JP2015057095A - 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理 - Google Patents

複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理 Download PDF

Info

Publication number
JP2015057095A
JP2015057095A JP2014216310A JP2014216310A JP2015057095A JP 2015057095 A JP2015057095 A JP 2015057095A JP 2014216310 A JP2014216310 A JP 2014216310A JP 2014216310 A JP2014216310 A JP 2014216310A JP 2015057095 A JP2015057095 A JP 2015057095A
Authority
JP
Japan
Prior art keywords
biosensor
sensor
power management
signal
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014216310A
Other languages
English (en)
Inventor
アール. デュフレーヌ,ジョエル
Joel R Dufresne
アール. デュフレーヌ,ジョエル
エム. カリム,ハテム
M Carim Hatim
エム. カリム,ハテム
イー. ドラモンド,トーマス
Thomas E Drummond
イー. ドラモンド,トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2015057095A publication Critical patent/JP2015057095A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

【課題】電力を管理し得る電子バイオセンサー及びその方法を提供する。【解決手段】携帯型の電子バイオセンサーの電力管理回路210が、バイオセンサーの電力使用量を制御するために、また臨床医によるバイオセンサーの所望の使用と不使用とを区別するために、条件付き電力管理論理を実施する。このバイオセンサーは、生体に由来する原因で発生した音響エネルギーの出現又は人体の活動電位など、人体の特性を感知するように構成されている。感知された特性を表す出力信号が生成される。このバイオセンサーのセンサーは、電力管理回路の検出器によって受信される、複数のセンサー信号の特徴を有する信号を発生させる。電力管理回路又はバイオセンサーのプロセッサは、センサー信号の特徴を用いて、臨床医によるバイオセンサーの所望の使用と不使用とを区別する。バイオセンサー構成要素に供給される電力は、センサー信号の特徴に基づいて制御される。【選択図】図13

Description

(関連出願の相互参照)
本願は、2007年3月23日に出願された仮特許出願第60/919574号の利益を主張するものであり、米国特許法119条(e)項に従って当該出願について優先権を主張し、当該出願を参照することで本願に組み込む。
(発明の分野)
本発明は、医療用感知装置に関し、より具体的には、バイオセンサー、及び、バイオセンサーに対して、印加及び解除を制御するための条件付き電力管理論理(power management logic)を用いる、バイオセンサーを組み込んだシステムに関する。
心音及び肺音など、身体によって発生される音を検出するために、多様な装置が開発されてきた。既知の装置は、主として聴診器などの機械的デバイスから、マイクロホン及びトランスデューサなどの様々な電子装置にまで及んでいる。例えば、聴診器は、心臓血管系の疾患及び状態の診断に使用される基本的な道具である。聴診器は、初期医療において、また遠隔地など高度な医療機器が利用できない状況において、そのような疾患及び状態の診断に最も広く用いられる技術として役立つものである。
電子聴診器により、種々の身体音を検出し、良性及び非良性の心雑音など、患者の正常な状態と異常な状態とを識別する臨床医の能力を向上させる機会が得られる。多数の電子聴診器が市販されているが、それらは依然として医師及び他の医療専門家に一般的に受け入れられていない。電子聴診器が遅々として認められないことについて考えられる理由として、臨床医が従来の機械的な聴診器と比べて電子聴診器とどのようにして相互作用するかということの認識の違いが挙げられる。例えば、スイッチをオンさせて電子聴診器の使用を有効にする単純な作業が、従来の機械的な聴診器を使用するときには必要ないので、不便かつ悩ましい行為として考えられることがある。
本発明は、一般に、電子バイオセンサー又は他の携帯型の電子医療診断装置のための電力を管理することに関する。本発明は、より具体的には、バイオセンサーを使用するか又は使用しない臨床医の所望を示す感知パラメータ又は現象に基づいて電力を管理することに関する。
本発明の実施形態は、臨床医が手持ちで操作するように構成されたハウジングを備える電子バイオセンサーに関する。バイオセンサーは変換器を有し、変換器はハウジングによって支持され、生体に由来する原因で発生した音響エネルギーの出現など、人体の特性を感知するように構成されている。バイオセンサーの変換器は、流体(例えば、体液又は吸気/呼気中の空気)の流量又は容積、生体電位(例えば、神経及び筋組織の興奮中に生じる電位)、又は人体の構造上の若しくは組織上の特性(例えば、骨密度などの骨、軟組織、臓器、血液、血液ガス、及び血液成分の特性)など、人体の他の特性を感知するように構成されていてもよい。出力装置は、変換器によって発生された信号情報を含む信号を出力するように構成されている。プロセッサ及び電力管理回路がハウジング内に設けられている。
各実施形態によれば、電力管理回路はバイオセンサーのセンサーに結合され、電力管理回路は、センサーによって発生された信号の複数の特徴を検出するように構成された検出回路を備える。センサーは好ましくは、複数の特徴を有するセンサー信号を発生させる単一の感知要素を有し、上記センサー信号は、プロセッサ又は電力管理回路の検出器によって検出することができる。あるいは、センサーは、種々の励起による応答特性を有する複数の感知要素を組み込んだ単一のセンサー又は感知装置として構成されてもよい。いくつかの実施形態において、センサーは、バイオセンサーの主変換器とは別の感知構成要素である。他の実施形態において、センサーはバイオセンサーの主変換器を備える。
電力管理回路は、条件付き電力管理論理を実施するように構成され、その条件付き電力管理論理の実施によって、複数のセンサー信号の特徴を用いて、臨床医によるバイオセンサーの所望の使用と不使用(intended use or nonuse)とを区別する。他の構成において、電力管理回路は、複数のセンサー信号の特徴を用いて、臨床医による即時すなわち差し迫った使用に対するバイオセンサーの準備状態を判断する。電力管理回路及びプロセッサは、複数のセンサー信号の特徴に基づいて、バイオセンサー構成要素に供給される電力を協働して制御する。
本発明の実施形態は、臨床医が手持ちで操作するように構成された電子バイオセンサーにおいて電力を管理する方法に関する。本発明の方法は、人体の特性を感知することを含み、例えば生体に由来する原因で発生した音響エネルギーの出現を感知する。出力信号は、感知された音響エネルギーの出現などによる感知特性を表すものを生成する。本発明の方法は、バイオセンサーのセンサーからセンサー信号を受信する工程と、センサー信号の複数の特徴を検出する工程と、センサー信号の特徴を用いて、臨床医によるバイオセンサーの所望の使用と不使用とを区別する工程とを含む。バイオセンサーの構成要素に供給される電力は、センサー信号の特徴に基づいて制御される。
他の実施形態によれば、電力管理回路は、それぞれ第1のセンサー信号及び第2のセンサー信号を発生させるように構成された、バイオセンサーの少なくとも第1のセンサー及び第2のセンサーに結合される。電力管理回路は、条件付き電力管理論理を実施するように構成され、その条件付き電力管理論理の実施によって、第1のセンサー信号及び第2のセンサー信号の状態に基づいて、臨床医によるバイオセンサーの所望の使用と不使用とを区別する。他の構成において、電力管理回路は、第1のセンサー信号及び第2のセンサー信号の状態に基づいて、臨床医による即時すなわち差し迫った使用に対するバイオセンサーの準備状態を判断する。電力管理回路及びプロセッサは、第1のセンサー信号及び第2のセンサー信号の状態に基づいて、バイオセンサー構成要素に供給される電力を協働して制御する。
第1のセンサー及び第2のセンサーの一方は、身体表面又は身体の上の衣類へのセンサーの近接を示す出力を生成するセンサーを有してもよい。第1のセンサー及び第2のセンサーの一方は、接触センサーを備えてもよい。第1のセンサー及び第2のセンサーの一方は、バイオセンサーの変換器を備えてもよい。第1のセンサー及び第2のセンサーの各々は、バイオセンサーの変換器以外のセンサーの変換器を備えてもよい。第1のセンサー及び第2のセンサーの各々は、人体の生理学的パラメータを感知するように構成された変換器を備えてもよい。第1のセンサー及び第2のセンサーの一方は、人体の生理学的パラメータを感知するように構成された変換器を備えてもよく、第1のセンサー及び第2のセンサーのもう一方は、非生理学的パラメータを感知するように構成された変換器を備えてもよい。第1のセンサー及び第2のセンサーは、流体の流量又は容積の少なくとも一方を感知するように構成された変換器と、生体電位を感知するように構成された変換器と、人体の構造上の又は組織上の特性を感知するように構成された変換器とを備えてもよい。第1のセンサーの変換器は、人体の感知される特性の点で第2のセンサーの変換器と異なってもよい。第1のセンサー及び第2のセンサーの一方は変換器を備えてもよく、第1のセンサー及び第2のセンサーのもう一方は、加速度計を備えてもよい。
プロセッサは、第1のセンサー信号及び第2のセンサー信号の所定の一方の状態が、臨床医によるバイオセンサーの所望の使用を示すと、電力管理回路によって判断されたことに応答して、低電力モードから動作電力モードに遷移するように構成されてもよい。プロセッサは、第1のセンサー信号及び第2のセンサー信号の双方の状態が、臨床医によるバイオセンサーの所望の使用を示すと、電力管理回路によって判断されたことに応答して、低電力モードから動作電力モードに遷移するように構成されてもよい。
電力管理回路は、第1のセンサー信号及び第2のセンサー信号の少なくとも一方と、センサーの励起による応答の特徴を表す所定のセンサープロファイルとの比較に少なくとも部分的に基づいて、臨床医によるバイオセンサーの所望の使用と不使用とを区別するように構成されてもよい。電力管理回路は、第1のセンサー信号及び第2のセンサー信号の発生の時間順序、及び/又は、それぞれ第1のセンサー及び第2のセンサーによる第1の信号の感知と第2のセンサー信号の感知との間の持続時間に基づいて、臨床医によるバイオセンサーの所望の使用と不使用とを区別するように構成されてもよい。電力管理回路は、コマンド信号に応答して、条件付き電力管理論理の一部又はすべての実施を無効化するように構成されてもよい。電力管理回路は、臨床医による選択が可能な所定の電力管理プロファイルに従ってバイオセンサーの電力管理を、実施するか又は修正してもよい。例えば、電力管理回路は、バイオセンサーの電力消費の履歴に基づいて、適応可能な電力管理プロファイルに従ってバイオセンサーの電力管理を、実施するか又は修正してもよい。
第1の電源が電力管理回路に結合され、低出力電源を規定してもよい。第1の電源は、プロセッサのスリープ状態の間に電力管理回路の連続的又は断続的動作のための電力を供給してもよい。第2の電源がプロセッサに結合され、第1の電源と比べて高出力電源を規定してもよい。第2の電源は、スリープ状態から、臨床医によるバイオセンサーの使用を容易にする状態へと、プロセッサを遷移させるために、プロセッサに電力を供給してもよい。
ユーザーインターフェイスが、バイオセンサーのハウジング上に設けられてもよい。ユーザーインターフェイスは、第1の及び第2のセンサーのいずれかを備えてもよい。ヘッドセットが、出力装置に通信によって結合するように構成され、かつ変換器によって発生された信号情報を含む信号をユーザーの知覚可能な形式に変換するように構成されてもよい。第1のセンサーは、臨床医の頭部に対してヘッドセットが配置される間、第1のセンサーがヘッドセットの変位を感知したことに応答して第1のセンサー信号を発生させるように構成されてもよい。出力装置は、複数の電力ステータス、変換器の信号強度、有線又は無線の通信リンクステータス、及びバイオセンサーの動作ステータスを示す、ユーザーが知覚可能な出力を提供するインターフェイスを備えてもよい。
いくつかの実施形態において、本発明の方法は、第1のセンサー信号及び第2のセンサー信号を受信する工程と、第1のセンサー信号及び第2のセンサー信号の状態に基づいて、臨床医によるバイオセンサーの所望の使用と不使用とを区別し、そして条件付き電力管理論理を用いる工程とを含む。バイオセンサー構成要素に供給される電力は、第1のセンサー信号及び第2のセンサー信号の状態に基づいて制御される。
バイオセンサー構成要素に供給される電力を制御する工程は、第1のセンサー信号及び第2のセンサー信号の状態に基づいて、それぞれのバイオセンサーに対して、電力の印加及び解除を制御することを含んでもよい。電力を制御する工程は、第1のセンサー信号及び第2のセンサー信号の所定の一方の状態が、臨床医によるバイオセンサーの所望の使用を示したことに応答して、低電力モードから動作電力モードに遷移することを含んでもよい。電力を制御する工程は、第1のセンサー信号及び第2のセンサー信号の状態が、臨床医によるバイオセンサーの所望の使用を示したことに応答して、低電力モードから動作電力モードに遷移することを含んでもよい。
臨床医によるバイオセンサーの所望の使用と不使用とを区別する工程は、第1のセンサー信号及び第2のセンサー信号の発生の時間順序、及び/又は、第2のセンサー信号に対する第1のセンサー信号の受信の間の持続時間に基づいてもよい。各方法は、コマンド信号に応答して、条件付き電力管理論理の一部又はすべての実施を無効化する工程を含んでもよい。各方法は、臨床医による選択が可能な所定の電力管理プロファイルに従ってバイオセンサーの電力管理を、実施するか又は修正することを含んでもよく、例えばバイオセンサーの過去の使用に対するバイオセンサーの電力消費に基づいて、適応可能な電力管理プロファイルに従ってバイオセンサーの電力管理を、実施するか又は修正することを含んでもよい。
各方法は、出力信号をユーザーインターフェイスに通信によって結合すること、及び出力信号をユーザーが知覚可能な形式に変換することを含んでもよい。例えば、各方法は、複数の電力ステータス、変換器の信号強度、有線又は無線の通信リンクステータス、及びバイオセンサーの動作ステータスを示す、ユーザーが知覚可能な出力を発生させることを含んでもよい。
各実施形態によれば、電力管理回路は、バイオセンサーのプロセッサの一部として組み込まれる。他の実施形態において、電力管理回路は、プロセッサとは別ではあるがプロセッサに結合された回路を規定する。更に他の実施形態において、電力管理回路は、電力管理回路及びプロセッサとの間に配置されてもよい。臨床医によるバイオセンサーの所望の使用と不使用とを区別すること、又は、臨床医による即時のすなわち差し迫った使用に対するバイオセンサーの準備状態を判断することなどの電力管理機能は、電力管理回路、プロセッサ、電力管理回路及びプロセッサの双方、あるいは、バイオセンサー同士又は他の構成要素との任意の組み合わせ、及び/又はバイオセンサーと通信する外部装置の任意の組み合わせによって実施されてもよい。
上記の本発明の概要は、本発明の各実施形態又はすべての実施形態を説明することを意図したものではない。本発明の利点及び成果は、本発明のより完成された理解と共に、添付の図面に関連してなされる以下の詳細な説明及び特許請求の範囲を参照することによって明らかになり、また評価されよう。
本発明の実施形態に従って電力管理機能を組み込んだ電子聴診器の形態をなすバイオセンサー。 本発明の実施形態に従って臨床医が聴診器の使用を直ちに必要とすることを感知するための機構。 本発明の実施形態に従って臨床医が聴診器の使用を直ちに必要とすることを感知するための機構。 本発明の実施形態に従って臨床医が電子聴診器を直ちに使用することを感知するように構成されたセンサー。 本発明の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の他の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の他の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の他の実施形態に従って臨床医が電子聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御機能。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの構成。 本発明の実施形態に従ってバイオセンサーに対して電力管理方法を実施するための回路のブロック図。 複数のパラメータ又は現象を感知することが可能な本発明のセンサーによって発生された信号を示し、センサーは、臨床医によるバイオセンサーの所望の使用と所望でない使用とを区別する目的で、電力管理回路によって検出される複数のパラメータ又は現象に対応する複数の特徴を有する信号を発生。 複数のパラメータ又は現象を感知することが可能な本発明のセンサーによって発生された信号を示し、センサーは、臨床医によるバイオセンサーの所望の使用と所望でない使用とを区別する目的で、電力管理回路によって検出される複数のパラメータ又は現象に対応する複数の特徴を有する信号を発生。 複数のパラメータ又は現象を感知することが可能な本発明のセンサーによって発生された信号を示し、センサーは、臨床医によるバイオセンサーの所望の使用と所望でない使用とを区別する目的で、電力管理回路によって検出される複数のパラメータ又は現象に対応する複数の特徴を有する信号を発生。 ディスプレイと多機能制御ボタンとを有する、電子聴診器などのバイオセンサーのユーザーインターフェイスを示し、ディスプレイは、本発明の実施形態に従って、バイオセンサー及び患者についてのステータス及びモード情報を提示。
本発明は様々な修正及び代替の形態に容易に応じるが、その細部を、一例として図面に示してあり、また詳しく説明することにする。しかしながら、その意図は、説明する特定の実施形態に本発明を限定することではないことは理解されよう。逆に、その意図は、添付の特許請求の範囲で規定される本発明の範囲に含まれるすべての修正物、等価物、及び代替物を網羅することである。
例示する実施形態の以下の説明において、添付の図面を参照するが、その図面は本願の一部をなすものであり、また、本発明が実施され得る種々の実施形態を実例として示すものである。本発明の範囲から逸脱することなく、これらの実施形態が利用されることができ、また、構造的な変更がなされ得ることが理解されよう。
本発明は、生体に由来する原因に関連付けられる1つ以上の特性を感知するように構成された電子デバイス内に実施され得る電力管理回路及び方法に関する。本発明の代表的な電子装置には、生体に由来する原因によって発生するか又は生体に由来する原因との相互作用の結果として生じる音響及び/又は他の生成エネルギーの出現を感知し得るものが含まれる。本発明の実施形態は、生体に由来する原因によって発生するか又は生体に由来する原因との相互作用の結果として生じる可聴音波、不可聴音波(例えば、超音波若しくは可聴帯域外の音波)、又は他の音響信号若しくは電気パラメータのうちの1つ以上の感知をもたらすことができる。本発明の実施形態は、流体の流量若しくは容積、生体電位、又は人体の構造上の若しくは組成上の特性のうちの1つの感知をもたらすことができる。
本発明の実施形態は、電子聴診器などの手持ち型又は携帯型のバイオセンサー内に実施され得る電力管理回路及び方法に関する。本発明のバイオセンサーの実施形態により、高度な電力及び動作モード管理を提供する制御システムを、非常に対話的な医療環境内に組み込むことができる。制御システムは、バイオセンサーのユーザー(例えば臨床医)及び/又はバイオセンシングの被験者(例えば患者)の行為のいずれにも応答するように構成されてもよく、また、医療環境内で他の電子装置から受信される情報に応答してもよい。
例えば、現在市販されている電子聴診器は、臨床医が手動でユニットをオンにすることを必要とする。この「手動オン」システムの欠点は、臨床医が一時的に聴診器に注意を集中させてオン・オフ機能を見つけ、次いでオン・オフ機能を起動する必要があることである。本発明の制御方法は、必要性を予期して電子聴診器を自動的にオンにする手段を提供するものであり、それによって、臨床医は、貴重な時間を費やして聴診器を起動するよりも、自身の労力を患者の治療に集中させることが可能となる。本発明の制御方法は更に、聴診器の電力ステータス(例えば、オンステータスの確認)及び現在の動作モード(例えば、ベル又はダイアフラムのフィルター)に関する視覚的表示を提供し、臨床医が注意を集中させている音に対する迅速な検討/調節を可能にする。
本発明の電力管理方法を実施する制御システムは、電子聴診器内のセンサーを自動的に起動するだけでなく、動作モード及び他の情報を臨床医に視覚的に伝達する手段を提供するように構成されてもよい。例えば、本発明の電力管理方法では、臨床医は、その臨床医が従来の機械的な聴診器を長年にわたって使用して発展させた標準的な作業の流れを変えることなく、電子聴診器の電力回路を起動することが可能となる(例えば、電力の自動オン/オフ)。
周知のように、機械的な聴診器は、電子部品を含んでいないので、常に「オン」であり、したがって、電池の消耗に関する不安、又は、手動の電力起動機構(例えばスイッチオン)によるユーザーの不便さもない。臨床医は、身体音を直ちに聴くことができると期待して、機械的な聴診器のイヤーチップを外耳道内に単純に入れる。本発明の電力管理手法では、電子聴診器内の回路の電力を即時に上昇させ、それによって、電池の寿命を節約する一方で、臨床医によって認められる聴診器の「常時オン」ステータスをシミュレートすることが可能である。
一般に、聴診器回路のロー作動又は「スリープ」モードの間の電池の消耗を最小限にする設計が広く好まれる。端的に言えば、一部の設計では、電池のパワーを、ユーザー又は環境によって供給されるエネルギーで効果的に補充できるようにする。例えば、光起電力セルが、聴診器のイヤーチューブを分離することによって周辺光にさらされるようにして、その光起電力セルの出力電圧は、主電池のパワーをゲート制御する起動回路に使用することができる。同様に、聴診器を着用する行為が、一片の圧電材料を機械的に伸張又は変形させ、結果として、出力電圧を生じさせ、聴診器回路内におけるモード変更を誘発する。
いくつかの実施形態において、本発明の電力管理方法により、PDA、PC又は患者の外部の他の装置など、電子聴診器と通信する患者の外部の装置の電力回路及び他の回路を起動することができる。例えば、電子聴診器の自動の電力オン手順を開始することが、患者の外部の装置をスリープモードなどからその電力を上昇させるようにするコマンドを生成することを含んでもよい。また、電子聴診器によって生成されたコマンドは、電子聴診器との通信及び/又は対話を容易にするように設計されたアプリケーションソフトウェアを実行することなどによって、外部の装置を電子聴診器と協働して動作するように構成する、患者の外部の装置内のソフトウェアルーチンを開始してもよい。
あるいは、外部のデバイスは、電子聴診器によって利用される自動の電力オン手順を修正してもよい。また、外部のデバイスは、スリープモードなどから電力を上昇させるように聴診器に命令してもよい。
本発明の制御システムは、電力管理に加えて、高度な動作モード管理を提供することができる。例えば、1つ以上の点滅するLED、及び/又はLCD、OLED若しくは他のタイプのディスプレイ上の表示を使用することなどによって、電子聴診器の動作ステータスの認知可能な表示を組み込むことで、有益な情報を臨床医に更に提供することができる。1つ以上のLED又は他の視覚的表示器(例えば、LCD又はOLEDディスプレイ上)によって臨床医に伝達できる情報は、聴診器の電力ステータス(例えば、自動の電力オン起動後のON表示)及び現在使用されているフィルターのモードを含んでもよい。例えば、LEDの照明又はある色から別の色への変化(例えば、赤から緑へ)により、聴診器の電力回路の自動起動を表示してもよい。LEDを特定の方式で点滅させることで、選択又は現在使用中の特定フィルターのモードを表示してもよい。聴診器の電力状態の文字又は図形による表示が、LCD、OLED、又は他のタイプのディスプレイ上に示されてもよい。
更に、点滅の速度(例えば、6秒〜10秒毎に点滅)を制御することで、臨床医が心拍数を測定するときに時計の秒針の代わりに聴診器上の点滅を利用できるようにしてもよい。例えば、臨床医は、点滅の間の心拍数を数え、次いで、選択した又はプログラムされた点滅速度に応じて、その結果に6又は10を乗算してもよい。複数のLEDが使用されて、様々な情報が臨床医に伝達されてもよい。あるいは、単一のLEDが使用されて、複数のタイプの情報が臨床医に伝達されてもよい。単数又は1つ以上のLED又はディスプレイが、電子聴診器の単一の箇所又は複数の箇所に位置していてもよい。心拍数、信号波形、及び他の情報が、LCD又はOLEDディスプレイなど、聴診器のディスプレイ上に表示されてもよい。
一般に、本発明の制御回路及び方法は、生体に由来する原因によって発生した又は生体に由来する原因との相互作用の結果として生じた音響エネルギー及び/又は他のエネルギーの出現を感知するように構成された医療装置内に実施されることができる。多数のタイプの医療装置が、本発明、特に聴診用に構成されたものに従って実施されることができ、また、例えば、心臓、肺、声帯又は身体の他の器官若しくは組織によって発生される音を感知し得るように構成されることができる。本発明に従って実施され得る他の医療装置には、流体(例えば、体液又は吸気/呼気中の空気)の流量又は容積、生体電位(例えば、心臓、神経系、筋肉、及び腺の活動電位などの活動電位)、及び人体の構造上の若しくは組織上の特性(例えば、骨密度、軟組織、臓器、血液、血液ガス、及び血液成分の特性)など、人体の他の特性を感知するように構成された装置が挙げられる。一例として、本発明の装置は、好ましくは電子聴診器として実施されるが、ヘッドセット、又は、外部から着用若しくは結合される他の機器若しくは計器内に実施されてもよく、その機器は、身体で発生する音又は他の生理学的徴候を感知する。
本発明の様々な実施形態に従って、電子聴診器は、人間の聴覚に関係付けられる周波数範囲を優先的に感知し得るように実施されてもよい。しかしながら、聴覚音域未満の身体音及び/又は聴覚音域超過の身体音に関連する周波数もまた、本発明の電子聴診器によって感知されてもよいことが理解される。例えば、本発明の電子聴診器は、直流をわずかに超えるものから約25kHzまでに及ぶ周波数を有する身体音を感知するように実施された1つ以上のセンサーを組み込んでもよい。
本発明の電子聴診器は、聴覚周波数範囲内に含まれる可聴出力を発生するように構成された1つ以上のセンサーを組み込んでもよく、また、聴覚周波数範囲を超える成分及び/又は聴覚周波数範囲未満の成分を含む電気センサー又は光センサーをもたらしてもよい。電子聴診器は、音域が人間の聴覚系の音域を超えるセンサーによって発せられる信号を利用するために周波数偏移又は他の信号処理を実施する信号処理回路及びソフトウェアを有してもよい。また、そのような回路及びソフトウェアは、解析値のデータを発生するように構成されてもよい。
ここで、図1を参照すると、本発明の電力管理方法を取り入れた電子聴診器の形状をしたバイオセンサーが示されている。電子聴診器10は、一対のイヤーチップ15a、15b、イヤーチューブ17a、17b、及び1つのメインチューブ13など、多数の構成要素を含むように構成されている。メインチューブ13は、主ハウジング又はチェストピース25に結合されており、その中に、少なくとも1つのセンサー20が設けられている。センサー20は、心臓、肺、声帯、又は身体の他の器官若しくは組織によって発生される音など、生体に由来する原因によって発生される音を感知するように構成されている。主ハウジング25内に設けられてもよい他の構成要素には、電源、信号処理回路、及び通信装置が挙げられる。
電子聴診器10の信号処理回路は、単純なものから複雑なものまで多様な機能を実施するように構成されてもよい。例えば、信号処理回路は、身体音のプロファイルマッチングなど、センサー20から受信した声帯音響信号の比較的高度な解析を実施するように構成されてもよい。信号処理回路は、センサー20によって発生された信号に対して、様々な種類の統計的解析を実施してもよい。そのような構成において、信号処理回路は、デジタル信号プロセッサ(DSP)を有していてもよい。代替又は追加として、外部システム24が、上記の信号処理及び解析の全部又は一部を実施してもよい。外部システム24は、ディスプレイと、音声システムと、プリンタと、ネットワークインターフェイスと、聴診器10の主ハウジング25内に設けられた通信装置との一方向又は二方向の通信を確立するように構成された通信インターフェイスとを有していてもよい。
あるシステムの実施形態によれば、電子聴診器10は、PDA、ラップトップ若しくはタブレットPC、又は他の無線装置など、携帯型の無線外部システム24と通信するように構成されていてもよい。無線外部システム24は更に、ネットワークサーバーシステムなど、ローカル又はリモートのサーバーシステムと通信するように構成されていてもよい。例えば、聴診の間に電子聴診器10によって得られた情報は、無線外部システム24に転送されてもよい。無線外部システム24は、その情報を処理して、情報の視覚表現、図形表現、及び/又は可聴表現(例えば、心拍数の表示、S1〜S4の心音)、及び/又は、異常な心臓、肺、若しくは他の器官の機能(例えば、弁逆流若しくは狭窄などから生じる心雑音、肺炎若しくは肺水腫などの呼吸障害)又は他の器官の病態に関する診断情報など、様々な出力データを提供してもよい。
重要なデータを必要とする解析又は信号処理は、電子聴診器10のプロセッサによってではなく、無線の外部システム24によって実施されてもよく、すなわちリモートサーバーによって実施されてもよい。一実施形態によれば、電子聴診器10によって得られた情報の処理は、システム要素の各々の処理リソースに基づいて複数のシステム要素によって実施される。例えば、電子聴診器10のプロセッサは、サンプリング及び/又はA−D変換を伴い得る、信号のフィルター処理及び波形の生成、並びに、表示器(例えば、LED又はディスプレイの文字/図形)の照明又は可聴出力の発生などのユーザーフィードバックの生成などの基本機能を実施するように構成されていてもよい。PDA又は他の外部システム24は、とりわけ、テンプレートに基づいた形態解析、速度若しくはタイミングの解析、周波数スペクトル解析、又はパターン認識解析などの様々な技術を用いて、心雑音又は不整脈の識別など、より高度な機能を実施するように構成されていてもよい。
電子聴診器10の通信デバイスは、通常の無線周波数(RF)リンクを確立するようにされていてもよく、無線周波数リンクは、当該技術分野において知られているように、ローカルシステムとリモートシステムとの間の通信を達成するために従来より使用されているものである。通信デバイスと外部システム24との間の通信リンクは、ブルートゥース規格、IEEE 802規格(例えばIEEE 802.11)、ZigBee(登録商標)若しくはIEEE 802.15.4規格に基づいた類似の仕様、又は他の周知の若しくは特殊な無線プロトコルを始めとする既知の通信規格に適合するインターフェイスなどの短距離無線通信インターフェイスを使用して実施されてもよい。無線通信は、次のエネルギー形態、つまり、電磁放射、光(近赤外線を含む光)、及び音響(平均的な聴覚限界を超える高周波数を含む音響)のうちの1つ又は複数を利用する方式で実施されてもよい。
電子聴診器10は、無線通信機能の代替又は追加として、有線コネクタを含めるように実施してもよいことが理解される。そのような構成において、導体(電気的又は光学的)が、電子聴診器10の有線コネクタ又はポートと、患者の外部のシステム24の対応するコネクタとの間に接続されてもよい。電子聴診器10の有線接続ポート、及び任意の必要なインターフェイス回路は、FireWire(登録商標)(IEEE 1394)、USB、又は他の通信プロトコルなど、多様なプロトコルに従って情報を通信するように構成されていてもよい。
本発明の電子聴診器10のセンサー20は好ましくは変換器20を組み込んでおり、この変換器20は、変換器の変形に応答して電気信号を変調又は生成するように構成されている。好適な変換器は、圧電フィルムなどの圧電材料(有機及び/又は無機の圧電材料)、圧電抵抗材料、歪みゲージ、容量性又は誘導性要素、線形可変差動変成器、並びに変形に応じて電気信号を変調又は生成する他の材料又は要素を組み込んだものである。変換器20は平面的であってもよく、また、湾曲した又は波形の構成の場合などのように、非平面的であってもよい。好適な圧電材料には、ポリマーフィルム、ポリマーフォーム、セラミック、複合材料又はそれらの組み合わせを挙げることができる。変換器20は、同一若しくは異なるタイプの変換器及び/又は変換器材料の異なる変換器の配列を組み込んでいてもよく、これらのすべては、直列的に、個別に、又は多層構造で接続されてもよい。異なる特徴を有する複数の感知要素及び/又は調整可能な感知特性を有するセンサーを組み込んだ好適な変換器が、同一出願者の米国公開特許出願第2007/0113649号及び同第2007/0113654号において開示されており、これらの特許出願の各々は、参照によって本願に組み込まれる。
変換器20は、電磁エネルギー又は圧電材料を用いるもの以外の技術を使用して実装されていてもよい。例えば、変換される音は、高反射性の表面を有するカンチレバーを運動させてもよく、また、この表面上を照らすレーザー又は光線が変調されてもよい。変調された光の強度又は他の特性は、解析用に電気信号を出力する光検出器によって受信されてもよい。
先に説明したように、1つ以上のLED又はディスプレイが、情報を臨床医に伝達するために使用されてもよい。1つ以上のLED及び/又はディスプレイが、電子聴診器の単一の箇所に又は複数の箇所に位置していてもよい。例えば、複数のLED 12、15、及び22が、ハウジング(すなわちチェストピース)上に装着されており、本発明の実施形態が、単一のLED又は他のタイプの視覚的表示器若しくはディスプレイを使用して実施されてもよいことが理解される。
本発明の電力管理方法は、電子聴診器内に多様な方式で実施されてよい。例えば、電子聴診器の電力オン回路の起動は、ヘッドセットの操作に基づいて開始することができる。電子聴診器の電力オン回路の作動は、チェストピースと臨床医の手との間の接触又は近接、及び/又はチェストピースと患者の肌若しくは衣服との間の接触又は近接に基づいて開始することができる。チェストピースの表面若しくは縁部に加えられ、またチェストピースの表面若しくは縁部から除去される導電性表面での圧力が、聴診器の電力供給回路を起動及び停止するために使用されてもよい。聴診器を取り扱うこと(例えば、臨床医がチェストピースに触れること及び/又は患者がチェストピースと接触すること)によって生じる温度の変化が、聴診器の電力供給回路を起動及び停止するために感知され使用されてもよい。聴診器の電力オン及びオフは、聴診器のイヤーチップが外耳道の中に入れられたり外耳道から取り出されたりしたときなどに、インピーダンス、静電容量、抵抗、又は他の電気的パラメータにおける変化を計測することによって制御されてもよい。聴診器の電力オン及びオフは、機械的な、電気的な、磁気的な、若しくは光学的なスイッチ若しくはセンサー、又は上記のようなスイッチ及びセンサーの組み合わせによって制御されてもよい。
本発明の実施形態によれば、電子聴診器の電力オン回路の起動は、ヘッドセットの操作に基づいて開始されてもよい。ヘッドセットは、聴診器のイヤーチューブ及びイヤーチップを含むものとして解釈される。ヘッドセットのチューブ/イヤーチップを引き離すことなどによってヘッドセットが広げられると、電子聴診器の電力オン回路が起動され、その結果、聴診器は、臨床医が直ちに使用できるようになる。ヘッドセットのチューブを引き離すことは、臨床医が聴診器を使用して患者を聴診しようとしているときに用いる「自然な手順」であることが特筆される。電力オン回路を有することに加えて、本発明の電子聴診器は、電力オフ回路を更に有していてもよい。例えば、ヘッドセットが臨床医の耳から取り外され、それによってヘッドセットが閉じた又は弛緩した構成に戻ると、電力オフ回路はこの行為を感知し、聴診器に供給されていた電力を、好ましくは所定の期間の後に停止する。
図2A及び2Bは、本発明の実施形態に従って聴診器の使用が直ちに必要となることを感知するための機構を示す。図2A及び2Bは、電子聴診器10のヨーク18に結合されたイヤーチューブ17a、17bを示している。図2Aに示すイヤーチューブ17a、17bは、弛緩した形状にある。図2Bは、イヤーチューブ17a、17bが互いから強制的に変位されているところを示しており、これは、臨床医が電子聴診器10を直ちに使用するために身に着けるときに起こる。
センサー30は、電子聴診器10のヨーク18内に又はヨーク18上に設けられて示されている。イヤーチューブ17a、17bは、ヨーク18に結合されている。センサー30は、この例示的な実施形態によれば、イヤーチューブ17bに対するイヤーチューブ17aの機械的変位又は変位力を感知するように構成されている。ある構成において、ヨーク18は柔軟部分を有しており、そこにセンサー30が位置している。図2Bに最良に示されるように、イヤーチューブ17bと比べてイヤーチューブ17aの強制変位は、結果としてヨーク18の変形を生じ、その変形がセンサー30によって感知される。他の構成において、ヨークは柔軟部分を有する必要がなく、センサー30は、イヤーチューブの変位を直接感知するように構成されていてもよい。例えば、イヤーチューブ17a、17bの歪み、撓み、若しくは捻れ、又は他の機械的歪み若しくは変位の徴候が、イヤーチューブ17a、17bに又はイヤーチューブ17a、17bのすぐ近くに装着された適当なセンサーを使用して感知されてもよく、したがって実質的に硬質なヨーク18が許容される。
センサー30は、好ましくは較正され、臨床医によって電子聴診器10が直ちに所望されて使用されることと、電子聴診器10が直ちの所望の使用に関連しない聴診器の輸送又は他の力を示す動きなどの、イヤーチューブ17a、17bの偽の動きと、を区別できるようにする。例えば、センサー30は、イヤーチューブの変位又は変位力が所定の閾値を超えたことに応答して、起動信号を生成するように較正してもよい。センサー30は、単一の軸(例えば、図2Bに示すx軸)又は複数の軸(x軸、y軸、z軸)に沿ったイヤーチューブの変位を検出するように構成されていてもよい。例えば、センサー30は、直交する関係で配列された複数の力センサー又は加速度センサーを組み込んでいてもよく、それらのセンサーから、各軸に対するイヤーチューブの変位が検出されてもよい。閾値は、臨床医が直ちに使用することと偽の動きとを区別する経験的使用データから得られた動きの各軸ごとに確立されてもよい。多軸センサー30が聴診器上の他の場所で用いられてもよいことが理解される。
図3は、本発明の実施形態に従って、臨床医が電子聴診器を直ちに使用することを感知するように構成されたセンサー30を示している。図3におけるヨーク18は、2つの感知部材29a、29bの近くに装着されたセンサー30を有して示されている。感知部材29a、29bは、それぞれイヤーチューブ17a及び17bに機械的に結合されている。イヤーチューブ17a及び17bに加えられた変位及び変位力は、感知部材29a及び29bに伝えられ、感知部材端部33a及び33bとセンサー30との相対運動を生じる。イヤーチューブ17a、17bが互いに十分な程度に変位しているとセンサー30によって感知されると、結果として、センサー30によって起動信号が生成される。この起動信号は、導体31によって主チューブ13を経由して、好ましくはチェストピース内に収容された電子聴診器10の電力制御回路に伝送される。
この実施形態において、感知部材端部33a及び33bは、弛緩状態のとき、センサー30から離間している。感知部材端部33a及び33b並びにセンサー30を離間する空隙(また、いくつかの実施形態における上記空隙間の接触)の変化は、多種の方式で感知されてよい。一実施形態によれば、センサー30は、感知部材端部33a及び33b並びにセンサー30を離間する空隙の変化を感知する容量性センサーを有するように構成されていてもよい。
別の実施形態において、センサー30は、感知部材端部33a及び33b並びにセンサー30の接触を感知するように構成されている。そのような接触は、センサー30の電気的又は機械的パラメータの変化として感知されることができる。例えば、センサー30は、導電性要素を有するように構成されていて、感知部材端部33a及び33b並びにセンサー30が接触すると、その導電性要素を有する電気回路が閉じられるようになっていてもよい。他の実施形態において、センサー部材端部33a及び33b並びにセンサー30の間の変位及び/又は接触を検出するために、光学素子がセンサー30内に所望により使用されていてもよい。更なる実施形態において、感知部材端部33a及び33b並びにセンサー30の間の接触を感知するために、圧力センサーがセンサー30内に組み込まれていてもよい。
図4A〜4Cは、本発明の実施形態に従う、臨床医が聴診器の使用を直ちに必要とすることを感知するように構成された電力管理制御回路を示す。図4A〜4Cは、センサー30がチェストピースに設けられたことを示している。一構成において、センサー30は、臨床医の手又は指とチェストピースのハウジング25との接触を感知するように構成されている。別の構成において、センサー30は、チェストピースのダイアフラム20と患者の皮膚又は外部の衣類42との接触を感知するように構成されている。例えば、導電性、容量性、又は感圧性リングなどのリングセンサー40が、ダイアフラム20の表面上に組み込まれていてもよい。リングセンサー40は、チェストピースが患者の身体表面又は衣類に近接していることを感知するように構成されていて、接触することが、聴診器を直ちに使用する所望を示すものとして、必ずしも必要でないようになっていてもよい。更なる構成において、センサー30は、臨床医/ハウジングの接触及びダイアフラム/患者の接触の双方を感知して、聴診器の電力回路の起動が、複数の条件を感知する状態に基づくようになっていてもよい。
例えば、臨床医/ハウジングの接触(又は近接)とダイアフラム/患者の接触(又は近接)との双方を感知することで、結果として聴診器の電力回路の起動が生じてもよい。一構成において、臨床医/ハウジングの接触(又は近接)又はダイアフラム/患者の接触(又は近接)を感知することで、結果として、聴診器のいくつかの構成要素の起動が生じ、残りの構成要素(例えば、より電力を消費する構成要素)は、臨床医/ハウジングの接触/近接とダイアフラム/患者の接触/近接との双方を感知したことに応答して起動され、それによって、臨床医が聴診器の使用を直ちに必要とすることが確認されてもよい。
臨床医の手/指とハウジング25との間、又はチェストピースのダイアフラム20と患者の皮膚若しくは外側の衣類との間の接触又は近接は、多様な方式で感知されてよい。例えば、ダイアフラム表面20など、チェストピースの患者接触表面に加えられる圧力が、聴診器回路を起動及び停止させるために使用されることができる。次いで、圧力の解除が感知されて、聴診器電力を停止することができる。また、この方法は、複数の接触点の使用によって、最良の聴診のための、ダイアフラム20と患者との間の均一な接触を求めるために使用されてもよい。ハウジング25と臨床医及び/又は患者との近接を検出するために、また聴診器回路を起動及び停止するために、電気容量が使用されてもよい。
図5A〜5Cは、聴診器の電力供給回路を起動及び停止するための機構として温度感知を用いる電子聴診器の別の実施形態を示している。図5A〜5Cに示す聴診器50は、温度を感知するように構成されたセンサー30を組み込んでいる。図5A及び5Bは、ハンドル56における周囲に対する温度上昇をセンサー30が感知したことに応答する、聴診器電力供給回路の起動を示しており、この温度上昇は、臨床医が聴診器50を取り上げた結果として生じるものである。図5Cは、臨床医が使用する間に達した温度に対して、又は周囲温度に対する決められた閾値と比べて、センサー30がハンドルにおける温度低下を感知したことに応答して、聴診器の電力供給回路が停止したことを示している。
有用な温度センサー30には、例えば、サーミスタ、赤外線(IR)光ダイオード、又は感温フィルム若しくは材料を組み込んだものが挙げられる。通常は臨床医又は患者と接触する聴診器50の1つ以上の箇所における温度及び温度変化を感知し変換するために、様々な感温装置又は感温材料が使用されてよい。例えば、チェストピース54のハンドル56及びダイアフラム、又は患者接触部分51の一方又は双方が、温度センサー30を組み込んでいてもよい。基準周囲温度は、ユーザー又は患者との接触が起こりそうな聴診器の箇所に位置する温度センサーを使用して取得されてもよい。
図5Aはまた、モードスイッチ、ディスプレイ又はそれらの機能の組み合わせとして構成され得る装置52を示している。例えば、マルチモードスイッチ52は、フィルターモード、ゲインモード、及び音量制御を含めた様々な機能を選択及び選択解除するために、臨床医によって押圧可能であってもよい。それの代替又は追加として、装置52は、例えば、心拍数、電池ステータス、及びモードステータスなど、様々な情報を表示するためのLCD又はOLEDディスプレイなどのディスプレイを有していてもよい。
図6〜12は、本発明に従って電子聴診器内に実施され得る電力管理及び制御回路のいくつかの実施形態を示す。聴診器の電力管理に関する通常の方法には、参照によって本願に組み込まれる米国特許第6,005,951号に記載されているような、両耳アセンブリ内における電気スイッチの使用が挙げられる。聴診器の電力管理に関する他の方法には、所定の時間間隔の後に聴診器の電力を自動的に遮断するタイマー回路が挙げられる。これらの方法は、ユーザーの作業の流れに応答する上での柔軟性を制限し、無線医療システム及びネットワークとの自動的な相互作用を支援しない。そのような従来の方法は典型的には、ユーザーの行為又は電子聴診器の一般的な動作環境をより包括的に監視する段階的方法ではなく、電力管理に対する「全か無かの」方法を反映している。
図6〜12を参照すると、本発明の電子聴診器は概して、1つ以上の電力源、並びに種々のセンサー、信号処理要素、制御論理回路、メモリ要素、及び通信リンクを含めて、多数の構成要素を有している。臨床医が聴診器の使用を直ちに必要とすることを感知するセンサーは、受動的(すなわち、動作のために電力供給が必要)であっても能動的(すなわち、圧電、起電、又は他の手段などの機構によって、それ自体で電気信号を生成)であってもよい。
図6に示す電力管理回路の実施形態は、電力ゲート86と信号調整及び制御論理回路84とに結合された電池82を有している。センサー83は、論理回路装置84に結合されている。センサー83は、受動的であっても能動的であってもよい。論理回路装置84は好ましくは、聴診器が使用されていない間、電池82から最小の電力を引き込むことが特筆される。センサー83の起動を検出するために最小の電力が論理回路装置84に必要とされる様々な既知のスリープモード技術が実施されてもよい。スリープモード回路は、臨床医が聴診器を直ちに使用するのを促進させるように、聴診器回路88の電力上昇を達成させるスリープ解除又は起動信号を生成してもよい。
図6に示すように、論理回路装置84は、スリープ解除又は起動信号に応答して電力ゲート86を制御して、電池82によって聴診器回路88に電力を供給するのを促進させる。また、センサー83は、先に説明したように、聴診器が使用されていないことを感知してもよく、この場合、論理回路装置84は、電力ゲート86を停止して聴診器回路88からパワーを取り除き、スリープモードに戻る。
センサー83は、先に論じたように、また本願の他の箇所で論じるように、多種多様な方式で実施されてよい。センサー83は、人体からの音響放射、あるいは、流体(例えば、体液又は吸気/呼気中の空気)の流量又は容積、生体電位(例えば、神経及び筋組織の興奮中に生じる電位)、又は人体の構造上の若しくは組織上の特性(例えば、骨密度などの骨、軟組織、臓器、血液、血液ガス、及び血液成分の特性)など、人体の他の特性を感知するように構成されていてもよい。有用なセンサー83を非包括的かつ非限定的に挙げると、位置、配置、又は配向センサーと、力、応力、又は圧力センサー(例えば、加速度計、歪みゲージ)と、温度センサー(例えば、IR光ダイオード、サーミスタ)と、光センサー(例えば、リフレクタ/シャッター、及び/又は両耳内の光回路を使用するセンサー)と、伝導性センサー(例えば、機械的に切り替わる電気接点、磁気リードスイッチ、被膜抵抗センサー)と、音響センサー(音の閾値センサー、音の識別フィルター、音声認識センサー)と、磁気センサー(例えば、ホール効果センサー)と、運動センサー(例えば、MEMS加速度計又はジャイロスコープなどの単軸又は多軸の加速度用)とがある。
図7は、本発明の実施形態に従う電子聴診器内に実施され得る電力管理回路の様々な構成要素を示すブロック図である。図7は、センサー83を有する回路を示しており、センサー83は、イヤーチューブの変位を感知できるように聴診器のヘッドセット上に装着されている。ある配置において、図8に最良に示されるように、センサー83は、両耳用のスプリング装置105上に装着されていてもよい。スプリング装置105の各端部は、それぞれイヤーチューブ17a及び17bに機械的に結合されている。
スプリング105は、イヤーチューブ17a及び17bに加えられた力に応答して膨張及び収縮するように構成されている。図8に示すセンサー83は、非接触オーバーラップセンサーなどの非接触センサーとして構成されており、オーバーラップの程度は、スプリング105が屈曲するにつれて増加し、スプリング105が弛緩するにつれて減少する。
一実施形態によれば、また図7に最良に示されるように、基準抵抗器87と抵抗センサー83とを有する分圧器又はブリッジの出力は、微弱電力型のコンパレータ84に与えられる。ブリッジの出力が基準電圧レベルを超えると、電力ゲート86が起動され、電力が電池82から聴診器回路88に供給される。抵抗センサー83は、直接スプリング105に貼り付けられた被膜抵抗器として実施されることができる。
図8に示す非接触センサーの構成83は、本明細書で説明するものなど、種々様々なセンサー及び感知技術を用いて実施されてよいこと、また、被膜抵抗器を組み込むことは、そのような有用なセンサーの1つを表すにすぎないことが理解される。例えば、以下の非接触及び/又はオーバーラップセンサー83は、図8に示す両耳ヘッドセットアセンブリの中に組み込まれてもよい。
一実施形態において、磁石が非接触センサー83の一方のスライド上に装着されていてもよく、また、リードスイッチが、もう一方のスライド上に又は両耳アセンブリ内の固定台上に装着されていてもよい。磁石がリードスイッチに向かって移動することでスイッチの接点が閉じられ、それによって、臨床医が聴診器の使用を直ちに必要とすることが示される。
別の実施形態において、センサー83の非接触スライド上にプレートを有する静電容量式センサー83の構成が設けられる。スライドするプレートの重なり(又はセンサーの構成に応じて間隙を分離)の量に比例して変動する静電容量が感知される。更なる実施形態において、センサー83は、コイル内でスライドする透過材料を有するように構成されてもよい。両耳の変位の程度に関連付けられる可変インダクタンスが測定されることができる。別の実施形態において、センサー83のスライドする一方は、光源と受光器との間、又は、周辺光と光センサーとの間の光路上のシャッターとして働き、光センサーには、例えば、光起電力セル、光ダイオード、若しくは光抵抗器などが該当する。これらの実施形態の各々において、閾値を超えるセンサー信号の変化は、聴診器が臨床医によって使用されるのを予想してヘッドセットの意図的な分離を示す。
別のセンサー構成として、ヘッドセットではなく電子聴診器のチェストピース内に実施又はチェストピースに付随させることが企図される。臨床医が聴診器の使用を直ちに必要とすることを感知及び/又は確認するために、チェストピース内のセンサーとヘッドセットとの組み合わせが使用されてもよいことが理解される。そのようなセンサーの例には、チェストピースの主構造に対するダイアフラム・アセンブリの相対的な変位又は回転を検出するセンサーが挙げられる。他の有用なセンサーには、チェストピースの主構造に対するチェストピースのステムの屈曲、撓み、回転、又は捻れを検出するセンサーが挙げられる。また、聴診器を握持するときに臨床医が使用する領域など、チェストピース上の構造の変形を感知するセンサーが用いられてもよい。チェストピースを握持するときにユーザーの皮膚が与える電導度などの外部電導度に左右される抵抗センサーが用いられてもよい。
臨床医が聴診器の使用を直ちに必要とすることを感知するために、人との接触又は接触の解除に関連付けられるパラメータの特異な変化を感知するセンサーなどの様々な他の方法が用いられてもよい。そのようなセンサーは、チェストピースを握持する手が存在することによる、チェストピースの壁部における特異な変化を感知するように構成されてもよい。そのような特異な変化は、温度、光、電流、又は電圧の変化であってもよい。そのような一実施形態において、ユーザーの手で加熱されることによるチェストピース温度の変化が感知され、周囲温度又は他の基準温度などの閾値と比較されてもよい。そのような実施形態において、チェストピースの比較的触れられにくい表面が、基準温度の場所として用いられてもよい。
チェストピース上に手が存在することは、チェストピース上に装着された光センサーに対して周辺光が遮断されることによって合図されてもよい。チェストピースを保持する手のプレチスモグラフィーから導出される周期的な電圧変化の存在を求めるために、近赤外線源検出器が使用されてもよい。他の実施形態において、巻き付いた状態と巻き付いていない状態とを区別するために、チェストピースとヘッドセットとの間の聴診器チューブ又はケーブル(存在する場合)内に、センサーが配置されてもよい。
図9は、本発明の実施形態に従って電子聴診器内に実施され得る電力管理回路の様々な構成要素を示すブロック図である。図9は、多数のセンサー83a〜83nを有する回路を示している。複数の状態を感知することが可能な単一のセンサー83もまた、図9に示す実施形態の状況において用いられてもよいことが理解される。複数のセンサー83a〜83nを使用することで、又は単一のセンサーを使用して複数の状態を感知することで、聴診器電力回路の条件付き起動がもたらされる。
各種の実施形態によれば、「電力オン」状態は、複数の現象が発生した結果として生じる。図9は、複数のセンサー83a〜83nが判断プロセスに寄与する回路図の例を示している。あるいは、単一のセンサーが使用されて複数の現象が検出されてもよい。いずれの場合も、現象が発生する時間順序もまた重要となり得る。
ある実施形態において、音響センサーがチェストピースのダイアフラムの背後に設けられてもよい。音響センサーは、先に説明したタイプのヘッドセットアセンブリ内で、構成するセンサーと共に使用されてもよい。別の実施形態において、接触圧センサーが、チェストピースのダイアフラム上に装着され、チェストピースのグリップ上に設けられた電導度センサー(例えば、皮膚接触センサー)と共に使用されてもよい。センサーとセンサー技術との別の組み合わせも企図される。
多数の形式のセンサー情報を使用する方法は、1つの現象が必ずしも聴診器を使用する所望を示さない場合に有用となり得る。例えば、日常的な輸送の間の白衣内における聴診器の動きで、音響センサーが起動することがある。同様に、首の回りに両耳アセンブリを配置することで、イヤーチップが必ずしも外耳道内に存在しなくても、イヤーチューブが屈曲することがある。上記で説明した例の多くは、複数のセンサーによる方法を実施するために使用されてよい。
更なる方法によれば、センサー83は、回路の第1の部分を構成する聴診器及び回路の第2の部分を形成する臨床医(例えば臨床医の両手)と一緒になって、微弱の高周波電流(マイクロアンペア以下)を利用する。この回路は、回路を完成するのに必要な部分として、臨床医の身体の一部及び聴診器の一部を含む様々な経路を通じて電流が流れることによって完成される。聴診器の直ちの使用及び起動を検出するために利用される特定の感知方式に関わらず、このような方法は、自動車のグローブボックス又は臨床医が着用する衣類のポケットに入れて輸送される間に起こり得るような、偶発的な動作を妨ぐようにするべきである。
また、複数のセンサーを使用するは、ユーザーが、電力投入のために一組の選択肢の中からいずれかを選択することで、聴診器を「個人専用」にすることを可能とする。このようにして、所与の作業の流れ又は診察手順と最も整合する一連の手順を選択することができる。
先に説明したように、本発明の電子聴診器は、患者外部のシステム又は装置と協働的に対話してもよい。図10は、患者外部のシステム又は装置と通信する、本発明の電子聴診器の一実施形態を示すブロック図である。図10に示すように、聴診器の通信プロセッサ142は、外部装置146から入力を受信する聴診器の制御論理回路装置144によって実施される電力管理方法は、外部装置146から受信された入力に応答してもよい。逆に、外部装置146によって実施される電力管理方法は、聴診器の制御論理回路装置144から受信された入力に応答してもよい。
いくつかの状況において、別の装置の命令の下で、聴診器への電力をオンにするか又は動作モードを変更することが望ましい場合がある。例えば、ある現象(例えば、無線トランスポンダで開始される現象又は有線式インターフェイスを介した現象)が、外部通信リンクを介して生成されることがある。例えば、遠隔医療の用途のために、本発明の電子聴診器は、遠隔中央コンソールに接続された中継局から起動されてもよい。また、聴診器の動作状態は、例えば振幅及びフィルターの設定を含めて、遠隔コマンドによって設定されてもよい。
別の構成において、別々に給電される聴診器用の無線ヘッドセットが、電力オンを開始するか又はチェストピース内の回路の動作モードを変更する。換言すれば、聴診器が本質的に、独立して給電される要素を持つ分散型構造を有する場合、電力オン又は動作モード変更は、全システムにわたって通信/順次伝達されることができる。
本発明の更なる実施形態によれば、電子聴診器の電力管理は、動作モード変更の可変期間に応じて修正されてもよい。動作モード変更の期間は、元の開始現象とは大いに異なっていてもよい。変更の期間は、固定されていてもユーザーの作業の流れに従って調節されてもよい。センサーは、規則的に(かつ継続的に)適応制御システムによって問い合わせされてもよい。
例えば、事前設定されたタイマー間隔が経過する十分前に休止が感知された場合、電池の放電を最小にし、したがって電池の寿命を増加させるために、電力は早期に調整されるか又は遮断されてもよい。同様にセンサーの問い合わせ速度は、最近のセンサー作動に基づいた聴診器使用の予測モデルに従って減少されてもよい。
また、上の例で説明したセンサー構成から示された作動のパターンは、聴診器ユーザーの作業の流れに適した順序で聴診器の動作モードを変更するために使用されてもよい。また、センサー作動は、フィルター応答及び振幅レベルなど、信号処理回路の動作パラメータ又は特徴を変更するか又は調整してもよい。したがって、本発明の電子聴診器を制御する制御システム及び方法は、聴診器の他の動作要素を含むように電力管理を超えて広げられてもよい。
今日、多数の電子回路は、電池の交換を除いて、完全に電源オフにされることがない。その代わりに、そのような回路は、低電力「待機」モードに置かれ、回路の動作は、回路の種類又は実行速度(「スループット」)において制限される。図11は、本発明の実施形態に従って聴診器動作の待機又はスリープモードを提供する回路のブロック図である。図11に示すように、1つ以上のセンサー83によって生成された信号が、典型的には信号調整回路164による処理の後に、制御論理回路装置166に通信される。制御論理回路装置166に入力されたセンサー信号により、制御論理回路装置166は、埋込み型デジタルプロセッサ172にクロックパルスを与えるクロック168の周波数を調整する。プロセッサは継続的に作動を維持しているが、低電力動作状態で大部分の時間を費やす。また、メモリ170、並びに制御論理回路装置166及び信号調整回路164の一部分など、聴診器の他の回路も、そのような回路が作動中である必要がないときに低電力動作状態に切り替わるように制御されてもよい。
図12は、複数の電源を用いた電子聴診器回路の実施形態を示している。図12において、第1の電源82aは、構成要素の第1の組に電力を供給するように構成されており、第2の電源82bは、構成要素の第2の組に電力を供給するように構成されている。第1の電源82aは、低出力の電池又は蓄積コンデンサなど、センサー83、及びセンサー83を補助するために必要な、スリープモードで動作する他の任意の回路に最小の電力を供給し、起動又はスリープ解除信号を発生させるために使用される低電力装置であってもよい。例えば、第1の電源82aは、先に説明した方式で、又は、特定のタイプのRFIDデバイスに給電するのと同じ方式で高周波リンクを介して聴診器に供給される電力を利用することもできる。
第2の電源82bは、臨床医が聴診器の使用を直ちに必要とすることを感知したのに応答して聴診器回路に電力を供給する高出力の電池であってもよい。図12に示す実施形態は、別の電池/蓄積コンデンサを有する低電力デバイスを提供するものであり、この別の電池/蓄積コンデンサは、独立した電源を有する第2の回路(より高度な機能とより高い電力消費を有する回路)の動作状態を判断するために使用される。
先に説明したように、本発明の制御システムは、電力管理に加えて、高度な動作モード管理を提供することができる。例えば、本発明の電子聴診器は、1つ以上の点滅するLEDの使用などによって、電子聴診器の動作ステータスの知覚可能な表示を取り入れてもよい。以下の表1は、有用な情報を臨床医に伝えるために使用され得るLED照明計画を、非包括的かつ非限定的に記載している。
Figure 2015057095
上に示した様々な実施形態の説明において、添付の図面を参照するが、その図面は本願の一部をなすものであり、また、本発明が実施され得る様々な実施形態を実例として示すものである。他の実施形態が利用されてもよく、また、構造的又は機能的な変更が、本発明の範囲から逸脱することなくなされてもよいことが理解される。更に、本発明によるシステム、装置、又は方法は、本明細書で説明した特徴、構造、方法、又はそれらの組み合わせのうちの1つ以上を有してよいことが理解される。例えば、ある装置又はシステムが、上で説明した有利な特徴及び/又はプロセスのうちの1つ以上を有するように実施されてもよい。そのような装置又はシステムは、本明細書で説明した特徴のすべてを有する必要はないが、有用な構造及び/又は機能をもたらす選択された特徴を有するように実施されてもよいことが意図されている。
図13は、本発明の実施形態に従って実施された、バイオセンサーに対して電力管理方法を実施するための回路のブロック図である。図13に示す回路200は、電源管理回路210に結合されたプロセッサ202を有している。プロセッサ202は、ランダムアクセスメモリ(RAM)204(例えばDRAM)と不揮発性メモリ206(例えばフラッシュメモリ)とを有するか、又はそれらに結合されている。不揮発性メモリ206は、バイオセンサーの電源管理機能を調整するためにプロセッサによって実行することができるプログラム学習を含めて、バイオセンサーの動作に必要な様々なデータを格納する。以下で説明するように、実行可能プログラムの命令は、臨床医によって又はコマンド信号によってバイオセンサーの電源オンボタンが動作されたことに応答するなど、所定の条件下でプロセッサ202によって実行されるために、典型的には、不揮発性メモリ206からRAM 204に転送される。RAM 204内の当該プログラム命令は、電力管理回路210及び/又はプロセッサ202によって長期間にわたるバイオセンサーの不使用が検出されたときなど、RAM 204への電力の解除によって失われる。
電力管理回路210は、バイオセンサーの少なくとも第1のセンサー83b(S1)及び第2のセンサー83n(S2)に結合されて示されている。いくつかの実施形態によれば、2つ以上のセンサー83a〜83nによって発生された感知信号は、臨床医によるバイオセンサーの所望の使用と非所望の使用とを区別するために、回路200に通信され、回路200によって使用される。他の実施形態によれば、単一のセンサー又は感知装置83a(S0)で、直ちにバイオセンサーを使用する臨床医の所望を示す複数のパラメータ又は現象を感知することが可能である。この単一のセンサー又は感知装置83a(S0)は、2つ以上の特徴(S0、S0)又は信号成分を有する信号を生成し、その信号は、回路200によって検出が可能であり、臨床医によるバイオセンサーの所望の使用と非所望の使用とを区別するために使用される。電力管理回路210及びプロセッサ202は、センサー83b及び83nによって発生された第1のセンサー信号及び第2のセンサー信号(S1及びS2)の、又はセンサー83a(S0)によって発生された信号の2つ以上の特徴若しくは信号成分(S0、S0)の状態に基づいて、バイオセンサー構成要素に供給された電力を協働して制御する。
いくつかの実施形態によれば、センサー信号S1及びS2の時間順序又は電力管理回路210によって受信/検出される信号の特徴/成分S0、S0は、臨床医によるバイオセンサーの所望の使用と不使用とを区別するために使用されてもよい。バイオセンサーで用いられるセンサーのタイプに応じて、臨床医によるバイオセンサーの所望の使用と不使用とを区別する目的で、特定の一連のセンサー信号又は特徴/成分を要求するために、検出ウインドウ212が電力管理回路210によって使用されてもよい。電力管理回路210によって受信された、所定の順序のセンサー信号又は特徴/成分を検出することで、バイオセンサーを臨床医が所望して使用することを示す、検出ウインドウの所定の順序基準が満たされる。
また、電力管理回路210による、センサー信号S1及びS2又は信号の特徴/成分S0、S0の受信/検出の間の期間は、臨床医がバイオセンサーを所望して使用したのか所望せずに使用したのかを区別するために使用されてもよい。検出ウインドウ212は、この実施形態によれば、所定のウインドウ持続期間でプログラムされてもよい。検出ウインドウ212は、第1のセンサー信号又は信号の特徴/成分を受信/検出したことに応答して開き、それによって、検出ウインドウ212のタイマーが始動する。続くセンサー信号又は信号の特徴/成分(あるいはそれらの複数)が、検出ウインドウ212の終了(すなわちタイマーの終了)前に受信/検出された場合、臨床医によるバイオセンサーの所望の使用を示す検出ウインドウの検出基準は、満足されたと見なされる。いくつかの実施形態において、臨床医によるバイオセンサーの所望の使用と不使用との区別を容易にするために、時間順序と持続時間の双方による検出が、電力管理回路210によって実施されてもよい。
いくつかの実施形態において、特徴検出器213が電力管理回路210又はプロセッサ202によって使用されて、バイオセンサーが臨床医によって所望によって使用されたか使用されなかったかを区別するためのセンサー信号の特徴が検出されてもよい。特徴検出器213は、例えば、センサー信号の過渡的な部分及びセンサー信号の非過渡的な部分を検出してもよい。図14〜16は、様々なセンサーによって発生された信号を示しており、これらの信号は、電力管理回路210又はプロセッサ202によって検出されることができる、感知されたパラメータ又は現象に対応する多数の特徴を有している。図14は、過渡的な部分1605と非過渡的な部分1607とを有するセンサー信号を示している。過渡的な部分1605は、典型的には、患者又は臨床医の身体表面又は衣類にセンサーが近接したこと又は接触したことを示すものである。非過渡的な部分1607は、信号1602の継続的な又は持続的な(例えば定常状態)部分を表し、この部分は、生理学的パラメータ(例えば生体電位)、又は非生理学的若しくは物理的パラメータ(例えば、臨床医/患者の体温に起因するバイオセンサーハウジングの温度の変化、把持されるときにバイオセンサーに加えられた圧力、又は把持されたときの静電容量若しくはインピーダンスの変化)を示すことがある。
図15は、過渡的な部分1625と非過渡的な部分1627とを有する別のセンサー信号1622を示している。図15の信号1622の過渡的な部分1625は、図14に示すものと比べて、より大きな振幅とより短いパルス幅を有している。この違いは、典型的には、用いられたセンサーの応答特性及び/又は感知されるパラメータに起因する。例えば、図14に示す波形は、振幅及び他の特性に関して時間と共に穏やかに変化する温度、圧力、又は他のパラメータ(例えば、より緩慢な応答特性)を感知するセンサーによって発生された信号に特徴的なものであり得る。図15に示す波形は、心拍など、振幅及び他の特性に関して時間と共に急激に変化する音響放射、加速度、又は他のパラメータ(例えば、より急速な応答特性)を感知するセンサーによって発生された信号に特徴的なものであり得る。
一実施形態において、バイオセンサーの所望の使用と非所望の使用とを区別するために使用されるセンサーは、患者を評価するために使用されるバイオセンサーの変換器を備えている。例えば、図15のセンサー信号1622は、生体に由来する原因で発生される音響エネルギーの発現を感知するように構成されたバイオセンサー変換器の出力を表し得るものである。この説明のための例において、変換器信号1622の過渡的な部分1625は、バイオセンサーと患者の身体表面又は衣類との物理的接触を表している。非過渡的な部分1627は、心臓の活動又は肺の活動によって発生した音響エネルギーなど、生体に由来する原因で発生した音響エネルギーの出現を表している。
図16は、第1の部分1633と、過渡的な部分1635と、非過渡的な部分1637とを有する別のセンサー信号1632を示している。この実施形態において、特徴検出器213は、それぞれ異なる要因又は現象を示す、センサー信号1632の3つの特徴を検出するように構成される。波形1632の第1の部分1633は、白衣のポケット又は保護カバーから取り出されるときのバイオセンサーの揺れなど、臨床医がバイオセンサーを手で扱うことを示し得るものである。過渡的な部分1635は、典型的には、バイオセンサーと患者の身体表面又は衣類との接触を示すものである。非過渡的な部分1637は、この説明のための実施形態においては、心臓の活動又は呼吸など、患者から得られた周期的な生理学的信号を表している。
特徴検出器213は、とりわけ、テンプレートマッチング技術、閾値検出、信号の特徴のタイミング測定(例えば、信号のピーク間の期間)、周期性及び/又は偶然性の検出、信号又は特徴の形態解析、周波数スペクトル解析、パワースペクトル解析、並びにパターン又は特徴の認識を含めた、信号の特徴又は成分を検出するための1つ以上の既知の技術を用いてもよい。多数の信号の特徴又はセンサー信号の成分を検出するこの方法は、単一のセンサー又は感知装置を使用して複数の要因、条件、又は現象を検出するときに特に有益である。
いくつかの実施形態において、特徴検出器213は、特定のセンサーの励起による応答の特徴を表す所定のセンサープロファイルに対応するデータを記憶してもよい。例えば、所定の刺激に対するセンサーの応答の特徴を表すセンサープロファイルが、圧電変換器又は加速度計について作成されてもよい。所定の刺激は、好ましくは、臨床医の接触/操作現象、患者の接触現象、並びに生理学的及び非生理学的刺激など、現実の刺激を表すものである。そのような刺激に対するセンサーの応答の特徴は、バイオセンサーの所望の使用又は不使用の表示として分類されることができる。センサーの応答特性の分類は、二値であってもよく(すなわち、所望か人為的か)、あるいは、所望の使用対不使用の可能性を示す重み係数など、段階を有することもできる。動作中、所与のセンサーによって条件又は現象が感知されると、結果として、センサーの所定のプロファイルと比較されることができるセンサー信号が発生される。比較の結果は、臨床医によるバイオセンサーの所望の使用と不使用とを区別するために、時間順序及び/又は信号の特徴の持続時間などの他の検討事項と共に、特徴検出器213によって使用されることができる。
以下の表2は、条件付き電力管理論理が電子聴診器などの本発明のバイオセンサーによって実施され得る動作シナリオを非包括的かつ非限定的に記載している。表2に関係する動作シナリオは、臨床医によるバイオセンサーの電力上昇、臨床医によって使用された後のバイオセンサーの不使用の検出、及び、自動のオン/オフ方法の実施を含んでおり、この自動のオン/オフ方法によって、1つ以上のセンサー信号が、認証医によるバイオセンサーの所望の使用と不使用とを区別するために、バイオセンサーによって取得され処理される。
Figure 2015057095
凡例:ステップ=論理フローにおけるステップ又は現象
X=開始状態;Y=終了状態
矢印付きの破線は電力状態の遷移方向を示す
PS1=完全な電力オフ状態 PS2=スリープモード状態
PS3=動作モード状態 PS4=トランシーバオン状態
電力管理プロファイルが適用可能
上の表2に示すシナリオ(1)において、臨床医は、電力オンボタンを動作させることによって、バイオセンサーの使用を開始し、それによって、バイオセンサーは、電力状態PS1(完全な電力オフ状態)から電力状態PS3(作動中モード状態)に遷移する。電力は、プロセッサ、及び、バイオセンサーの全動作機能を可能にする他の構成要素に供給される。シナリオ(2)は、バイオセンサーを電力状態PS1から電力状態PS4(トランシーバオン状態)に遷移させることを含んでおり、それによって、電力はバイオセンサーのトランシーバ(例えば、ブルートゥース又はZigBee(登録商標)トランシーバ)にも供給される。
バイオセンサーが臨床医によって電力オンにされると、電力管理操作を含めたバイオセンサー動作を実施するためのプログラム命令が、バイオセンサーのプロセッサによる実行のために、不揮発性メモリからランダムアクセスメモリ(RAM)に転送される。これらのプログラム命令は好ましくは、臨床医が電力オフボタンを使用してバイオセンサーの電源を切るまで、又は、不使用を示す長期間の不使用(例えば、1時間の不使用)の表示を検出したとき、RAM内に残存する。重要なことに、バイオセンサーの自動のオン/オフ検出機能を実施するためのプログラム命令はRAM内に残存し、臨床医によるバイオセンサーの所望の使用が検出されたとき、低電力状態から間近の動作状態へのバイオセンサーの遷移を最小の遅延で可能にする。
バイオセンサーの電力が上昇する方式は、最初は、初期設定のプログラムに基づいていてもよいが、好ましくは、臨床医によって臨床医の好みに基づいて規定されるか又は修正される。様々な電力管理機能及び臨床医の好みに合わせられた設定を規定する電力管理プロファイルが、臨床医によって確立されてもよい。例えば、臨床医が概してバイオセンサーの無線トランシーバ機能を使用する場合、臨床医は、電力状態PS3ではなくPS4を初期電力状態として事前に規定してもよい。バイオセンサーの電力消費の履歴は、バイオセンサーによって実施される電力管理論理に影響を及ぼす要因を規定するか又は改良するために使用されてもよいので、電力管理プロファイルは動的であってもよい。例えば、臨床医が、バイオセンサーを使用の合間の8分〜10分の期間にわたってしばしば下に降ろすことを、電力使用履歴データが示している場合、バイオセンサーの不使用を検出するために電力管理論理回路によって使用される不使用検出持続時間(例えば、上の表2の持続時間T、T、T)は、それに応じて、臨床医のバイオセンサー使用の実際の履歴をより反映するように調節されてもよい。
臨床医は、自動のオン/オフ検出機能など、好みに合わせた電力管理機能を更に規定して、臨床医によってバイオセンサーの実用性を向上させてもよい。これらのプログラム可能な又は選択可能な機能には、バイオセンサーの不使用を検出するための持続時間、電力上昇及び電力降下段階の順序、並びに条件付き電力管理論理回路への入力として使用されるセンサーの数が挙げられる。プロセッサが、完全に電力降下するよりも、むしろ低デューティサイクル状態に電力降下することが望ましい場合もあり、これは、臨床医が利用できるようになされた選択可能な又はプログラム可能な機能であってもよい。臨床医は、とりわけ、検出閾値、センサー信号の時間順序の条件、センサー信号間の持続時間、センサー信号の特徴、並びに、センサー及び/又はセンサー信号検出特性の他の側面を含めて、条件付き電力管理論理回路で使用される信号を生成するセンサーに関する様々な好みをプログラムするか又は選択してもよい。
表2に示すシナリオ(3)は、バイオセンサーの不使用(臨床医による使用後)を検出するための条件付き電力管理論理を示している。シナリオ(3a)において、時刻Tは、臨床医によるバイオセンサーの使用が最後に検出された時間を表す。時刻Tで始まり時刻Tで終了するタイマーが始動される。時刻Tに達するまで、バイオセンサーは依然として作動中モード状態PS3(トランシーバを除く構成要素に給電)又はPS4(トランシーバを含めた構成要素に給電)にある。シナリオ(3a)は、時刻Tに達するまで作動中モード状態PS4で動作するバイオセンサーを示しており、時刻Tに達すると電力管理回路は電力状態PS4から電力状態PS3に遷移し、これがシナリオ(3b)に示されている。この場合、電力はバイオセンサーのトランシーバからは解除されるが、プロセッサには依然として印加される。臨床医による使用が時刻Tより先に検出された場合、バイオセンサーの電力状態は依然として作動中モード状態PS4にあり、タイマーはゼロにリセットされることが理解される。
シナリオ(3c)において、臨床医による不使用が続き、タイマーは時刻Tに達するまで動作し続け、時刻Tに達すると電力管理回路は電力状態PS3から電力状態PS2(スリープモード状態)に遷移する。この場合、電力はバイオセンサーのプロセッサ及びトランシーバから解除される。臨床医による使用が時刻T前に検出された場合、バイオセンサーの電力状態は、この説明のための例では作動中モード状態PS4に戻り、タイマーはゼロにリセットされることが理解される。電力状態PS2に達すると自動オン/オフ論理回路が有効化され、そのシナリオが、シナリオ(4)〜(9)に示されている。
シナリオ(3d)において、臨床医による不使用が、電力状態PS2(自動オン/オフ論理回路が有効)で続き、タイマーは時刻Tに達するまで引き続き動作し、時刻Tに達すると電力管理回路は電力状態PS2から電力状態PS1(完全な電力オフ状態)に遷移する。この場合、臨床医が電力オンボタンを作動させることなどによってバイオセンサーの手動のターンオンを可能にするのに必要なもの以外の、すべてのバイオセンサー構成要素から、電力が解除される。臨床医による使用が時刻Tの前に検出された場合、バイオセンサーの電力状態は、バイオセンサーの電力管理回路によって実施された自動のオン/オフ論理によって管理される。
時刻TとTとの間の典型的な継続時間は、2分〜3分である。時刻TとTとの間の典型的な継続時間は、2分〜5分である。時刻TとTとの間の典型的な持続時間は、45分〜60分など、数十分程度である。これらの持続時間は単に説明を目的としたものであること、また、これらの持続時間は所望により臨床医によってプログラムされてもよいことが理解される。
自動のオン/オフ論理のシナリオ(4)は、2つのセンサー信号又はセンサー信号の特徴/成分(S1及びS2)が電力管理回路によって検出される、非常に簡潔なシナリオである。電力管理回路によるS1及びS2の検出は「1」状態として示されており、S1及びS2の非検出は「0」又は「≠1」状態として示されてもよい。電力管理回路は、論理シナリオ(4)において論理AND演算をS1及びS2に適用する。S1 AND S2=1の場合、バイオセンサーは、どの電力状態(PS3又はPS4)で最初に動作していたかに基づいて、又は臨床医の電力管理プロファイルによって命じられた通りに、電力状態PS2からPS3又はPS4に遷移する。
自動のオン/オフ論理のシナリオ(5)及び(6)において、複合的な条件付き論理が、2つの論理ステップA及びBにおいて適用される。シナリオ(5)の論理ステップAにおいて、電力状態はPS2であり、S1 OR S2=1である。この説明のための例において、S1及びS2のどちらが論理ステップAで感知されるかは重要ではない。条件S1 OR S2=1が満足されたことに応答して、電力状態は依然としてPS2であり、プロセッサ又はトランシーバのいずれにも電力は印加されない。シナリオ(5)の論理ステップBにおいて、条件S1 AND S2=1は、論理ステップAが満足されたいくぶんか後に満足される。条件S1 AND S2=1が論理ステップBで満足されたことに応答して、バイオセンサーは電力状態PS2からPS3又はPS4に(どの電力状態で最初に動作していたかに応じて、又は臨床医の電力管理プロファイルで命じられた通りに)遷移し、電力がプロセッサに、またPS4が適用された場合はトランシーバに印加される。
自動のオン/オフ論理のシナリオ(6)は、シナリオ(5)と類似しているが、結果として異なる電力上昇シーケンスをもたらす。シナリオ(6)の論理ステップAにおいて、電力状態はPS2であり、S1 OR S2=1である。シナリオ(5)と同様に、S1及びS2のどちらがシナリオ(6)の論理ステップAで感知されるかは重要ではない。条件S1 OR S2=1が満足されたことに応答して、電力状態は依然としてPS2であり、トランシーバに電力は印加されない。しかしながら、論理ステップAが満足されたことに応答して、電力がプロセッサに供給される。これによって、プロセッサは、センサーS1及びS2のもう一方を起動すること、また自動のオン/オフ論理を実施することなど、様々な動作を実施することが可能となる。シナリオ(6)の論理ステップBにおいて、条件S1 AND S2=1は、論理ステップAが満足された後に満足される。条件S1 AND S2=1が論理ステップBで満足されたことに応答して、バイオセンサーは電力状態PS2からPS3又はPS4に(どの電力状態で最初に動作していたかに応じて、又は臨床医の電力管理プロファイルで命じられた通りに)、また、PS4が適用された場合はトランシーバに遷移される。
自動のオン/オフ論理のシナリオ(7)において、2つのセンサー信号又はセンサー信号の特徴/成分(S1及びS2)が検出ウインドウ内に存在するか又は存在しないかを検出するために、検出ウインドウが用いられる。このシナリオにおいて、検出ウインドウは、S1とS2の双方が検出ウインドウによって規定された持続時間内に検出されたときに満足される。
シナリオ(7)の論理ステップAにおいて、電力状態はPS2であり、S1 OR S2=1である。この説明のための例において、S1とS2のどちらがシナリオ(7)の論理ステップAで感知されるかは重要ではない。条件S1 OR S2=1が満足されたことに応答して、電力はトランシーバに印加されない。電力は、プログラミングの設定に応じて、プロセッサに印加されてもされなくてもよい(論理シナリオ(5)及び(6)の相違する事例と同様)。シナリオ(7)の論理ステップBにおいて、条件S1 AND S2=1は、論理ステップAが満足された後に、かつ、この条件が検出ウインドウによって規定された持続時間内に満足された場合にのみ満足される。条件S1 AND S2=1が、論理ステップBで検出ウインドウ内で満足されたことに応答して、バイオセンサーは電力状態PS2からPS3又はPS4に(PS3又はPS4は、どの電力状態で最初に動作していたか、又は臨床医の電力管理プロファイルで命じられた通りかで決定)、また、PS4が適用された場合はトランシーバに遷移される。
自動のオン/オフ論理のシナリオ(8)及び(9)において、S1及びS2の検出の時間順序は重要である。このシナリオにおいて、時間順序の基準は、S1がS2より先に検出されたときに満足される。シナリオ(8)の論理ステップAにおいて、電力状態はPS2であり、S1はS2より先に検出される。論理ステップAが満足されたことに応答して、電力はトランシーバに印加されない。電力は、プログラミングの設定に応じて、プロセッサに印加されてもされなくてもよい(論理シナリオ(5)及び(6)の相違する事例と同様)。
シナリオ(8)の論理ステップBにおいて、条件S1 AND S2=1は、論理ステップAが満足された後に満足される。論理ステップBが満足されたことに応答して、バイオセンサーは電力状態PS2からPS3又はPS4に(PS3又はPS4は、どの電力状態で最初に動作していたか、又は臨床医の電力管理プロファイルで指示された通りかで決定)、また、PS4が適用された場合はトランシーバに遷移される。
論理シナリオ(9)において、時間順序の基準は満たされない(すなわち、S1はS2より先に検出されない)。論理ステップAが満たされなかったことに応答して、電力はトランシーバに印加されず、また、電力管理の設定に応じて、電力は、S1とS2のいずれかが検出されたとき、プロセッサに印加されても印加されなくてもよい。論理ステップBが後に満足された(すなわち、S1 AND S2が検出された)場合でも、論理ステップAの時間順序の基準が優先され、したがって、電力状態は依然としてPS2であり、プロセッサ及びトランシーバから電力が解除されている。
時間順序の基準が満たされなかったことが原因で、論理が電力状態PS2でラッチされるのを防止するために、論理シナリオ(8)及び(9)が期限付きであることが重要である。例えば、論理シナリオ(9)が満足された場合、S1及びS2の論理状態は、後に論理シナリオ(8)が満たされるように、適切な持続時間の後にリセットされるべきである。この持続時間は、臨床医がバイオセンサーの使用を実際に所望したことの検出が不適切に遅延されないように、比較的短いものであるべきである。
いくつかの実施形態によれば、バイオセンサーによって実施される条件付き電力管理論理の一部又はすべてが、コマンド信号に応答して無効化されてもよい。コマンド信号は、バイオセンサー上のボタンの作動によって、又は外部装置若しくはシステムによって発生されてもよい。バイオセンサーを用いて長時間の調査が実施され、その調査が、バイオセンサーの電力状態に対して行われる自動的な変更によって不所望にも中断され得る場合など、不使用の検出論理及び/又は自動オン/オフ論理が望ましくないシナリオも存在し得る。
ここで、図17を参照すると、本発明の実施形態に従ってディスプレイ及び多機能制御ボタンを有する、電子聴診器などのバイオセンサーのユーザーインターフェイスが示されている。ユーザーインターフェイス1402は、バイオセンサー及び患者についてのステータス及びモード情報を提供するディスプレイ1404を有している。様々な情報が、文字、数値、若しくは図形の形態で、又はそれらの組み合わせで提示されてよい。様々な情報が、スピーカを通じた信号音、ビープ音、又は電子音声出力の使用などによって、聴覚的に伝達されてもよい。
例えば、変換器の信号の振幅又は強度が、移動通信装置に一般的に用いられているようなバーの形式で、又は他の形式でディスプレイ1404上に示されてもよい。周波数に関連する振幅の情報が、信号強度の情報の上に示されるか又は重ねられてもよい。電池が消耗するまでの残り時間など、電池のステータスが図形的に又は他の形式で示されてもよい。バイオセンサーの有線又は無線の通信トランシーバのステータスが、標準的なブルートゥース表示器(オン/オフ用)を使用することなどによって示されてもよい。バイオセンサーと外部装置1410との対をなすステータスが、ディスプレイ1404上に表示されてもよい。バイオセンサーのフィルターモード(例えば、電子聴診器のベル又はダイアフラムのモード)が、ディスプレイ1404上に表示されてもよい。
バイオセンサーの動作ステータスが、OK/エラー表示器など、図形又は文字による表示器によって示されてもよい。また、患者の状態が、バイオセンサー又はバイオセンサーと通信する外部システムによって判断されてもよく、この状態情報は、患者に問題がないこと又は異常が検出されたことを示すために、ディスプレイ1404上に提示されてもよい。変換器の信号を示す波形が、ディスプレイ部分1406内など、ディスプレイ1404上に図形で提示されてもよい。臨床医がバイオセンサーと対話し、バイオセンサーの機能を制御することができるように、多機能ボタン1411が設けられてもよい。ボタン1411は好ましくは、バイオセンサーをオフ及びオンにするための設定を有している。
本発明の様々な実施形態の上述の説明は、例示及び説明を目的として提示されたものである。包括的なものにすること、又は、本発明を、開示した厳密な形に限定することは意図されていない。上記の教示を考慮すれば、多数の修正及び変形が可能である。本発明の範囲は、この詳細な説明によってではなく、むしろ本明細書に添付された特許請求の範囲によって限定されることが意図されている。

Claims (45)

  1. 電子バイオセンサーであって、
    患者に対して、臨床医が手持ちで操作するように構成されたハウジングと、
    前記ハウジングによって支持され、生体に由来する原因により発生した音響エネルギーの出現を感知するように構成された変換器と、
    前記変換器によって発生した信号情報を含んだ信号を出力するように構成された出力装置と、
    前記ハウジング内に設けられたプロセッサと、
    センサーと、
    前記ハウジング内に設けられ、前記プロセッサ及び前記センサーに結合された電力管理回路と、を備え、前記電力管理回路が、前記センサーによって発生した信号の複数の特徴を検出するように構成された検出回路を備え、前記電力管理回路が、条件付き電力管理論理を実施し、該条件付き電力管理論理の実施によって、前記複数のセンサー信号の特徴を用いて臨床医によるバイオセンサーの所望の使用と不使用とを区別し、前記電力管理回路及び前記プロセッサが、前記複数のセンサー信号の特徴に基づいて、バイオセンサー構成要素に供給される電力を協働して制御する、電子バイオセンサー。
  2. 前記電力管理回路が、前記センサー信号と、前記センサーの励起による応答の特徴を表す所定のセンサープロファイルとの比較に少なくとも部分的に基づいて、前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する、請求項1に記載のバイオセンサー。
  3. 前記電力管理回路及び前記プロセッサが、前記センサー信号の特徴に基づいて、それぞれの前記バイオセンサーに対して、電力の印加及び除去を協働して制御する、請求項1に記載のバイオセンサー。
  4. 前記電力管理回路は、前記センサー信号の特徴それぞれを感知する間の持続時間に基づいて、前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する、請求項1に記載のバイオセンサー。
  5. 臨床医が手持ちで操作するように構成された電子バイオセンサーにおいて電力を管理する方法であって、
    生体に由来する原因により発生した音響エネルギーの出現を感知する工程と、
    感知された前記音響エネルギーの出現を表す出力信号を発生させる工程と、
    前記バイオセンサーのセンサーからセンサー信号を受信する工程と、
    前記センサー信号の複数の特徴を検出する工程と、
    センサー信号の特徴を用いて、前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程と、
    前記センサー信号の特徴に基づいて、バイオセンサー構成要素に供給される電力を制御する工程と、
    を含む方法。
  6. 前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程が、前記センサー信号と、前記センサーの励起による応答の特徴を表す所定のセンサープロファイルとの比較を含む、請求項5に記載の方法。
  7. 前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程が、前記センサー信号の特徴のそれぞれを感知する間の持続時間に少なくとも部分的に基づく、請求項5に記載の方法。
  8. コマンド信号に応答して、前記条件付き電力管理論理の一部又はすべての実施を無効化する工程を含む、請求項5に記載の方法。
  9. 前記臨床医による選択が可能な所定の電力管理プロファイルに従って、バイオセンサーの電力管理を、実施する又は修正する工程を含む、請求項5に記載の方法。
  10. バイオセンサーの電力消費の履歴に基づく適応可能な電力管理プロファイルに従って、バイオセンサーの電力管理を、実施する又は修正する工程を含む、請求項5に記載の方法。
  11. 複数の電力ステータス、変換器の信号強度、有線又は無線の通信リンクステータス、及び前記バイオセンサーの動作ステータスを示す、ユーザーが知覚可能な出力を発生させる工程を含む、請求項5に記載の方法。
  12. バイオセンサー構成要素に供給される電力を制御する工程が、前記センサー信号の特徴に基づいて、それぞれのバイオセンサー構成要素に対して、電力の印加及び除去を制御する工程を含む、請求項5に記載のバイオセンサー。
  13. 前記センサーが、前記患者のパラメータ、及び前記患者の身体表面又は前記患者の衣類へのセンサーの近接を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  14. 前記センサーが、前記患者のパラメータ、及び前記バイオセンサーと前記患者の身体表面又は前記患者の衣類との接触を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  15. 前記センサーが、前記患者の生理学的パラメータ、及び前記バイオセンサーと前記患者の身体表面又は前記患者の衣類との接触を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  16. 前記センサーが、前記患者のパラメータ、及び前記臨床医のパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  17. 前記センサーが、前記バイオセンサーと前記臨床医との近接又は接触を示すパラメータ、及び前記バイオセンサーと前記患者との近接又は接触を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  18. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含む、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  19. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含み、前記センサーは、前記患者の身体表面又は前記患者の衣類へのセンサーの近接性を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  20. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含み、前記センサーが、前記患者の身体表面又は前記患者の衣類とのセンサーの接触を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  21. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含み、前記センサーが、前記臨床医の身体表面又は前記臨床医の衣類とのセンサーの接触を示すパラメータを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  22. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含み、前記センサーが、温度、静電容量、インピーダンス、圧力、及び力のうちの少なくとも1つを感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  23. 前記複数の特徴が、前記センサー信号の過渡的な部分と、前記センサー信号の非過渡的な部分とを含み、前記センサーが加速度を感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  24. 前記センサーが前記バイオセンサーの前記変換器を備える、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  25. 前記センサーが、前記バイオセンサーの前記変換器を備え、前記センサーが、生体に由来する原因で発生した前記音響エネルギーを示す信号の過渡的な部分、及び生体に由来する原因で発生した前記音響エネルギーを示す前記信号の非過渡的な部分を感知するように構成されている、請求項1に記載のバイオセンサー又は請求項5に記載の方法。
  26. 電子バイオセンサーであって、
    臨床医が手持ちで操作するように構成されたハウジングと、
    前記ハウジングによって支持され、生体に由来する原因で発生した音響エネルギーの出現を感知するように構成された変換器と、
    前記変換器によって発生された信号情報を含んだ信号を出力するように構成された出力装置と、
    前記ハウジング内に設けられたプロセッサと、
    前記ハウジング内に設けられ、前記プロセッサに結合された電力管理回路と、を備え、前記電力管理回路が、第1のセンサー信号及び第2のセンサー信号を発生させるようにそれぞれ構成された前記バイオセンサーの少なくとも第1のセンサー及び第2のセンサーに結合されており、前記電力管理回路が、条件付き電力管理論理を実施し、該条件付き電力管理論理の実施によって、前記第1のセンサー信号及び第2のセンサー信号の状態に基づいて、前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別し、前記電力管理回路及び前記プロセッサが、前記第1のセンサー信号及び第2のセンサー信号の状態に基づいて、バイオセンサー構成要素に供給される電力を協働して制御する、電子バイオセンサー。
  27. 前記第1のセンサー及び第2のセンサーの一方が、身体表面又は前記身体の上の衣類へのセンサーの近接を示す出力を生成するセンサーを備える、請求項26に記載のバイオセンサー。
  28. 前記第1のセンサー及び第2のセンサーの一方が接触センサーを備える、請求項26に記載のバイオセンサー。
  29. 前記第1のセンサー及び第2のセンサーの一方が前記変換器を備える、請求項26に記載のバイオセンサー。
  30. 前記第1のセンサー及び第2のセンサーの各々が、前記バイオセンサーの変換器以外の、センサーの変換器を備える、請求項26に記載のバイオセンサー。
  31. 前記プロセッサが、揮発性メモリ及び不揮発性メモリに結合されており、前記不揮発性メモリが、前記プロセッサによって実行可能な、前記臨床医による前記バイオセンサーの動作促進用プログラム命令を記憶するように構成されており、前記プログラム命令が、コマンド信号に応答して、前記プロセッサによる実行のために前記不揮発性メモリから前記揮発性メモリに転送される、請求項1又は26に記載のバイオセンサー。
  32. 前記電力管理回路が、コマンド信号に応答して、前記条件付き電力管理論理の一部又はすべての実施を無効化する、請求項1又は26に記載のバイオセンサー。
  33. 前記電力管理回路が、前記臨床医による選択が可能な所定の電力管理プロファイルに従って、バイオセンサーの電力管理を実施するか又は修正する、請求項1又は26に記載のバイオセンサー。
  34. 前記電力管理回路が、バイオセンサーの電力消費の履歴に基づいて、適応可能な電力管理プロファイルに従ってバイオセンサーの電力管理を実施するか又は修正する、請求項1又は26に記載のバイオセンサー。
  35. 前記出力装置に通信によって結合するように構成され、かつ前記変換器によって発生された信号情報を含む前記信号をユーザーの知覚可能な形式に変換するように構成されたヘッドセットを備える、請求項1又は26に記載のバイオセンサー。
  36. 前記電力管理回路に結合され、低出力電源を規定する第1の電源であって、前記プロセッサのスリープ状態の間に前記電力管理回路の連続的又は断続的動作のための電力を供給する第1の電源と、
    前記プロセッサに結合され、前記第1の電源と比べて高出力電源を規定する第2の電源であって、前記スリープ状態から、前記臨床医による前記バイオセンサーの使用を促進させる状態へと、前記プロセッサを遷移させるために、前記プロセッサに電力を供給する第2の電源とを備える、請求項1又は26に記載のバイオセンサー。
  37. 前記出力装置が、複数の電力ステータス、変換器の信号強度、有線又は無線の通信リンクステータス、及び前記バイオセンサーの動作ステータスを示す、ユーザーが知覚可能な出力を提供するユーザーインターフェイスを備える、請求項1又は26に記載のバイオセンサー。
  38. 臨床医が手持ちで操作するように構成された電子バイオセンサーにおいて電力を管理する方法であって、
    生体に由来する原因で発生した音響エネルギーの出現を感知する工程と、
    感知された前記音響エネルギーの出現を表す出力信号を発生させる工程と、
    第1のセンサー信号及び第2のセンサー信号を受信する工程と、
    前記第1のセンサー信号及び第2のセンサー信号の状態に基づいて、そして条件付き電力管理論理を用いて、前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程と、
    前記第1のセンサー信号及び第2のセンサー信号の状態に基づいて、バイオセンサー構成要素に供給される電力を制御する工程と、
    を含む方法。
  39. 前記第1のセンサー信号及び第2のセンサー信号の一方が、生体に由来する原因で発生した音響エネルギーの出現を示す信号を含む、請求項38に記載の方法。
  40. 前記第1のセンサー信号及び第2のセンサー信号が、生体に由来する原因で発生した音響エネルギーの出現を示す信号を含む、請求項38に記載の方法。
  41. 前記第1のセンサー信号及び第2のセンサー信号の一方が、人体の生理学的パラメータを示す信号を含む、請求項38に記載の方法。
  42. 前記第1のセンサー信号及び第2のセンサー信号が、人体の生理学的パラメータを示す信号を含む、請求項38に記載の方法。
  43. 前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程が、前記第1のセンサー信号及び第2のセンサー信号の発生の時間順序に基づく、請求項38に記載の方法。
  44. 前記臨床医による前記バイオセンサーの所望の使用と不使用とを区別する工程が、前記第2のセンサー信号に対する前記第1のセンサー信号の受信の間の持続時間に基づく、請求項38に記載の方法。
  45. コマンド信号に応答して、前記条件付き電力管理論理の一部又はすべての実施を無効化する工程を含む、請求項38に記載の方法。
JP2014216310A 2007-03-23 2014-10-23 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理 Withdrawn JP2015057095A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91957407P 2007-03-23 2007-03-23
US60/919,574 2007-03-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009554746A Division JP2010522039A (ja) 2007-03-23 2008-03-20 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理

Publications (1)

Publication Number Publication Date
JP2015057095A true JP2015057095A (ja) 2015-03-26

Family

ID=39522237

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009554746A Withdrawn JP2010522039A (ja) 2007-03-23 2008-03-20 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理
JP2014216310A Withdrawn JP2015057095A (ja) 2007-03-23 2014-10-23 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009554746A Withdrawn JP2010522039A (ja) 2007-03-23 2008-03-20 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理

Country Status (6)

Country Link
US (1) US8594339B2 (ja)
EP (1) EP2136712B1 (ja)
JP (2) JP2010522039A (ja)
CN (1) CN101652101B (ja)
BR (1) BRPI0808215A2 (ja)
WO (1) WO2008118753A1 (ja)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8210047B2 (en) 1996-01-23 2012-07-03 En-Gauge, Inc. Remote fire extinguisher station inspection
MXPA04008781A (es) 2002-03-19 2005-12-15 Bard Dublin Itc Ltd Dispositivo para biopsia y modulo de aguja para biopsia que puede insertarse en el dispositivo para biopsia.
CA2800959C (en) 2002-03-19 2015-05-05 Bard Dublin Itc Limited Vacuum biopsy device
DE10314240A1 (de) 2003-03-29 2004-10-07 Bard Dublin Itc Ltd., Crawley Druckerzeugungseinheit
ES2303256T3 (es) 2004-07-09 2008-08-01 Bard Peripheral Vascular, Inc. Sistema de deteccion de longitud para dispositivo de biopsia.
US7517321B2 (en) 2005-01-31 2009-04-14 C. R. Bard, Inc. Quick cycle biopsy system
ATE541517T1 (de) 2005-08-10 2012-02-15 Bard Inc C R Transportsystem für biopsievorrichtung mit mehrfache probennahme durch einzeleinführung
US8267868B2 (en) 2005-08-10 2012-09-18 C. R. Bard, Inc. Single-insertion, multiple sample biopsy device with integrated markers
US8262585B2 (en) 2005-08-10 2012-09-11 C. R. Bard, Inc. Single-insertion, multiple sampling biopsy device with linear drive
US7841967B1 (en) 2006-04-26 2010-11-30 Dp Technologies, Inc. Method and apparatus for providing fitness coaching using a mobile device
US8902154B1 (en) 2006-07-11 2014-12-02 Dp Technologies, Inc. Method and apparatus for utilizing motion user interface
US8251917B2 (en) 2006-08-21 2012-08-28 C. R. Bard, Inc. Self-contained handheld biopsy needle
PL2086418T3 (pl) 2006-10-06 2011-05-31 Bard Peripheral Vascular Inc Układ do przenoszenia tkanki z ograniczonym narażaniem operatora
EP2086417B1 (en) 2006-10-24 2015-07-01 C.R.Bard, Inc. Large sample low aspect ratio biopsy needle
US8620353B1 (en) 2007-01-26 2013-12-31 Dp Technologies, Inc. Automatic sharing and publication of multimedia from a mobile device
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
US8555282B1 (en) 2007-07-27 2013-10-08 Dp Technologies, Inc. Optimizing preemptive operating system with motion sensing
US7841445B2 (en) * 2007-11-09 2010-11-30 Joseph Berk Dual-sensor stethoscope with electronic sensor
US8241225B2 (en) 2007-12-20 2012-08-14 C. R. Bard, Inc. Biopsy device
US7854706B2 (en) 2007-12-27 2010-12-21 Devicor Medical Products, Inc. Clutch and valving system for tetherless biopsy device
US8749373B2 (en) 2008-02-13 2014-06-10 En-Gauge, Inc. Emergency equipment power sources
US8981927B2 (en) 2008-02-13 2015-03-17 En-Gauge, Inc. Object Tracking with emergency equipment
US8320578B2 (en) * 2008-04-30 2012-11-27 Dp Technologies, Inc. Headset
US8285344B2 (en) 2008-05-21 2012-10-09 DP Technlogies, Inc. Method and apparatus for adjusting audio for a user environment
US20090290719A1 (en) * 2008-05-22 2009-11-26 Welch Allyn, Inc. Stethoscopic assembly with record/playback feature
US8996332B2 (en) 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
US8498424B2 (en) * 2008-08-01 2013-07-30 Texas Instruments Incorporated Method and apparatus for an adaptive gain control unit
US20100073187A1 (en) * 2008-09-22 2010-03-25 Symbol Technologies, Inc. Methods and apparatus for no-touch initial product deployment
US8872646B2 (en) 2008-10-08 2014-10-28 Dp Technologies, Inc. Method and system for waking up a device due to motion
US8690793B2 (en) 2009-03-16 2014-04-08 C. R. Bard, Inc. Biopsy device having rotational cutting
EP3034008B1 (en) 2009-04-15 2018-09-12 C.R. Bard Inc. Fluid management
US9529437B2 (en) 2009-05-26 2016-12-27 Dp Technologies, Inc. Method and apparatus for a motion state aware device
US8206316B2 (en) 2009-06-12 2012-06-26 Devicor Medical Products, Inc. Tetherless biopsy device with reusable portion
EP2456360B1 (en) * 2009-07-20 2017-11-22 Koninklijke Philips N.V. Method for operating a patient monitoring system
US9173641B2 (en) 2009-08-12 2015-11-03 C. R. Bard, Inc. Biopsy apparatus having integrated thumbwheel mechanism for manual rotation of biopsy cannula
US8430824B2 (en) 2009-10-29 2013-04-30 Bard Peripheral Vascular, Inc. Biopsy driver assembly having a control circuit for conserving battery power
US8283890B2 (en) 2009-09-25 2012-10-09 Bard Peripheral Vascular, Inc. Charging station for battery powered biopsy apparatus
US8485989B2 (en) 2009-09-01 2013-07-16 Bard Peripheral Vascular, Inc. Biopsy apparatus having a tissue sample retrieval mechanism
US10617348B2 (en) 2009-09-10 2020-04-14 Newton Howard Fundamental code unit of the brain: photoreceptor protein-mediated photonic signaling within neural tissue and its uses in brain co-processor
US10624578B2 (en) 2009-09-10 2020-04-21 Newton Howard Fundamental code unit of the brain: towards a new model for cognitive geometry
US8597206B2 (en) 2009-10-12 2013-12-03 Bard Peripheral Vascular, Inc. Biopsy probe assembly having a mechanism to prevent misalignment of components prior to installation
US9480400B2 (en) * 2010-02-01 2016-11-01 3M Innovative Properties Company Electronic stethoscope system for telemedicine applications
US9204856B2 (en) * 2010-02-01 2015-12-08 3M Innovative Properties Company Electronic stethoscope system for telemedicine applications
DK2621339T3 (da) 2010-09-29 2020-02-24 Dexcom Inc Avanceret system til kontinuerlig analytmonitorering
US9041534B2 (en) 2011-01-26 2015-05-26 En-Gauge, Inc. Fluid container resource management
CA2826866A1 (en) * 2011-02-09 2012-08-16 Massachusetts Institute Of Technology Wearable vital signs monitor
US8353870B2 (en) 2011-04-26 2013-01-15 Fresenius Medical Care Holdings, Inc. Medical temperature sensors and related systems and methods
JP5762118B2 (ja) * 2011-05-02 2015-08-12 キヤノン株式会社 光照射装置およびその制御方法、ならびに被検体情報取得装置
US20130150754A1 (en) 2011-12-08 2013-06-13 3M Innovative Properties Company Electronic stethoscopes with user selectable digital filters
JP6403939B2 (ja) * 2012-02-29 2018-10-10 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッドJohnson & Johnson Vision Care, Inc. 電圧が印加される収容アレイを有する涙点プラグ
JP2015521062A (ja) 2012-05-11 2015-07-27 スリーエム イノベイティブ プロパティズ カンパニー 雑音振動制御機能を有する生体音響センサ
US9444328B2 (en) * 2012-06-26 2016-09-13 Intel Corporation Acoustic noise mitigation using periodicity disruption
US10624583B2 (en) * 2012-11-09 2020-04-21 Nonin Medical, Inc. Reactance sensing for improved sensor placement
JP2014100282A (ja) * 2012-11-20 2014-06-05 Sharp Corp 生体音収集装置
TWI533845B (zh) * 2013-03-15 2016-05-21 美思科技股份有限公司 無線電子聽診器裝置
DK2976019T3 (en) 2013-03-20 2019-03-11 Bard Peripheral Vascular Inc BIOPSY DEVICES
KR101974482B1 (ko) * 2013-04-05 2019-05-02 삼성전자주식회사 전자 청진 장치, 자동 진단 장치 및 자동 진단 방법
US9104417B2 (en) * 2013-05-08 2015-08-11 Cywee Group Limited Electronic apparatus capable of being waked up through detecting motions
EP3065643B1 (en) 2013-11-05 2019-04-17 C.R. Bard Inc. Biopsy device having integrated vacuum
EP3068293B1 (en) * 2013-11-14 2021-07-28 Hera Med Ltd. A movable medical device configured to operate only within a specific range of acceleration
WO2015083471A1 (ja) * 2013-12-05 2015-06-11 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
EP3077982A4 (en) * 2013-12-06 2017-05-17 Samsung Electronics Co., Ltd. Method and system for capturing food consumption information of a user
US9866953B2 (en) 2014-01-08 2018-01-09 CliniCloud Inc. Electronic stethoscope
KR101631948B1 (ko) * 2014-09-15 2016-06-20 삼성전자주식회사 청진기 헤드 및 이를 포함하는 청진기
CA2962502A1 (en) 2014-10-14 2016-04-21 Arsil Nayyar Hussain Systems, devices, and methods for capturing and outputting data regarding a bodily characteristic
CN107666864B (zh) 2015-05-01 2020-08-04 C·R·巴德公司 活检装置
CN105232080B (zh) * 2015-09-17 2017-10-31 中北大学 基于mems声传感器的可视化电子式听诊器
US11288979B1 (en) * 2016-01-11 2022-03-29 John J. Blackburn Stethoscope training devices and methods
US11096653B2 (en) * 2016-02-12 2021-08-24 Newton Howard Networked electronic stethoscope
JP2018000308A (ja) * 2016-06-28 2018-01-11 フォーブ インコーポレーテッド 映像表示装置システム、心拍特定方法、心拍特定プログラム
US10405800B2 (en) * 2016-07-13 2019-09-10 Capsule Technologies, Inc. Methods, systems, and apparatuses for detecting activation of an electronic device
US20180121631A1 (en) * 2016-10-27 2018-05-03 True Positive Analytics Pvt. Ltd. Systems and methods for multi-parameter and personalized dietary recommendations
JP6822138B2 (ja) * 2016-12-27 2021-01-27 オムロンヘルスケア株式会社 生体音測定装置
JP2017102962A (ja) * 2017-02-03 2017-06-08 タイト ケア リミテッド 自動の及び遠隔の訓練された人によりガイドされる医学検査を行うためのシステム及び方法
WO2018213324A1 (en) 2017-05-19 2018-11-22 Merit Medical Systems, Inc. Semi-automatic biopsy needle device and methods of use
EP3624699B1 (en) 2017-05-19 2023-10-04 Merit Medical Systems, Inc. Rotating biopsy needle
US11793498B2 (en) 2017-05-19 2023-10-24 Merit Medical Systems, Inc. Biopsy needle devices and methods of use
CN107518914A (zh) * 2017-08-22 2017-12-29 丁向峰 听诊器
US10547931B2 (en) * 2017-08-25 2020-01-28 Plantronics, Inc. Headset with improved Don/Doff detection accuracy
USD858759S1 (en) 2017-09-19 2019-09-03 3M Innovative Properties Company Stethoscope chestpiece
EP3684259A4 (en) 2017-09-19 2021-06-02 3M Innovative Properties Company ERGONOMIC CHEST PIECE
CN107994951B (zh) * 2017-12-05 2021-09-07 宁波三星医疗电气股份有限公司 掉电状态下的近红外头部自动唤醒通信方法
US11600365B2 (en) 2017-12-12 2023-03-07 Vyaire Medical, Inc. Nasal and oral respiration sensor
EP3723602B1 (en) * 2017-12-12 2022-05-18 Vyaire Medical, Inc. Nasal and oral respiration sensor
US20200086133A1 (en) * 2018-09-18 2020-03-19 Biointellisense, Inc. Validation, compliance, and/or intervention with ear device
TWI676137B (zh) * 2018-11-01 2019-11-01 廣達電腦股份有限公司 電子裝置和電子裝置的保全方法
JP7206928B2 (ja) * 2019-01-11 2023-01-18 オムロンヘルスケア株式会社 生体音測定装置
JP2020110358A (ja) * 2019-01-11 2020-07-27 オムロンヘルスケア株式会社 生体音測定装置
JP7124742B2 (ja) * 2019-02-06 2022-08-24 オムロンヘルスケア株式会社 生体音測定装置、生体音測定装置の制御方法、生体音測定装置の制御プログラム
US10667783B1 (en) * 2019-02-19 2020-06-02 Samson Arigbamu Stethoscope with sound recognition capacity
WO2020252067A1 (en) * 2019-06-11 2020-12-17 Vyaire Medical, Inc. Respiration sensor attachment device
US10716534B1 (en) * 2019-10-21 2020-07-21 Sonavi Labs, Inc. Base station for a digital stethoscope, and applications thereof
US10702239B1 (en) 2019-10-21 2020-07-07 Sonavi Labs, Inc. Predicting characteristics of a future respiratory event, and applications thereof
US10709353B1 (en) 2019-10-21 2020-07-14 Sonavi Labs, Inc. Detecting a respiratory abnormality using a convolution, and applications thereof
US10709414B1 (en) 2019-10-21 2020-07-14 Sonavi Labs, Inc. Predicting a respiratory event based on trend information, and applications thereof
US10750976B1 (en) 2019-10-21 2020-08-25 Sonavi Labs, Inc. Digital stethoscope for counting coughs, and applications thereof
DE112020007688T5 (de) * 2020-10-15 2023-07-27 Hewlett-Packard Development Company, L.P. Am kopf angebrachte vorrichtung, die ein biosensorsignal zur leistungsverwaltung verwendet
DE102020215944B4 (de) * 2020-12-15 2023-01-05 Kirchner & Wilhelm Gmbh + Co Kg Elektronisches Stethoskop mit Lautsprechern an den hinteren Enden der Ohrbügel sowie ein Stethoskopsystem umfassend ein elektronisches Stethoskop und eine Ladestation
CN113143311A (zh) * 2021-05-10 2021-07-23 常州市第一人民医院 多功能听诊器
US20230142937A1 (en) * 2021-11-10 2023-05-11 Rupak Kumar Jha Electronic stethoscope

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU450805B2 (en) 1968-03-19 1970-09-17 Matsushita Electric Industrial Co. Ltd Headphone type FM stereo receiver
AT315264B (de) 1972-07-11 1974-05-27 Akg Akustische Kino Geraete Kopfhörer für Dolmetscheranlagen, Sprachschulen u.dgl.
US4254302A (en) 1979-06-05 1981-03-03 Walshe James C Electronic stethoscope
US4534058A (en) 1983-03-29 1985-08-06 The Hart Group Electronic stethoscope with automatic power shut-off
US4618986A (en) 1983-03-29 1986-10-21 The Hart Group Electronic stethoscope
US4878501A (en) 1986-09-24 1989-11-07 Shue Ming Jeng Electronic stethoscopic apparatus
US4723555A (en) 1986-09-24 1988-02-09 L'air Liquide Multi-functional radio/wire stethoscopic apparatus
US5027825A (en) 1989-03-30 1991-07-02 Phelps Sr Jerry A Self-contained stethoscope transmitter
JPH06181921A (ja) * 1992-12-18 1994-07-05 Kunitaka Mizobe 聴診器の集音部
US5492129A (en) 1993-12-03 1996-02-20 Greenberger; Hal Noise-reducing stethoscope
US5467775A (en) 1995-03-17 1995-11-21 University Research Engineers & Associates Modular auscultation sensor and telemetry system
US6002777A (en) 1995-07-21 1999-12-14 Stethtech Corporation Electronic stethoscope
CA2227416A1 (en) 1995-07-21 1997-02-06 Stethtech Corporation Electronic stethoscope
JP3045051B2 (ja) 1995-08-17 2000-05-22 ソニー株式会社 ヘッドホン装置
US5832093A (en) 1995-10-30 1998-11-03 Bernstein; Leslie H. Universal stethoscope amplifier with graphic equalization and teaching and learning ports
US5701904A (en) 1996-01-11 1997-12-30 Krug International Telemedicine instrumentation pack
US5812678A (en) * 1996-02-26 1998-09-22 Scalise; Stanley J. Auscultation augmentation device
US5960089A (en) 1996-11-08 1999-09-28 Nicolet Vascular, Inc. Ultrasound bell attachment for stethoscope
US6028942A (en) 1997-02-20 2000-02-22 Greenberger; Hal P. Stethoscope with reduced susceptibility to interference from ambient noise
US6083156A (en) 1998-11-16 2000-07-04 Ronald S. Lisiecki Portable integrated physiological monitoring system
JP3532800B2 (ja) 1999-09-30 2004-05-31 独立行政法人 科学技術振興機構 聴診器
US7940937B2 (en) 1999-10-28 2011-05-10 Clive Smith Transducer for sensing body sounds
US6661897B2 (en) 1999-10-28 2003-12-09 Clive Smith Transducer for sensing body sounds
NO20002091L (no) 2000-04-19 2001-10-22 Meditron As Elektronisk auskultasjons-utstyrssett
US6533736B1 (en) 2000-05-30 2003-03-18 Mark Moore Wireless medical stethoscope
US20020055684A1 (en) 2000-10-31 2002-05-09 Patterson Steven Craig Two-headed focusing stethoscope (THFS)
DE10164758B4 (de) 2001-05-25 2006-12-07 Siemens Ag Verfahren zum Betreiben eines handgeführten Applikators eines Ultraschall-Diagnosegerätes und Ultraschall-Diagnosegerät mit einem nach diesem Verfahren betriebenen Applikator
US20030002685A1 (en) * 2001-06-27 2003-01-02 Werblud Marc S. Electronic stethoscope
DE10202092A1 (de) 2002-01-21 2003-08-14 Siemens Ag Verfahren und Vorrichtung zum Erfassen und Verarbeiten von Signalen von industriellen Prozessen
US7091879B2 (en) 2002-02-05 2006-08-15 Invivo Corporation System and method for using multiple medical monitors
WO2004002191A1 (en) 2002-06-21 2003-12-31 Bang & Olufsen Medicom A/S A transducer for bioacoustic signals
US20040116969A1 (en) * 2002-08-26 2004-06-17 Owen James M. Pulse detection using patient physiological signals
ATE516674T1 (de) 2003-09-29 2011-07-15 3M Innovative Properties Co Mikrophonbauelement und seine erstellungsmethode
US7300406B2 (en) 2003-09-30 2007-11-27 Carter Vandette B Medical examination apparatus
US8286013B2 (en) * 2004-07-01 2012-10-09 Broadcom Corporation Portable communication device with multi-tiered power save operation
US7806226B2 (en) 2004-12-30 2010-10-05 3M Innovative Properties Company Stethoscope with frictional noise reduction
EP1880676A1 (en) 2005-05-18 2008-01-23 Takashi Yoshimine Stethoscope
US7527123B2 (en) 2005-05-23 2009-05-05 Children's Medical Center Corporation Patient-friendly stethoscope
US7945297B2 (en) * 2005-09-30 2011-05-17 Atmel Corporation Headsets and headset power management
US8092396B2 (en) 2005-10-20 2012-01-10 Merat Bagha Electronic auscultation device
US7998091B2 (en) 2005-11-23 2011-08-16 3M Innovative Properties Company Weighted bioacoustic sensor and method of using same
US8024974B2 (en) 2005-11-23 2011-09-27 3M Innovative Properties Company Cantilevered bioacoustic sensor and method using same
US20080013747A1 (en) 2006-06-30 2008-01-17 Bao Tran Digital stethoscope and monitoring instrument
US8499634B2 (en) * 2006-11-10 2013-08-06 Siemens Medical Solutions Usa, Inc. Transducer array imaging system

Also Published As

Publication number Publication date
CN101652101A (zh) 2010-02-17
BRPI0808215A2 (pt) 2014-07-01
EP2136712A1 (en) 2009-12-30
US20080232604A1 (en) 2008-09-25
WO2008118753A1 (en) 2008-10-02
JP2010522039A (ja) 2010-07-01
CN101652101B (zh) 2012-08-01
EP2136712B1 (en) 2018-06-27
US8594339B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
JP2015057095A (ja) 複数のセンサー信号の特徴検出を用いた医療用感知装置のための電力管理
US11179135B2 (en) Systems, devices, and methods for capturing and outputting data regarding a bodily characteristic
CN110868920B (zh) 具有多模态诊断的可穿戴装置
US8548174B2 (en) Modular electronic biosensor with interface for receiving disparate modules
TWI533845B (zh) 無線電子聽診器裝置
US20180070841A1 (en) Wearable device with multimodal diagnostics
US20170296104A1 (en) Medical devices and related methods
CN103491878A (zh) 移动的辅助监测、分析及治疗仪
US20210000348A1 (en) Apparatus for measuring vital signs
CN107773216A (zh) 用于监控且用于影响人的睡眠的仪器和运行该仪器的方法
CN212521808U (zh) 一种带消毒装置的心肺音听诊检测仪及听诊***
WO2018168605A1 (ja) 情報処理装置、電気治療器、システムおよびプログラム
CN212521805U (zh) 一种带恒温装置的心肺音听诊检测仪及听诊***
CN212521806U (zh) 一种快速启动心肺音听诊***
KR101726235B1 (ko) 피에조 센서를 이용한 귀 삽입형 건강 모니터링 장치
KR20180066441A (ko) 통합형 호흡 측정을 위한 장치 및 이를 위한 방법
Khan et al. Tongue-supported human-computer interaction systems: a review
AU2021269062B2 (en) Transcutaneous sound sensor
WO2024143500A1 (en) Detection apparatus, detection method, and control program for detection apparatus
JP2019159804A (ja) 意思伝達装置
JP2023524595A (ja) 経皮音センサ
CN111904457A (zh) 一种带消毒装置的心肺音听诊检测仪、听诊***及控制方法
ITMI20120239U1 (it) Strumento diagnostico medicale per l'auscultazione portatile senza fili
Abdul Rahim Design and development of groove micromixer for laminar blood-reagent mixing
Ab Malek Design and development of wireless stethoscope with data logging functions

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150608