JP2015043418A - マイクロリソグラフィ投影露光装置のための光学系 - Google Patents

マイクロリソグラフィ投影露光装置のための光学系 Download PDF

Info

Publication number
JP2015043418A
JP2015043418A JP2014150440A JP2014150440A JP2015043418A JP 2015043418 A JP2015043418 A JP 2015043418A JP 2014150440 A JP2014150440 A JP 2014150440A JP 2014150440 A JP2014150440 A JP 2014150440A JP 2015043418 A JP2015043418 A JP 2015043418A
Authority
JP
Japan
Prior art keywords
optical
optical system
deflection
mirror
beam path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014150440A
Other languages
English (en)
Other versions
JP5861950B2 (ja
Inventor
パトラ ミヒャエル
Patra Michael
パトラ ミヒャエル
アイゼンメンゲル ヨハネス
Eisenmenger Johannes
アイゼンメンゲル ヨハネス
シュワブ マルクス
Schwab Markus
シュワブ マルクス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Publication of JP2015043418A publication Critical patent/JP2015043418A/ja
Application granted granted Critical
Publication of JP5861950B2 publication Critical patent/JP5861950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0663Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】比較的低い構造コスト及び比較的小型の設計と併せて、照明デバイスに設定される強度分布を柔軟に変更することを可能にするマイクロリソグラフィ投影露光装置のための光学系を提供する。【解決手段】マイクロリソグラフィ投影露光装置のための光学系は、光軸OAと、複数のミラー要素を有する少なくとも1つのミラー装置200とを有し、これらのミラー要素は、ミラー装置及び偏向デバイス210によって反射された光の角度分布を変更するために互いに独立して調節可能であり、この偏向デバイス210は、ミラー装置200の下流の光学ビーム経路に対して、光軸OAの偏向が生じる少なくとも1つの偏向面を有し、この少なくとも1つの偏向面は、屈折力を有する。【選択図】図1

Description

本発明は、マイクロリソグラフィ投影露光装置のための光学系に関する。
マイクロリソグラフィ投影露光装置は、例えば、集積回路又はLCDのような微細構造化構成要素を生成するのに使用される。そのような投影露光装置は、照明デバイスと投影レンズを有する。マイクロリソグラフィ処理では、照明デバイスを用いて照明されるマスク(=レチクル)の像は、マスク構造を基板の感光コーティングに転写するために、感光層(フォトレジスト)で被覆されて投影レンズの像平面に配置された基板(例えば、シリコンウェーハ)上に投影される。
マイクロリソグラフィ投影露光装置の作動中に、照明デバイスの瞳平面に定められた照明設定、すなわち、強度分布を目標を定めて設定しなければならない。この目的で、回折光学要素(いわゆるDOE)の使用に加えて、ミラー装置の使用も、例えば、WO 2005/026843 A2から公知である。そのようなミラー装置は、互いに独立して設定することができる複数のマイクロミラーを含み、照明デバイス内に設定される強度分布の柔軟な変更を可能にする。
この場合に、実際には、それぞれの望ましい照明設定を設定するためのそのようなミラー装置内のミラー要素の最大設定可能傾斜角は、ミラー要素の傾斜を実現するときの機械的問題(例えば、そこで一般的に使用される撓み部の不安定性に起因する)及び該当する場合にミラー装置の領域内での熱の放散に関する問題を回避するために制限される(典型的には数度に)。その結果、ミラー装置内の最大傾斜角のこの制限は、照明デバイスに典型的に使用され、かつ照明光の角度分布を瞳平面内の空間分布に変換するように機能するフーリエ光学ユニットが比較的長い焦点距離(例えば、数メートル)を典型的に有するべきであるという影響を有する。
これらの焦点距離をそれにもかかわらず適切なコストで実現するために、フーリエ光学ユニットを複数の屈折レンズ要素を有する光学ズーム系として構成することが公知であるが、原理的に、この構成は、材料及びコストに関して出費を増加させる。更に、複数の屈折レンズ要素を有する光学ズーム系としてのフーリエ光学ユニットの構成はまた、例えば、同じく空間的な要求が高く、かつ光学ズーム系内で追加のレンズ要素によって阻害されてはならない支持構造の収容がより困難になる限り、投影露光装置の光学設計の構成における構造コストの増大を意味する可能性がある。
従来技術に関しては、単なる例としてWO 2005/026843 A2、US 2009/0116093 A1、及びUS 2006/055834 A1を参照されたい。
WO 2005/026843 A2 US 2009/0116093 A1 US 2006/055834 A1
本発明の目的は、比較的低い構造コスト及び比較的小型の設計と併せて、照明デバイスに設定される強度分布を柔軟に変更することを可能にするマイクロリソグラフィ投影露光装置のための光学系を提供することである。
この目的は、独立請求項1の特徴に従って達成される。
マイクロリソグラフィ投影露光装置のための本発明による光軸を有する光学系は、ミラー装置によって反射された光の角度分布を変更するために互いに独立して調節可能である複数のミラー要素を有する少なくとも1つのミラー装置と、ミラー装置の下流の光学ビーム経路に対して光軸の偏向が生じる少なくとも1つの偏向面を有する偏向デバイスとを含み、少なくとも1つの偏向面は、屈折力を有する。
本発明は、特に、強度分布を変化させるように機能し、かつ互いに独立して設定することができるミラー要素を有するミラー装置と、ミラー装置の下流の光学ビーム経路に対して、光軸を偏向させるための少なくとも1つの偏向面を有する偏向デバイスとの使用から進んで、この少なくとも1つの偏向面が、単なる反射面として(そして更に、屈折力を有さないように)単純に構成されるのではなく、この偏向面に屈折力が意図的に与えられるという思想に基づいている。
屈折力を有する偏向面のこの構成は、光学ビーム経路内で下流に配置された瞳平面内の空間分布への照明光の角度分布の変換であって、照明デバイスの更に別の光学ビーム経路内に典型的に要求される上記変換が、より単純な又はより小型の設計の光学ユニットを用いて達成することができるという結果を有利に有する。なぜならば、この偏向面によって与えられる屈折力に関してこの偏向面の適切な構成が与えられると、上述の変換に要求される関連のフーリエ光学ユニットの光学効果をこの偏向面によって予め部分的に実施することができるからである。
偏向面が「ミラー装置の下流の光学ビーム経路に対して」配置されるという表現は、光学系の作動中に通過する光が、最初にミラー装置上に入射し、次に偏向面上に入射することを意味すると理解しなければならない(なぜならば、光学ビーム経路が、光源からマスクに向い、更に基板に向う方向に延びるからである)。
この場合に、本発明は、特に、それぞれ望ましい照明設定を設定するためのミラー要素のミラー装置内で設定することができる最大傾斜角が制限されるので(典型的に数度に)、照明光の角度分布を瞳平面内の空間分布に変換するためのそのようなフーリエ光学ユニットに関して典型的に比較的長い焦点距離(例えば、数メートル)が要求されるという考察に基づいている。次に、光学系又は照明デバイスの依然として適切な構造的長さと併せて、要求されるフーリエ光学ユニットのそのような比較的長い焦点距離を実現することができるためには、このフーリエ光学ユニットの光学ズーム系としての構成という意味における関連のフーリエ光学ユニットの短縮化が望ましい。
ここで本発明により、偏向デバイスの少なくとも1つの偏向面によって光学系内に屈折力が予め導入され、かつ(フーリエ)光学ユニットの必要な光学効果をこの偏向面によって予め部分的に実施することができるという事実により、達成することができるのは、上述の問題を回避又は軽減することができるように、例えば、光学ズーム系の又はフーリエ光学ユニットの少なくとも1つの屈折レンズ要素が不要にされることである。
屈折力を有する偏向デバイスの少なくとも1つの偏向面の本発明による構成は、光学系の比較的短い構造的長さ又は小型設計にも関わらず、それぞれ望ましい照明設定を生成するほど十分に長いフーリエ光学ユニットの焦点距離を与えることができることを主な理由として、ミラー装置のミラー要素によって実現される傾斜角に関してミラー装置に課せられる要件が軽減されるという更に別の利点を達成することを可能にする。ミラー要素のより小さい最大傾斜角(例えば、±3°よりも大きくない)を有するミラー装置のこのような可能な構成に起因して、ミラー要素の傾斜を実現するときの機械的問題(例えば、そこに典型的に使用される撓み部の不安定性に起因する)及び該当する場合にミラー装置の領域内の熱の放散に関する問題を回避することが可能である。
一実施形態によれば、光学系は、ミラー装置と下流の瞳平面との間の光学ビーム経路に対して、光軸の偏向が生じるちょうど1つの偏向面を有する。
しかし、本発明は、ミラー装置と下流の瞳平面との間にちょうど1つの偏向面を有する構成に限定されない。本発明の他の実施形態において、光学系はまた、ミラー装置と下流の瞳平面との間の光学ビーム経路に対して複数の偏向面を有することができる。この場合に、本発明により屈折力を有するように構成されたこの偏向面は、好ましくは、光学ビーム経路内のこれらの偏向面のうちの最初のものである。この構成は、光学系内で必要とされるビーム変換の場合に利用可能な構造的空間を可能な限り最適に利用することができるという利点を有する。
本発明の実施形態において、この少なくとも1つの偏向面は、正の屈折力を有する(すなわち、「収束効果」を有する)。
原理的に、個々の屈折力を用いて実現されるフーリエ光学ユニットは、フーリエ光学ユニットがテレセントリックである限り(すなわち、フーリエ光学ユニットが、入力平面内の角度を出力平面内の場所に変換するだけでなく、入力平面内の場所を出力平面内の角度にも変換する)、その焦点距離の大きさの2倍の構造的長さを有する。非テレセントリックフーリエ光学ユニットの場合には、1つの屈折力だけしか使用されない時により短い構造的長さも可能である。フーリエ光学ユニットの必要な構造的空間の短縮化は、特に、フーリエ光学ユニットが、屈折力を与えられた複数の面から構成され、そのようなフーリエ光学ユニットの最初の屈折力が収束効果を有する場合に達成することができる。発散する最初の屈折力を用いて達成することができるのは、構造的空間を延長することである。
前段落に示した「規則」は、有利な構成を説明している。しかし、これらの規則から逸脱していても、通常は、完全に機能するフーリエ光学ユニットを得ることが同じく可能である(しかし、この場合に、フーリエ光学ユニットの他の屈折力は比較的強く、従って、該当する場合はそれ程好都合ではない)。
一実施形態によれば、偏向デバイスは、プリズムとして構成される。
一実施形態によれば、偏向デバイスは、光学ビーム経路に対してミラー装置の上流に配置された第1の偏向面と、光学ビーム経路に対してミラー装置の下流に配置された第2の偏向面とを有し、第1の偏向面と第2の偏向面での両方の各々に光軸の偏向が生じる。
一実施形態によれば、ミラー装置のミラー要素は、5°よりも大きくなく、特に4°よりも大きくなく、より特定的には3°よりも大きくない最大傾斜角を有する。
一実施形態によれば、少なくとも1つの偏向面は、作動中に光学系を通過する光に対して全反射をもたらす。偏向ミラーとしての偏向面の同じく可能な実現と比較すると、そのような構成は、より低い光損失、従って、光学系の伝達特性の改善という利点を有する。
しかし、本発明は、上述の全反射の利用に限定されない。この点に関して、本発明の更に別の構成では、この少なくとも1つの偏向面は、偏向ミラーとして実現することもできる。全反射の利用と比較すると、その結果、この構成は、光学設計における偏向面の位置決めに関して、偏向面での入射角が、全反射の臨界角よりも小さい値に制限されないという利点を有する。
一実施形態によれば、フーリエ光学ユニットは、光学ビーム経路に対して偏向デバイスの下流に配置され、このフーリエ光学ユニットは、光学系の作動中にフーリエ光学ユニット上に入射する光の角度分布を光学ビーム経路内で下流に配置された瞳平面内の空間分布に変換する。
一実施形態によれば、このフーリエ光学ユニットは、1つよりも多いレンズ要素を有する。更に、本発明の実施形態において、このフーリエ光学ユニットは、4つよりも多くなく、特に3つよりも多くないレンズ要素を有する。
一実施形態によれば、光学系は、250nmよりも短く、特に200nmよりも短く、より特定的には160nmよりも短い動作波長に向けて設計される。
本発明は、更に、マイクロリソグラフィ投影露光装置にかつ微細構造化構成要素をマイクロリソグラフィを用いて生成する方法に関する。
本発明の更に別の構成は、本明細書及び従属請求項から集めることができる。
本発明は、添付図面に示す例示的実施形態に基づいて以下により詳細に説明する。
本発明による光学系を含むマイクロリソグラフィ投影露光装置の可能な構成を解説するための概略図である。 本発明の例示的実施形態を解説するための概略図である。 本発明の例示的実施形態を解説するための概略図である。 従来技術の光学系の構成を解説するための概略図である。
最初に図1を参照して、本発明による光学系を含むマイクロリソグラフィ投影露光装置の1つの可能な基本的構成を以下に説明する。図1に示す基本構成は、例えば、US 2009/0116093 A1から公知であり、従って、本出願の請求する主題に属さない。
図1に記載の投影露光装置は、照明デバイス110と投影レンズ120を有する。照明デバイス110は、例えば、193nmの動作波長のためのArFエキシマレーザと、平行光ビームを発生させるビーム成形光学ユニットとを含む光源ユニット101からの光で構造担持マスク(レチクル)150を照明するように機能する。一般的に、照明デバイス110及び投影レンズ120は、好ましくは、250nmよりも短く、特に200nmよりも短く、より特定的には160nmよりも短い動作波長に向けて設計される。
図2により、照明デバイス110の一部は、特に、図2及びそれ以降を参照して以下により詳細に説明するようにミラー装置200である。そのようなミラー装置200は、MMA(「マイクロミラーアレイ」)又はそうでなければ空間光変調器と呼ばれることもあり、かつ図2に略示すようにミラー装置200によって反射される光の角度分布を変更するために互い独立して調節可能な複数のミラー要素200a、200b、200c、...を有する。図1により、この調節は、適切なアクチュエータを使用する駆動ユニット205を用いて駆動される。ミラー要素200a、200b、200c、...の各々は、例えば、−2.5°から+2.5°までの角度範囲で個々に傾斜させることができる。光伝播方向にミラー装置200の上流には、ミラー要素200a、200b、200c、...上への目標を定めたフォーカスのためのかつミラー要素200a、200b、200c、...の間の領域内でのミラー要素からの漏出の結果としての光損失及び迷光の発生を低減又は回避するための多数のマイクロレンズ要素を有するマイクロレンズ要素装置(例示していない)をそれ自体公知の態様で設けることができる。
ミラー装置200内でのミラー要素200a、200b、200c、...の適切な傾斜配置を用いて、望ましい照明設定に依存して(適切な場合は予め均一化かつ平行化した)レーザ光をミラー装置200のミラー要素200a、200b、200c、...によって各々に対応する方向に向けることにより、図1に記載の照明デバイス110の瞳平面に望ましい光又は強度分布、例えば、環状照明設定又はそうでなければ二重極設定又は四重極設定を形成することができる。
図1により、光源ユニット101及び偏光状態を設定するためのデバイス102から来る光は、ミラー装置200上に入射する前に最初に偏向デバイス210上に入射し、それによって照明光は、偏向デバイス210の第1の偏向面211でミラー装置200の方向に偏向され、ミラー装置200での反射の後に偏向デバイス210の第2の偏向面212によって再度元の伝播方向に沿って偏向される。従って、偏向デバイス210は、光伝播方向に関してミラー装置200の上流と下流の両方にあるそれぞれの偏向面211及び212を有する。
偏向デバイス210は、第1に、様々な照明設定を柔軟に設定するように機能するミラー装置200が、望ましい照明設定を設定するための回折光学要素(DOE)が装備された照明デバイス内で、例えばこのDOEの交換により、モジュールの態様で(あたかも「プラグ・アンド・プレイ」原理と同等に)使用されることを可能にする。なぜならば、照明光が、偏向デバイス210を用いた簡単な態様でかつ照明デバイスの光学設計の残りの部分の更に別の修正の必要なく、光学ビーム経路から出て結合され、かつ光学ビーム経路内に再度結合されるからである。
言い換えれば、本発明により、例えば、DOEが備えられたそれぞれ既存の照明デバイスの現在の光学設計との完全な適合性と併せて、照明デバイスは、これに加えて、このDOEを本発明によるモジュールと交換することにより、異なる照明設定を柔軟な態様で更に設定することができるという効果を与えることができる。照明光の上述の入力及び出力結合は、該当する場合に利用可能な構造的空間の最適な利用がそれによって可能にされる限り更に有利である。
光伝播方向に偏向デバイス210の下流のビーム経路には、図1に簡略化した形で単一のレンズ要素として例示し、かつそれ自体の上に入射する光の角度分布を下流の瞳平面PP内の空間分布に変換するように機能する光学ズーム系の形態にあるフーリエ光学ユニット220が置かれる。そのようなフーリエ光学ユニットは、コンデンサーとも表される。
ビーム経路内では、光混合を得るのに適する例えばマイクロ光学要素の装置を有することができる光混合デバイス103とレンズ要素群104とが続き、レンズ要素群104の下流には、レチクルマスキング系(REMA)105を有する視野平面が置かれ、このレチクルマスキング系105は、光伝播方向に下流に配置されたREMAレンズ106により、マスク台(通常「レチクル台」とも表される)上の更に別の視野平面に配置された構造担持マスク(レチクル)150上に結像され、それによってレチクル上の照明領域を区切る。
構造担持マスク150は、ウェーハ台161上に配置された感光層が設けられた基板160又はウェーハ上に投影レンズ120によって結像される。投影レンズ120は、特に液浸作動に向けて設計することができる。更に、投影レンズ120は、0.85よりも大きく、特に1.1よりも大きく、特に1.3よりも大きい開口数NAを有することができる。
図2を参照して、本発明の一例示的実施形態による偏向デバイス210の構成及びその機能を以下に説明する。
図2により、偏向デバイス210は、ミラー装置200の下流の光学ビーム経路に対して配置された偏向面212が屈折力を有するように構成される。
言い換えれば、偏向面212は、US 2009/0116093 A1からそれ自体が公知の従来の装置を示す図4の場合のように光学系又は照明デバイスの光軸OAを偏向させるために屈折力を伴わずに単に反射をもたらすだけではない。本発明により、屈折力を伴わない反射の代わりに、偏向面212は、屈折力を光学系内に予め導入し、その結果、フーリエ光学ユニット220によって与えられるべき光学効果(すなわち、照明光の角度分布の、ビーム経路内で下流に配置された瞳平面PP内の空間分布への変換)の一部は、この偏向面212によって予めもたらすことができ、従って、偏向面212は、その屈折力に起因して光学機能的にフーリエ光学ユニット220の一部になる。その結果、これは、このフーリエ光学ユニット220(典型的に複数の屈折レンズ要素を更に有し、単なる例として図2には2つのレンズ要素221、222、及び図3には3つのレンズ要素321、322、323を示す)を屈折力を持たない偏向面212の構成と比較して短い構造的長さで、従ってより小型に構成することができるという利点を提供する。特に、フーリエ光学ユニット220のより小型の構成は、フーリエ光学ユニット220の屈折光学要素のうちの少なくとも1つを省くことができることを意味することができる。
図3は、フーリエ光学ユニット320の3つのレンズ要素321、322、323を含む対応する配置の概略図を示しており、図2と比較して、類似するか又は機能的に実質的に同一の要素は、参照番号に「100」を加えたもので表している。
図2及び図3により、一例として示すフーリエ光学ユニット220及び320のレンズ要素221、222及び321〜323は、光学ビーム経路内で偏向デバイス210及び310の偏向面212及び312に直接続くが、本発明は、これに限定されない。限定されるのではなく、本発明の更に別の実施形態において、偏向面212及び312と、フーリエ光学ユニット220及び320の更に別のレンズ要素221、222及び321〜323(又はその最初の屈折レンズ要素221及び321)との間に1つ又は複数の更に別の偏向面を設けることができる。
好ましくは、ミラー装置200とフーリエ光学ユニット220の間に複数の偏向面を有する上述の構成の場合にも、これらの偏向面のうちで光学ビーム経路に対して最初のものは、屈折力を有するように構成される。なぜならば、このようにして、利用可能な構造的空間を、ビーム変換をもたらす上で最適に利用することができるからである。しかし、本発明は、原理的にこの構成にも限定されず、従って、本出願は、ミラー装置200とフーリエ光学ユニット220の最初の屈折レンズ要素221との間の複数の偏向面のうちで光学ビーム経路に対して最初のものではなく、これらの偏向面のうちの別のものに屈折力が与えられた構成を包含するようにも考えるべきである。更に、そのような偏向面のうちの2つ又はそれよりも多くが屈折力を有することも可能である。
図2から明らかなように、図示の例示的実施形態において、偏向デバイス210の偏向面211、212では、各場合に全反射によって照明光のビーム偏向が発生し、すなわち、照明光は、関連の偏向面211、212上に各場合に関連の波長(例えば、193nm)で全反射の臨界角よりも小さい入射角で入射し、すなわち、ビームは、この臨界角よりも浅く入射する。入射角は、全反射の臨界角よりも例えば1°だけ、特に5°だけ小さいとすることができ、それによって取りわけ偏向面211、212上のゼロでない粗さの効果が低下する。全反射により、反射損失の最小化に起因して、本発明による光学系では特に高い伝達率を得ることができる。しかし、本発明は、この構成に限定されず、従って、更に別の実施形態において、偏向面211、212は、偏向ミラーの形態にある反射ミラー面によっても実現することができる(この場合に、上述した全反射の臨界角よりも小さい入射角への制限は省かれる)。
同じく図2から明らかなように、ミラー装置200及び同じく偏向デバイス210は、ミラー装置200が実質的に垂直入射で作動されるように配置され、偏向デバイス210又はその偏向面211、212は、全体として180°の偏向に対応する、90°の角度の光軸の偏向(すなわち「曲げ」)を2回もたらす。実質的に垂直入射によるミラー装置200の作動は、原理的に有利であるにも関わらず、本発明は、これにも限定されず、従って、更に別の実施形態において、他の角度による光軸の偏向(例えば、偏向デバイス210の偏向面211、212での)を実現することもできる。
本発明を特定の実施形態に基づいて記載したが、当業者は、例えば、個々の実施形態の特徴の組合せ及び/又は交換により、多くの変形及び代替実施形態を推測するものである。従って、そのような変形及び代替実施形態が、本発明によって関連的に包含され、本発明の範囲が、添付の特許請求の範囲及びその均等物の意味においてのみ限定されることは当業者には言うまでもない。
101 光源ユニット
110 照明デバイス
150 構造担持マスク
200、205 ミラー装置
210 偏向デバイス

Claims (16)

  1. マイクロリソグラフィ投影露光装置のための、光軸(OA)を有する光学系であって、
    ミラー装置によって反射された光の角度分布を変更するために互いに独立して調節可能である複数のミラー要素(200a,200b,200c,...,300a,300b,300c,...)を有する少なくとも1つのミラー装置(200,300)と、
    前記ミラー装置(200,300)の下流の光学ビーム経路に対して、前記光軸(OA)の偏向が生じる少なくとも1つの偏向面(212,312)を有する偏向デバイス(210,310)と、
    を含み、
    前記少なくとも1つの偏向面(212,312)は、屈折力を有する、
    ことを特徴とする光学系。
  2. 前記ミラー装置(200,300)と下流の瞳平面(PP)との間の前記光学ビーム経路に対して、前記光軸(OA)の偏向が生じるちょうど1つの偏向面(212,312)を有することを特徴とする請求項1に記載の光学系。
  3. 前記ミラー装置(200,300)の下流の前記光学ビーム経路に対して、前記光軸(OA)の偏向が各々生じる複数の偏向面を有することを特徴とする請求項1に記載の光学系。
  4. 屈折力を有する前記偏向面は、前記光学ビーム経路に対して前記複数の偏向面のうちの最初のものであることを特徴とする請求項3に記載の光学系。
  5. 前記偏向デバイス(210,310)は、プリズムとして構成されることを特徴とする請求項1から請求項4のいずれか1項に記載の光学系。
  6. 前記偏向デバイス(210,310)は、前記光学ビーム経路に対して前記ミラー装置(200,300)の上流に配置された第1の偏向面(211,311)と、該光学ビーム経路に対して該ミラー装置(200,300)の下流に配置された第2の偏向面(212,312)とを有し、前記光軸(OA)の偏向が、該第1の偏向面(211,311)及び該第2の偏向面(212,312)での両方の各々に生じることを特徴とする請求項1から請求項5のいずれか1項に記載の光学系。
  7. 前記ミラー装置(200,300)の前記ミラー要素(200a,200b,200c,...,300a,300b,300c,...)は、5°よりも大きくなく、特に4°よりも大きくなく、より特定的に3°よりも大きくない最大傾斜角を有することを特徴とする請求項1から請求項6のいずれか1項に記載の光学系。
  8. 前記少なくとも1つの偏向面(212,312)は、作動中に光学系を通過する光に対して全反射をもたらすことを特徴とする請求項1から請求項7のいずれか1項に記載の光学系。
  9. 前記少なくとも1つの偏向面は、偏向ミラーとして具現化されることを特徴とする請求項1から請求項7のいずれか1項に記載の光学系。
  10. フーリエ光学ユニット(220,320)が、前記光学ビーム経路に対して前記ミラー装置(200,300)の下流に配置され、該フーリエ光学ユニット(220,320)は、光学系の作動中に該フーリエ光学ユニット(220,320)上に入射する光の角度分布を該光学ビーム経路の下流に配置された瞳平面(PP)内の空間分布に変換することを特徴とする請求項1から請求項9のいずれか1項に記載の光学系。
  11. 前記少なくとも1つの偏向面(212,312)は、前記フーリエ光学ユニット(220,320)の一部を形成することを特徴とする請求項10に記載の光学系。
  12. 前記フーリエ光学ユニット(220,320)は、1つよりも多いレンズ要素を有することを特徴とする請求項10又は請求項11に記載の光学系。
  13. 前記フーリエ光学ユニット(220,320)は、4つよりも多くなく、特に3つよりも多くないレンズ要素を有することを特徴とする請求項10から請求項12のいずれか1項に記載の光学系。
  14. 250nmよりも短く、特に200nmよりも短く、より特定的に160nmよりも短い動作波長に向けて設計されることを特徴とする請求項1から請求項13のいずれか1項に記載の光学系。
  15. 照明デバイス(10)と投影レンズ(20)とを含むマイクロリソグラフィ投影露光装置であって、
    前記照明デバイス(10)は、請求項1から請求項14のいずれか1項に記載の光学系を有する、
    ことを特徴とする装置。
  16. 微細構造化構成要素をマイクロリソグラフィを用いて生成する方法であって、
    感光材料からなる層が少なくとも部分的に塗布された基板(160)を与える段階と、
    結像される構造を有するマスク(150)を与える段階と、
    請求項1から請求項14のいずれか1項に記載の光学系を有するマイクロリソグラフィ投影露光装置を与える段階と、
    前記投影露光装置を用いて前記マスク(150)の少なくとも一部を前記層の一領域上に投影する段階と、
    を含むことを特徴とする方法。
JP2014150440A 2013-07-24 2014-07-24 マイクロリソグラフィ投影露光装置のための光学系 Active JP5861950B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013214459.8A DE102013214459B4 (de) 2013-07-24 2013-07-24 Optisches System für eine mikrolithographische Projektionsbelichtungsanlage
DE102013214459.8 2013-07-24

Publications (2)

Publication Number Publication Date
JP2015043418A true JP2015043418A (ja) 2015-03-05
JP5861950B2 JP5861950B2 (ja) 2016-02-16

Family

ID=51210362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150440A Active JP5861950B2 (ja) 2013-07-24 2014-07-24 マイクロリソグラフィ投影露光装置のための光学系

Country Status (5)

Country Link
US (1) US9535331B2 (ja)
EP (1) EP2829917B1 (ja)
JP (1) JP5861950B2 (ja)
KR (1) KR101645797B1 (ja)
DE (1) DE102013214459B4 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156592A (ja) * 2003-11-20 2005-06-16 Nikon Corp 照明光学装置、露光装置および露光方法
US6977718B1 (en) * 2004-03-02 2005-12-20 Advanced Micro Devices, Inc. Lithography method and system with adjustable reflector
JP2009105396A (ja) * 2007-10-24 2009-05-14 Nikon Corp 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
WO2009125511A1 (ja) * 2008-04-11 2009-10-15 株式会社ニコン 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2009145048A1 (ja) * 2008-05-28 2009-12-03 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
JP2011108851A (ja) * 2009-11-17 2011-06-02 Canon Inc 露光装置及びデバイスの製造方法
WO2012100791A1 (en) * 2011-01-29 2012-08-02 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
DE102011082481A1 (de) * 2011-09-12 2012-12-27 Carl Zeiss Smt Gmbh Beleuchtungssystem einer mikrolithographischen projektionsbelichtungsanlage und verfahren zu deren betrieb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412617A (en) 2002-12-03 2004-07-16 Nikon Corp Optical illumination device, method for adjusting optical illumination device, exposure device and exposure method
KR101159867B1 (ko) 2003-09-12 2012-06-26 칼 짜이스 에스엠티 게엠베하 마이크로리소그래피 투사 노출 장치용 조명 시스템
EP2179329A1 (en) * 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
EP2209135A4 (en) * 2007-11-06 2011-06-08 Nikon Corp OPTICAL LIGHTING DEVICE AND EXPOSURE DEVICE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005156592A (ja) * 2003-11-20 2005-06-16 Nikon Corp 照明光学装置、露光装置および露光方法
US6977718B1 (en) * 2004-03-02 2005-12-20 Advanced Micro Devices, Inc. Lithography method and system with adjustable reflector
JP2009105396A (ja) * 2007-10-24 2009-05-14 Nikon Corp 光学ユニット、照明光学装置、露光装置、およびデバイス製造方法
WO2009125511A1 (ja) * 2008-04-11 2009-10-15 株式会社ニコン 空間光変調ユニット、照明光学系、露光装置、およびデバイス製造方法
WO2009145048A1 (ja) * 2008-05-28 2009-12-03 株式会社ニコン 空間光変調器の検査装置および検査方法、照明光学系、照明光学系の調整方法、露光装置、およびデバイス製造方法
JP2011108851A (ja) * 2009-11-17 2011-06-02 Canon Inc 露光装置及びデバイスの製造方法
WO2012100791A1 (en) * 2011-01-29 2012-08-02 Carl Zeiss Smt Gmbh Illumination system of a microlithographic projection exposure apparatus
DE102011082481A1 (de) * 2011-09-12 2012-12-27 Carl Zeiss Smt Gmbh Beleuchtungssystem einer mikrolithographischen projektionsbelichtungsanlage und verfahren zu deren betrieb

Also Published As

Publication number Publication date
US20150029477A1 (en) 2015-01-29
DE102013214459B4 (de) 2015-07-16
EP2829917A1 (de) 2015-01-28
JP5861950B2 (ja) 2016-02-16
KR20150012220A (ko) 2015-02-03
EP2829917B1 (de) 2020-01-15
US9535331B2 (en) 2017-01-03
DE102013214459A1 (de) 2015-01-29
KR101645797B1 (ko) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6343344B2 (ja) マイクロリソグラフィ投影露光装置の照明系
US20240176248A1 (en) Light source apparatus, optical apparatus, exposure apparatus, device manufacturing method, illuminating method, exposure method, and method for manufacturing optical apparatus
JP6016169B2 (ja) マイクロリソグラフィ投影露光装置の照明系
US9274434B2 (en) Light modulator and illumination system of a microlithographic projection exposure apparatus
JP2018519535A (ja) マイクロリソグラフィ投影装置を作動させる方法
JP6170564B2 (ja) マイクロリソグラフィ投影露光装置の照明システム
JP5888585B2 (ja) 反射結像光学系、露光装置、およびデバイス製造方法
KR101506748B1 (ko) 광학 적분기, 조명 광학 장치, 노광 장치, 및 디바이스 제조 방법
JP2016503186A (ja) マイクロリソグラフィ投影露光装置の光学系
JP2001330964A (ja) 露光装置および該露光装置を用いたマイクロデバイス製造方法
JP5861950B2 (ja) マイクロリソグラフィ投影露光装置のための光学系
JP2011109096A (ja) 反射結像光学系、露光装置、およびデバイス製造方法
JP2010272631A (ja) 照明装置、露光装置、及びデバイス製造方法
KR101591155B1 (ko) 마이크로리소그래픽 투영 노광 장치의 조명 시스템
JP6652948B2 (ja) マイクロリソグラフィ投影露光装置の照明システム
US10012907B2 (en) Optical system of a microlithographic projection exposure apparatus
JP2012004558A (ja) 照明光学系、露光装置、およびデバイス製造方法
JP2009117672A (ja) 照明光学系、露光装置、およびデバイス製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5861950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250