to heat the conductive film, and the CO and CO 2 produced during that time were measured using a quadrupole mass spectrometer. The amount of gas (μmol) generated from 1 g of CNTs was calculated from the gas amounts of CO and CO 2 obtained, and the amounts of CO and CO 2 desorbed were determined, respectively.
(2) Dispersibility 0.001 g of CNT was added to 5 mL of ion-exchanged water or ethanol and dispersed for 60 minutes with an ultrasonic disperser, and the dispersibility was visually evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
○: No visible agglomerates existed x: Visible agglomerates existed (3) Volume resistivity Four terminals by conductivity meter (product name “Loresta (registered trademark) GP” manufactured by Mitsubishi Analitech Co., Ltd.) Measured by the method.
〔Evaluation criteria〕
○: conductivity improved after reduction ×: conductivity decreased after reduction

(CNTの調製)
国際公開第2006/011655号の記載に従って、スーパーグロース法によりSGCNTを調製した。
得られたSGCNTは、主に単層CNTから構成され、BET比表面積が800m/g、マイクロ孔容積が0.44mL/gであった。また、平均直径(Av)が3.3nm、直径分布(3σ)が1.9nm、(3σ/Av)が0.58であり、平均長さが500μmであった。
(Preparation of CNT)
SGCNT was prepared by the super-growth method according to the description of WO 2006/011655.
The obtained SGCNT was mainly composed of single-walled CNTs, and had a BET specific surface area of 800 m 2 / g and a micropore volume of 0.44 mL / g. The average diameter (Av) was 3.3 nm, the diameter distribution (3σ) was 1.9 nm, (3σ / Av) was 0.58, and the average length was 500 μm.

[実施例:導電性フィルムの調製]
500mL三口フラスコに、温度計、水流式還流冷却器及び攪拌機を取り付け、当該フラスコに、上記のSGCNTを1gと、硝酸(東京化成社製、純度69%)80mLとを加えた。この三口フラスコを130℃のオイルバスで加熱し、内温が130℃の還流状態になってから6時間加熱攪拌して反応させた。反応終了後、室温まで放冷し、イオン交換水を加え、上澄みをデカンテーションにより除き、さらにイオン交換水を加えた。除去される上澄み(洗浄液)が中性(pH=6.8)となるまでイオン交換水の添加とデカンテーションを繰り返し、ウエットの状態で21.3gの硝酸処理SGCNTを得た。
30mLのガラス瓶に、1%アンモニア水溶液を10mLに上記硝酸処理SGCNTを0.05質量%となるように添加したものを入れ、超音波バス(BRANSON)にて、室温で30分間分散処理を行い、分散液を得た。
得られた分散液をPETフィルム(親水化処理済、東洋紡製)にバーコーター(#6番)を用いて塗布して、80℃のオーブンに入れ、5分間乾燥を行った。乾燥後、オーブンから取り出し、導電率を測定した。
乾燥後のフィルムについて、真空中(0.1Torr)で、ホットプレートにより100℃、30分間加熱処理を行った後、ヒドラジン(NHNH)ガス雰囲気で80℃、20分間加熱することで還元した。その後、導電率を測定した。各測定値を表1に示す。
[Example: Preparation of conductive film]
A thermometer, a water flow reflux condenser and a stirrer were attached to a 500 mL three-necked flask, and 1 g of the above SGCNT and 80 mL of nitric acid (Tokyo Kasei Co., Ltd., purity 69%) were added to the flask. The three-necked flask was heated in a 130 ° C. oil bath, and the reaction was carried out by heating and stirring for 6 hours after the internal temperature reached a reflux state of 130 ° C. After completion of the reaction, the reaction mixture was allowed to cool to room temperature, ion exchange water was added, the supernatant was removed by decantation, and ion exchange water was further added. The addition and decantation of ion-exchanged water were repeated until the supernatant (washing solution) to be removed became neutral (pH = 6.8) to obtain 21.3 g of nitric acid-treated SGCNT in a wet state.
In a 30 mL glass bottle, a 1% aqueous ammonia solution added to 10 mL of the nitric acid-treated SGCNT so as to be 0.05% by mass is subjected to a dispersion treatment at room temperature for 30 minutes in an ultrasonic bath (BRANSON). A dispersion was obtained.
The obtained dispersion was applied to a PET film (hydrophilized, manufactured by Toyobo) using a bar coater (# 6), placed in an oven at 80 ° C., and dried for 5 minutes. After drying, it was removed from the oven and the conductivity was measured.
The dried film is reduced by heating in a hydrazine (NH 2 NH 2 ) gas atmosphere at 80 ° C. for 20 minutes after being heat-treated at 100 ° C. for 30 minutes in a vacuum (0.1 Torr) with a hot plate. did. Thereafter, the conductivity was measured. Table 1 shows the measured values.

[比較例]
実施例において、硝酸によるSGCNTの酸化処理を行わなかった以外は、実施例と同様にしてフィルムを形成し、還元前後のフィルムの導電率を測定した。各測定値を表1に示す。
[Comparative example]
In the examples, a film was formed in the same manner as in the example except that the SGCNT was not oxidized with nitric acid, and the conductivity of the film before and after the reduction was measured. Table 1 shows the measured values.

Figure 2015146227
Figure 2015146227

表1より、実施例で得られた処理後SGCNTは、本発明において所定のCOとCOの脱離量を示しており、分散液中において、良好な分散性を示すことが分かった。また、比較例のフィルムは、還元工程の前後でその導電性に大きな変化が見られなかったが、実施例の導電性フィルムは、還元工程前後の導電膜の導電性について、還元後に十分な改善が見られた。 From Table 1, it was found that the post-treatment SGCNT obtained in the examples showed a predetermined amount of CO and CO 2 desorption in the present invention, and showed good dispersibility in the dispersion. In addition, although the film of the comparative example did not show a significant change in the conductivity before and after the reduction process, the conductive film of the example sufficiently improved the conductivity of the conductive film before and after the reduction process. It was observed.

本発明の導電膜及び導電性フィルムは、例えば、タッチパネル、太陽電池、燃料電池等の電子機器や電子部材に用いる電極の構成材料等として好適に用いられる。
The conductive film and conductive film of the present invention are suitably used as constituent materials for electrodes used in electronic devices and electronic members such as touch panels, solar cells, and fuel cells.

Claims (4)

昇温脱離法における150〜950℃での、一酸化炭素の脱離量が1000〜10000μmol/gであり、かつ二酸化炭素の脱離量が500〜5000μmol/gのカーボンナノチューブを含む分散液を調製する工程、前記分散液から膜を形成する工程、及び前記膜を還元剤と接触させて還元する工程、とを含む導電膜の製造方法。   A dispersion containing carbon nanotubes having a carbon monoxide desorption amount of 1000 to 10000 μmol / g and a carbon dioxide desorption amount of 500 to 5000 μmol / g at 150 to 950 ° C. in a temperature programmed desorption method. The manufacturing method of the electrically conductive film including the process of preparing, the process of forming a film | membrane from the said dispersion liquid, and the process of making the said film | membrane contact and reducing. 請求項1に記載の製造方法により製造された導電膜。   The electrically conductive film manufactured by the manufacturing method of Claim 1. 基材上に請求項2に記載の導電膜を備えた導電性フィルム。   The electroconductive film provided with the electrically conductive film of Claim 2 on the base material. 請求項2に記載の導電膜又は請求項3に記載の導電性フィルムを備えた色素増感太陽電池用電極。
The electrode for dye-sensitized solar cells provided with the electrically conductive film of Claim 2, or the electroconductive film of Claim 3.
JP2014017602A 2014-01-31 2014-01-31 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell Pending JP2015146227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014017602A JP2015146227A (en) 2014-01-31 2014-01-31 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014017602A JP2015146227A (en) 2014-01-31 2014-01-31 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2015146227A true JP2015146227A (en) 2015-08-13

Family

ID=53890386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014017602A Pending JP2015146227A (en) 2014-01-31 2014-01-31 Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2015146227A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190108A1 (en) * 2014-06-13 2015-12-17 日本ゼオン株式会社 Dye-sensitized-solar-cell opposite electrode, dye-sensitized solar cell, and solar cell module
WO2018169249A1 (en) * 2017-03-16 2018-09-20 한국전기연구원 Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes
KR20180105860A (en) * 2017-03-16 2018-10-01 한국전기연구원 Reduced carbon nanotube oxide and their fabrication methods
KR20190042245A (en) * 2017-10-16 2019-04-24 한국전기연구원 Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods
WO2019124159A1 (en) * 2017-12-19 2019-06-27 日本ゼオン株式会社 Fibrous carbon nanostructure
WO2022044685A1 (en) * 2020-08-28 2022-03-03 日本ゼオン株式会社 Oxidized carbon nanotubes and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190108A1 (en) * 2014-06-13 2015-12-17 日本ゼオン株式会社 Dye-sensitized-solar-cell opposite electrode, dye-sensitized solar cell, and solar cell module
JPWO2015190108A1 (en) * 2014-06-13 2017-04-20 日本ゼオン株式会社 Counter electrode for dye-sensitized solar cell, dye-sensitized solar cell and solar cell module
WO2018169249A1 (en) * 2017-03-16 2018-09-20 한국전기연구원 Carbon nanotube composition, method for manufacturing carbon nanotube composition, reduced oxidized carbon nanotubes, and method for manufacturing reduced oxidized carbon nanotubes
KR20180105860A (en) * 2017-03-16 2018-10-01 한국전기연구원 Reduced carbon nanotube oxide and their fabrication methods
KR102190466B1 (en) * 2017-03-16 2020-12-11 한국전기연구원 Reduced carbon nanotube oxide and their fabrication methods
KR20190042245A (en) * 2017-10-16 2019-04-24 한국전기연구원 Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods
KR102190467B1 (en) * 2017-10-16 2020-12-11 한국전기연구원 Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods
WO2019124159A1 (en) * 2017-12-19 2019-06-27 日本ゼオン株式会社 Fibrous carbon nanostructure
JPWO2019124159A1 (en) * 2017-12-19 2020-12-17 日本ゼオン株式会社 Fibrous carbon nanostructures
JP7276148B2 (en) 2017-12-19 2023-05-18 日本ゼオン株式会社 fibrous carbon nanostructure
WO2022044685A1 (en) * 2020-08-28 2022-03-03 日本ゼオン株式会社 Oxidized carbon nanotubes and production method therefor

Similar Documents

Publication Publication Date Title
Madurani et al. Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry
Zhang et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates
Ye et al. In situ formation of metal oxide nanocrystals embedded in laser-induced graphene
Cui et al. Breakdown of native oxide enables multifunctional, free-form carbon nanotube–metal hierarchical architectures
Shehzad et al. Three-dimensional macro-structures of two-dimensional nanomaterials
JP2015146227A (en) Method of producing conductive coating, conductive coating, conductive film and electrode for dye-sensitized solar cell
Yan et al. Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating
Tong et al. Graphene based materials and their composites as coatings
Yang et al. Flexible transparent polypyrrole-decorated MXene-based film with excellent photothermal energy conversion performance
WO2015098089A1 (en) Conductive film, gas diffusion layer for fuel cells, catalyst layer for fuel cells, electrode for fuel cells, membrane electrode assembly for fuel cells, and fuel cell
CN1970442B (en) Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
WO2015045418A1 (en) Carbon nanotubes, dispersion liquid thereof, carbon nanotube-containing film and composition material
WO2011105021A1 (en) Substrate for forming carbon nanotubes, carbon nanotube composite, energy device, method for producing same, and device incorporating same
Venkateshalu et al. Heterogeneous 3D graphene derivatives for supercapacitors
Seo et al. Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors
Aitola et al. Comparison of dye solar cell counter electrodes based on different carbon nanostructures
Nakayama et al. Nitrogen-doped carbon cloth for supercapacitors prepared via a hydrothermal process
Etana et al. Functionalization of textile cotton fabric with reduced graphene oxide/MnO2/polyaniline based electrode for supercapacitor
Soni et al. Photo-catalytic reduction of oxygenated graphene dispersions for supercapacitor applications
Xie et al. Synthesis and supercapacitive properties of carboxylated graphene oxide-polyaniline/polypyrrole nanocomposites
Zhao et al. Realizing Highly‐Ordered Laser‐Reduced Graphene for High‐Performance Flexible Microsupercapacitor
JP5688321B2 (en) Porous carbon and method for producing the same
KR101286581B1 (en) Method for manufacturing graphene dispersed solution
Reaz et al. Performance improvement of supercapacitor materials with crushed 3D structured graphene
JP6164067B2 (en) Carbon nanotubes and dispersions thereof, and free-standing films and composite materials