JP2015046482A - 半導体装置およびモジュール - Google Patents

半導体装置およびモジュール Download PDF

Info

Publication number
JP2015046482A
JP2015046482A JP2013176694A JP2013176694A JP2015046482A JP 2015046482 A JP2015046482 A JP 2015046482A JP 2013176694 A JP2013176694 A JP 2013176694A JP 2013176694 A JP2013176694 A JP 2013176694A JP 2015046482 A JP2015046482 A JP 2015046482A
Authority
JP
Japan
Prior art keywords
semiconductor device
electrode
group iii
iii nitride
type gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013176694A
Other languages
English (en)
Inventor
祐介 善積
Yusuke Yoshizumi
祐介 善積
上野 昌紀
Masanori Ueno
昌紀 上野
晋 吉本
Susumu Yoshimoto
晋 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013176694A priority Critical patent/JP2015046482A/ja
Publication of JP2015046482A publication Critical patent/JP2015046482A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic

Abstract

【課題】特性の良好な半導体装置およびモジュールを提供する。
【解決手段】主面13aを有し、主面13aに対して垂直な方向に延びる反転相1を含むIII族窒化物半導体層13と、主面13aにおいて反転相1に接続された第1の電極(カソード電極2)とを備える。反転相1とは、III族窒化物半導体層において極性が反転している領域を指し、III族窒化物半導体層をc軸方向に成長させたときに、表面においてN(窒素)原子が安定して存在するN極性の(000−1)面が表出している領域を指す。
【選択図】図1

Description

本発明は、半導体装置およびモジュールに関し、特にIII族窒化物半導体層を有する半導体装置および該半導体装置を備えたモジュールに関する。
窒化ガリウム(GaN)などに代表されるIII族窒化物半導体は、光デバイスや電子デバイスなどに広く用いられている。III族窒化物半導体を用いた電子デバイスにおいては、たとえばSBD(ショットキーバリアダイオード)やHEMT(高電子移動度トランジスタ)素子などが知られており、これらは優れた高周波特性を有している。
一方、光デバイスや電子デバイスを実装する方法としては、一般にワイヤボンディング実装とフリップチップ実装とが知られている。
特開2013−33862号公報には、p型GaN系半導体層上にp側電極が配置され、複合基板の多結晶III族窒化物支持基板上にn側電極が配置された半導体デバイスであって、p側電極はp側リードフレームに電気的に接続するように配置され、n側電極はボンディングワイヤによりn側リードフレームに電気的に接続されているp側ダウン構造の実装がされている半導体デバイスが記載されている。
特開2013−33862号公報
しかしながら、ワイヤボンディング実装では、ループ状に形成されたワイヤにインダクタンスが生じて、寄生容量が増大してしまう。たとえば、ワイヤ径が25μm程度であってワイヤ長が1mm以上である場合には、1nH以上のインダクタンスが生じるため、高周波用途のモジュール実装には用いることができない。
また、フリップチップ実装では、半導体装置の1つの面にすべての電極を形成する必要があるため、たとえばSBDなどを横型構造とした場合にはカソード電極をドリフト層にオーミック接触させる必要がある。この場合、接触抵抗が高くなり、高周波特性が悪化する。これに対して、フリップチップ実装面側に位置するドリフト層をドライエッチングなどにより除去し、高不純物濃度の半導体層にカソード電極をオーミック接触させることが考えられるが、ドリフト層が厚く形成されている場合には除去することが困難である。さらにドライエッチングによってドリフト層を除去した場合にも、高不純物濃度の半導体層にはイオンダメージが加えられるため、電極と該半導体層との接触抵抗は高くなり、素子特性を悪化させる。さらに、アノード電極とカソード電極との間に段差が生じるため、製造歩留まりを悪化させる。
本発明は上記のような課題を解決するためになされたものである。本発明の主たる目的は、特性の良好な半導体装置およびモジュールを提供することにある。
本実施の形態に係る半導体装置は、主面を有し、該主面に対して垂直な方向に延びる反転相を含むIII族窒化物半導体層と、該主面において反転相に接続された第1の電極とを備える。
ここで、「反転相」とは、III族窒化物半導体層において極性が反転している領域を指し、具体的には、III族窒化物半導体層をc軸方向に成長させたときに、表面においてN(窒素)原子が安定して存在するN極性の(000−1)面が表出している領域を指す。
本発明によれば、特性が良好な半導体装置およびモジュールを提供することができる。
本実施の形態に係る半導体装置を説明するための断面図である。 本実施の形態に係る半導体装置の第1の電極と第2の電極との位置関係を説明するための図である。 本実施の形態に係る半導体装置の製造方法を説明するための図である。 本実施の形態に係るモジュールを説明するための断面図である。 図4中の矢印Vから見た図である。 本実施の形態に係る半導体装置の第1の電極と第2の電極との位置関係の変形例を説明するための図である。 本実施の形態に係る半導体装置の第1の電極と第2の電極との位置関係の他の変形例を説明するための図である。 本実施の形態に係る半導体装置の変形例を説明するための図である。
以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
[本願発明の実施形態の説明]
はじめに、本発明の実施の形態の概要を列挙する。
(1)図1および図8を参照して、本実施の形態に係る半導体装置は、主面13a,16aを有し、主面13a,16aに対して垂直な方向に延びる反転相1を含むIII族窒化物半導体層13,16と、主面13a,16aにおいて反転相1に接続された第1の電極(カソード電極2,ソース電極5)とを備える。
このようにすれば、反転相1の不純物濃度はIII族窒化物半導体層13,16の不純物濃度よりも高いため、第1の電極はIII族窒化物半導体層13,16と接続される場合と比べて反転相1と低抵抗で接続されることができる。つまり、III族窒化物半導体層13,16を低キャリア濃度でかつ高移動度としながら、第1の電極2の接触抵抗を低減することができる。
(2)本実施の形態に係る半導体装置は、主面13a,16aにおいて第1の電極2と異なる第2の電極3をさらに備えてもよい。
このようにすれば、第1の電極2と第2の電極3とが1つの主面13a,16a上に形成されているため、半導体装置をフリップチップ実装することができる。そのため、ワイヤボンディング実装する場合と比べて寄生容量を低減することができる。このとき、第1の電極2は反転相1と接続されているため、接触抵抗が低い。つまり、半導体装置の寄生容量を低減することができると同時に、第1の電極2の接触抵抗を低減することができる。
(3)本実施の形態に係る半導体装置は、主面13a,16aにおける反転相1と第2の電極3と間の距離は、50μm以上1000μm以下であるのが好ましい。
このようにすれば、第1の電極2と第2の電極3との間の耐圧を十分に確保しながら、半導体装置を小型化することができる。
(4)本実施の形態に係る半導体装置では、III族窒化物半導体層13中の反転相1の不純物濃度は、1×1017/cm3以上1×1019/cm3以下であってもよい。このようにすれば、反転相1と第1の電極2との接触抵抗を十分に低減することができる。
(5)本実施の形態に係る半導体装置は、第2の電極4直下のIII族窒化物半導体層13の不純物濃度は、1×1014/cm3以上1×1017/cm3以下であるのが好ましい。このようにすれば、III族窒化物半導体層13を高移動度のドリフト層として構成することができる。
(6)本実施の形態に係る半導体装置は、主面13a,16aの面方位は、(0001)面に対するオフ角の絶対値が0度以上1度以下であってもよい。このようにすれば、Ga(ガリウム)極性を有しているIII族窒化物半導体層13,16の不純物濃度を1×1014/cm以上1×1017/cm以下に、N(窒素)極性を有している反転相1の不純物濃度を1×1017/cm以上1×1019/cm以下に制御することが容易となる。
(7)本実施の形態に係る半導体装置において、III族窒化物半導体層13,16は、GaNまたはInAlGa1−x−yN(0≦x<1、0≦y<1、0<x+y<1)で構成されていてもよい。GaNであれば低キャリア濃度の制御が容易となり、素子耐圧を向上させることが容易である。InAlGa1−x−yNであれば、GaNと比較して、絶縁破壊電界を大きくすることができ、素子耐圧をさらに向上させることが容易である。
(8)本実施の形態に係る半導体装置において、III族窒化物半導体層13はGaNで構成されており、III族窒化物半導体層13の厚みは、1μm以上25μm以下であってもよい。1μm未満の場合には、素子耐圧を得にくく、25μm超えである場合には順方向の動作電圧が高く、素子特性が悪化する。
(9)本実施の形態に係る半導体装置において、III族窒化物半導体層16はInAlGa1−x−yN(0≦x<1、0≦y<1、0<x+y<1)で構成されており、III族窒化物半導体層16の厚みは、3nm以上200nm以下であってもよい。このようにすれば、絶縁破壊電界を大きくする効果や、歪みを利用した素子耐圧の向上を行うことができる。
(10)本実施の形態に係る半導体装置において、III族窒化物半導体層13を構成するInAlGa1−x−yN層のAl組成xは0.2未満であり、In組成yは0.25未満であってもよい。このようにすれば、エピタキシャル成長工程が容易であり、製造歩留まりを高くすることができ、製造コストを削減することができる。
(11)本実施の形態に係る半導体装置では、第1の電極2と第2の電極3との間には、絶縁物(フィールドプレート絶縁膜4)が形成されていてもよい。このようにすれば、第1の電極2と第2の電極3との間の耐圧を高めることができる。
(12)本実施の形態に係る半導体装置は、電力制御用半導体装置であってもよい。本実施の形態に係る半導体装置は、上述のように素子耐圧が向上しているため、電力制御用半導体装置に好適である。
(13)本実施の形態に係るモジュールは、上述した本実施の形態に係る半導体装置を備えている。このようにすれば、特性が良好なモジュールを得ることができる。
[本願発明の実施形態の詳細]
次に、本発明の実施の形態の詳細について説明する。
まず、図1を参照して、本実施の形態に係る半導体装置10の構造を説明する。本実施の形態に係る半導体装置10は横型SBDである。半導体装置10は、III族窒化物半導体基板としてのn型GaN基板11と、n+型GaN層12、およびIII族窒化物半導体層としてのn−型GaN層13とを備える。
n型GaN基板11は、主面11aを有している。主面11aの面方位は、Ga(ガリウム)極性の面である(0001)に対するオフ角の絶対値が0度以上1度以下である。主面11a上には、n+型GaN層12およびn−型GaN層13が積層されている。n型GaN基板11の不純物濃度は、たとえば1×1017/cm3以上1×1019/cm3以下である。n+型GaN層12の不純物濃度は、たとえば1×1017/cm3以上1×1019/cm3以下である。n−型GaN層13の不純物濃度は、たとえば1×1014/cm3以上1×1017/cm3以下である。n−型GaN層13は、主面13aを有している。n−型GaN層13の主面13aの面方位は、(0001)に対するオフ角の絶対値が0度以上1度以下である。
n型GaN基板11、n+型GaN層12、およびn−型GaN層13は、反転相1を含んでいる。具体的には、反転相1は、主面11a,13aと垂直な方向において、n型GaN基板11からn−型GaN層13まで、延びるように形成されている。つまり、n型GaN基板11における反転相1は、n+型GaN層12およびn−型GaN層13における反転相1と連なっている。異なる観点から言えば、n型GaN基板11において反転相1が形成されていない領域は、n+型GaN層12およびn−型GaN層13において反転相1が形成されていない領域と連なっている。n+型GaN層12の膜厚は、0.3μm以上3.0μm以下であり、たとえば1μmである。n−型GaN層13の膜厚は、1μm以上25μm以下であり、たとえば7μmである。
図2を参照して、n−型GaN層13の主面13a上には、第1の電極としてのカソード電極2と、第2の電極としてのアノード電極(ショットキー電極)3とがそれぞれ所定の領域に設けられている。図2は本実施の形態に係る半導体装置におけるカソード電極2とショットキー電極3との位置関係の一例を示す。なお、図2において、フィールドプレート絶縁膜4は図示しない。図2の例では、4つのショットキー電極3を囲うように4つのカソード電極2が形成されている構成を1つのパターンとして、これがn−型GaN層13の主面13a上に周期的に形成されている。このとき、隣りあうカソード電極2間の距離(隣り合う反転相1間の距離)h1は、400μm以上1000μm以下であり、たとえば800μmとすればよい。カソード電極2とショットキー電極3との距離h2は、たとえば50μm以上1000μm以下であり、たとえば100μmとすればよい。また、カソード電極2およびショットキー電極3は、主面13a上において任意の形状に設けられていればよいが、図2を参照して、たとえば円形状に設けられていてもよい。この場合、カソード電極2の幅W1(直径)は、50μm以上1000μm以下であり、たとえば100μmである。ショットキー電極3の幅W2(直径)は、60μm以上800μm以下であり、たとえば200μmである。なお、図2の例では、4つのショットキー電極3を囲うように4つのカソード電極2が形成されている構成を1つのパターンとして、これがn−型GaN層13の主面13a上に周期的に形成されているが、当該1パターンをさらに分割して、図1に示す半導体装置としてもよい。
また、図2を参照して、反転相1は、主面13aにおいて円形状に形成されている。反転相1の幅(直径)は、10μm以上100μm以下であり、たとえば50μmである。また、反転相1は、主面13aにおいて分散して形成されている。主面13aにおいて反転相1が形成されている領域は、カソード電極2が形成されている領域と重なっている。反転相1の面方位は、反転相1が形成されていない領域の面方位と異なり、N(窒素)極性の面である(000−1)である。反転相1は、n−型GaN層13と比べて不純物濃度が高い。反転相1の不純物濃度は、たとえば1×1017/cm3以上1×1019/cm3以下である。また、反転相1は、反転相1が形成されていない領域と比べて、転位密度が高い。反転相1の転位密度は1×10cm−2程度であるが、反転相1が形成されていない領域の転位密度は1×10cm−2程度以下である。
カソード電極2は、n−型GaN層13とオーミック接触可能な任意の材料で構成されていればよく、たとえばTi(チタン)/Al(アルミニウム)/Ti/Au(金)として構成されていてもよい。
ショットキー電極3は、n−型GaN層13とショットキー接合可能な任意の材料で構成されていればよく、たとえばPt(白金)、Pd(パラジウム)、Ni(ニッケル)、またはAuといった材料を用いて構成されていてもよい。
図1を参照して、主面13a上において、カソード電極2およびショットキー電極3がIII族窒化物半導体層13と接触していない領域には、フィールドプレート絶縁膜4が形成されている。フィールドプレート絶縁膜4は、比誘電率が低い任意の材料で構成されていればよく、たとえば二酸化珪素(SiO2)または窒化珪素(Si)で構成されていてもよい。また、カソード電極2およびショットキー電極3は、フィールドプレート絶縁膜4の開口部内の主面13a上からフィールドプレート絶縁膜4上に延びるように形成されていてもよい。
次に、図3を参照して、本実施の形態に係る半導体装置の製造方法について説明する。まず、反転相1を含むn型GaN基板11を準備する(工程(S10))。具体的には、主面11aにおいて反転相1が所定の位置に配置されているn型GaN基板11を準備する。図2を参照して、反転相1が円形状であって互いに分散した、いわゆるドット状に形成されたGaN基板11などを準備する。ここで、主面13aにおいて反転相1が形成される位置は、後の工程においてカソード電極2が形成される位置と重なるように決められる。
より具体的には、反転相1が所定の位置に形成されているn型GaN基板11は、以下のようにして準備される。
まず、表面上に所定の位置にパターン層が形成された異種基板を準備する。異種基板は、たとえばGaAs基板である。次に、当該異種基板の表面上にGaNを結晶成長させる。結晶成長は、たとえばHVPE(Hydride vapor phase epitaxy)による気相成長により行う。このとき、上記パターン層上においてのみ反転相1が形成される。結晶成長の後、異種基板を除去する。異種基板の除去は、たとえば機械加工により実施される。除去後に研磨加工等を実施していてもよい。このようにして、所定の位置に反転相1が設けられているn型GaN基板11が準備される。反転相1の存在は、水酸化カリウム(KOH)といったアルカリ系の薬液でのエッチングレートの違いとして確認できる。具体的には、N極性面は化学な反応性がGa極性面よりも勝るため、反転相1は局所的に早くエッチングされることにより、反転相1の存在を確認することができる。その他の方法としては、収束ビーム電子線回折(CBED)法による電子線回折パターンを解析することによっても反転相1の存在を特定することができる。
次に、n型GaN基板11の主面11a上にn+型GaN層12とn−型GaN層13とを形成する(工程(S11))。n+型GaN層12およびn−型GaN層13はエピタキシャル成長法によって形成されていればよく、たとえばMOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)法により形成すればよい。このとき、n型GaN基板11に形成された反転相1は、n+型GaN層12、およびn−型GaN層13に引き継がれる。これにより、主面13aに対して垂直な方向に延びる反転相1を含んだ、エピタキシャル層としてのn+型GaN層12およびn−型GaN層13を形成できる。つまり、本工程(S11)において形成されるエピタキシャル層に主面11aの結晶方位が引き継がれるため、先の工程(S10)において準備されたn型GaN基板11に含まれる反転相1は、エピタキシャル成長中において主面上に常に形成されている状態となる。このため、n−型GaN層13の主面13a上には反転相1が形成されている。このとき、n−型GaN層13中に形成される反転相1の不純物濃度は、n−型GaN層13の不純物濃度よりも高くなる。つまり、反転相1が形成されているn型GaN基板11上にエピタキシャル成長を行うことによりエピタキシャル層中に結晶方位が引き継がれて形成される反転相1は、該エピタキシャル層よりも不純物濃度が高い。
次に、n−型GaN層13の主面13aを覆うように、フィールドプレート絶縁膜4を形成する。まず、たとえばプラズマCVD(Chemical Vapor Deposition:化学気相成長)法によって、絶縁膜が主面13a上に形成される。絶縁膜を構成する材料はSiである。次に、絶縁膜に開口部を形成する。具体的には、カソード電極2およびショットキー電極3が形成される領域上に位置する絶縁膜を除去して、開口部を形成する。これにより、フィールドプレート絶縁膜4が形成される。
次に、ショットキー電極端部での電界集中を緩和するためのフィールドプレート構造を作り込む。具体的には、フィールドプレート絶縁膜4においてショットキー電極3が形成される領域上に形成されている開口部に対し、フッ酸等を用いてサイドエッチングを施す。これにより、フィールドプレート絶縁膜4におけるショットキー電極3用上記開口部にテーパー形状を形成する。
次に、ショットキー電極3を形成する。具体的には、まず、フィールドプレート絶縁膜4の開口部から表出している主面13aを、たとえばHCl等により洗浄する。次に、ショットキー電極3となる金属を電子ビーム蒸着法によって成膜する。次に、ショットキー電極3を、リフトオフ法またはエッチング法により形成する。ここで、ショットキー電極3に対し、熱処理を行ってもよい。
次に、カソード電極2を形成する。具体的には、フィールドプレート絶縁膜4の開口部から表出している主面13a上に、カソード電極2となる金属を電子ビーム蒸着法によって成膜する。次に、カソード電極2を、たとえばリフトオフ法またはエッチング法によりカソード電極2を形成する。このとき、該開口部には、反転相1が形成されている領域が含まれている。このようにして、反転相1と接続しているカソード電極2が主面13a上に形成される。つまり、主面13a上において、カソード電極2は所定の周期で複数形成される。また、カソード電極2は、ショットキー電極3に対して、所定の位置関係を有している。
次に、カソード電極2に対して、合金化処理を実施する。さらに、n型GaN基板11の主面11b側を研削または研磨して、n型GaN基板11の厚さを100μm以上150μm以下程度にまで低減する。n型GaN基板11を薄膜化することで、放熱性の点で有利になる。このようにして、本実施の形態に係るSBDとしての半導体装置を得ることができる。
次に、本実施の形態に係るモジュールについて説明する。図4および図5を参照して、本実施の形態に係るモジュールは、上述した本実施の形態に係る半導体装置10をフリップチップ実装したものである。具体的には、主面13a上に設けられたカソード電極2およびショットキー電極3は、導電性の接合材料で形成されたバンプ25およびバンプ35を介して、それぞれリードフレーム20およびリードフレーム30に接続されている。さらに、半導体装置10は、リードフレーム20,30とともに、絶縁性材料で構成された封止体40によって封止されている。
次に、本実施の形態に係る半導体装置およびモジュールの作用効果について説明する。本実施の形態に係る半導体装置において、カソード電極2は主面13a上において反転相1と接続されている。反転相1の不純物濃度はIII族窒化物半導体層13の不純物濃度よりも高いため、第1の電極2はIII族窒化物半導体層13と接続される場合と比べて反転相1と低抵抗で接続されることができる。これにより、カソード電極2とIII族窒化物半導体層13との接触抵抗の低い半導体装置10を得ることができる。また、本実施の形態に係る半導体装置10において、ショットキー電極3はカソード電極2と同様に主面13a上に形成されている。そのため、本実施の形態に係るモジュールは、半導体装置10をフリップチップ実装することにより得ることができ、ワイヤボンディング実装により得られるモジュールと比べて寄生容量を低く抑えることができる。
本実施の形態に係る半導体装置10において、カソード電極2とショットキー電極3とは主面13a上で図2に示す位置関係を有していたが、これに限られるものではない。図6を参照して、たとえば1つのショットキー電極3の周囲三方を3つのカソード電極2が囲うような位置関係でカソード電極2とショットキー電極3とが設けられていてもよい。この場合も、反転相1は、カソード電極2が形成される領域に設けられていて、カソード電極2と接続されていればよい。このとき、ショットキー電極3の形状は、円形状でもよいし、三角形状でもよい。また、隣り合うカソード電極2間の距離h3は、たとえば400μm程度としてもよい。
また、図7を参照して、たとえばたとえば1つのショットキー電極3の周囲四方を4つのカソード電極2が囲うような位置関係でカソード電極2とショットキー電極3とが設けられていてもよい。この場合も、反転相1は、カソード電極2が形成される領域に設けられていて、カソード電極2と接続されていればよい。また、反転相1は、カソード電極2が形成される領域以外の領域においても形成されていてもよく、たとえばストライプ状に設けられていてもよい。このようにすれば、ストライプ状に形成された反転相1の任意の領域上にカソード電極2を形成することにより、反転相1とカソード電極2とを接続することができる。このとき、ショットキー電極3の形状は、円形状でもよいし、四角形状でもよい。図6および図7に示すカソード電極2とショットキー電極3との位置関係は、1つのパターンとして、これがn−型GaN層13の主面13a上に周期的に形成されていてもよいし、n−型GaN層13の主面13a上に単独で形成されていてもよい。
なお、主面13a上における反転相1の形状は、上述のように、n型GaN基板11を準備する際に用いる異種基板の表面上のパターン層の形状に応じて決まる。そのため、反転相1は、主面13a上において任意の形状に形成することができ、たとえば上述のように、ドット状あるいはストライプ状として形成することができる。つまり、本実施の形態における半導体装置10は、主面13a上において任意のパターンとして形成されることができる。
本実施の形態において、半導体装置10はn型GaN基板11を備えていたが、これに限られるものではない。半導体装置10は、n型GaN基板11を備えていなくてもよい。具体的には、n型GaN基板11は、主面11a上にn+型GaN層12とn−型GaN層13とが形成された後、除去されてもよい。n型GaN基板11は、任意の方法によって除去されることができ、たとえば主面11bに対する研削などによって除去されてもよい。このようにしても、本実施の形態に係る半導体装置10と同様の効果を奏することができる。
本実施の形態に係る半導体装置10はSBDであったが、これにかぎられるものではない。図8を参照して、半導体装置10は、たとえばHEMTであってもよい。この場合には、半導体装置10は、III族窒化物半導体基板としての半絶縁性のGaN基板14と、GaN層15と、III族窒化物半導体層としてのAl0.2Ga0.8N層16とを備えている。さらに、半導体装置10の主面16a上に、反転相1と接続されたソース電極5と、ゲート電極6と、ドレイン電極7とを備えていればよい。このようにしても、ソース電極5とAl0.2Ga0.8N層16との接触抵抗を低減することができる。また、半導体装置10をフリップチップ実装することができるため、ワイヤボンディング実装と比べてモジュールの寄生容量を低減することができる。
以上のように本発明の実施の形態について説明を行ったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
本発明は、優れた高周波特性が求められる半導体装置およびモジュールに特に有利に適用される。
1 反転相、2 カソード電極、3 ショットキー電極、4 フィールドプレート絶縁膜、5 ソース電極、6 ゲート電極、7 ドレイン電極、10 半導体装置、10a,13a,16a 主面、11,14 基板、13 n−型GaN層、16 Al0.2Ga0.8N層、20,30 リードフレーム、25,35 バンプ、40 封止体、100 モジュール。

Claims (13)

  1. 主面を有し、前記主面に対して垂直な方向に延びる反転相を含むIII族窒化物半導体層と、
    前記主面において前記反転相に接続された第1の電極とを備える、半導体装置。
  2. 前記主面において、前記第1の電極と異なる第2の電極をさらに備える、請求項1に記載の半導体装置。
  3. 前記主面における前記反転相と前記第2の電極と間の距離は、50μm以上1000μm以下である、請求項2に記載の半導体装置。
  4. 前記III族窒化物半導体層中の前記反転相の不純物濃度は、1×1017/cm3以上1×1019/cm3以下である、請求項1〜請求項3のいずれか1項に記載の半導体装置。
  5. 前記第2の電極直下の前記III族窒化物半導体層の不純物濃度は、1×1014/cm3以上1×1017/cm3以下である、請求項1〜請求項4のいずれか1項に記載の半導体装置。
  6. 前記主面の面方位は、(0001)面に対するオフ角の絶対値が0度以上1度以下である、請求項1〜請求項5のいずれか1項に記載の半導体装置。
  7. 前記III族窒化物半導体層は、GaNまたはInAlGa1−x−yN(0≦x<1、0≦y<1、0<x+y<1)で構成されている、請求項1〜請求項6のいずれか1項に記載の半導体装置。
  8. 前記III族窒化物半導体層はGaNで構成されており、
    前記III族窒化物半導体層の厚みは、1μm以上25μm以下である、請求項7に記載の半導体装置。
  9. 前記III族窒化物半導体層はInAlGa1−x−yN(0≦x<1、0≦y<1、0<x+y<1)で構成されており、
    前記III族窒化物半導体層の厚みは、3nm以上200nm以下である、請求項7に記載の半導体装置。
  10. 前記III族窒化物半導体層を構成するInAlGa1−x−yN層のAl組成xは0.2未満であり、In組成yは0.25未満である、請求項7または請求項9に記載の半導体装置。
  11. 前記第1の電極と前記第2の電極との間には、絶縁物が形成されている、請求項1〜請求項10のいずれか1項に記載の半導体装置。
  12. 前記半導体装置は、電力制御用半導体装置である、請求項1〜請求項11のいずれか1項に記載の半導体装置。
  13. 請求項1に記載の半導体装置を備えたモジュール。
JP2013176694A 2013-08-28 2013-08-28 半導体装置およびモジュール Pending JP2015046482A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176694A JP2015046482A (ja) 2013-08-28 2013-08-28 半導体装置およびモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176694A JP2015046482A (ja) 2013-08-28 2013-08-28 半導体装置およびモジュール

Publications (1)

Publication Number Publication Date
JP2015046482A true JP2015046482A (ja) 2015-03-12

Family

ID=52671782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176694A Pending JP2015046482A (ja) 2013-08-28 2013-08-28 半導体装置およびモジュール

Country Status (1)

Country Link
JP (1) JP2015046482A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106564B2 (ja) 2017-03-16 2022-07-26 クリネティックス ファーマシューティカルズ,インク. ソマトスタチンモジュレータとその使用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106564B2 (ja) 2017-03-16 2022-07-26 クリネティックス ファーマシューティカルズ,インク. ソマトスタチンモジュレータとその使用

Similar Documents

Publication Publication Date Title
US10573762B2 (en) Vertical gallium nitride Schottky diode
US8927402B2 (en) Method for forming termination structure for gallium nitride Schottky diode
US7339206B2 (en) Field effect transistor including a group III-V compound semiconductor layer
US8981432B2 (en) Method and system for gallium nitride electronic devices using engineered substrates
US20170213918A1 (en) Semiconductor element, method for manufacturing same, semiconductor substrate, and crystal laminate structure
TWI559405B (zh) 具有大焊墊且接觸電阻降低之GaN系肖特基二極體
US20120074424A1 (en) Gallium nitride based semiconductor devices and methods of manufacturing the same
KR102011761B1 (ko) 이중 금속의 부분 리세스된 전극을 갖는 GaN계 쇼트키 다이오드
US20160372609A1 (en) Schottky barrier diode
JP6308478B2 (ja) 一部が凹んだアノードを有するGaN系ショットキーダイオード
US9905683B2 (en) Semiconductor power device
JP5608969B2 (ja) 化合物半導体装置及びその製造方法
JP2015046482A (ja) 半導体装置およびモジュール
US20150034964A1 (en) Gallium nitride-based diode and method of fabricating the same
JP6096523B2 (ja) 半導体装置とその製造方法
US11450749B2 (en) Electrode structure for vertical group III-V device
US11271117B2 (en) Stacked high-blocking III-V power semiconductor diode
CN107968120A (zh) 一种GaN基电子器件垂直芯片