JP5311765B2 - 半導体エピタキシャル結晶基板およびその製造方法 - Google Patents

半導体エピタキシャル結晶基板およびその製造方法 Download PDF

Info

Publication number
JP5311765B2
JP5311765B2 JP2007154709A JP2007154709A JP5311765B2 JP 5311765 B2 JP5311765 B2 JP 5311765B2 JP 2007154709 A JP2007154709 A JP 2007154709A JP 2007154709 A JP2007154709 A JP 2007154709A JP 5311765 B2 JP5311765 B2 JP 5311765B2
Authority
JP
Japan
Prior art keywords
dielectric
layer
epitaxial
dielectric layer
nitride semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007154709A
Other languages
English (en)
Other versions
JP2008098603A (ja
Inventor
洋幸 佐沢
直宏 西川
雅彦 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007154709A priority Critical patent/JP5311765B2/ja
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to KR1020097007566A priority patent/KR101359094B1/ko
Priority to PCT/JP2007/068476 priority patent/WO2008032873A1/ja
Priority to DE112007002162T priority patent/DE112007002162T5/de
Priority to TW096134390A priority patent/TWI417414B/zh
Priority to CN2007800340622A priority patent/CN101517715B/zh
Priority to US12/310,984 priority patent/US7951685B2/en
Publication of JP2008098603A publication Critical patent/JP2008098603A/ja
Priority to GB0906330A priority patent/GB2456437A/en
Application granted granted Critical
Publication of JP5311765B2 publication Critical patent/JP5311765B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31645Deposition of Hafnium oxides, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Formation Of Insulating Films (AREA)

Description

本発明は、半導体エピタキシャル結晶基板の製造方法、電界効果トランジスタ用エピタキシャル結晶基板の製造方法、及び電界効果トランジスタ用エピタキシャル結晶基板に関する。
従来、ヘテロ界面に生じる2次元電子ガスをチャネルとしたデバイス(GaN−MIS−HFET) は、高周波、高出力特性に優れることから特に注目されている。このような窒化ガリウム系トランジスタを製造する場合、そのための機能部材である半導体エピタキシャル結晶基板をリソグラフィープロセスにより加工して所要のトランジスタを作製しており、この際、目的に応じて半導体エピタキシャル結晶基板に、ゲート絶縁膜、パッシベーション膜などの部材を付与したデバイス形態が採用されている。
ゲート絶縁膜は、ゲート電極の漏れ電流を防ぐ目的でゲート金属と半導体結晶との間に設けられる保護膜である。一般に窒化物半導体に形成されたショットキ電極は、理論的に予想される値より大きな漏れ電流を示すことが知られており、ゲート絶縁膜はこの漏れ電流を低減する目的で設けられている。
一方、パッシベーション膜は、半導体表面の電気的性状が変化しないようにその表面を安定化する目的で半導体結晶表面に設けられる保護膜である。半導体表面の電気的な性状が変化すると、デバイス動作時においてゲートラグ、ドレインラグ、電流コラプスと呼ばれる過渡電流応答を示し、出力の低下や閾値電圧の変動をおこす問題があるため、必要に応じてパッシベーション膜が設けられる。
このような保護膜を設ける場合、製造工程の簡略化及び製造コスト低減の目的から、パッシベーション膜とゲート絶縁膜とを同一の材料で誘電体膜として構成することも多い。従来の方法においては、この種の誘電体膜は、窒化物半導体結晶層をMOCVD法やMBE法などのエピタキシャル結晶成長法にて成長してから、基板をエピタキシャル成長炉より取り出し、結晶表面を酸処理するなどして表面の自然酸化物を除去した後、熱CVD、プラズマCVD、cat−CVDなどの誘電体製膜炉に移し、結晶表面に積層するという方法で形成されてきた。
このような例としてたとえば、非特許文献(1)には、プラズマCVD法にてSiO誘電体を半導体表面に付与したGaN−MISHFETが開示されている。
P. Kordos他、Applied Physics letters 87, 143501(2005)
この例においては、誘電体膜を付与されたことによりゲートリーク電流を低減させた実験結果が示されている。しかしこの手法を含めた上述の手法では、半導体結晶と誘電体膜界面の酸化膜を完全に除去することは不可能であることや、GaN結晶表面には窒素空孔が発生することにより該界面に電気的に活性な中間準位が形成され、これがゲート信号やドレイン電圧の入力に対しある時定数をもって応答し、ドレインラグやゲートラグなどの現象を引き起こしていた。すなわち、従来の方法では、誘電体膜付与によるゲートラグやドレインラグの改善効果は不十分であり、このため、実用化に供するには問題があった。
本発明の目的は、従来技術における上述の問題点を解決することができる、誘電体膜を付与した形態の半導体エピタキシャル結晶基板の製造方法、電界効果トランジスタ用エピタキシャル結晶基板の製造方法、及び電界効果トランジスタ用エピタキシャル結晶基板を提供することにある。
本発明の他の目的は、低いゲートリーク電流と無視しうるほど小さなゲートラグ、ドレインラグ、電流コラプス特性を有する、誘電体膜付きの窒化ガリウム系半導体エピタキシャル結晶基板の製造方法、電界効果トランジスタ用エピタキシャル結晶基板の製造方法、及び電界効果トランジスタ用エピタキシャル結晶基板を提供することにある。
上記課題を解決するため、本発明による半導体エピタキシャル結晶基板は、MOCVD法にて窒化ガリウム半導体結晶層を成長した後、成長された窒化ガリウム半導体結晶層上に、基板を成長炉外に暴露することなく、連続して誘電体膜をMOCVD法で積層することにより、誘電体膜が付与された窒化ガリウム系半導体エピタキシャル結晶基板を作製するようにしたものである。
本発明の第1の態様においては、有機金属気相成長法にて成長した窒化物半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された半導体エピタキシャル結晶基板の製造方法であって、エピタキシャル成長炉内で窒化物半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で誘電体層を窒化物半導体結晶層に連続して形成し、誘電体層を、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長させる半導体エピタキシャル結晶基板の製造方法が提案される。
また、誘電体層の少なくとも一部を積層する際に、5族原料であるアンモニアを供給しながら積層する半導体エピタキシャル結晶基板の製造方法が提案される。
さらに、誘電体層の少なくとも一部を積層する際に、原料のキャリアガスとして窒素を用いる半導体エピタキシャル結晶基板の製造方法が提案される。
本発明の第2の態様においては、有機金属気相成長法にて成長した窒化物半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された半導体エピタキシャル結晶基板の製造方法であって、エピタキシャル成長炉内で窒化物半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で有機金属気相成長法により誘電体層を窒化物半導体結晶層に連続して形成し、誘電体層が、AlO 、AlO :N(0.5<x<1.5)、SiO 、SiO :N、Ga 、Si 、HfO 、Hf Al (0<x<1、y=2−1/2x)、Hf Al :N(0<x<1、y=2−1/2x)、GdO、ZrO 、MgO、Ta から選ばれる少なくとも一つの誘電体膜を積層することによって形成された半導体エピタキシャル結晶基板の製造方法が提案される。
本発明の第3の態様においては、有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板の製造方法であって、エピタキシャル成長炉内で窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で有機金属気相成長法により誘電体層を窒化ガリウム半導体結晶層に連続して形成し、誘電体層を、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長させるようにした電界効果トランジスタ用エピタキシャル結晶基板の製造方法が提案される。
本発明の第4の態様においては、有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板の製造方法であって、エピタキシャル成長炉内で窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で有機金属気相成長法により誘電体層を窒化ガリウム半導体結晶層に連続して形成し、誘電体層が、AlO 、AlO :N(0.5<x<1.5)、SiO 、SiO :N、Ga 、Si 、HfO 、Hf Al (0<x<1、y=2−1/2x)、Hf Al :N(0<x<1、y=2−1/2x)、GdO、ZrO 、MgO、Ta から選ばれる少なくとも一つの誘電体膜を積層することによって形成された電界効果トランジスタ用エピタキシャル結晶基板の製造方法が提案される。
本発明の第5の態様においては、有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板であって、誘電体層が、エピタキシャル成長炉内で窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で有機金属気相成長法により窒化ガリウム半導体結晶層に連続して形成され、誘電体層が、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長した電界効果トランジスタ用エピタキシャル結晶基板が提案される。
本発明の第6の態様においては、有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板であって、誘電体層が、エピタキシャル成長炉内で窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で有機金属気相成長法により窒化ガリウム半導体結晶層に連続して形成され、誘電体層が、Al 、Al :N、SiO 、SiO :N、Ga 、Si 、HfO 、Hf Al (0<x<1、y=2−1/2x)、Hf Al :N(0<x<1、y=2−1/2x)、GdO、ZrO 、MgO、Ta から選ばれる少なくとも一つの誘電体膜を積層することによって形成された電界効果トランジスタ用エピタキシャル結晶基板が提案される。
本発明によれば、良好なゲートリーク特性と無視しうるほど小さなドレインラグ、ゲートラグ、電流コラプスを有する電界効果トランジスタの製造を可能にする半導体エピタキシャル結晶基板を提供することができ、その工業的意義はきわめて大きい。
以下、図面を参照して本発明の実施の形態の一例につき詳細に説明する。
図1は、本発明の方法により製造された半導体エピタキシャル結晶基板の一実施形態を示す模式的断面図である。半導体エピタキシャル結晶基板10は、トランジスタ製造用の窒化ガリウム系の半導体エピタキシャル結晶基板であって、下地基板1上にはエピタキシャル法によって成長した窒化ガリウム半導体結晶層が形成されている。本実施の形態では、窒化ガリウム半導体結晶層は、AlNから成るバッファ層2、GaNから成るチャネル層3、及びSiドープした/Siドープされない電子供給層4がこの順序で積層形成されて成っている。
そして、窒化ガリウム半導体結晶層の表面、すなわち、この場合には電子供給層4の表面4a上には、アモルファス結晶形を有する誘電体層(誘電体膜)5が所定の厚さに形成されている。誘電体層5は、窒化ガリウム半導体結晶層に対する保護層として設けられたもので、誘電体層5は、半導体エピタキシャル結晶基板10を用いて製造されるトランジスタにおいて、パッシベーション膜あるいはゲート絶縁膜となるものである。
誘電体層5は、エピタキシャル成長炉内で下地基板1上にバッファ層2、チャネル層3及び電子供給層4を順次成長させた後、該エピタキシャル成長炉内で電子供給層4に続けてMOCVD法により積層したものである。MOCVD法により積層できる誘電体として、AlNAl2 3 誘電体層を挙げることができる。本実施の形態では、エピタキシャル成長炉内に3族原料ガスを導入し、酸素原料を導入しながらMOCVD法によりAlN誘電体層を積層して誘電体層5としている。
MOCVD法により成長できる誘電体として、例えば、AlOx 、AlOx :N(0.5<x<1.5)、Si3 4 、SiO2 、SiO2 :N(Nを含んだSiO2 )、MgO、GdO、ZrO2 、HfO2 、Hfx Aly 3 (0<x<1、y=2−1/2x)、Hfx Aly 3 :N(Nを含んだHfx Aly 3 )(0<x<1、y=2−1/2x)、Ta2 5 、MgOを挙げることができる。このほかにも、MOCVD法にて成長できる誘電体であればこれら以外のものも制限無く使用することができる。しかし、MOCVD法により成長できる誘電体として、AlOx についてはAl2 3 が好ましく、AlOx :N(0.5<x<1.5)についてはAl2 3 :Nが好ましい。
このように、窒化ガリウム半導体結晶層の成長を行い、これに続けてその成長を行ったエピタキシャル成長炉内で誘電体を積層することによって得られた誘電体層5は、それがパッシベーション膜又はゲート絶縁膜として働く場合、トランジスタの電気的特性を低下0せることなしに、良好なゲートリーク特性を達成することができる。すなわち、良好なゲートリーク特性と無視しうるほど小さなドレインラグ、ゲートラグ、電流コラプスを有する半導体エピタキシャル結晶基板が得られる。
次に、図2を参照しながら、本発明の製造方法の一実施形態につき説明する。
図2は、本発明による半導体エピタキシャル結晶基板の製造に用いる有機金属気相成長装置の一例を概略的に示す図である。なお、図2に示した有機金属気相成長装置の各構成要素それ自体は公知であるから、ここでは、その各構成要素についての一般的な説明は省略する。図2において、100〜104はマスフローコントローラ(MFC)、105、106は恒温層、107、108は原料容器、109〜111は高圧ガスボンベ、112〜114は減圧弁、200は反応炉、201は抵抗加熱機、202は基板フォルダである。原料容器107には3族原料が入れられており、原料容器108には有機金属原料が入れられている。高圧ガスボンベ111にはアンモニアが充填されており、高圧ガスボンベ109にはキャリアガスが充填されており、高圧ガスボンベ110には酸素ガスが充填されている。
マスフローコントローラ(MFC)101により流量制御された高圧ガスボンベ109からのキャリアガスは、恒温層105で所望の温度に制御された原料容器107内に導入され、原料容器107内に入っている3族原料中でバブリングされる。このバブリングにより原料容器107の空隙は恒温層107の温度で定まる蒸気圧の3族原料で満たされ、この蒸気圧とキャリアガス流量に応じた量の3族原料ガスを反応炉200内に導入することができる。このようにして制御される3族原料の流量は通常10E−3〜10E−5mol/min.の範囲である。
一方、5族原料であるアンモニアは高圧ガスボンベ111に充填されており、減圧弁114で減圧され、ついでMFC104で流量制御されて、反応炉200内に導入される。アンモニアガスの導入量は、通常、3族原料ガスの1倍〜10000倍が一般的である。高圧ガスボンベ109に充填されているキャリアガスは、減圧弁112で減圧され、ついでMFC100で流量制御されて、反応炉200に導入される。キャリアガスの流量は10SLM〜200SLMの範囲が一般的である。ドーパンとなるシランは、5族原料と同様の手法で反応炉200内に導入することができる。
マスフローコントローラ(MFC)102により流量制御された高圧ガスボンベ109からのキャリアガスは、恒温層106で所望の温度に制御された原料容器108に導入され、原料容器108内に入っている有機金属原料中でバブリングされる。このバブリングにより原料容器108の空隙は恒温層106の温度で定まる蒸気圧の有機金属原料で満たされ、この蒸気圧とキャリアガス流量に応じた量の有機金属原料ガスを反応炉200内に導入することができる。
予め用意された下地基板1は反応炉200内に設けられているグラファイト製の基板ホルダ201によって保持される。基板ホルダ201は回転機構を有しており、その背面には抵抗加熱機201が近接配置されており、基板ホルダ110を通して下地基板1を背面より加熱できる構成となっている。この加熱は、下地基板1の表面温度がGaN系半導体結晶の場合、900℃〜1300℃程度に制御するのが一般的である。
反応炉200中に原料ガス蒸気を導入すると、導入された原料ガス蒸気は、下地基板1表面近傍で熱分解され、下地基板1上に結晶として成長する。残渣ガスおよび未分解ガスは排気口203から排出される。このようにして、反応炉200内に所要の原料ガスを導入することにより、シリコンがドーピングされた、又はされないGaN系結晶を下地基板1上に成長することができる。
結晶成長に用いる3族原料としては、トリメチルガリウム(TMG)、トリエチルガリウム(TEG)などのアルキルガリウムや、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)などのアルキルアルミニウムや、トリメチルインジウム(TMI)を所望の組成となるよう単独または混合して用いる。これらの原料はMOCVD用のものが市販されているのでこれらを使用できる。
またドーパントとなるシリコンの原料としてはジシランやモノシランを用いる。ジシランやモノシランは結晶成長に必要な高純度のものが市販されているのでこれを使用できる。キャリアガスとしては水素ガスや窒素ガスが単独あるいは混合して用いられる。水素ガスや窒素ガス結晶成長に必要な高純度のものが市販されているのでこれを使用できる。
下地基板1としては、GaAs、GaN、サファイヤ、SiC、Siなどの単結晶基板が使用できる。下地基板1は絶縁性のものが好ましいが、導電性のものも使用できなくはない。下地基板1は結晶成長に必要な欠陥が少ないものが市販されているのでこれらを使用できる。
次に、図1に示したGaN系−MISHFET用エピタキシャル結晶基板の製造方法の一実施形態につき図2を参照しながら説明する。
先ず、洗浄した半絶縁性SiCの下地基板1を基板ホルダ202にセットし、下地基板1上へAlNを積層し、バッファ層2を所定の厚みに成長する。
AlNバッファ層2の厚みは500Å〜5000Åが一般的であるが、生産性と効果のバランスから200Å〜40000Åが好ましく、200Å〜3000Åがより好ましい。なお、AlNバッファ層2の代わりに同様の厚みを有するAlGaNによるバッファ層を用いることもできる。この場合は所望の組成になるように原料ガスを変更し、それ以外はAlNバッファ層2の場合と同様の手法で成長できる。なお、バッファ層2の絶縁性を上げる目的でFe、Mn、Cなどをドーピングしても良い。
その後、下地基板1の温度を所定の温度に変更し、3族原料ガスを切り替えてSI形GaNチャネル層3を所定の厚さに成長する。チャネル層3の厚みは、電子供給層4との界面付近の2DEGチャネルが形成される部位に良好な結晶性を与えられる範囲において決定すればよい。結晶性の判定はXRDのロッキングカーブ測定でおこなうことができる。測定対象とする結晶面としてはたとえば(0001)面が使用できる。この面を測定した場合、良好な特性が得られる目安としてはピークの半値幅が300秒以下である。
チャネル層3の厚みは、成長条件に著しく依存するが、一般に3000Å以上である。上限は特に無いが工業的生産性の観点から5000Å以上50000Å以下が一般的であり、好ましくは7000Å〜40000Å、もっとも好ましくは8000Å〜30000Åの範囲である。
次いでシリコンドーパントガスを供給し、又は供給しないことにより、Siドープした、又はSiドープされない電子供給層4を所定の厚さに成長する。電子供給層4の厚みおよびそのAl組成は、チャネル層3との格子ミスマッチにより結晶が劣化することが無い範囲において所望のチャネルキャリア濃度、相互コンダクタンス、ピンチオフ電圧となるように決定する。この際、Al組成を大きくするとチャネル層3との格子ミスマッチが大きくなるため、厚みは薄くする。このような厚みの範囲は一般に50Åから500Åの範囲であり、より好ましくは70Å〜450Å、さらに好ましくは90Å〜400Åの範囲である。Al組成の範囲は一般的には0.1から0.4の範囲であり、より好ましくは0.15〜0.35、さらに好ましくは0.18〜0.30の範囲である。
このようにして、GaN系結晶の最上層である電子供給層4の成長を終了した後、これにより得られた成長基板を大気暴露することなく、該成長基板をそのまま反応炉200内に置き、電子供給層4上に、誘電体層5を、同一の反応炉内での連続積層により形成する。この積層は、基板温度を所定の温度に変更し、3族原料ガスであるTMAを反応炉200内に導入するとともに、酸素原料も導入しながらAl2 3 誘電体を所定の厚さに成長することにより行う。このようにして図1に示す構造のエピタキシャル結晶基板が得られる。誘電体層5の積層工程では、MOCVD法が用いられる。
本実施の形態では、誘電体層5をAl2 3 誘電体として形成する場合について説明したが、本発明は、誘電体層5がAl2 3 誘電体の如き酸化物誘電体である場合に限定されないことは前述の通りである。
Al2 3 誘電体以外の酸化物誘電体を誘電体層5として形成するには、原料容器108内に予めその要求に見合った有機金属を入れておく。そして、先の場合と同じように、GaN系結晶の成長に連続して、結晶表面を大気に暴露せずにその成長を行う。すなわち、GaN系結晶の成長が終わった後、下地基板1の温度を所望の温度に変更し、誘電体層5の形成のための原料ガスである有機金属ガスを反応炉200内に導入することにより誘電体層5を積層する。
有機金属ガスの導入は、3族原料の導入と同様に、MFC102にて流量制御されたキャリアガスを有機金属が入った原料容器108にてバブリングすることにより行う。このとき同時供給する酸素ガスは高圧ガスボンベ110に充填されており、減圧弁113で減圧された酸素ガスをMFC103で流量制御して反応炉200に導入する。
以上、誘電体層5を酸化物誘電体として形成する場合を説明した。しかし、本発明においては、誘電体層5は酸化物誘電体で形成してもよいが、これに限定されるわけではなく、同一金属の酸化物と窒化物の複合誘電体で誘電体層5を形成することもできる。同一金属の酸化物と窒化物の複合誘電体で誘電体層5を形成する場合には、例えば窒素原料としてアンモニアを、用いることができる。この材料は結晶成長に適した純度のものが市販されているのでこれが使用できる。アンモニアその他の窒素原料はGaN系結晶成長において使用した手法で導入される。
誘電体原料として用いる有機金属原料は、誘電体がAl2 3 の場合、TMAやTEAが使用できる。HfO2 の場合、テトラターシャリーブトキシハフニウムが使用できる。SiO2 の場合、トリスジメチルアミノシランやトリスジエチルアミノシランなどが使用できる。MgOの場合、有機金属原料はビスシクロペンタジエニルマグネシウムやビスエチルシクロペンタジエニルマグネシウムが使用できる。これらの材料は結晶成長に適した純度のものが市販されているのでこれらが使用できる。
酸素原料としては酸素、水、あるいは、ジメチルエーテル、ジエチルエーテル、ノルマルブチルエーテルなどのエーテルが使用できる。これらの材料は結晶成長に適した純度のものが市販されているのでこれが使用できる。
基板成長温度は使用する有機金属原料の分解温度に依存するが、誘電体がAl2 3 の場合、500℃から1100℃の範囲であり、より好ましくは600℃から900℃の範囲であり、もっとも好ましくは700℃から700℃の範囲である。HfO2 の場合、200℃から800℃の範囲であり、より好ましくは250℃から700℃の範囲であり、もっとも好ましくは300℃から600℃の範囲である。Si3 4 の場合、400℃から900℃の範囲であり、より好ましくは450℃から800℃の範囲であり、もっとも好ましくは500℃から700℃の範囲である。MgOの場合、200℃から800℃の範囲であり、より好ましくは250℃から700℃の範囲であり、もっとも好ましくは300℃から600℃の範囲である。
誘電体膜としては、これらの他に、Al2 3 :N(Nを含んだAl2 3 )、SiO2 :N(Nを含んだSiO2 )、Ga2 3 、Hfx Aly 3 (0<x<1、y=2−1/2x)、Hfx Aly 3 :N(Nを含んだHfx Aly 3 )(0<x<1、y=2−1/2x)、HfO2 、GdO、ZrO2 、Ta2 5 が使用できる。誘電体層の厚みは、用いる誘電体の比誘電率とトランジスタの目指す閾値電圧、利得特性から勘案して決定でき、特に制限は無い。
誘電体層5の厚みは、これを用いて作製するトランジスタの所望の相互コンダクタンス、ピンチオフ電圧となる範囲でゲートリーク電流を抑制できる範囲で決定することができる。このような範囲は1nmから30nmが一般的である。
以上説明してきた実施の形態では、Al2 3 誘電体付きのGaN−HFETのための層構造の例を挙げて説明しているが、本発明の要点は半導体エピタキシャル結晶層と誘電体層とがMOCVD成長炉内で連続して成長されることにあるのであり、本発明はMOCVD法で成長可能な半導体結晶系すべてに適用可能である。このような結晶系としてシリコンゲルマン系(SiGe系)、ガリウムナイトライド系(GaN系)、インジウムリン系(InP系)、シリコンカーバイド系(SiC系)がある。
また、ここではHFETの例を説明しているが、半導体結晶層の構造を変えることにより、その他のFET構造であるMODFET、MESFET用エピタキシャル結晶基板や、各種のダイオード用エピタキシャル結晶基板などが作製可能である。また、ライトエミッティングダイオード(LED)などの発光素子にも制限無く適用できる。
以下に、本発明の一実施例を示して本発明をさらに詳細に説明するが、以下に説明される実施例はあくまで例示であって、本発明はこれにより制限されるものではない。
(実施例1)
図2に示す装置を用い、先ず、図1に示した層構造の半導体エピタキシャル基板を作成した。下地基板1として半絶縁性SiC基板を用いた。半絶縁性SiC基板を1000℃に加熱し、キャリアガスとして水素を60SLM、アンモニアを40SLM、恒温槽温度30℃に設定した原料容器からTMAを40sccm流し、AlNバッファ層2を1000Å成長した。ついで基板温度を1150℃に変更し、TMA流量を0sccmにしたのち、恒温槽温度30℃に設定した原料容器からTMGを40sccm流しGaNチャネル層3を20000Å積層した。ついで恒温槽温度30℃に設定した原料容器からTMAを40sccm流し、AlGaN電子供給層4を300Å成長した。
ついで、そのまま基板温度を900℃に変更し、TMGとアンモニアの供給を停止し、ジエチルエーテルを400sccm供給することによりAl2 3 を50Å成長し、誘電体層5を積層した。その後基板を冷却し、反応炉から取り出した。このようにして、図1に示す層構造を有する誘電体膜付きエピタキシャル基板を得た。
しかる後、このようにして得られた誘電体膜付きエピタキシャル基板を用いて図3に示す構成のGaN−MISHFETを次のようにして作製した。先ず、得られた誘電体膜付きエピタキシャル基板にホトリソグラフィー法でレジストパターンを形成した後、N+ イオンのイオン打ち込みにより、3000Åの深さまで素子分離9を形成した。ついで、同じくホトリソグラフィー法で、ソース電極およびドレイン電極形状にレジスト開口を形成し、Ar、CH2 CL、Cl2 の混合ガスを用いたICPプラズマエッチングによりこの開口部分の誘電体層5を除去し、AlGaN電子供給層4を露出させた。
ついでTi/Al/Ni/Au金属膜を全面に200Å/1500Å/250Å/500Åの厚みに蒸着法で積層しリフトオフ法で電極形状にこの金属膜を加工した。ついで窒素雰囲気内800℃で30秒RTA処理を施し、ソース電極8とドレイン電極6を形成した。ついで、同じくホトリソグラフィー法にてゲート電極形状の開口を形成し、Ni/Au金属膜を前面に200Å/1000Åの厚みに蒸着法で形成し、リフトオフ法により電極形状に金属膜を加工しゲート電極7を形成した。
ついで窒素雰囲気にて500℃で30分間アニールした。このようにしてゲート絶縁膜とパッシベーション膜を兼ねる層としてAl2 3 もしくはAlN誘電体層5を有するゲート長2μm、ゲート幅30μmのGaN−MISHFETを作製した。
(比較例)
実施例1の場合と同様にしてAlGaN電子供給層4を成長した後、誘電体を成長せずに基板を冷却後、基板を反応炉から取り出した。ついで実施例1と同様の手法でソース電極とドレイン電極を形成した。ついで実施例1と同様の手法で素子分離およびゲート電極を形成し、ゲート絶縁膜もパッシベーション膜も有さないゲート長2μm、ゲート幅30μmのGaN−HFET作製した。
実施例1で作製したGaN−MISHFETと比較例で作製したGaN−HFETとにつき、各ゲートリーク特性を評価した。その評価は、ソース電極を接地し、ゲート電極に+1Vから−20Vまでの電圧を印加し、ゲート電極に流れる電流値を測定することによって行った。
図4はこのようにして測定したゲート電圧―ゲート電流特性である。実施例1で作製したデバイスの負のゲート電圧印加時におけるゲート電流は、比較例のそれよりおよそ2桁も小さく、本発明の方法により作製したGaN−MISHFETが、誘電体層5によって優れたゲートリーク特性を有することが分かった。
実施例1のGaN−MISHFETと比較例として作製したGaN−HFETのドレインラグ特性を評価した。その評価は、ソース電極とゲート電極を接地し、ドレイン電圧を+20Vから+1Vに急峻に変化させた際の、+1V印加開始時間からの電流の過渡電流変化を、両者についてそれぞれ測定することによって行った。
図5はこのようにして測定したドレイン電圧−ドレイン電流―時間特性である。比較例として作製したデバイスはドレイン電圧を+20Vから+1Vに変化させると、ドレイン電流値が直ちに一定値とはならず、緩やかに増加しつづけ、定常値になるまで時間を要した。すなわちデバイス動作において問題となるドレインラグを示した。これに対し、実施例1のデバイスはドレイン電圧を+20Vから+1Vに変化させた直後から、定常電流値を示した。このことから実施例1として作製した誘電体膜付きGaN−MISHFETが優れたドレインラグ特性を有していることが分かった。
(実施例2)
図2に示す装置を用い、次のようにして図1に示す層構造の半導体エピタキシャル基板を作製した。半絶縁性SiC基板を反応炉200内にセットし、半絶縁性SiC基板を1000℃に加熱し、反応炉200内にキャリアガスとして水素を60SLM、アンモニアを40SLM、恒温槽温度30℃に設定した容器からTMAを40sccm流し、AlN緩衝層を1000Å成長した。ついで基板温度1150℃に変更し、TMA流量を0sccmにしたのち、恒温槽温度30℃に設定した容器からTMGを40sccm流しGaNチャネル層を20000Å積層した。ついで恒温槽温度30℃に設定した容器からTMAを40sccm流し、AlGaN電子供給層を300Å成長した。ついで基板温度を700℃に変更し、TMGの供給を停止し、キャリアガスを水素から窒素に切り替え、ノルマルブチルエーテルを40sccm供給することによりAlx y を200Å成長して誘電体層とした。X線光電子分光法により求めたこの誘電体層の原素組成比は、x:y=6:4であた。その後、上述の如くして得られた成長基板を冷却し、反応炉200から取り出した。このようにして誘電体膜付きの半導体エピタキシャル基板を得た。
この半導体エピタキシャル基板につき、ホトリソグラフィー法でソース電極形状およびドレイン電極形状にレジスト開口を形成し、Ar、CH2 Cl、Cl2 の混合ガスを用いたICPプラズマエッチングにより各開口部分の誘電体膜を除去し、AlGaN層を露出させた。ついでTi/Al/Ni/Au金属膜を全面に200Å/1500Å/250Å/500Åの厚みに蒸着法で積層し、リフトオフ法で電極形状にこの金属膜を加工した。
ついで、上述の如く加工された半導体エピタキシャル基板に対し、窒素雰囲気内800℃で30秒RTA処理を施し、ソース電極206とドレイン電極204を形成した。得られた半導体エピタキシャル基板にホトリソグラフィー法でレジストパターンを形成した後、N+ イオンのイオン打ち込みにより、3000Åの深さまで素子分離層を形成した。ついで、同じくホトリソグラフィー法にてゲート電極形状の開口を形成し、この開口の全面にNi/Au金属膜を200Å/1000Åの厚みに蒸着法で形成し、リフトオフ法により電極形状に金属膜を加工し、ゲート電極を形成した。このようにしてゲート絶縁膜とパッシベーション膜を兼ねる層としての誘電体層(AlO)を有するゲート長2μm、ゲート幅30μmのGaN−MISHFETを作製した。
このようにして作製したGaN―MISHFETのゲートバイアス−10V印加時の漏れ電流は、2×10-5mA/mmであり、実施例1で作製したデバイスに比べ漏れ電流特性がさらに向上した。また、電流コラプスは実施例1で作製したMIS−HFETと同程度に低かった。
本発明による半導体エピタキシャル結晶基板の一実施形態を示す模式的断面図。 本発明による半導体エピタキシャル結晶基板の製造に用いる有機金属気相成長装置の一例を概略的に示す図。 本発明の一実施例を説明するために用いたGaN−MISHFETの模式的断面図。 本発明の一実施例によるGaN−MISHFETのゲートリーク特性の評価のために測定したドレイン電圧−ドレイン電流―時間特性を示すグラフ。 本発明の一実施例によるGaN−MISHFETのゲートリーク特性の評価のために測定したドレイン電圧−ドレイン電流―時間特性を示すグラフ。
符号の説明
1 下地基板
2 バッファ層
3 チャネル層
4 電子供給層
5 誘電体層
6 ドレイン電極
7 ゲート電極
8 ソース電極
9 素子分離
10 半導体エピタキシャル結晶基板
100〜104 マスフローコントローラー(MFC)
105、106 恒温層
107、108 原料容器
109〜111 高圧ガスボンベ
112〜114 減圧弁
200 反応炉
201 基板フォルダー
202 抵抗加熱機
203 排気口

Claims (8)

  1. 有機金属気相成長法にて成長した窒化物半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された半導体エピタキシャル結晶基板の製造方法であって、
    エピタキシャル成長炉内で前記窒化物半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記誘電体層を前記窒化物半導体結晶層に連続して形成し、
    前記誘電体層を、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長させる半導体エピタキシャル結晶基板の製造方法。
  2. 前記誘電体層の少なくとも一部を積層する際に、5族原料であるアンモニアを供給しながら積層する請求項に記載の半導体エピタキシャル結晶基板の製造方法。
  3. 前記誘電体層の少なくとも一部を積層する際に、原料のキャリアガスとして窒素を用いる請求項1または2に記載の半導体エピタキシャル結晶基板の製造方法。
  4. 有機金属気相成長法にて成長した窒化物半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された半導体エピタキシャル結晶基板の製造方法であって、
    エピタキシャル成長炉内で前記窒化物半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記誘電体層を前記窒化物半導体結晶層に連続して形成し、
    前記誘電体層が、AlO、AlO:N(0.5<x<1.5)、SiO、SiO:N、Ga、Si、HfO、HfAl(0<x<1、y=2−1/2x)、HfAl:N(0<x<1、y=2−1/2x)、GdO、ZrO、MgO、Taから選ばれる少なくとも一つの誘電体膜を積層することによって形成された半導体エピタキシャル結晶基板の製造方法。
  5. 有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板の製造方法であって、
    エピタキシャル成長炉内で前記窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記誘電体層を前記窒化ガリウム半導体結晶層に連続して形成し、
    前記誘電体層を、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長させるようにした電界効果トランジスタ用エピタキシャル結晶基板の製造方法。
  6. 有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板の製造方法であって、
    エピタキシャル成長炉内で前記窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記誘電体層を前記窒化ガリウム半導体結晶層に連続して形成し、
    前記誘電体層が、AlO、AlO:N(0.5<x<1.5)、SiO、SiO:N、Ga、Si、HfO、HfAl(0<x<1、y=2−1/2x)、HfAl:N(0<x<1、y=2−1/2x)、GdO、ZrO、MgO、Taから選ばれる少なくとも一つの誘電体膜を積層することによって形成された電界効果トランジスタ用エピタキシャル結晶基板の製造方法。
  7. 有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板であって、
    前記誘電体層が、エピタキシャル成長炉内で前記窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記窒化ガリウム半導体結晶層に連続して形成され
    前記誘電体層が、金属原料として有機金属を用い、酸素原料としてエーテルもしくは水を用い、窒素原料としてアンモニアを使用して、有機金属気相成長法にて成長した電界効果トランジスタ用エピタキシャル結晶基板。
  8. 有機金属気相成長法にて成長した窒化ガリウム半導体結晶層表面に、パッシベーション膜あるいはゲート絶縁膜となるアモルファス結晶形を有する窒化物誘電体もしくは酸化物誘電体の誘電体層が付与された電界効果トランジスタ用エピタキシャル結晶基板であって、
    前記誘電体層が、エピタキシャル成長炉内で前記窒化ガリウム半導体結晶層を成長させた後、そのまま該エピタキシャル成長炉内で前記有機金属気相成長法により前記窒化ガリウム半導体結晶層に連続して形成され、
    前記誘電体層が、Al、Al:N、SiO、SiO:N、Ga、Si、HfO、HfAl(0<x<1、y=2−1/2x)、HfAl:N(0<x<1、y=2−1/2x)、GdO、ZrO、MgO、Taから選ばれる少なくとも一つの誘電体膜を積層することによって形成された電界効果トランジスタ用エピタキシャル結晶基板。
JP2007154709A 2006-09-15 2007-06-12 半導体エピタキシャル結晶基板およびその製造方法 Expired - Fee Related JP5311765B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007154709A JP5311765B2 (ja) 2006-09-15 2007-06-12 半導体エピタキシャル結晶基板およびその製造方法
PCT/JP2007/068476 WO2008032873A1 (fr) 2006-09-15 2007-09-14 Procédé pour fabriquer un substrat cristallin épitaxial semi-conducteur
DE112007002162T DE112007002162T5 (de) 2006-09-15 2007-09-14 Verfahren zur Herstellung eines Halbleiterepitaxialkristallsubstrats
TW096134390A TWI417414B (zh) 2006-09-15 2007-09-14 半導體磊晶結晶基板的製造方法
KR1020097007566A KR101359094B1 (ko) 2006-09-15 2007-09-14 반도체 에피택셜 결정 기판의 제조 방법 및 반도체 에피택셜 결정 기판
CN2007800340622A CN101517715B (zh) 2006-09-15 2007-09-14 半导体外延结晶基板的制造方法
US12/310,984 US7951685B2 (en) 2006-09-15 2007-09-14 Method for manufacturing semiconductor epitaxial crystal substrate
GB0906330A GB2456437A (en) 2006-09-15 2009-04-09 Method for manufacturing semiconductor epitaxial crystal substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006250967 2006-09-15
JP2006250967 2006-09-15
JP2007154709A JP5311765B2 (ja) 2006-09-15 2007-06-12 半導体エピタキシャル結晶基板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2008098603A JP2008098603A (ja) 2008-04-24
JP5311765B2 true JP5311765B2 (ja) 2013-10-09

Family

ID=39183911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154709A Expired - Fee Related JP5311765B2 (ja) 2006-09-15 2007-06-12 半導体エピタキシャル結晶基板およびその製造方法

Country Status (8)

Country Link
US (1) US7951685B2 (ja)
JP (1) JP5311765B2 (ja)
KR (1) KR101359094B1 (ja)
CN (1) CN101517715B (ja)
DE (1) DE112007002162T5 (ja)
GB (1) GB2456437A (ja)
TW (1) TWI417414B (ja)
WO (1) WO2008032873A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496635B2 (ja) * 2008-12-19 2014-05-21 住友電工デバイス・イノベーション株式会社 半導体装置の製造方法
TW201301570A (zh) * 2011-06-28 2013-01-01 Aceplux Optotech Inc 多光色發光二極體及其製作方法
JP6119165B2 (ja) * 2012-09-28 2017-04-26 富士通株式会社 半導体装置
US9219123B2 (en) * 2012-11-26 2015-12-22 Sharp Kabushiki Kaisha Method of producing a nitride semiconductor crystal with precursor containing carbon and oxygen, and nitride semiconductor crystal and semiconductor device made by the method
JP2014146646A (ja) * 2013-01-28 2014-08-14 Fujitsu Ltd 半導体装置
US8878188B2 (en) * 2013-02-22 2014-11-04 Translucent, Inc. REO gate dielectric for III-N device on Si substrate
KR102052075B1 (ko) * 2013-03-28 2020-01-09 삼성디스플레이 주식회사 증착 장치, 이를 이용한 박막 형성 방법, 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
KR102067596B1 (ko) * 2013-05-03 2020-02-17 엘지전자 주식회사 질화물 반도체 소자 및 그 제조 방법
JP5984069B2 (ja) * 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
CN104638068B (zh) * 2013-11-07 2018-08-24 上海蓝光科技有限公司 一种用于ⅲ-ⅴ族氮化物生长的衬底结构及其制备方法
US10529561B2 (en) * 2015-12-28 2020-01-07 Texas Instruments Incorporated Method of fabricating non-etch gas cooled epitaxial stack for group IIIA-N devices
US10128364B2 (en) * 2016-03-28 2018-11-13 Nxp Usa, Inc. Semiconductor devices with an enhanced resistivity region and methods of fabrication therefor
US10892356B2 (en) 2016-06-24 2021-01-12 Cree, Inc. Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same
DE102017120896A1 (de) * 2017-09-11 2019-03-14 Aixtron Se Verfahren zum Abscheiden einer C-dotierten AlN-Schicht auf einem Siliziumsubstrat und aus einer derartigen Schichtstruktur aufgebautes Halbleiter-Bauelement
CN112670161B (zh) * 2020-12-23 2022-07-22 中国电子科技集团公司第五十五研究所 一种低热阻氮化镓高电子迁移率晶体管外延材料制备方法
US20220367697A1 (en) * 2021-05-17 2022-11-17 Cree, Inc. Group iii-nitride transistors with back barrier structures and buried p-type layers and methods thereof
US11929428B2 (en) 2021-05-17 2024-03-12 Wolfspeed, Inc. Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3873846T2 (de) * 1987-07-16 1993-03-04 Texas Instruments Inc Behandlungsapparat und verfahren.
JP3116731B2 (ja) * 1994-07-25 2000-12-11 株式会社日立製作所 格子不整合系積層結晶構造およびそれを用いた半導体装置
JP3177951B2 (ja) * 1997-09-29 2001-06-18 日本電気株式会社 電界効果トランジスタおよびその製造方法
JP2000058454A (ja) * 1998-08-05 2000-02-25 Sony Corp 横方向エピタキシャル成長用マスクの形成方法および横方向エピタキシャル成長方法
GB9916549D0 (en) * 1999-07-14 1999-09-15 Arima Optoelectronics Corp Epitaxial growth method of semiconductors on highly lattice mismatched substrates using the buffer layer with solid-liquid phase transition
US6355561B1 (en) 2000-11-21 2002-03-12 Micron Technology, Inc. ALD method to improve surface coverage
JP3836697B2 (ja) * 2000-12-07 2006-10-25 日本碍子株式会社 半導体素子
JP3670628B2 (ja) * 2002-06-20 2005-07-13 株式会社東芝 成膜方法、成膜装置、および半導体装置の製造方法
JP2005268507A (ja) * 2004-03-18 2005-09-29 Furukawa Electric Co Ltd:The 電界効果トランジスタ及びその製造方法
JP2005322668A (ja) * 2004-05-06 2005-11-17 Renesas Technology Corp 成膜装置および成膜方法
JP2006185962A (ja) * 2004-12-24 2006-07-13 Tokyo Institute Of Technology 半導体成長用基板および半導体膜の製造方法

Also Published As

Publication number Publication date
WO2008032873A1 (fr) 2008-03-20
KR101359094B1 (ko) 2014-02-05
US7951685B2 (en) 2011-05-31
KR20090057117A (ko) 2009-06-03
JP2008098603A (ja) 2008-04-24
US20100084742A1 (en) 2010-04-08
GB0906330D0 (en) 2009-05-20
DE112007002162T5 (de) 2009-08-13
TW200823315A (en) 2008-06-01
GB2456437A (en) 2009-07-22
CN101517715B (zh) 2010-12-22
CN101517715A (zh) 2009-08-26
TWI417414B (zh) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5311765B2 (ja) 半導体エピタキシャル結晶基板およびその製造方法
JP5543076B2 (ja) 電界効果トランジスタ用エピタキシャル基板
JP2008072029A (ja) 半導体エピタキシャル結晶基板の製造方法
CN103545361B (zh) 化合物半导体器件及其制造方法、电源装置和高频放大器
CN102197468B (zh) 化合物半导体器件及其制造方法
JP7013710B2 (ja) 窒化物半導体トランジスタの製造方法
JP2010239034A (ja) 半導体装置の製造方法および半導体装置
US9312341B2 (en) Compound semiconductor device, power source device and high frequency amplifier and method for manufacturing the same
CN111406306B (zh) 半导体装置的制造方法、半导体装置
JP6993562B2 (ja) 化合物半導体装置及びその製造方法
JP2016207748A (ja) 半導体装置の製造方法および半導体装置
CN109599329B (zh) 一种硅衬底上生长氮极性iii族氮化物半导体层的方法
JP2017085058A (ja) 化合物半導体装置及びその製造方法
JP6028970B2 (ja) 半導体装置の製造方法およびエッチング方法
JP2004289005A (ja) エピタキシャル基板、半導体素子および高電子移動度トランジスタ
JP2016219590A (ja) 半導体基板の製造方法、及び半導体装置の製造方法
KR100413523B1 (ko) 이차원 전자가스의 전자밀도가 증가된 고전자이동도트랜지스터의 제조방법
JP7201571B2 (ja) 窒化物半導体基板および窒化物半導体装置
JP5455875B2 (ja) エピタキシャル基板の製造方法
JP2012124530A (ja) 半導体エピタキシャル結晶基板及びその製造方法
WO2018123664A1 (ja) 半導体基板および電子デバイス
JP2021520643A (ja) 核生成層の堆積方法
WO2018196948A1 (en) Interlayer barrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees