JP2015135782A - マイクロ波処理装置及びマイクロ波処理方法 - Google Patents

マイクロ波処理装置及びマイクロ波処理方法 Download PDF

Info

Publication number
JP2015135782A
JP2015135782A JP2014007408A JP2014007408A JP2015135782A JP 2015135782 A JP2015135782 A JP 2015135782A JP 2014007408 A JP2014007408 A JP 2014007408A JP 2014007408 A JP2014007408 A JP 2014007408A JP 2015135782 A JP2015135782 A JP 2015135782A
Authority
JP
Japan
Prior art keywords
microwave
dielectric
processing apparatus
transmission window
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007408A
Other languages
English (en)
Inventor
晃司 下村
Koji Shimomura
晃司 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014007408A priority Critical patent/JP2015135782A/ja
Priority to US14/591,214 priority patent/US20150206778A1/en
Publication of JP2015135782A publication Critical patent/JP2015135782A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus
    • H05B6/6411Supports or covers specially adapted for use in microwave heating apparatus the supports being rotated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1209Features relating to the reactor or vessel
    • B01J2219/1221Features relating to the reactor or vessel the reactor per se
    • B01J2219/1242Materials of construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1275Controlling the microwave irradiation variables
    • B01J2219/1281Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves
    • B01J2219/1206Microwaves
    • B01J2219/1287Features relating to the microwave source
    • B01J2219/129Arrangements thereof
    • B01J2219/1296Multiple sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

【課題】マイクロ波処理装置において、処理容器内におけるマイクロ波の分布を細かく調整することが可能なマイクロ波処理装置を提供する。【解決手段】楔形部材51A,52Aは誘電率が小さく、楔形部材51B,52Bは楔形部材51A,52Aに比べて相対的に誘電率が大きい。誘電率が異なる2つの楔形部材を貼り合わせることによって、誘電体板51,52のそれぞれにおいて、導波管を伝送されてくるマイクロ波の進行方向に対して直交する方向での誘電率を不均一にすることができる。誘電体板51と誘電体板52とを相対的に回転させることによって、回転透過窓33Bを透過するマイクロ波の偏向角の大きさを変化させることができる。【選択図】図5

Description

本発明は、マイクロ波を処理容器に導入して基板に対して加熱処理を行うマイクロ波処理装置及びマイクロ波処理方法に関する。
半導体ウエハなどの基板に対してアニール処理を施す装置として、マイクロ波を使用する装置が知られている。マイクロ波によるアニール処理は、内部加熱、局所加熱、選択加熱が可能であることから、ランプ加熱方式や抵抗加熱方式のアニール装置に比べてプロセスメリットが大きいことが知られている。マイクロ波を利用して基板を均一に加熱するためには、処理容器内にマイクロ波を効率良く導入し、かつ基板に対して均等に照射することが重要である。例えば、特許文献1では、導波管から出射するマイクロ波を分散させる凹レンズを設け、ウエハの主面に垂直な中心線が凹レンズの光軸と一致するように配置したマイクロ波加熱処理装置が提案されている。
特開平5−021420号公報(特許請求の範囲など)
マイクロ波処理装置による加熱処理では、基板の面内における加熱温度の均一性を維持することが必要である。基板の面内における加熱温度の均一性を高めるためには、処理容器内で、導入されたマイクロ波の分布を細かく調整することが有効である。
本発明の目的は、マイクロ波処理装置において、処理容器内におけるマイクロ波の分布を細かく調整することが可能なマイクロ波処理装置を提供することである。
本発明のマイクロ波処理装置は、基板に対してマイクロ波を照射することにより処理を行うものである。本発明のマイクロ波処理装置は、前記基板を収容する処理容器と、前記マイクロ波を生成するマイクロ波源を有し、前記処理容器内のマイクロ波放射空間へ前記マイクロ波を導入するマイクロ波導入装置と、を備えている。
本発明のマイクロ波処理装置において、前記マイクロ波導入装置は、前記処理容器内へ前記マイクロ波を導く伝送路を形成する導波管と、前記伝送路と前記マイクロ波放射空間との間に介在する第1のマイクロ波透過窓と、前記第1のマイクロ波透過窓よりも前記マイクロ波源に近い側に設けられ、前記マイクロ波の進行方向を変化させる第2のマイクロ波透過窓と、を有している。
本発明のマイクロ波処理装置において、前記第2のマイクロ波透過窓は、誘電率が不均一な一つ又は複数の誘電体板によって構成されていてもよい。この場合、前記誘電体板は、前記導波管を伝送されてくる前記マイクロ波の進行方向に対して直交する方向の誘電率が不均一であってもよい。
本発明のマイクロ波処理装置において、複数の前記誘電体板が積層されていてもよい。
本発明のマイクロ波処理装置において、前記第2のマイクロ波透過窓は、それぞれ回転自在に設けられていてもよい。
本発明のマイクロ波処理装置において、前記第2のマイクロ波透過窓は、厚みが変化する形状を有する一つ又は複数の誘電体部材を有し、前記導波管を伝送されてくる前記マイクロ波に対して垂直でない入射角を形成するものであってもよい。この場合、前記誘電体部材は、前記マイクロ波の進行方向における断面が楔形をなしていてもよい。
本発明のマイクロ波処理装置において、複数の前記誘電体部材が積層されていてもよい。
本発明のマイクロ波処理装置において、複数の前記誘電体部材が、それぞれ回転自在に設けられていてもよい。
本発明のマイクロ波処理方法は、上記いずれかのマイクロ波処理装置を用いて基板を処理するものである。
本発明のマイクロ波処理装置は、マイクロ波の進行方向を変化させる第2のマイクロ波透過窓を有することによって、処理容器内のマイクロ波放射空間における電界強度分布を細かく調節することができる。従って、本発明のマイクロ波処理装置によれば、基板の面内で均一な処理を行うことができる。
本発明の一実施の形態に係るマイクロ波処理装置の概略の構成を示す断面図である。 図1に示した処理容器の天井部の下面を示す平面図である。 図1に示したマイクロ波処理装置の高電圧電源部の概略の構成を示す説明図である。 制御部のハードウェア構成を示すブロック図である。 回転透過窓の構成例を説明する図面である。 図5の状態から、上側の誘電体板を180°回転させた状態を説明する図面である。 回転透過窓の別の構成例を説明する図面である。 図7の状態から、上側の誘電体板を180°回転させた状態を説明する図面である。 回転透過窓のさらに別の構成例を説明する図面である。 図9の状態から、上側の誘電体板を180°回転させた状態を説明する図面である。 誘電体板の厚みとマイクロ波の位相との関係を説明する図面である。 本発明の第2の実施の形態に係るマイクロ波処理装置における回転透過窓の構成例を説明する図面である。 図12の状態から、上側の誘電体部材を180°回転させた状態を説明する図面である。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
まず、図1〜図11を参照して、本発明の第1の実施の形態に係るマイクロ波処理装置について説明する。図1は、マイクロ波処理装置の概略の構成を示す断面図である。図2は、図1に示した処理容器の天井部の下面を示す平面図である。マイクロ波処理装置1は、連続する複数の動作を伴って、例えば半導体デバイス製造用の半導体ウエハ(以下、単に「ウエハ」と記す。)Wに対して、マイクロ波を照射してアニール処理を施す装置である。ここで、平板状をなすウエハWにおいて、面積の広い上下の面のうち、上面が半導体デバイスの形成面であり、この面を処理対象となる主面とする。
マイクロ波処理装置1は、被処理体であるウエハWを収容する処理容器2と、処理容器2内にマイクロ波を導入するマイクロ波導入装置3と、処理容器2内においてウエハWを支持する支持装置4と、処理容器2内にガスを供給するガス供給機構5と、処理容器2内を減圧排気する排気装置6と、これらマイクロ波処理装置1の各構成部を制御する制御部8とを備えている。
<処理容器>
処理容器2は、金属材料によって形成されている。処理容器2を形成する材料としては、例えば、アルミニウム、アルミニウム合金、ステンレス等が用いられる。マイクロ波導入装置3は、処理容器2の上部に設けられ、処理容器2内に電磁波(マイクロ波)を導入するマイクロ波導入手段として機能する。マイクロ波導入装置3の構成については、後で詳しく説明する。
処理容器2は、上壁としての板状の天井部11および底壁としての底部13と、天井部11と底部13とを連結する側壁としての4つの側壁部12とを備えている。また、処理容器2は、天井部11を上下に貫通して形成された複数のマイクロ波導入ポート10と、側壁部12に形成された搬入出口12aと、底部13に形成された排気口13aとを有している。ここで、4つの側壁部12は、水平断面が直角に接続された角筒状をなしている。従って、処理容器2は、内部が空洞の立方体状をなしている。また、各側壁部12の内面は、いずれも平坦になっており、マイクロ波を反射させる反射面としての機能を有している。搬入出口12aは、処理容器2に隣接する図示しない搬送室との間でウエハWの搬入出を行うためものである。処理容器2と図示しない搬送室との間には、ゲートバルブGVが設けられている。ゲートバルブGVは、搬入出口12aを開閉する機能を有し、閉状態で処理容器2を気密にシールすると共に、開状態で処理容器2と図示しない搬送室との間でウエハWの移送を可能にする。
<支持装置>
支持装置4は、処理容器2の底部13のほぼ中央を貫通して処理容器2の外部まで延びる管状のシャフト14と、シャフト14の上端付近からほぼ水平方向に設けられた複数(例えば3つ)のアーム部15と、各アーム部15のそれぞれに着脱可能に装着された、複数の支持ピン16と、シャフト14を回転させる回転駆動部17と、シャフト14を上下に変位させる昇降駆動部18と、シャフト14を支持するとともに、回転駆動部17と昇降駆動部18とを連結する可動連結部19と、を有している。回転駆動部17、昇降駆動部18及び可動連結部19は、処理容器2の外部に設けられている。なお、処理容器2内を真空状態にする場合は、シャフト14が底部13を貫通する部分の周囲に、例えばベローズなどのシール機構20を設けることができる。
支持装置4において、シャフト14、アーム部15、回転駆動部17及び可動連結部19は、支持ピン16に支持されたウエハWを水平方向に回転させる回転機構を構成している。また、支持装置4において、シャフト14、アーム部15、昇降駆動部18及び可動連結部19は、支持ピン16に支持されたウエハWの高さ位置を調節する高さ位置調節機構を構成している。複数の支持ピン16は、処理容器2内においてウエハWの裏面に当接してウエハWを支持する。複数の支持ピン16は、その上端部がウエハWの周方向に並ぶように配置されている。複数のアーム部15は、回転駆動部17を駆動させることによって、シャフト14を回転中心にして回転し、各支持ピン16を水平方向に公転させる。また、複数の支持ピン16及びアーム部15は、昇降駆動部18を駆動させることによって、シャフト14とともに、上下方向に昇降変位するように構成されている。
複数の支持ピン16およびアーム部15は、誘電体材料によって形成されている。複数の支持ピン16およびアーム部15を形成する材料としては、例えば、石英、セラミックス等を用いることができる。
回転駆動部17は、シャフト14を回転させ得るものであれば、特に制限はなく、例えば図示しないモータ等を備えていてもよい。昇降駆動部18は、シャフト14及び可動連結部19を昇降変位させ得るものであれば、特に制限はなく、例えば図示しないボールねじ等を備えていてもよい。回転駆動部17と昇降駆動部18は一体の機構であってもよく、可動連結部19を有しない構成であってもよい。なお、ウエハWを水平方向に回転させる回転機構及びウエハWの高さ位置を調節する高さ位置調節機構は、それらの目的を実現できれば、他の構成であってもよい。
<排気機構>
排気装置6は、例えば、ドライポンプ等の真空ポンプを有している。マイクロ波処理装置1は、更に、排気口13aと排気装置6とを接続する排気管21と、排気管21の途中に設けられた圧力調整バルブ22と、を備えている。排気装置6の真空ポンプを作動させることにより、処理容器2の内部空間が減圧排気される。なお、マイクロ波処理装置1は、大気圧での処理も可能であり、その場合は、真空ポンプは不要である。排気装置6としてドライポンプ等の真空ポンプを用いる替わりに、マイクロ波処理装置1が設置される施設に設けられた排気設備を用いることも可能である。
<ガス導入機構>
マイクロ波処理装置1は、更に、処理容器2内にガスを供給するガス供給機構5を備えている。ガス供給機構5は、図示しないガス供給源を備えたガス供給装置5aと、ガス供給装置5aに接続され、処理容器2内に処理ガスを導入する複数の配管23(2本のみ図示)と、を備えている。複数の配管23は、処理容器2の側壁部12に接続されている。
ガス供給装置5aは、複数の配管23を介して、処理ガスとして、例えば、N、Ar、He、Ne、O、H等のガスを処理容器2内へサイドフロー方式で供給できるように構成されている。なお、処理容器2内へのガスの供給は、例えばウエハWに対向する位置(例えば、天井部11)にガス供給手段を設けて行ってもよい。また、ガス供給装置5aの代りに、マイクロ波処理装置1の構成には含まれない外部のガス供給装置を使用してもよい。図示しないが、マイクロ波処理装置1は、更に、配管23の途中に設けられたマスフローコントローラおよび開閉バルブを備えている。処理容器2内に供給されるガスの種類や、これらのガスの流量等は、マスフローコントローラおよび開閉バルブによって制御される。
<整流板>
マイクロ波処理装置1は、更に、処理容器2内の複数の支持ピン16の周囲において、側壁部12との間に、枠状をした整流板24を備えている。整流板24は、整流板24を上下に貫通するように設けられた複数の整流孔24aを有している。整流板24は、処理容器2内においてウエハWが配置される予定の領域の雰囲気を整流しながら排気口13aに向かって流すためのものである。整流板24は、例えば、アルミニウム、アルミニウム合金、ステンレス等の金属材料によって形成されている。なお、整流板24は、マイクロ波処理装置1における必須の構成要素ではなく、設けなくてもよい。
<温度計測部>
マイクロ波処理装置1は、更に、ウエハWの表面温度を測定する複数の放射温度計26と、複数の放射温度計26に接続された温度計測部27とを備えている。なお、図1では、ウエハWの中央部の表面温度を測定する放射温度計26を除いて、複数の放射温度計26の図示を省略している。
<マイクロ波放射空間>
本実施の形態のマイクロ波処理装置1では、処理容器2内において、天井部11、4つの側壁部12及び整流板24で区画される空間がマイクロ波放射空間Sを形成している。このマイクロ波放射空間Sには、天井部11に設けられた貫通開口である複数のマイクロ波導入ポート10からマイクロ波が放射される。処理容器2の天井部11、4つの側壁部12及び整流板24は、いずれも金属材料によって形成されているため、マイクロ波を反射し、マイクロ波放射空間S内に散乱させる。なお、整流板24を設けない場合には、処理容器2の天井部11、4つの側壁部12及び底部13で区画される空間がマイクロ波放射空間Sを形成することになる。
<マイクロ波導入装置>
次に、図1、図2及び図3を参照して、マイクロ波導入装置3の構成について説明する。図3は、マイクロ波導入装置3の高電圧電源部の概略の構成を示す説明図である。前述のように、マイクロ波導入装置3は、処理容器2の上部に設けられ、処理容器2内に電磁波(マイクロ波)を導入するマイクロ波導入手段として機能する。図1に示したように、マイクロ波導入装置3は、マイクロ波を処理容器2に導入する複数のマイクロ波ユニット30と、複数のマイクロ波ユニット30に接続された高電圧電源部40とを備えている。
(マイクロ波ユニット)
本実施の形態では、複数のマイクロ波ユニット30の構成は全て同一である。各マイクロ波ユニット30は、ウエハWを処理するためのマイクロ波を生成するマグネトロン31と、マグネトロン31において生成されたマイクロ波を処理容器2に伝送する伝送路としての導波管32と、マイクロ波導入ポート10を塞ぐように天井部11に固定された第1のマイクロ波透過窓としての透過窓33Aと、透過窓33Aよりもマグネトロン31に近い側に設けられた第2のマイクロ波透過窓としての回転透過窓33Bと、を有している。マグネトロン31は、本発明におけるマイクロ波源に対応する。
図2に示したように、本実施の形態では、処理容器2は、天井部11において周方向に等間隔に配置された4つのマイクロ波導入ポート10を有している。各マイクロ波導入ポート10は、長辺と短辺とを有する平面視矩形をなしている。各マイクロ波導入ポート10の大きさや、長辺と短辺の比は、マイクロ波導入ポート10毎に異なっていてもよいが、ウエハWに対するアニール処理の均一性を高めるとともに制御性をよくする観点から、4つのマイクロ波導入ポート10のすべてが同じ大きさ及び形状であることが好ましい。なお、本実施の形態では、各マイクロ波導入ポート10にそれぞれマイクロ波ユニット30が接続されている。つまり、マイクロ波ユニット30の数は4つである。
マグネトロン31は、高電圧電源部40によって供給される高電圧が印加される陽極および陰極(いずれも図示省略)を有している。また、マグネトロン31としては、種々の周波数のマイクロ波を発振することができるものを用いることができる。マグネトロン31によって生成されるマイクロ波は、被処理体の処理毎に最適な周波数を選択し、例えばアニール処理においては、2.45GHz、5.8GHz等の高い周波数のマイクロ波であることが好ましく、5.8GHzのマイクロ波であることが特に好ましい。
導波管32は、断面が矩形且つ角筒状の形状を有し、処理容器2の天井部11の上面から上方に延びている。マグネトロン31は、導波管32の上端部の近傍に接続されている。導波管32の下端部は、回転透過窓33Bの上面に近接している。マグネトロン31において生成されたマイクロ波は、導波管32、回転透過窓33Bおよび透過窓33Aを介して処理容器2内に導入される。
透過窓33Aは、誘電体材料によって形成されている。透過窓33Aの材料としては、例えば、石英、セラミックス等を用いることができる。透過窓33Aと天井部11との間は、図示しないシール部材によって気密にシールされている。
回転透過窓33Bは、例えば2枚の誘電体板51,52を含んでいる。回転透過窓33Bは、互いに相対的に回転可能な2枚の誘電体板51,52を上下に重ねた構造を有している。下側の誘電体板51と上側の誘電体板52は、密着していてもよいし、離間していてもよい。誘電体板51,52は、それぞれ、回転自在に設けられている。つまり、誘電体板51,52は、回転駆動部53によって積層方向に直交する平面上を独立して回転可能とされている。この場合の回転軸は、導波管32を伝送されてくるマイクロ波の進行方向と同じ方向である。回転駆動部53における駆動機構としては、例えばラック&ピニオン機構などを挙げることができる。なお、誘電体板51,52の構成については、後で詳述する。
マイクロ波ユニット30は、更に、導波管32の途中に設けられたサーキュレータ34、検出器35およびチューナ36と、サーキュレータ34に接続されたダミーロード37とを有している。サーキュレータ34、検出器35およびチューナ36は、導波管32の上端部側からこの順に設けられている。サーキュレータ34およびダミーロード37は、処理容器2からの反射波を分離するアイソレータを構成する。すなわち、サーキュレータ34は、処理容器2からの反射波をダミーロード37に導き、ダミーロード37は、サーキュレータ34によって導かれた反射波を熱に変換する。
検出器35は、導波管32における処理容器2からの反射波を検出するためのものである。検出器35は、例えばインピーダンスモニタ、具体的には、導波管32における定在波の電界を検出する定在波モニタによって構成されている。定在波モニタは、例えば、導波管32の内部空間に突出する3本のピンによって構成することができる。定在波モニタによって定在波の電界の場所、位相および強さを検出することにより、処理容器2からの反射波を検出することができる。また、検出器35は、進行波と反射波を検出することが可能な方向性結合器によって構成されていてもよい。
チューナ36は、マグネトロン31と処理容器2との間のインピーダンスのマッチング(以下、単に「マッチング」と記すことがある)を行う機能を有している。チューナ36によるマッチングは、検出器35における反射波の検出結果に基づいて行われる。チューナ36は、例えば、導波管32の内部空間に出し入れすることができるように設けられた導体板(図示省略)によって構成することができる。この場合、導体板の、導波管32の内部空間への突出量を制御することにより、反射波の電力量を調整して、マグネトロン31と処理容器2との間のインピーダンスを調整することができる。
(高電圧電源部)
高電圧電源部40は、マグネトロン31に対してマイクロ波を生成するための高電圧を供給する。図3に示したように、高電圧電源部40は、商用電源に接続されたAC−DC変換回路41と、AC−DC変換回路41に接続されたスイッチング回路42と、スイッチング回路42の動作を制御するスイッチングコントローラ43と、スイッチング回路42に接続された昇圧トランス44と、昇圧トランス44に接続された整流回路45とを有している。マグネトロン31は、整流回路45を介して昇圧トランス44に接続されている。
AC−DC変換回路41は、商用電源からの交流(例えば、三相200Vの交流)を整流して所定の波形の直流に変換する回路である。スイッチング回路42は、AC−DC変換回路41によって変換された直流のオン・オフを制御する回路である。スイッチング回路42では、スイッチングコントローラ43によってフェーズシフト型のPWM(Pulse Width Modulation)制御またはPAM(Pulse Amplitude Modulation)制御が行われて、パルス状の電圧波形が生成される。昇圧トランス44は、スイッチング回路42から出力された電圧波形を所定の大きさに昇圧するものである。整流回路45は、昇圧トランス44によって昇圧された電圧を整流してマグネトロン31に供給する回路である。
<制御部>
マイクロ波処理装置1の各構成部は、それぞれ制御部8に接続されて、制御部8によって制御される。制御部8は、典型的にはコンピュータである。図4は、図1に示した制御部8のハードウェア構成の一例を示している。制御部8は、主制御部101と、キーボード、マウス等の入力装置102と、プリンタ等の出力装置103と、表示装置104と、記憶装置105と、外部インターフェース106と、これらを互いに接続するバス107とを備えている。主制御部101は、CPU(中央処理装置)111、RAM(ランダムアクセスメモリ)112およびROM(リードオンリメモリ)113を有している。記憶装置105は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスク装置または光ディスク装置である。また、記憶装置105は、コンピュータ読み取り可能な記録媒体115に対して情報を記録し、また記録媒体115より情報を読み取るようになっている。記録媒体115は、情報を記憶できるものであれば、その形態は問わないが、例えばハードディスク、光ディスク、フラッシュメモリなどである。記録媒体115は、本実施の形態に係るマイクロ波処理方法のレシピを記録した記録媒体であってもよい。
制御部8では、CPU111が、RAM112を作業領域として用いて、ROM113または記憶装置105に格納されたプログラムを実行することにより、本実施の形態のマイクロ波処理装置1においてウエハWに対する加熱処理を実行できるようになっている。具体的には、制御部8は、マイクロ波処理装置1において、例えばウエハWの温度、処理容器2内の圧力、ガス流量、マイクロ波出力、ウエハWの回転速度等のプロセス条件に関係する各構成部(例えば、マイクロ波導入装置3、支持装置4、ガス供給装置5a、排気装置6等)を制御する。
<回転透過窓>
次に、図5〜図10を参照しながら、本実施の形態で用いる回転透過窓33Bの構成例について説明する。回転透過窓33Bは、2枚の誘電体板51,52を有している。誘電体板51,52は、それぞれ、導波管32を伝送されてくるマイクロ波の進行方向に対して直交する方向の誘電率が不均一に構成されている。誘電体板51,52の材質としては、例えば、石英、セラミックスのほか、アルミナ(Al)、ハフニア(HfO)などの金属酸化物、メタマテリアル等を用いることができる。誘電体板51,52を石英で形成する場合、石英に対し、不純物をドープすることによって、誘電率を変化させることができる。例えば、不純物としてBを用いる場合、周波数10GHzにおける石英の誘電率3.81、誘電損失0.0019に対し、Bのドーズ量を35質量%としたときの周波数10GHzにおける誘電率は5.06、誘電損失は0.034に変化する。この場合、石英に対し1桁程度誘電損失が高くなるが、マイクロ波を透過させる際の極端な発熱は生じないと考えられる。
図5〜10は、誘電体板51,52の構成例を示している。図5及び図6は、第1の態様を示している。図5及び図6では、誘電体板51は、互いに誘電率が異なり、傾斜面を有し、断面が楔形をなす2つの楔形部材51A,51Bをその傾斜面において貼り合わせることによって形成されている。また、誘電体板52も、互いに誘電率が異なり、傾斜面を有し、断面が楔形をなす2つの楔形部材52A,52Bをその傾斜面において貼り合わせることによって形成されている。ここでは、楔形部材51A,52Aは誘電率が小さく、楔形部材51B,52Bは楔形部材51A,52Aに比べて相対的に誘電率が大きい。このように、誘電率が異なる2つの楔形部材を貼り合わせることによって、誘電体板51,52のそれぞれにおいて、導波管32を伝送されてくるマイクロ波の進行方向に対して直交する方向での誘電率を不均一にすることができる。本態様では、楔形部材51A,52Aを石英で構成し、楔形部材51B,52Bを、例えば10〜40質量%の範囲内でBをドープした石英で構成することによって、図5及び図6に示したような誘電率の分布を作り出すことが可能である。図5及び図6では、Bをドープした石英をドットパターンで強調して示している。また、本態様では、楔形部材51A,52Aを石英で構成し、楔形部材51B,52Bをアルミナ(Al)、ハフニア(HfO)などの誘電率の高い材質で構成してもよい。
そして、図6に示すように、誘電体板51に対して誘電体板52を(又は、誘電体板52に対して誘電体板51を)積層方向に直交する平面上で例えば180°回転させることによって、回転透過窓33Bを透過するマイクロ波の偏向角の大きさを変化させることができる。この場合、図5では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が大きい部分とが上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が小さい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向で大きく変化し、誘電率の分布が最大となる。従って、図5では、回転透過窓33Bを透過するマイクロ波の偏向角が最大となる。
一方、図6では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が小さい部分が上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が大きい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向でほぼ均一となり、誘電率の分布が最小となる。従って、図6では、回転透過窓33Bを透過するマイクロ波の偏向が最小となる。
図7及び図8は、第2の態様を示している。図7及び図8では、回転透過窓33Bの誘電体板51,52として、それぞれ、積層方向に直交する方向で誘電率が徐々に変化する材質を用いている。なお、図7及び図8では、誘電率の変化を灰色の濃淡のグラデーションで強調して示している。本態様では、誘電体板51,52を石英で構成し、これらの積層方向に直交する方向で石英へのBのドーズ量を連続的に変える事で、例えば図7及び図8に示したような誘電率の分布を作り出すことが可能である。
図7と図8に示すように、誘電体板51に対して誘電体板52を(又は、誘電体板52に対して誘電体板51を)積層方向に直交する平面上で例えば180°回転させることによって、回転透過窓33Bを透過するマイクロ波の偏向の度合いを変化させることができる。この場合、図7では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が大きい部分とが上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が小さい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向で大きく変化し、誘電率の分布が最大となる。従って、図7では、回転透過窓33Bを透過するマイクロ波の偏向が最大となる。
一方、図8では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が小さい部分が上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が大きい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向でほぼ均一となり、誘電率の分布が最小となる。従って、図8では、回転透過窓33Bを透過するマイクロ波の偏向が最小となる。
図9及び図10は、第3の態様を示している。図9及び図10では、誘電率を自由に調節できるメタマテリアルを用いた例を示している。ここでは、誘電体板51,52のそれぞれにおいて、誘電率が大きい部分と小さい部分の比率を、その厚み方向(つまり、導波管32を伝送されてくるマイクロ波の進行方向)に変化させている。図9及び図10では、誘電体板51,52のそれぞれにおいて、相対的に、誘電率の大きな部分をドット模様で示し、誘電率が小さい部分を白抜きで示している。そして、図9と図10に示すように、誘電体板51に対して誘電体板52を(又は、誘電体板52に対して誘電体板51を)積層方向に直交する平面上で例えば180°回転させることによって、回転透過窓33Bを透過するマイクロ波の偏向の度合いを変化させることができる。この場合、図9では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が大きい部分とが上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が小さい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向で大きく変化し、誘電率の分布が最大となる。従って、図9では、回転透過窓33Bを透過するマイクロ波の偏向が最大となる。
一方、図10では、誘電体板51の誘電率が大きい部分と誘電体板52の誘電率が小さい部分が上下に重なり、誘電体板51の誘電率が小さい部分と誘電体板52の誘電率が大きい部分が上下に重なる。そのため、回転透過窓33Bの全体でみると、誘電体板51,52の積層方向における誘電率の厚みを考慮した加重平均が、積層方向に直交する方向でほぼ均一となり、誘電率の分布が最小となる。従って、図10では、回転透過窓33Bを透過するマイクロ波の偏向が最小となる。
なお、メタマテリアルを用いることによって、図7及び図8と同様に、誘電体板51,52を、それぞれ、積層方向に直交する方向で誘電率が徐々に変化するように構成してもよい。
ここで、図11を参照しながら、誘電体板の厚みとマイクロ波の位相との関係について説明する。図5〜図10に示したように、2枚以上の誘電体板を積層する場合は、積層境界でプラズマ(異常放電)が発生しないように、導波管32によって導かれるマイクロ波の波長を考慮して誘電体板の厚みを決定することが好ましい。例えば、透過窓33Aと回転透過窓33Bとの合計の厚みTtを0.25λ/εr以下[ここで、λは導波管32によって導かれるマイクロ波の波長であり、εrは、透過窓33A及び回転透過窓33Bを構成する誘電体の比誘電率である]にすることが好ましい。このようにすれば、透過窓33Aと誘電体板51との積層境界及び誘電体板51と誘電体板52との積層境界で、例えば、図11において円で囲んだA部及びB部に示したように、マイクロ波による電場が最小もしくは最小に近い値に調整することができる。従って、これらの積層境界でのプラズマの発生を抑制できる。
また、透過窓33Aと回転透過窓33Bとの合計の厚みTtを0.25λ/εr以下に設定することが困難な場合は、積層境界でプラズマが発生しないように、透過窓33A及び回転透過窓33Bを構成する誘電体の一枚の厚みtを(n−0.125)λ/εr≦t≦(n+0.125)λ/εr[ここで、λ、εrは前記と同じ意味を有し、nは正の整数を意味する]とすることが好ましい。
なお、誘電体板は、2枚を積層する場合に限らず、1枚でもよいし、3枚以上でもよい。また、誘電体板の回転角は例示した180°に限らず、0°〜360°の範囲で任意に決定してよい。
以上のように、マイクロ波処理装置1は、回転透過窓33Bが、導波管32を伝送されてくるマイクロ波の進行方向に対して直交する方向の誘電率が不均一な誘電体板51、52を備えている。そして、マイクロ波処理装置1では、誘電体板51、52のいずれか片方又は両方を、積層方向に直交する平面上で任意の角度に回転させることによって、回転透過窓33Bを透過するマイクロ波の進行方向を変化させ、処理容器2内のマイクロ波放射空間Sにおける電界強度分布を調節することができる。従って、マイクロ波処理装置1では、回転透過窓33Bによって、ウエハWの面内での加熱温度のばらつきを抑制し、ウエハWの面内で均一なアニール処理を行うことができる。
[マイクロ波処理方法]
次に、マイクロ波処理装置1で行われるマイクロ波処理方法について説明する。まず、制御部8の入力装置102から、マイクロ波処理装置1においてアニール処理を行うように指令が入力される。次に、主制御部101は、この指令を受けて、記憶装置105またはコンピュータ読み取り可能な記録媒体115に保存されたレシピを読み出す。次に、レシピに基づく条件によってアニール処理が実行されるように、主制御部101からマイクロ波処理装置1の各エンドデバイス(例えば、マイクロ波導入装置3、支持装置4、ガス供給装置5a、排気装置6等)に制御信号が送出される。
次に、ゲートバルブGVが開状態にされて、図示しない搬送装置によって、ウエハWが、ゲートバルブGVおよび搬入出口12aを介して処理容器2内に搬入され、複数の支持ピン16の上に載置される。そして、支持装置4の昇降駆動部18によって、ウエハWを保持する複数の支持ピン16を上下に変位させて所定の高さ位置にセットする。
次に、ゲートバルブGVが閉状態にされて、必要な場合は排気装置6によって、処理容器2内が減圧排気される。必要な場合は、ガス供給装置5aによって処理ガスが処理容器2内に導入される。処理容器2の内部空間は、排気量および処理ガスの供給量を調整することによって、所定の圧力に調整される。必要に応じて、制御部8の制御の下で回転駆動部17を駆動させることによって、ウエハWを水平方向に所定の速度で回転させる。なお、ウエハWの回転は、連続的でなく、非連続的であってもよい。
次に、高電圧電源部40からマグネトロン31に対して電圧を印加してマイクロ波を生成する。マグネトロン31において生成されたマイクロ波は、導波管32を伝搬し、回転透過窓33B及び透過窓33Aを透過して、処理容器2内においてウエハWの上方の空間に導入される。本実施の形態では、複数のマグネトロン31において順次マイクロ波を生成し、各マイクロ波導入ポート10から交互にマイクロ波を処理容器2内に導入する。本実施の形態では、マイクロ波を導入する前に予め、あるいは、マイクロ波を導入している間に、回転透過窓33Bの誘電体板51及び/又は52を回転させることによって、マイクロ波の偏向角を変化させ、マイクロ波放射空間Sにおけるマイクロ波の分布を細かく制御できる。また、マイクロ波を導入している間に回転透過窓33Bの誘電体板51及び/又は52を回転させながらウエハWの処理を行う場合は、所定間隔で間欠的に回転させてもよいし、連続的に回転させてもよい。このように回転透過窓33Bの誘電体板51及び/又は52を回転させることにより、マイクロ波放射空間Sにおけるマイクロ波の定在波の腹と節の位置を変化させることが可能となり、ウエハWの面内での均一な処理が可能となる。なお、複数のマグネトロン31において同時に複数のマイクロ波を生成させ、各マイクロ波導入ポート10から同時にマイクロ波を処理容器2内に導入するようにしてもよい。
処理容器2に導入されたマイクロ波は、ウエハWに照射されて、ジュール加熱、磁性加熱、誘導加熱等の電磁波加熱により、ウエハWが迅速に加熱される。その結果、ウエハWに対してアニール処理が施される。
アニール処理の間は、ウエハWを回転させることによって、ウエハWに照射されるマイクロ波の偏りを少なくし、ウエハWの面内の加熱温度を均一化することができる。
主制御部101からマイクロ波処理装置1の各エンドデバイスにアニール処理を終了させる制御信号が送出されると、マイクロ波の生成が停止されると共に、ウエハWの回転が停止し、処理ガスの供給が停止されて、ウエハWに対するアニール処理が終了する。
所定時間のアニール処理又はアニール処理後の冷却処理が終了した後、ゲートバルブGVが開状態にされて、支持装置4によってウエハWの高さ位置を調整した後、図示しない搬送装置によって、ウエハWが搬出される。
マイクロ波処理装置1は、例えば半導体デバイスの作製工程において、拡散層に注入されたドーピング原子の活性化を行うためのアニール処理などの目的で好ましく利用できる。
以上のように、本実施の形態のマイクロ波処理装置1では、処理容器2内におけるマイクロ波の分布を細かく調整することが可能であるため、ウエハWの面内で均一な加熱処理を行うことが可能になる。
[第2の実施の形態]
次に、図12及び図13を参照しながら、本発明の第2の実施の形態のマイクロ波処理装置1について説明する。本実施の形態のマイクロ波処理装置は、回転透過窓の構成が第1の実施の形態のマイクロ波処理装置1と相違する。以下、第1の実施の形態のマイクロ波処理装置1との相違点についてのみ説明し、本実施の形態のマイクロ波処理装置において、第1の実施の形態と同じ構成については説明を省略する。
図12及び図13に示すように、本実施の形態において、回転透過窓33Bは、例えば互いに相対的に回転可能な2つの誘電体部材54,55を含んでいる。誘電体部材54,55は、同じ材質でもよいし、異なる材質でもよい。誘電体部材54,55の材質としては、例えば、石英、セラミックスのほか、アルミナ(Al)、ハフニア(HfO)などの金属酸化物、メタマテリアル等を用いることができる。
誘電体部材54,55は、それぞれ、導波管32を伝送されてくるマイクロ波200の進行方向における厚みが変化する形状を有している。具体的には、誘電体部材54は、傾斜面54aを有し、断面が楔形をなしており、誘電体部材55は、傾斜面55aを有し、断面が楔形をなしている。回転透過窓33Bは、2つの誘電体部材54,55をそれらの傾斜面54a,55aが向かい合うようにして上下に重ねた構造を有している。下側の誘電体部材54と上側の誘電体部材55は、密着していてもよいし、離間していてもよい。
誘電体部材54,55は、それぞれ回転自在に設けられている。すなわち、誘電体部材54,55は、回転駆動部53(図1参照)によって、それぞれ独立して、かつ、異なる回転軸を中心にして回転可能に構成されている。回転駆動部53における駆動機構としては、例えばラック&ピニオン機構などを挙げることができる。
図12の状態から、回転駆動部53によって、上側の誘電体部材55のみを例えば180°回転させると、図13に示す状態となる。図12に示す状態では、回転透過窓33Bの全体として、厚みTは、誘電体部材54,55の積層方向に直交する方向においてほぼ均一である。一方、図13では、断面視楔形をなす誘電体部材54と誘電体部材55の厚みが小さい部分どうし、及び、厚みが大きい部分どうしが、それぞれ上下に重なる。そのため、回転透過窓33Bの全体として、最も小さい厚みT1の部分と、最も大きな厚みT2の部分とが形成される。
本実施の形態において、図12では、回転透過窓33Bの全体として厚みTが一定であり、誘電体部材55の上面に対するマイクロ波200の入射角はほぼ垂直である。従って、図12の状態では、回転透過窓33Bに入射するマイクロ波200の屈折角はゼロとなり、マイクロ波200の進行方向は変化しない。
一方、図13の状態では、回転透過窓33Bの全体として、最小の厚みT1と最大の厚みT2とが形成され、誘電体部材55の上面は、導波管32を伝送されてくるマイクロ波200の進行方向に対して傾斜した角度を有している。屈折角と入射角との間には、スネルの法則が成り立つため、図12の状態に比べて、図13の状態の方が、屈折が大きくなり、マイクロ波200の進行方向の変化が大きくなる。
以上のように、本実施の形態のマイクロ波処理装置では、回転透過窓33Bが、厚みが変化する形状を有する誘電体部材54,55を有し、そのいずれか片方又は両方を任意の角度で回転させることによって、導波管32を伝送されてくるマイクロ波200に対して垂直でない任意の入射角を形成できる。このことによって、回転透過窓33Bを透過するマイクロ波200の進行方向を変化させ、処理容器2内のマイクロ波放射空間Sにおける電界強度分布を調節することができる。従って、マイクロ波処理装置1では、回転透過窓33Bによって、ウエハWの面内での加熱温度のばらつきを抑制し、ウエハWの面内で均一なアニール処理を行うことができる。
本実施の形態における他の構成及び効果は、第1の実施の形態と同様である。
なお、本発明は上記実施の形態に限定されず、種々の変更が可能である。例えば、本発明のマイクロ波処理装置は、半導体ウエハを基板とする場合に限らず、例えば太陽電池パネルの基板やフラットパネルディスプレイ用基板を基板とするマイクロ波処理装置にも適用できる。
また、マイクロ波処理装置におけるマイクロ波ユニット30の数(マグネトロン31の数)やマイクロ波導入ポート10の数は、上記実施の形態で説明した数に限られない。
1…マイクロ波処理装置、2…処理容器、3…マイクロ波導入装置、4…支持装置、5…ガス供給機構、5a…ガス供給装置、6…排気装置、8…制御部、10…マイクロ波導入ポート、12…側壁部、14…シャフト、15…アーム部、16…支持ピン、17…回転駆動部、18…昇降駆動部、30…マイクロ波ユニット、31…マグネトロン、32…導波管、33A…透過窓、33B…回転透過窓、34…サーキュレータ、35…検出器、36…チューナ、37…ダミーロード、40…高電圧電源部、51,52…誘電体板、53…回転駆動部、W…半導体ウエハ。

Claims (10)

  1. 基板に対してマイクロ波を照射することにより処理を行うマイクロ波処理装置であって、
    前記基板を収容する処理容器と、
    前記マイクロ波を生成するマイクロ波源を有し、前記処理容器内のマイクロ波放射空間へ前記マイクロ波を導入するマイクロ波導入装置と、
    を備え、
    前記マイクロ波導入装置は、
    前記処理容器内へ前記マイクロ波を導く伝送路を形成する導波管と、
    前記伝送路と前記マイクロ波放射空間との間に介在する第1のマイクロ波透過窓と、
    前記第1のマイクロ波透過窓よりも前記マイクロ波源に近い側に設けられ、前記マイクロ波の進行方向を変化させる第2のマイクロ波透過窓と、
    を有していることを特徴とするマイクロ波処理装置。
  2. 前記第2のマイクロ波透過窓は、誘電率が不均一な一つ又は複数の誘電体板によって構成されている請求項1に記載のマイクロ波処理装置。
  3. 前記誘電体板は、前記導波管を伝送されてくる前記マイクロ波の進行方向に対して直交する方向の誘電率が不均一である請求項2に記載のマイクロ波処理装置。
  4. 複数の前記誘電体板が積層されている請求項2又は3に記載のマイクロ波処理装置。
  5. 前記第2のマイクロ波透過窓は、それぞれ回転自在に設けられている請求項4に記載のマイクロ波処理装置。
  6. 前記第2のマイクロ波透過窓は、厚みが変化する形状を有する一つ又は複数の誘電体部材を有し、前記導波管を伝送されてくる前記マイクロ波に対して垂直でない入射角を形成する請求項1に記載のマイクロ波処理装置。
  7. 前記誘電体部材は、前記マイクロ波の進行方向における断面が楔形をなしている請求項6に記載のマイクロ波処理装置。
  8. 複数の前記誘電体部材が積層されている請求項6又は7に記載のマイクロ波処理装置。
  9. 複数の前記誘電体部材が、それぞれ回転自在に設けられている請求項8に記載のマイクロ波処理装置。
  10. 請求項1から9のいずれか1項に記載のマイクロ波処理装置を用いて基板を処理するマイクロ波処理方法。
JP2014007408A 2014-01-20 2014-01-20 マイクロ波処理装置及びマイクロ波処理方法 Pending JP2015135782A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014007408A JP2015135782A (ja) 2014-01-20 2014-01-20 マイクロ波処理装置及びマイクロ波処理方法
US14/591,214 US20150206778A1 (en) 2014-01-20 2015-01-07 Microwave Processing Apparatus and Microwave Processing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007408A JP2015135782A (ja) 2014-01-20 2014-01-20 マイクロ波処理装置及びマイクロ波処理方法

Publications (1)

Publication Number Publication Date
JP2015135782A true JP2015135782A (ja) 2015-07-27

Family

ID=53545443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007408A Pending JP2015135782A (ja) 2014-01-20 2014-01-20 マイクロ波処理装置及びマイクロ波処理方法

Country Status (2)

Country Link
US (1) US20150206778A1 (ja)
JP (1) JP2015135782A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127989A (ko) * 2017-04-11 2019-11-13 어플라이드 머티어리얼스, 인코포레이티드 모듈식 마이크로파 소스들을 사용한 대칭적인 그리고 불규칙한 형상의 플라즈마들
WO2021100107A1 (ja) * 2019-11-19 2021-05-27 株式会社Kokusai Electric 基板処理装置および半導体装置の製造方法
EP4037435A1 (en) * 2021-02-01 2022-08-03 Koninklijke Fabriek Inventum B.V. Stirrer drive shaft with ventilation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10748745B2 (en) 2016-08-16 2020-08-18 Applied Materials, Inc. Modular microwave plasma source
US11037764B2 (en) 2017-05-06 2021-06-15 Applied Materials, Inc. Modular microwave source with local Lorentz force
MY196795A (en) * 2017-05-23 2023-05-03 Microwave Chemical Co Ltd Treatment apparatus
US10504699B2 (en) 2018-04-20 2019-12-10 Applied Materials, Inc. Phased array modular high-frequency source
US11393661B2 (en) 2018-04-20 2022-07-19 Applied Materials, Inc. Remote modular high-frequency source
US11081317B2 (en) 2018-04-20 2021-08-03 Applied Materials, Inc. Modular high-frequency source
KR20210124800A (ko) * 2020-04-07 2021-10-15 엘지전자 주식회사 작동 신뢰성이 향상된 전송 커넥터

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393844B2 (ja) * 2003-11-19 2010-01-06 東京エレクトロン株式会社 プラズマ成膜装置及びプラズマ成膜方法
JP5490192B2 (ja) * 2011-12-28 2014-05-14 東京エレクトロン株式会社 マイクロ波加熱処理装置および処理方法
TWI561327B (en) * 2013-10-16 2016-12-11 Asm Tech Singapore Pte Ltd Laser scribing apparatus comprising adjustable spatial filter and method for etching semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127989A (ko) * 2017-04-11 2019-11-13 어플라이드 머티어리얼스, 인코포레이티드 모듈식 마이크로파 소스들을 사용한 대칭적인 그리고 불규칙한 형상의 플라즈마들
KR102253568B1 (ko) * 2017-04-11 2021-05-17 어플라이드 머티어리얼스, 인코포레이티드 모듈식 마이크로파 소스들을 사용한 대칭적인 그리고 불규칙한 형상의 플라즈마들
WO2021100107A1 (ja) * 2019-11-19 2021-05-27 株式会社Kokusai Electric 基板処理装置および半導体装置の製造方法
EP4037435A1 (en) * 2021-02-01 2022-08-03 Koninklijke Fabriek Inventum B.V. Stirrer drive shaft with ventilation

Also Published As

Publication number Publication date
US20150206778A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP2015135782A (ja) マイクロ波処理装置及びマイクロ波処理方法
WO2013129037A1 (ja) マイクロ波加熱処理装置および処理方法
JP6296787B2 (ja) 基板処理装置及び基板処理方法
JP2013069602A (ja) マイクロ波処理装置および被処理体の処理方法
US10529598B2 (en) Microwave heat treatment apparatus and microwave heat treatment method
KR101434053B1 (ko) 마이크로파 가열 처리 장치 및 처리 방법
JP5657059B2 (ja) マイクロ波加熱処理装置および処理方法
JP6348765B2 (ja) マイクロ波加熱処理装置及びマイクロ波加熱処理方法
US20140034636A1 (en) Microwave irradiation apparatus
KR20150060567A (ko) 매칭 방법 및 마이크로파 가열 처리 방법
JP2014090058A (ja) マイクロ波加熱処理装置および処理方法
US20140248784A1 (en) Microwave processing apparatus and microwave processing method
US20150136759A1 (en) Microwave heating apparatus
US20150129586A1 (en) Microwave heating apparatus and processing method
US20140246424A1 (en) Microwave heat treatment apparatus and processing method
JP2016081971A (ja) 処理装置及び処理方法
JP2013069603A (ja) マイクロ波処理装置および被処理体の処理方法
JP2014170701A (ja) マイクロ波処理装置および処理方法
US20140291318A1 (en) Microwave heating apparatus
JP2016015278A (ja) マイクロ波加熱処理装置及びマイクロ波加熱処理方法