JP2015091740A - β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体 - Google Patents

β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体 Download PDF

Info

Publication number
JP2015091740A
JP2015091740A JP2014088589A JP2014088589A JP2015091740A JP 2015091740 A JP2015091740 A JP 2015091740A JP 2014088589 A JP2014088589 A JP 2014088589A JP 2014088589 A JP2014088589 A JP 2014088589A JP 2015091740 A JP2015091740 A JP 2015091740A
Authority
JP
Japan
Prior art keywords
gas
crystal film
single crystal
growth
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014088589A
Other languages
English (en)
Other versions
JP2015091740A5 (ja
JP5984069B2 (ja
Inventor
後藤 健
Takeshi Goto
健 後藤
公平 佐々木
Kohei Sasaki
公平 佐々木
纐纈 明伯
Akinori Koketsu
明伯 纐纈
熊谷 義直
Yoshinao Kumagai
義直 熊谷
尚 村上
Takashi Murakami
尚 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Tamura Corp
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Tamura Corp
Priority to JP2014088589A priority Critical patent/JP5984069B2/ja
Priority to TW103131951A priority patent/TWI702300B/zh
Priority to TW109123514A priority patent/TWI727849B/zh
Priority to EP14849461.0A priority patent/EP3054037A4/en
Priority to PCT/JP2014/074659 priority patent/WO2015046006A1/ja
Priority to CN201480053760.7A priority patent/CN105992841B/zh
Priority to US15/025,956 priority patent/US20160265137A1/en
Priority to CN202111128251.4A priority patent/CN113832544B/zh
Publication of JP2015091740A publication Critical patent/JP2015091740A/ja
Publication of JP2015091740A5 publication Critical patent/JP2015091740A5/ja
Application granted granted Critical
Publication of JP5984069B2 publication Critical patent/JP5984069B2/ja
Priority to US17/471,395 priority patent/US11982016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法、及びその成長方法により成長したβ−Ga系単結晶膜を有する結晶積層構造体を提供する。
【解決手段】一実施の形態として、HVPE法によるβ−Ga系単結晶膜の成長方法であって、Ga系基板10を塩化ガリウム系ガス及び酸素含有ガスに曝し、Ga系基板10の主面11上にβ−Ga系単結晶膜12を900℃以上の成長温度で成長させる工程を含む、β−Ga系単結晶膜の成長方法を提供する。
【選択図】図2

Description

本発明は、β−Ga系単結晶膜の成長方法、及び結晶積層構造体に関する。
従来、β−Ga単結晶膜の成長方法として、MBE(Molecular Beam Epitaxy)法やPLD(Pulsed Laser Deposition)法が知られている(例えば、特許文献1、2参照)。また、ゾル−ゲル法、MOCVD(Metal Organic Chemical Vapor Deposition)法、ミストCVD法による成長方法も知られている。
特開2013―56803号公報 特許第4565062号公報
しかしながら、MBE法では高真空チャンバー内で結晶成長を行うため、β−Ga単結晶膜の大口径化が困難である。また、一般的に成長温度を上げると高品質な膜が得られるが、原料ガスの再蒸発が増加するため十分な成膜速度が得られず、大量生産には向かない。
また、PLD法に関しては、ソース(基板への原料供給源)が点源であり、ソース直上とそれ以外の場所で成長レートが異なるために、膜厚の面内分布が不均一になりやすく、面積の大きい膜の成長に向かない。また、成膜レートが低く、厚膜の成長には長い時間を要するため、大量生産には向かない。
ゾル−ゲル法、MOCVD法、ミストCVD法に関しては、大口径化は比較的容易だが、使用原料に含まれている不純物がエピタキシャル成長中にβ−Ga単結晶膜に取り込まれてしまうため、高純度な単結晶膜を得ることが困難である。
そのため、本発明の目的の1つは、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法、及びその成長方法により成長したβ−Ga系単結晶膜を有する結晶積層構造体を提供することにある。
本発明の一態様は、上記目的を達成するために、下記[1]〜[8]のβ−Ga系単結晶膜の成長方法を提供する。
[1]HVPE法によるβ−Ga系単結晶膜の成長方法であって、Ga系基板を塩化ガリウム系ガス及び酸素含有ガスに曝し、前記Ga系基板の主面上にβ−Ga系単結晶膜を900℃以上の成長温度で成長させる工程を含む、β−Ga系単結晶膜の成長方法。
[2]金属ガリウムとClガス又はHClガスであるCl含有ガスとを反応させることにより前記塩化ガリウム系ガスを生成する、前記[1]に記載のβ−Ga系単結晶膜の成長方法。
[3]前記塩化ガリウム系ガスのうち、GaClガスの分圧比が最も高い、前記[1]又は[2]に記載のβ−Ga系単結晶膜の成長方法。
[4]前記酸素含有ガスはOガスである、前記[1]〜[3]のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
[5]前記Cl含有ガスはClガスである、前記[2]に記載のβ−Ga系単結晶膜の成長方法。
[6]前記β−Ga系単結晶膜を成長させる際の前記酸素含有ガスの供給分圧の前記塩化ガリウム系ガスの供給分圧に対する比の値は0.5以上である、前記[1]〜[5]のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
[7]前記Ga系基板の前記主面の面方位は、(010)、(−201)、(001)、又は(101)である、前記[1]〜[6]のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
[8]300℃以上の雰囲気温度下で前記塩化ガリウム系ガスを生成する、前記[1]〜[7]のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
また、本発明の他の態様は、上記目的を達成するために、下記[9]〜[12]の結晶積層構造体を提供する。
[9]Ga系基板と、前記Ga系基板の主面上にエピタキシャル結晶成長により形成され、Clを含むβ−Ga系単結晶膜と、を含む結晶積層構造体。
[10]前記β−Ga系単結晶膜のCl濃度は、5×1016atoms/cm以下である、前記[9]に記載の結晶積層構造体。
[11]前記β−Ga系単結晶膜はβ−Ga結晶膜である、前記[9]又は[10]に記載の結晶積層構造体。
[12]前記β−Ga系単結晶膜の残留キャリア濃度は、3×1015atoms/cm以下である、前記[11]に記載の結晶積層構造体。
本発明によれば、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法、及びその成長方法により成長したβ−Ga系単結晶膜を有する結晶積層構造体を提供することができる。
図1は、実施の形態に係る結晶積層構造体の垂直断面図である。 図2は、実施の形態に係る気相成長装置の垂直断面図である。 図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。 図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と雰囲気温度との関係を表すグラフである。 図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。 図6は、主面の面方位が(010)であるGa基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。 図7は、主面の面方位が(−201)であるGa基板の主面上にGa単結晶膜を1000℃でエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。 図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。 図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。 図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。 図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。図11(b)は、上記の積層構造体の耐電圧特性を表すグラフである。 図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。
〔実施の形態〕
(結晶積層構造体の構成)
図1は、実施の形態に係る結晶積層構造体1の垂直断面図である。結晶積層構造体1は、Ga系基板10と、Ga系基板10の主面11上にエピタキシャル結晶成長により形成されたβ−Ga系単結晶膜12を有する。
Ga系基板10は、β型の結晶構造を有するGa系単結晶からなる基板である。ここで、Ga系単結晶とは、Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶をいう。例えば、Al及びInが添加されたGa単結晶である(GaAlIn(1−x−y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。また、Ga系基板10は、Si等の導電型不純物を含んでもよい。
Ga系基板10の主面11の面方位は、例えば、(010)、(−201)、(001)、又は(101)である。
Ga系基板10は、例えば、FZ(Floating Zone)法やEFG(Edge Defined Film Fed Growth)法等の融液成長法により育成したGa系単結晶のバルク結晶をスライスし、表面を研磨することにより形成される。
β−Ga系単結晶膜12は、Ga系基板10と同様に、β型の結晶構造を有するGa系単結晶からなる。また、β−Ga系単結晶膜12は、Si等の導電型不純物を含んでもよい。
(気相成長装置の構造)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長に用いる気相成長装置の構造の一例について説明する。
図2は、実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、HVPE(Halide Vapor Phase Epitaxy)法用の気相成長装置であり、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート24を有する反応チャンバー20と、反応チャンバー20の周囲に設置され、反応チャンバー20内の所定の領域を加熱する第1の加熱手段26及び第2の加熱手段27を有する。
HVPE法は、PLD法等と比較して、成膜レートが高い。また、膜厚の面内分布の均一性が高く、大口径の膜を成長させることができる。このため、結晶の大量生産に適している。
反応チャンバー20は、Ga原料が収容された反応容器25が配置され、ガリウムの原料ガスが生成される原料反応領域R1と、Ga系基板10が配置され、β−Ga系単結晶膜12の成長が行われる結晶成長領域R2を有する。反応チャンバー20は、例えば、石英ガラスからなる。
ここで、反応容器25は、例えば、石英ガラスであり、反応容器25に収容されるGa原料は金属ガリウムである。
第1の加熱手段26と第2の加熱手段27は、反応チャンバー20の原料反応領域R1と結晶成長領域R2をそれぞれ加熱することができる。第1の加熱手段26及び第2の加熱手段27は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。
第1のガス導入ポート21は、Clガス又はHClガスであるCl含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスやHOガス等の酸素含有ガス及びβ−Ga系単結晶膜12にSi等のドーパントを添加するための塩化物系ガス(例えば、四塩化ケイ素等)を不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を反応チャンバー20の結晶成長領域R2へ導入するためのポートである。
(β−Ga系単結晶膜の成長)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長工程の一例について説明する。
まず、第1の加熱手段26を用いて反応チャンバー20の原料反応領域R1を加熱し、原料反応領域R1の雰囲気温度を所定の温度に保つ。
次に、第1のガス導入ポート21からCl含有ガスをキャリアガスを用いて導入し、原料反応領域R1において、上記の雰囲気温度下で反応容器25内の金属ガリウムとCl含有ガスを反応させ、塩化ガリウム系ガスを生成する。
このとき、上記の原料反応領域R1内の雰囲気温度は、反応容器25内の金属ガリウムとCl含有ガスの反応により生成される塩化ガリウム系ガスのうち、GaClガスの分圧が最も高くなるような温度であることが好ましい。ここで、塩化ガリウム系ガスには、GaClガス、GaClガス、GaClガス、(GaClガス等が含まれる。
GaClガスは、塩化ガリウム系ガスに含まれるガスのうち、Ga結晶の成長駆動力を最も高い温度まで保つことのできるガスである。高純度、高品質のGa結晶を得るためには、高い成長温度での成長が有効であるため、高温において成長駆動力の高いGaClガスの分圧が高い塩化ガリウム系ガスを生成することが、β−Ga系単結晶膜12の成長のために好ましい。
図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、GaClガス及びGaClガスの供給分圧を1×10−3atm、O/GaCl分圧比を10とした。
図3の横軸はGa結晶の成長温度(℃)を示し、縦軸は結晶成長駆動力(atm)を表す。結晶成長駆動力の値が大きいほど、効率的にGa結晶が成長する。
図3は、Gaの原料ガスとしてGaClガスを用いる場合の方が、GaClガスを用いる場合よりも、成長駆動力が保たれる温度の上限が高いことを示している。
なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、水素を含まないClガスをCl含有ガスとして用いることが好ましい。
図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と反応時の雰囲気温度との関係を表すグラフである。その他の計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、Clガスの供給分圧を3×10−3atmとした。
図4の横軸は雰囲気温度(℃)を示し、縦軸は平衡分圧(atm)を表す。平衡分圧が高いほど、ガスが多く生成されていることを示す。
図4は、およそ300℃以上の雰囲気温度下で金属ガリウムとCl含有ガスを反応させることにより、Ga結晶の成長駆動力を特に高めることのできるGaClガスの平衡分圧が高くなること、すなわち塩化ガリウム系ガスのうちのGaClガスの分圧比が高くなることを示している。このことから、第1の加熱手段26により原料反応領域R1の雰囲気温度を300℃以上に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましいといえる。
また、例えば、850℃の雰囲気温度下では、GaClガスの分圧比が圧倒的に高くなる(GaClガスの平衡分圧がGaClガスより4桁大きく、GaClガスより8桁大きい)ため、GaClガス以外のガスはGa結晶の成長にほとんど寄与しない。
なお、第1の加熱手段26の寿命や、石英ガラス等からなる反応チャンバー20の耐熱性を考慮して、原料反応領域R1の雰囲気温度を1000℃以下に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましい。
次に、結晶成長領域R2において、原料反応領域R1で生成された塩化ガリウム系ガスと、第2のガス導入ポート22から導入された酸素含有ガスとを混合させ、その混合ガスにGa系基板10を曝し、Ga系基板10上にβ−Ga系単結晶膜12をエピタキシャル成長させる。このとき、反応チャンバー20を収容する炉内の結晶成長領域R2における圧力を、例えば、1atmに保つ。
ここで、Si、Al等の添加元素を含むβ−Ga系単結晶膜12を形成する場合には、ガス導入ポート22より、添加元素の原料ガス(例えば、四塩化ケイ素(SiCl)等の塩化物系ガス)も塩化ガリウム系ガス及び酸素含有ガスに併せて結晶成長領域R2に導入する。
なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、酸素含有ガスとして水素を含まないOガスを用いることが好ましい。
図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。ここで、Oガスの供給分圧のGaClガスの供給分圧に対する比をO/GaCl供給分圧比と呼ぶ。本計算においては、GaClガスの供給分圧の値を1×10−3atmに固定し、キャリアガスとして例えばN等の不活性ガスを用いて炉内圧力を1atmとし、Oガスの供給分圧の値を変化させた。
図5の横軸はO/GaCl供給分圧比を示し、縦軸はGaClガスの平衡分圧(atm)を表す。GaClガスの供給分圧が小さいほど、Ga結晶の成長にGaClガスが消費されていること、すなわち、効率的にGa結晶が成長していることを示す。
図5は、O/GaCl供給分圧比が0.5以上になるとGaClガスの平衡分圧が急激に低下することを示している。
このため、β−Ga系単結晶膜12を効率的に成長させるためには、結晶成長領域R2におけるOガスの供給分圧のGaClガスの供給分圧に対する比が0.5以上である状態でβ−Ga系単結晶膜12を成長させることが好ましい。
図6は、主面の面方位が(010)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とした。
図6の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。
図6は、β−Ga基板(β−Ga結晶膜なし)のスペクトル、及び800℃、850℃、900℃、950℃、1000℃、及び1050℃でそれぞれβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。これらの結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300〜1000nmである。
図6によれば、800、850℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて見られる、非配向グレインの存在に起因する(−313)面、(−204)面、及び(−712)面又は(512)面の回折ピークが、900℃以上の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて消滅する。このことは、900℃以上の成長温度でGa単結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。
なお、β−Ga基板の主面の面方位が(−201)、(001)、又は(101)である場合にも、900℃以上の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られる。また、Ga基板の代わりに他のGa系基板を用いた場合であっても、Ga結晶膜の代わりに他のGa系結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。すなわち、Ga系基板10の主面の面方位が(010)、(−201)、(001)、又は(101)である場合、900℃以上の成長温度でβ−Ga系単結晶膜12を成長させることにより、β−Ga系単結晶膜12が得られる。
図7は、主面の面方位が(−201)であるβ−Ga基板の主面上にβ−Ga単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。
図7は、主面の面方位が(−201)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300nmである。
図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。
図8は、主面の面方位が(001)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ6μmである。
図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。
図9は、主面の面方位が(101)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ4μmである。
図7、8、9の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。
図7、8、9によれば、1000℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルの回折ピークが、β−Ga基板のスペクトルの回折ピークと一致している。この結果は、主面の面方位が(−201)、(001)、又は(101)であるβ−Ga基板の主面上に1000℃の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。
図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。
図10(a)、(b)の横軸は結晶積層構造体のβ−Ga単結晶膜の主面13からの深さ(μm)を表し、縦軸は各不純物の濃度(atoms/cm)を表す。ここで、結晶積層構造体のβ−Ga基板とβ−Ga単結晶膜の界面の深さは、およそ0.3μmである。また、図10(a)、(b)の右側の水平な矢印は、各不純物元素の濃度の測定可能な下限値を表す。
本測定に用いた結晶積層構造体のβ−Ga単結晶膜は、主面の面方位が(010)であるβ−Ga基板の主面上に1000℃の成長温度で成長させた膜である。
図10(a)は、C、Sn、Siの結晶積層構造体中の濃度を表し、図10(b)は、H、Clの結晶積層構造体中の濃度を表す。図10(a)、(b)によれば、いずれの不純物元素も、β−Ga単結晶膜中の濃度が測定可能な下限値に近く、Ga基板中の濃度とほぼ変わらない。このことは、β−Ga単結晶膜が純度の高い膜であることを示している。
なお、β−Ga基板の主面の面方位が(−201)、(101)、又は(001)である場合にも同様の評価結果が得られる。また、β−Ga基板の代わりに他のGa系基板を用いた場合であっても、β−Ga単結晶膜の代わりに他のGa系単結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。
図10(b)によれば、β−Ga単結晶膜中におよそ5×1016(atoms/cm)以下のClが含まれている。これは、Ga単結晶膜がCl含有ガスを用いるHVPE法により形成されることに起因する。通常、HVPE法以外の方法によりGa単結晶膜を形成する場合には、Cl含有ガスを用いないため、Ga単結晶膜中にClが含まれることはなく、少なくとも、1×1016(atoms/cm)以上のClが含まれることはない。
図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。
図11(a)の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。
図11(a)に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(001)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ15μmの厚さにエピタキシャル成長させた。ここで、アンドープとは、意図したドーピングが行われていないことを意味し、意図しない不純物の混入を否定するものではない。
β−Ga基板は、厚さが600μmの、10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。
次に、表面平坦化のため、アンドープのβ−Ga結晶膜の表面をCMPによって3μm研磨した。
次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。
ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径800μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。
図11(a)においては、β−Ga結晶膜の厚さに等しい12μmよりも浅い深さの領域には測定点が存在せず、すべての測定点の横軸座標が12μmとなっている。これは、バイアス電圧が+0〜−10Vの範囲でβ−Ga結晶膜の全領域が空乏化していることを示している。
このため、当然ながら、バイアス電圧が0のときにも、β−Ga結晶膜の全領域が空乏化している。理論曲線によると、空乏層厚が12μmであるときのドナー濃度がおよそ1×1013cm−3であることから、β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下と、非常に低い値であることが推定される。
β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下であるため、例えば、IV族元素をドーピングすることにより、β−Ga結晶膜のキャリア濃度を1×1013〜1×1020cm−3の範囲で制御することができる。
図11(b)は、上記の結晶積層構造体の耐電圧特性を表すグラフである。
図11(b)の横軸は印加電圧(V)を表し、縦軸は電流密度(A/cm)を表す。また、図中の点で描かれた直線は、測定下限値を表す。
図11(b)に示されるデータを測定するために用いた手順を以下に示す。まず、上記のβ−Ga基板とβ−Ga結晶膜からなる結晶積層構造体を用意した。
次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、1000Vの電圧を印加して電流密度を測定した。
ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径200μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。
図11(b)は、1000Vの電圧が印加されても、結晶積層構造体におけるリーク電流が1×10−5A/cm程度と非常に小さく、また、絶縁破壊が生じないことを示している。この結果は、β−Ga結晶膜が結晶欠陥の少ない高品質な結晶膜であり、また、ドナー濃度が低いことによるものと考えられる。
図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。
図12の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。
図12に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(010)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ0.9μmの厚さにエピタキシャル成長させた。
β−Ga基板は、厚さが600μmの、一辺が10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。
次に、アンドープのβ−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。
ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径400μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。
図12においては、バイアス電圧が0のときの測定点の横軸座標が0.85μmである(0.85μmよりも深い領域の測定点は、バイアス電圧が−10Vに近いときの測定点)。理論曲線によると、空乏層厚が0.85μmであるときのドナー濃度がおよそ2.3×1015cm−3であることから、β−Ga結晶膜の残留キャリア濃度が3×1015cm−3以下と、非常に低い値であることが推定される。
(実施の形態の効果)
上記実施の形態によれば、HVPE法を用いて、ガリウムの原料ガスの生成条件や、β−Ga系単結晶膜の成長条件を制御することにより、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることができる。また、β−Ga系単結晶膜が結晶品質に優れるため、β−Ga系単結晶膜上に品質のよい結晶膜を成長させることができる。このため、本実施の形態に係るβ−Ga系単結晶膜を含む結晶積層構造体を高品質な半導体装置の製造に用いることができる。
以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
1…結晶積層構造体、10…Ga系基板、11…主面、12…β−Ga系単結晶膜

Claims (12)

  1. HVPE法によるβ−Ga系単結晶膜の成長方法であって、
    Ga系基板を塩化ガリウム系ガス及び酸素含有ガスに曝し、前記Ga系基板の主面上にβ−Ga系単結晶膜を900℃以上の成長温度で成長させる工程を含む、β−Ga系単結晶膜の成長方法。
  2. 金属ガリウムとClガス又はHClガスであるCl含有ガスとを反応させることにより前記塩化ガリウム系ガスを生成する、
    請求項1に記載のβ−Ga系単結晶膜の成長方法。
  3. 前記塩化ガリウム系ガスのうち、GaClガスの分圧比が最も高い、
    請求項1又は2に記載のβ−Ga系単結晶膜の成長方法。
  4. 前記酸素含有ガスはOガスである、
    請求項1〜3のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
  5. 前記Cl含有ガスはClガスである、
    請求項2に記載のβ−Ga系単結晶膜の成長方法。
  6. 前記β−Ga系単結晶膜を成長させる際の前記酸素含有ガスの供給分圧の前記塩化ガリウム系ガスの供給分圧に対する比の値は0.5以上である、
    請求項1〜5のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
  7. 前記Ga系基板の前記主面の面方位は、(010)、(−201)、(001)、又は(101)である、
    請求項1〜6のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
  8. 300℃以上の雰囲気温度下で前記塩化ガリウム系ガスを生成する、
    請求項1〜7のいずれか1項に記載のβ−Ga系単結晶膜の成長方法。
  9. Ga系基板と、
    前記Ga系基板の主面上にエピタキシャル結晶成長により形成された、Clを含むβ−Ga系単結晶膜と、
    を含む結晶積層構造体。
  10. 前記β−Ga系単結晶膜のCl濃度は、5×1016atoms/cm以下である、
    請求項9に記載の結晶積層構造体。
  11. 前記β−Ga系単結晶膜はβ−Ga結晶膜である、
    請求項9又は10に記載の結晶積層構造体。
  12. 前記β−Ga系単結晶膜の残留キャリア濃度は、3×1015atoms/cm以下である、
    請求項11に記載の結晶積層構造体。
JP2014088589A 2013-09-30 2014-04-22 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体 Active JP5984069B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2014088589A JP5984069B2 (ja) 2013-09-30 2014-04-22 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
TW109123514A TWI727849B (zh) 2013-09-30 2014-09-16 β-Ga2O3系單晶膜的成長方法及結晶積層構造體
TW103131951A TWI702300B (zh) 2013-09-30 2014-09-16 β-GaO系單晶膜的成長方法及結晶積層構造體
PCT/JP2014/074659 WO2015046006A1 (ja) 2013-09-30 2014-09-18 β-Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
CN201480053760.7A CN105992841B (zh) 2013-09-30 2014-09-18 β-Ga2O3系单晶膜的生长方法和晶体层叠结构体
US15/025,956 US20160265137A1 (en) 2013-09-30 2014-09-18 METHOD FOR GROWING BETA-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
EP14849461.0A EP3054037A4 (en) 2013-09-30 2014-09-18 METHOD FOR GROWING -Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
CN202111128251.4A CN113832544B (zh) 2013-09-30 2014-09-18 β-Ga2O3系单晶膜的生长方法和晶体层叠结构体
US17/471,395 US11982016B2 (en) 2013-09-30 2021-09-10 Method for growing beta-Ga2O3-based single crystal film, and crystalline layered structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013203198 2013-09-30
JP2013203198 2013-09-30
JP2014088589A JP5984069B2 (ja) 2013-09-30 2014-04-22 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016143092A Division JP6601738B2 (ja) 2013-09-30 2016-07-21 結晶積層構造体、及びその製造方法

Publications (3)

Publication Number Publication Date
JP2015091740A true JP2015091740A (ja) 2015-05-14
JP2015091740A5 JP2015091740A5 (ja) 2015-06-25
JP5984069B2 JP5984069B2 (ja) 2016-09-06

Family

ID=52743145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014088589A Active JP5984069B2 (ja) 2013-09-30 2014-04-22 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体

Country Status (6)

Country Link
US (2) US20160265137A1 (ja)
EP (1) EP3054037A4 (ja)
JP (1) JP5984069B2 (ja)
CN (2) CN113832544B (ja)
TW (2) TWI727849B (ja)
WO (1) WO2015046006A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170774A1 (ja) * 2014-05-09 2015-11-12 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
JP2017109902A (ja) * 2015-12-16 2017-06-22 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
WO2018052097A1 (ja) * 2016-09-15 2018-03-22 株式会社Flosfia 半導体膜の製造方法及び半導体膜並びにドーピング用錯化合物及びドーピング方法
JP2019034882A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2019163200A (ja) * 2017-08-21 2019-09-26 株式会社Flosfia 結晶膜の製造方法
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
JP2020073424A (ja) * 2019-09-26 2020-05-14 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、その製造装置、および、それを用いた半導体素子
KR102129390B1 (ko) * 2019-05-24 2020-07-02 한국세라믹기술원 HVPE 성장법을 이용하여 성장한 고품질 β-Ga2O3 박막 제조 방법
WO2021039010A1 (ja) 2019-08-27 2021-03-04 信越化学工業株式会社 積層構造体及び積層構造体の製造方法
JP7158627B1 (ja) * 2021-09-03 2022-10-21 三菱電機株式会社 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
JP2023093304A (ja) * 2021-12-22 2023-07-04 ルミジエヌテック カンパニー リミテッド HVPE法によるGa2O3結晶膜の蒸着方法、蒸着装置、および、これを用いて得られたGa2O3結晶膜蒸着基板
WO2024075430A1 (ja) * 2022-10-03 2024-04-11 株式会社ノベルクリスタルテクノロジー エピタキシャルウエハ及びその製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984069B2 (ja) 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP6376600B2 (ja) 2015-03-20 2018-08-22 株式会社タムラ製作所 結晶積層構造体の製造方法
JP6758569B2 (ja) * 2015-03-20 2020-09-23 株式会社タムラ製作所 高耐圧ショットキーバリアダイオード
JP6535204B2 (ja) * 2015-04-23 2019-06-26 株式会社タムラ製作所 Ga2O3系結晶膜の形成方法
JP6436538B2 (ja) * 2015-06-16 2018-12-12 国立研究開発法人物質・材料研究機構 ε−Ga2O3単結晶、ε−Ga2O3の製造方法、および、それを用いた半導体素子
JP6705962B2 (ja) * 2016-06-03 2020-06-03 株式会社タムラ製作所 Ga2O3系結晶膜の成長方法及び結晶積層構造体
US10593544B2 (en) 2016-10-14 2020-03-17 Case Westen Reverse University Method for forming a thin film comprising an ultrawide bandgap oxide semiconductor
JP7008293B2 (ja) * 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
CN107587190A (zh) * 2017-08-14 2018-01-16 南京大学 一种制备GaN衬底材料的方法
CN107574479A (zh) * 2017-08-14 2018-01-12 南京大学 一种多功能氢化物气相外延生长***及应用
CN109423690B (zh) * 2017-08-21 2022-09-16 株式会社Flosfia 用于制造结晶膜的方法
CN107983291A (zh) * 2017-10-28 2018-05-04 株洲冶炼集团股份有限公司 一种制备无水氯化镓的装置及其方法
CN108987257B (zh) * 2018-07-12 2021-03-30 南京南大光电工程研究院有限公司 利用卤化物气相外延法在Si衬底上生长Ga2O3薄膜的方法
CN109767990A (zh) * 2018-12-27 2019-05-17 山东大学 一种氧化镓表面载流子浓度调控的方法
CN110616456B (zh) * 2019-10-23 2021-05-04 南京大学 一种高质量κ相氧化镓外延薄膜的制备方法
CN111613525A (zh) * 2020-06-03 2020-09-01 西安电子科技大学 一种基于硅衬底上二维β-Ga2O3的制备方法
TR202019031A2 (tr) * 2020-11-25 2021-02-22 Univ Yildiz Teknik Yüksek kalitede hetero epitaksiyel monoklinik galyum oksit kristali büyütme metodu
CN113451435A (zh) * 2021-06-30 2021-09-28 南方科技大学 一种单晶氧化镓基日盲紫外光电探测器及其制备方法与应用
CN114059173B (zh) * 2022-01-17 2022-04-01 浙江大学杭州国际科创中心 一种制备氧化镓料棒的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030896A (ja) * 2006-03-23 2010-02-12 Nanogan Ltd 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法
JP2011142402A (ja) * 2010-01-05 2011-07-21 Toshiba Corp 出力回路
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
WO2013035845A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1071068A (en) * 1975-03-19 1980-02-05 Guy-Michel Jacob Method of manufacturing single crystals by growth from the vapour phase
JP4565062B2 (ja) 2003-03-12 2010-10-20 学校法人早稲田大学 薄膜単結晶の成長方法
JP4630986B2 (ja) * 2003-02-24 2011-02-09 学校法人早稲田大学 β−Ga2O3系単結晶成長方法
EP1598450B1 (en) * 2003-02-24 2011-09-21 Waseda University Beta-Ga2O3 SINGLE CRYSTAL GROWING METHOD
US7176115B2 (en) 2003-03-20 2007-02-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride substrate and semiconductor device
JP4588340B2 (ja) * 2003-03-20 2010-12-01 パナソニック株式会社 Iii族窒化物基板の製造方法
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
US7303632B2 (en) * 2004-05-26 2007-12-04 Cree, Inc. Vapor assisted growth of gallium nitride
JP5311765B2 (ja) * 2006-09-15 2013-10-09 住友化学株式会社 半導体エピタキシャル結晶基板およびその製造方法
JP5787324B2 (ja) * 2010-05-12 2015-09-30 国立大学法人東京農工大学 三塩化ガリウムガスの製造方法及び窒化物半導体結晶の製造方法
JP2013056803A (ja) 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶膜の製造方法
CN107653490A (zh) * 2011-09-08 2018-02-02 株式会社田村制作所 晶体层叠结构体
US9657410B2 (en) * 2011-11-29 2017-05-23 Tamura Corporation Method for producing Ga2O3 based crystal film
JP5984069B2 (ja) 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP5892495B2 (ja) * 2013-12-24 2016-03-23 株式会社タムラ製作所 Ga2O3系結晶膜の成膜方法、及び結晶積層構造体
JP6253150B2 (ja) * 2014-05-09 2017-12-27 株式会社タムラ製作所 エピタキシャルウエハ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030896A (ja) * 2006-03-23 2010-02-12 Nanogan Ltd 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法
JP2011142402A (ja) * 2010-01-05 2011-07-21 Toshiba Corp 出力回路
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
WO2013035845A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
森悦雄: "Ga2O3の気相エピタキシャル成長", 東京大学工学部総合試験所年報, vol. 第35巻, JPN7015002172, 1976, JP, pages 155 - 161, ISSN: 0003130815 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676841B2 (en) 2014-05-09 2020-06-09 Tamura Corporation Semiconductor substrate, epitaxial wafer, and method for manufacturing epitaxial wafer
JP2015214448A (ja) * 2014-05-09 2015-12-03 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
WO2015170774A1 (ja) * 2014-05-09 2015-11-12 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
JP2017109902A (ja) * 2015-12-16 2017-06-22 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
WO2017104341A1 (ja) * 2015-12-16 2017-06-22 株式会社タムラ製作所 半導体基板、並びにエピタキシャルウエハ及びその製造方法
US10985016B2 (en) 2015-12-16 2021-04-20 Tamura Corporation Semiconductor substrate, and epitaxial wafer and method for producing same
WO2018052097A1 (ja) * 2016-09-15 2018-03-22 株式会社Flosfia 半導体膜の製造方法及び半導体膜並びにドーピング用錯化合物及びドーピング方法
JPWO2018052097A1 (ja) * 2016-09-15 2019-08-29 株式会社Flosfia 半導体膜の製造方法及び半導体膜並びにドーピング用錯化合物及びドーピング方法
JP2019034882A (ja) * 2017-08-21 2019-03-07 株式会社Flosfia 結晶膜の製造方法
JP2019163200A (ja) * 2017-08-21 2019-09-26 株式会社Flosfia 結晶膜の製造方法
JP7166522B2 (ja) 2017-08-21 2022-11-08 株式会社Flosfia 結晶膜の製造方法
JP7163540B2 (ja) 2017-08-21 2022-11-01 株式会社Flosfia 結晶膜の製造方法
KR102129390B1 (ko) * 2019-05-24 2020-07-02 한국세라믹기술원 HVPE 성장법을 이용하여 성장한 고품질 β-Ga2O3 박막 제조 방법
WO2021039010A1 (ja) 2019-08-27 2021-03-04 信越化学工業株式会社 積層構造体及び積層構造体の製造方法
KR20220052931A (ko) 2019-08-27 2022-04-28 신에쓰 가가꾸 고교 가부시끼가이샤 적층구조체 및 적층구조체의 제조방법
JP2020073424A (ja) * 2019-09-26 2020-05-14 国立研究開発法人物質・材料研究機構 α−Ga2O3単結晶、その製造装置、および、それを用いた半導体素子
CN110911270B (zh) * 2019-12-11 2022-03-25 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
JP7158627B1 (ja) * 2021-09-03 2022-10-21 三菱電機株式会社 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
WO2023032140A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 結晶積層構造体、半導体装置、及び、結晶積層構造体の製造方法
JP2023093304A (ja) * 2021-12-22 2023-07-04 ルミジエヌテック カンパニー リミテッド HVPE法によるGa2O3結晶膜の蒸着方法、蒸着装置、および、これを用いて得られたGa2O3結晶膜蒸着基板
WO2024075430A1 (ja) * 2022-10-03 2024-04-11 株式会社ノベルクリスタルテクノロジー エピタキシャルウエハ及びその製造方法

Also Published As

Publication number Publication date
EP3054037A1 (en) 2016-08-10
TW201522680A (zh) 2015-06-16
CN113832544A (zh) 2021-12-24
EP3054037A4 (en) 2017-06-21
TWI702300B (zh) 2020-08-21
JP5984069B2 (ja) 2016-09-06
CN105992841B (zh) 2021-10-22
US20210404086A1 (en) 2021-12-30
WO2015046006A1 (ja) 2015-04-02
CN105992841A (zh) 2016-10-05
TWI727849B (zh) 2021-05-11
US11982016B2 (en) 2024-05-14
US20160265137A1 (en) 2016-09-15
CN113832544B (zh) 2024-06-14
TW202102698A (zh) 2021-01-16

Similar Documents

Publication Publication Date Title
US11982016B2 (en) Method for growing beta-Ga2O3-based single crystal film, and crystalline layered structure
US11047067B2 (en) Crystal laminate structure
Gogova et al. Homo-and heteroepitaxial growth of Sn-doped β-Ga 2 O 3 layers by MOVPE
US10199512B2 (en) High voltage withstand Ga2O3-based single crystal schottky barrier diode
JP6875708B2 (ja) 結晶積層構造体、及びそれを製造する方法
EP3396030A1 (en) Semiconductor substrate, and epitaxial wafer and method for producing same
CN106471163B (zh) 半导体衬底、外延片及其制造方法
KR20210125551A (ko) GaN 결정 및 기판

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150512

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5984069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250