JP2015036661A - Soundness evaluation method and soundness evaluation device for guard fence support post - Google Patents

Soundness evaluation method and soundness evaluation device for guard fence support post Download PDF

Info

Publication number
JP2015036661A
JP2015036661A JP2013168800A JP2013168800A JP2015036661A JP 2015036661 A JP2015036661 A JP 2015036661A JP 2013168800 A JP2013168800 A JP 2013168800A JP 2013168800 A JP2013168800 A JP 2013168800A JP 2015036661 A JP2015036661 A JP 2015036661A
Authority
JP
Japan
Prior art keywords
mode
vibration
guard fence
positions
actual measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013168800A
Other languages
Japanese (ja)
Other versions
JP6205091B2 (en
Inventor
宰史 深田
Saiji Fukada
宰史 深田
卓哉 水野
Takuya Mizuno
卓哉 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Central Nippon Highway Engineering Nagoya Co Ltd
Priority to JP2013168800A priority Critical patent/JP6205091B2/en
Publication of JP2015036661A publication Critical patent/JP2015036661A/en
Application granted granted Critical
Publication of JP6205091B2 publication Critical patent/JP6205091B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soundness evaluation method and soundness evaluation device of a guard fence support post capable of accurately evaluating soundness in a nondestructive manner even when the support conditions (deterioration or damage and embedding conditions or the like) of a support post base part are changed from a design stage after the lapse of a long period from installation.SOLUTION: The soundness evaluation method of a guard fence support post includes steps of: obtaining a vibration mode by performing vibration mode analysis to a guard fence support post model; setting an arbitrary order of the vibration mode among the vibration modes as a reference mode; obtaining amplitude values at a plurality of positions from sensors 20 arranged at the plurality of positions of the guard fence support post by adding vibration at a predetermined position to the guard fence support post 11 as the object of evaluation; obtaining an actual measurement mode on the basis of the amplitude values; calculating the position where the square sum of a difference between each of the amplitude values configuring the actual measurement mode and an amplitude value included in the reference mode is minimized to perform curve fit processing; calculating an MAC(Modal Assurance Criterion) value of the reference mode and the actual measurement mode, and evaluating the soundness of the guard fence support post from the calculated MAC value.

Description

本発明は、防護柵支柱の健全度を非破壊にて評価するための健全度評価方法及び健全度評価装置に関する。   The present invention relates to a soundness evaluation method and a soundness evaluation apparatus for nondestructively evaluating the soundness of a protective fence support.

従来、建築・土木構造物及びこれに使用される各種構造部材の劣化、損傷度合いを検査し、その健全度を評価する方法としては例えば保全員による目視点検が行われている。
その他の方法としては例えば構造物を所定位置で加振し、その振動波形を測定することで構造物の固有振動数を求める。そして、求めた固有振動数と振動試験により予め算出しておいた固有振動数との変動を振動モード毎に求め、振動モード毎に固有振動数の変動幅に応じた健全度を評価する方法が知られている(特許文献1)。
また、構造物を加振して算出した固有振動数や、評価時における構造物のヤング率、厚み等に基づいて構造物に加わる最大応力を算出し、この最大応力から構造物の健全度を評価する方法も知られている(特許文献2)。
Conventionally, visual inspection by maintenance personnel, for example, has been performed as a method for inspecting the degree of deterioration and damage of building / civil engineering structures and various structural members used therefor, and evaluating their soundness.
As another method, for example, the natural frequency of the structure is obtained by exciting the structure at a predetermined position and measuring the vibration waveform. Then, a method of obtaining a fluctuation between the obtained natural frequency and the natural frequency calculated in advance by a vibration test for each vibration mode, and evaluating the soundness according to the fluctuation range of the natural frequency for each vibration mode. Known (Patent Document 1).
Also, the maximum stress applied to the structure is calculated based on the natural frequency calculated by exciting the structure, the Young's modulus of the structure at the time of evaluation, the thickness, etc., and the soundness of the structure is calculated from this maximum stress. An evaluation method is also known (Patent Document 2).

特開2005−180951号公報JP 2005-180951 A 特開2002−22596号公報JP 2002-22596 A

ところが、上記従来技術を道路脇に設置される防護柵(ガードレール)の支柱に対する健全度評価に適用する場合、以下のような問題がある。
すなわち、防護柵の支柱はその基部に防食テープが巻きつけられていることがあるため、支柱基部の劣化、損傷度合いを外観から目視点検によって判断し辛いという問題や、防食テープを剥がす作業に手間がかかるという問題がある。
また、防食テープを剥がして支柱の基部を露出させた場合であっても、基部に層状剥離が生じている場合や、内部にコンクリートが充填されている場合には超音波厚さ計等を用いた正確な肉厚測定ができないという問題もある。
However, when the above prior art is applied to the evaluation of the soundness level of a guard fence (guard rail) post installed on the side of a road, there are the following problems.
In other words, since the anti-corrosion tape may be wound around the base of the protective fence post, it is difficult to judge the deterioration and damage degree of the post base by visual inspection from the appearance, and the work to remove the anti-corrosion tape is troublesome. There is a problem that it takes.
Even when the anticorrosion tape is peeled off and the base of the column is exposed, an ultrasonic thickness meter or the like is used when the base is delaminated or when the concrete is filled inside. There is also a problem that accurate wall thickness measurement cannot be performed.

また、上記特許文献1に開示された方法を用いる場合、評価精度を高めるには支柱設置直後の健全な状態で行なった振動試験に基づく固有振動数の算出が必要になる。しかし、一般的には設置直後の支柱の固有振動数を算出しているケースは少ないため、支柱の健全度を精度よく評価できるケースがほとんどないという問題がある。
また、設置直後の支柱の固有振動数を設計図面等に記載された材料強度、寸法、支柱基部の拘束条件(支持条件)等に基づいて算出し、この固有振動数(推定値)と現場で実際の支柱に対して行なった振動試験により算出した固有振動数とを比較する評価手法も考えられる。
In addition, when using the method disclosed in Patent Document 1, it is necessary to calculate the natural frequency based on a vibration test performed in a healthy state immediately after the support is installed in order to increase the evaluation accuracy. However, in general, since there are few cases where the natural frequency of the support column is calculated immediately after installation, there is a problem that there is almost no case where the soundness level of the support column can be accurately evaluated.
In addition, the natural frequency of the strut immediately after installation is calculated based on the material strength, dimensions, restraint conditions (support conditions) of the strut base, etc. described in the design drawings, etc., and this natural frequency (estimated value) and on-site An evaluation method that compares the natural frequency calculated by a vibration test performed on an actual support is also conceivable.

ここで、防護柵の支柱はその設置場所に応じて基部の埋設方法が異なっている。例えば、盛土道路であれば基部を単純に2m程度の深さで埋設する方法が一般的であり、橋梁・高架等ではアンカーボルトの使用や、埋設部分の周囲をモルタル等で固めたり、埋設部分の上下をアスファルトやモルタルでキャッピングしてその間に砂を充填し、更に水平方向に延びる補強鉄筋を埋設する方法等が採用される。
このように支柱基部の埋設方法は多様であるため、これに伴って支柱基部の支持条件も多様となる。特に設置から長期間を経た支柱の場合、周囲のモルタル等に亀裂が入ったり、砂が雨水により流出してしまっている等の強度上の不具合が生じていることがある。つまり、支柱基部の支持条件が設計段階の支持条件とは大きく異なってしまっており、これが各次数のモード形状にとって大きな変動要因となる。
このような支柱基部の支持条件が設計段階と大きく異なってしまっている支柱に対して現場で振動試験を行い、その固有振動数を算出したとしても、この値を設計図面等に基づいて算出した固有振動数(推定値)と比較しながら健全度を正確に評価することは極めて困難である。また、このような問題は上記特許文献2の技術に関しても同様に生じる。
なお、部材の支持条件が経年変化によって変化するという防護柵支柱に特有の問題は本願発明者の研究によって初めて見出されたものである。
Here, the method of burying the base of the guard fence differs depending on the installation location. For example, for embankment roads, it is common to embed the base simply at a depth of about 2 m. For bridges and overpasses, anchor bolts are used, and the area around the buried part is solidified with mortar, etc. For example, a method of capping the upper and lower sides with asphalt or mortar, filling sand between them, and further embedding reinforcing bars extending in the horizontal direction is adopted.
As described above, since there are various methods for embedding the column bases, the support conditions for the column bases also vary accordingly. In particular, in the case of a support post that has been installed for a long time, there may be a problem in strength such as cracks in the surrounding mortar or sand flowing out by rainwater. That is, the support conditions of the support base are greatly different from the support conditions at the design stage, which is a large variation factor for the mode shape of each order.
Even if the vibration test was performed on-site for a column whose support condition for the column base was significantly different from the design stage, and its natural frequency was calculated, this value was calculated based on the design drawing etc. It is extremely difficult to accurately evaluate the soundness while comparing with the natural frequency (estimated value). In addition, such a problem also occurs with respect to the technique of Patent Document 2 described above.
The problem peculiar to the protective fence support that the support condition of the member changes due to aging is found for the first time by the research of the present inventor.

本発明は、このような問題を考慮して、設置から長期間が経過して支柱基部の支持条件が設計段階とは変化している場合であっても健全度を非破壊にて正確に評価できる防護柵支柱の健全度評価方法及び健全度評価装置を提供することを目的とする。   In consideration of such problems, the present invention accurately evaluates the soundness in a non-destructive manner even when the support condition of the column base has changed from the design stage after a long period of time has elapsed since installation. An object of the present invention is to provide a soundness evaluation method and a soundness evaluation device for a protective fence post.

本発明の防護柵支柱の健全度評価方法は、防護柵支柱モデルに対して振動モード解析を行うことで当該モデルの振動モードを得るステップと、前記振動モードのうち任意の次数の振動モードを基準モードとするステップと、評価対象となる防護柵支柱に対して所定位置で振動を加えることで、当該防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得るステップと、前記複数位置における振幅値に基づいて実測モードを得るステップと、前記実測モードを構成する各振幅値と前記基準モードに含まれる振幅値との差の二乗和が最小になる位置を算出することでカーブフィット処理を行うステップと、前記カーブフィット処理を行った後の状態における前記基準モードと実測モードのMAC値(MAC:Modal Assurance Criterion)を算出するステップと、算出したMAC値から防護柵支柱の健全度を評価するステップを含むことを特徴とする。
また、防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る際に、防護柵支柱の一部に取り付けた加振手段によって当該防護柵支柱を共振させることを特徴とする。
The method for evaluating the health level of a guard fence post according to the present invention includes obtaining a vibration mode of the model by performing a vibration mode analysis on the guard fence pillar model, and using a vibration mode of an arbitrary order as a reference among the vibration modes. The step of setting the mode, the step of obtaining the amplitude values at the plurality of positions from the sensors arranged at the plurality of positions of the guard fence post by applying vibration to the guard fence pillar to be evaluated at a predetermined position; Curve fitting by obtaining a measurement mode based on the amplitude value at the position, and calculating a position where the sum of squares of the difference between each amplitude value constituting the measurement mode and the amplitude value included in the reference mode is minimized And a MAC value (MAC: Modal Assurance Criterio) of the reference mode and the actual measurement mode in the state after the curve fitting process is performed. n), and a step of evaluating the soundness of the guard fence post from the calculated MAC value.
Further, when the amplitude values at the plurality of positions are obtained from the sensors arranged at a plurality of positions of the protective fence column, the protective fence column is resonated by the vibration means attached to a part of the protective fence column.

本発明の防護柵支柱の健全度評価装置は、防護柵支柱モデルに対して振動モード解析を行うことで当該モデルの振動モードを得る振動モード取得部と、前記振動モードのうち任意の次数の振動モードを基準モードとする基準モード選択部と、評価対象となる防護柵支柱に対して所定位置で振動を加えることで、当該防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る振幅値取得部と、前記複数位置における振幅値に基づいて実測モードを得る実測モード取得部と、前記実測モードを構成する各振幅値と前記基準モードに含まれる振幅値との差の二乗和が最小になる位置を算出することでカーブフィット処理を行うカーブフィット処理部と、前記カーブフィット処理を行った後の状態における前記基準モードと実測モードのMAC値(MAC:Modal Assurance Criterion)を算出するMAC値算出部と、算出したMAC値から防護柵支柱の健全度を評価する健全度評価部を含むことを特徴とする。
また、防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る際に、防護柵支柱の一部に取り付けた加振手段によって当該防護柵支柱を共振させることを特徴とする。
The apparatus for evaluating the health level of a guard fence support according to the present invention includes a vibration mode acquisition unit that obtains a vibration mode of the model by performing vibration mode analysis on the guard fence support model, and vibrations of an arbitrary order among the vibration modes. By applying vibration at a predetermined position to the reference mode selection unit that sets the mode as the reference mode and the guard fence support to be evaluated, the amplitude values at the multiple positions are obtained from the sensors arranged at the multiple positions of the guard fence support. An amplitude value acquisition unit to obtain, an actual measurement mode acquisition unit to obtain an actual measurement mode based on amplitude values at the plurality of positions, and a sum of squares of the difference between each amplitude value constituting the actual measurement mode and the amplitude value included in the reference mode A curve fit processing unit that performs a curve fitting process by calculating a position at which the curve is minimized, and the reference mode and actual measurement in a state after the curve fitting process is performed. MAC values over de: the MAC value calculation section (MAC Modal Assurance Criterion) calculates a, characterized in that it comprises a soundness evaluation unit for evaluating the health of the guard fence posts from the calculated MAC value.
Further, when the amplitude values at the plurality of positions are obtained from the sensors arranged at a plurality of positions of the protective fence column, the protective fence column is resonated by the vibration means attached to a part of the protective fence column.

本発明では防護柵支柱の複数位置に配置したセンサから得た当該複数位置における各振幅値、すなわち実測モードを構成している各振幅値と、基準モードに含まれる振幅値との差の二乗和が最小になる位置を算出してカーブフィット処理を行う。
上述の通り、経年変化によって支柱基部の支持条件が設計段階の支持条件と異なっていることがある。例えば設計段階では支柱基部の支点が地表面と一致しており、評価時点では支点が実質的に地表面より数十センチ程度下方に位置しているような場合がある。このような場合でもカーブフィット処理を行うことで、基準モードの節の位置(設計段階での支点の位置)まで実測モードの節の位置を補正して同定することができる。
In the present invention, the sum of squares of the difference between each amplitude value obtained from sensors arranged at a plurality of positions of the protective fence post, that is, each amplitude value constituting the actual measurement mode and the amplitude value included in the reference mode. The curve fitting process is performed by calculating the position where the minimum is.
As described above, the support conditions for the column base may differ from the support conditions at the design stage due to aging. For example, the fulcrum of the column base may coincide with the ground surface at the design stage, and the fulcrum may be located substantially several tens of centimeters below the ground surface at the time of evaluation. Even in such a case, by performing the curve fitting process, it is possible to correct and identify the position of the node in the measurement mode up to the position of the node in the reference mode (the position of the fulcrum in the design stage).

そして、基準モードと実測モードの節の位置をほぼ一致させた状態で、MAC値を用いて両モード間の相関の程度を算出し、対象となる防護柵支柱の健全度を評価する。
このように本発明は部材の支持条件が経年変化によって変化するという防護柵支柱に特有の問題をカーブフィット処理により解消し、これによって部材の支持条件の変化の影響を受けずに、評価対象である防護柵支柱単体の健全度を非破壊にて高精度で評価することを可能にするものである。
なお、防護柵支柱の一部にピエゾ素子等の加振手段を取り付けておき、防護柵支柱を共振させた状態で、防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得ることにすれば、より安定した状態で実測モードを測定することができ、健全度評価の精度をより向上できる。
Then, in a state where the positions of the nodes in the reference mode and the actual measurement mode are substantially matched, the degree of correlation between both modes is calculated using the MAC value, and the soundness level of the target protective fence post is evaluated.
As described above, the present invention solves the problem peculiar to the protective fence column that the support condition of the member changes due to secular change by the curve fitting process, so that the evaluation target is not affected by the change of the support condition of the member. This makes it possible to evaluate the soundness of a single protective fence column with high accuracy in a non-destructive manner.
In addition, a vibration means such as a piezo element is attached to a part of the protective fence post, and the amplitude values at the plurality of positions are obtained from sensors arranged at multiple positions of the protective fence post in a state where the protective fence post is resonated. By doing so, the actual measurement mode can be measured in a more stable state, and the accuracy of soundness evaluation can be further improved.

なお、本明細書において「防護柵」とは、国土交通省「防護柵の設置基準」と同様に、主として進行方向を誤った車両が路外、対向車線または歩道等に逸脱するのを防ぐとともに、車両乗員の傷害および車両の破損を最小限にとどめて、車両を正常な進行方向に復元させることを目的とし、また、歩行者および自転車(以下、「歩行者等」という。)の転落もしくはみだりな横断を抑制するなどの目的をそなえた施設をいう。また、防護柵は車両を対象とする車両用防護柵と歩行者等を対象とする歩行者自転車用柵に区分されるが、本明細書中では両者を共に「防護柵」と表記する。
また、本明細書において「健全度」とは、評価対象となる防護柵支柱についての安全性を示す指標のことをいい、この健全度が高いと損傷、劣化によって防護柵支柱が崩壊する危険性が低く、これが低いと崩壊する危険性が高いことを意味する。
In this specification, “protective fence” means that, in the same way as the Ministry of Land, Infrastructure, Transport and Tourism's “protective fence installation standard”, a vehicle with a wrong traveling direction is prevented from deviating outside the road, on the opposite lane or sidewalk. The purpose is to restore the vehicle to the normal traveling direction while minimizing the injury of the vehicle occupant and the vehicle damage, and the fall of pedestrians and bicycles (hereinafter referred to as “pedestrians”) or A facility that has the purpose of suppressing unreasonable crossings. The protective fence is divided into a vehicle protective fence intended for vehicles and a pedestrian bicycle fence intended for pedestrians and the like. In the present specification, both are referred to as “protective fences”.
In this specification, “soundness” refers to an index indicating the safety of the guard fence post to be evaluated. If this soundness is high, there is a risk that the guard fence pillar will collapse due to damage or deterioration. Means that there is a high risk of collapse.

健全度評価装置の構成を示す図The figure which shows the constitution of the soundness evaluation device 健全度評価方法の手順を示すフローチャートFlow chart showing the procedure of soundness evaluation method 防護柵支柱モデルの各次数の振動モードを示す図及びグラフ(a)〜(d)Figures and graphs (a) to (d) showing vibration modes of each order of the guard fence support model 基準モードと実測モードを示すグラフGraph showing reference mode and actual measurement mode 基準モードとカーブフィット処理後の実測モードを示すグラフGraph showing reference mode and actual measurement mode after curve fitting 実施例における各試験体のパラメータParameters of each specimen in the examples 実施例における各試験体の曲げ試験の結果Results of bending test for each specimen in the examples 実施例における各試験体のMAC値MAC value of each specimen in the example

以下、本発明の実施の形態について図面を用いて説明する。
健全度の評価対象となる防護柵支柱は実際に道路脇に設置されているものであり、その基部が上述したような方法によって土中等に埋設されることで支持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The guard fence post that is subject to soundness evaluation is actually installed on the side of the road, and is supported by the base portion being buried in the soil or the like by the method described above.

図1に示すように、防護柵支柱の健全度評価装置10はセンサ20と情報処理装置30とにより概略構成されている。
センサ20は、防護柵支柱11に振動を加えた場合における防護柵支柱11の振動による加速度、速度、変位等の振動データを検出するために設けられるものであり、本実施の形態では圧電型加速度計を使用している。
センサ20は、防護柵支柱11の基部11aに上下方向に一定間隔で複数(本実施の形態では5つ)取り付けられる。なお、予め複数のセンサ20を一定間隔で治具に取り付けておき、この治具自体を防護柵支柱11に押し当てた状態で固定するようにしてもよい。
センサ20を設置する個数は特に限定されるものではなく、また、必ず一定間隔で設置しなければならないというわけではない。センサ20の設置は通常健全度評価作業を行う保全員によって行われる。センサ20の種類としては圧電型加速度計以外にも例えば可動板が用いられたサーボ型センサ20等の公知のものを使用できる。
As shown in FIG. 1, the soundness evaluation device 10 for a guard fence post is schematically configured by a sensor 20 and an information processing device 30.
The sensor 20 is provided to detect vibration data such as acceleration, speed, displacement, etc. due to vibration of the protective fence column 11 when vibration is applied to the protective fence column 11. In this embodiment, the sensor 20 is a piezoelectric acceleration. The meter is used.
The plurality of sensors 20 (five in this embodiment) are attached to the base 11a of the protective fence support 11 at regular intervals in the vertical direction. Note that a plurality of sensors 20 may be attached to a jig at regular intervals in advance, and the jig itself may be fixed in a state of being pressed against the protective fence post 11.
The number of sensors 20 to be installed is not particularly limited, and it is not always necessary to install the sensors 20 at regular intervals. The installation of the sensor 20 is usually performed by maintenance personnel who perform soundness evaluation work. As a type of the sensor 20, other than the piezoelectric accelerometer, for example, a known sensor such as a servo sensor 20 using a movable plate can be used.

情報処理装置30は各センサ20が検出した振動データを受信し、これを解析するために設けられる。情報処理装置30と各センサ20との接続は有線でも無線でもよい。
センサ20による振動データの検出は時系列に行なわれる。検出された振動データはアナログデータであり、これを情報処理装置30に格納されているA/D変換装置よってデジタル情報に変換する。なお、A/D変換をセンサ20側で行なってもよく、また、センサ20が検出した振動データをアンプで増幅してからA/D変換することにしてもよい。
防護柵支柱11への加振方法としては、保全員が防護柵支柱11の所定位置(例えば地表面Gから40cm)をハンマーH等で叩く方法や、あるいは振り子状の錘を所定高さから円弧状に自由落下させ、その最下点で防護柵支柱の上記所定位置に衝突させる方法などが挙げられる。
The information processing device 30 is provided for receiving vibration data detected by each sensor 20 and analyzing it. Connection between the information processing apparatus 30 and each sensor 20 may be wired or wireless.
Detection of vibration data by the sensor 20 is performed in time series. The detected vibration data is analog data, which is converted into digital information by an A / D conversion device stored in the information processing device 30. A / D conversion may be performed on the sensor 20 side, or vibration data detected by the sensor 20 may be amplified by an amplifier and then A / D converted.
As a method of oscillating the protective fence post 11, a maintenance worker taps a predetermined position (for example, 40 cm from the ground surface G) of the protective fence post 11 with a hammer H or the like, or a pendulum weight is circled from a predetermined height. For example, a method of causing the free fall in an arc shape and colliding with the predetermined position of the protective fence post at the lowest point thereof may be used.

情報処理装置30は、振動モード取得部31、基準モード選択部32、振幅値取得部33、実測モード取得部34、カーブフィット処理部35、MAC値算出部36、健全度評価部37、CPU(Central Processing Unit)38、メモリ39、ディスプレイ40等のハードウェア等によって概略構成されている。情報処理装置30としては運搬可能な市販のラップトップ型コンピュータや、健全度評価専用に開発した携帯型端末を利用できる。
詳しい説明は後述するが、メモリ39内には上記各構成要素を動作させるためのプログラムの他、振動モードに関するデータ、基準モードに関するデータ、センサ20から得られた振幅値、実測モードに関するデータ、カーブフィット処理を行った後の実測モードに関するデータ、カーブフィット処理を行った後の状態の基準モードと実測モードのMAC値(評価値)、防護柵支柱11の健全度を評価する際の基準となるデータ(MAC値(指標値))等も格納される。
The information processing apparatus 30 includes a vibration mode acquisition unit 31, a reference mode selection unit 32, an amplitude value acquisition unit 33, an actual measurement mode acquisition unit 34, a curve fit processing unit 35, a MAC value calculation unit 36, a soundness evaluation unit 37, a CPU ( Central processing unit) 38, a memory 39, a display 40, and other hardware. As the information processing apparatus 30, a commercially available laptop computer that can be transported or a portable terminal developed exclusively for soundness evaluation can be used.
Although detailed description will be given later, in the memory 39, in addition to a program for operating each of the above components, data relating to vibration mode, data relating to reference mode, amplitude value obtained from sensor 20, data relating to actual measurement mode, curve Data on the actual measurement mode after the fitting process is performed, the reference mode in the state after the curve fitting process is performed, the MAC value (evaluation value) of the actual measurement mode, and the standard for evaluating the soundness of the guard fence 11 Data (MAC value (index value)) and the like are also stored.

次に図2のフローチャートを用いて本発明の健全度評価方法について説明する。
まず、作業者は健全度の評価対象となる防護柵支柱11を想定した防護柵支柱モデルを作成する(ステップS1)。防護柵支柱モデルとしては有限要素法(FEM)による解析モデルが挙げられる。ここで、解析モデルは梁要素やシェル要素(板要素)を用いてモデル化する。さらに、耐荷力まで解析する場合は、材料非線形を考慮したモデル化を行う。
次に、防護柵支柱モデルを使用して振動モード取得部31に周知の計算手法による固有振動解析を実行させ、当該モデルの固有振動数と振動モードデータを算出させる(ステップS2)。
算出された振動モードデータには1次、2次、3次・・・と複数の励起次数の振動モードが含まれており、このデータはメモリ39に格納される。
Next, the soundness evaluation method of the present invention will be described using the flowchart of FIG.
First, the worker creates a guard fence support model that assumes the guard fence pillar 11 to be evaluated for soundness (step S1). An analysis model by the finite element method (FEM) is mentioned as a guard fence support model. Here, the analysis model is modeled using beam elements or shell elements (plate elements). Furthermore, when analyzing up to the load bearing capacity, modeling considering material nonlinearity is performed.
Next, the vibration mode acquisition unit 31 is caused to perform natural vibration analysis by a well-known calculation method using the guard fence support model, and the natural frequency and vibration mode data of the model are calculated (step S2).
The calculated vibration mode data includes first, second, third,... And a plurality of excitation order vibration modes, and this data is stored in the memory 39.

次に、基準モード選択部32によってメモリ39に格納された振動モードデータを呼び出し、当該データの中から任意の次数の振動モードを「基準モード」として選択してメモリ39に記憶させておく(ステップS3)。なお、通常、基準モードは防護柵支柱モデルの支点である地表面Gの位置に節がくるような振動モード形状になる。
次に、保全員が評価対象となる防護柵支柱11の基部11aに複数のセンサ20を一定間隔で取り付け、防護柵支柱11の所定位置に振動を加えると、当該複数位置における振動データが情報処理装置30に送信される。なお、当然のことながら上記作業者と保全員は同一人物であっても異なる人物であってもよい。また、振動を加えた位置がモードの腹になることを考慮すると腐食の程度が激しいと推測される位置(例えば地表面Gから近い位置)に振動を加えるのが好ましい。
Next, the vibration mode data stored in the memory 39 is called by the reference mode selection unit 32, and a vibration mode of an arbitrary order is selected as the “reference mode” from the data and stored in the memory 39 (step S1). S3). Normally, the reference mode has a vibration mode shape in which a node comes to the position of the ground surface G that is a fulcrum of the protective fence column model.
Next, when a maintenance worker attaches a plurality of sensors 20 to the base 11a of the guard fence post 11 to be evaluated at regular intervals and applies vibration to a predetermined position of the guard fence pillar 11, vibration data at the plurality of positions is processed as information processing. Transmitted to the device 30. Of course, the worker and the maintenance staff may be the same person or different persons. Considering that the position where the vibration is applied becomes an antinode of the mode, it is preferable to apply the vibration to a position where the degree of corrosion is estimated to be severe (for example, a position close to the ground surface G).

情報処理装置30の振幅値取得部33では受信した振動データを解析し、各位置における振幅値を算出する(ステップS4)。算出したデータはメモリ39に記憶される。
次に、実測モード取得部34は、メモリ39に記憶されている各センサ20の振幅値を呼び出し、この値を縦軸(Y軸)、防護柵支柱11上の各センサ20の位置を横軸(X軸)とする実測モードを算出する(ステップS5)。具体的には、センサ20が検出した波形データとしての振動データを高速フーリエ変換によって周波数分析し、バンドパスフィルタを用いた後、フーリエ逆変換により振動次数ごとの振幅値を得る方法やERA(Eigensystem Realization Algorithm)等の周知の手法によって実測モードを算出する。算出した実測モードはメモリ39に記憶される。なお、防護柵支柱11上の各センサ20の位置を決める際の始点(原点)は例えば地表面Gや、あるいは防護柵支柱11の上端部又は下端部のいずれかにするなど適宜選択可能である。
The amplitude value acquisition unit 33 of the information processing device 30 analyzes the received vibration data and calculates an amplitude value at each position (step S4). The calculated data is stored in the memory 39.
Next, the actual measurement mode acquisition unit 34 calls the amplitude value of each sensor 20 stored in the memory 39, this value is the vertical axis (Y axis), and the position of each sensor 20 on the protective fence column 11 is the horizontal axis. The actual measurement mode (X axis) is calculated (step S5). Specifically, vibration data as waveform data detected by the sensor 20 is subjected to frequency analysis by fast Fourier transform, and after using a bandpass filter, an amplitude value for each vibration order is obtained by inverse Fourier transform, or ERA (Eigensystem The actual measurement mode is calculated by a known method such as Realization Algorithm. The calculated actual measurement mode is stored in the memory 39. The starting point (origin) for determining the position of each sensor 20 on the protective fence post 11 can be selected as appropriate, for example, the ground surface G or the upper or lower end of the protective fence post 11. .

次に、カーブフィット処理部35はメモリ39に記憶されている上記実測モードと基準モードを呼び出して最小二乗法によるカーブフィット処理を行う(ステップS6)。具体的には、カーブフィット処理部35は、実測モードを構成する各センサ20の位置での振幅値と基準モードにおける同位置での振幅値との差の二乗和が最小になる位置を算出してカーブフィット処理、つまり、実測モード全体をX軸上で伸縮および移動させて、実測モードと基準モードとの重なり度合いが最も高くなるように同定する。
カーブフィット処理を行うことで、経年変化等によって支柱基部11aの支持条件が設計段階の支持条件と異なっている場合でも、基準モードの節の位置(設計段階での支点の位置)まで実測モードの節の位置を補正して同定することができる。
Next, the curve fit processing unit 35 calls up the actual measurement mode and the reference mode stored in the memory 39, and performs the curve fit processing by the least square method (step S6). Specifically, the curve fit processing unit 35 calculates the position where the sum of squares of the difference between the amplitude value at the position of each sensor 20 constituting the actual measurement mode and the amplitude value at the same position in the reference mode is minimized. Then, the curve fitting process, that is, the entire measurement mode is expanded and contracted and moved on the X-axis, and the measurement mode and the reference mode are identified so as to have the highest degree of overlap.
By performing the curve fitting process, even when the support condition of the support base 11a is different from the support condition at the design stage due to secular change or the like, the measurement mode is maintained up to the position of the reference mode node (the position of the fulcrum at the design stage). The position of the node can be corrected and identified.

次に、MAC値算出部36はカーブフィット処理を行った後の状態における基準モードと実測モードを用いてMAC値を算出する(ステップS7)。
MAC値とは2つのモードシェイプがどの程度一致しているかを定量的に示す値をいい、次式により求められる。

Figure 2015036661
数1中、添え字Tは転置を示す。{fA}、{fB}はそれぞれモードシェイプベクトルを表しており、第A次モードと第B次モードを比較する場合、第A次モードのモードシェイプベクトル{fA}、第B次モードのモードシェイプベクトル{fB}が式に代入される。MAC値は0〜1の値をとり、1に近いほど2つのモードシェイプの相関が高く、0に近いほど相関が低いことを表す。相関を定量的に示すことで2つのモードの相関が高いか否かを定量的に求めることができる。算出されたMAC値(評価値)はメモリ39に記憶される。 Next, the MAC value calculation unit 36 calculates a MAC value using the reference mode and the actual measurement mode in the state after performing the curve fitting process (step S7).
The MAC value is a value that quantitatively indicates how much the two mode shapes match, and is obtained by the following equation.
Figure 2015036661
In Equation 1, the subscript T indicates transposition. {f A } and {f B } represent mode shape vectors, respectively, and when comparing the Ath order mode and the Bth order mode, the mode shape vector {f A } and the Bth order mode of the Ath order mode Mode shape vector {f B } is substituted into the equation. The MAC value ranges from 0 to 1, and the closer to 1, the higher the correlation between the two mode shapes, and the closer to 0, the lower the correlation. By quantitatively indicating the correlation, it can be quantitatively determined whether the correlation between the two modes is high. The calculated MAC value (evaluation value) is stored in the memory 39.

次に、健全度評価部37はメモリ39に記憶されているMAC値(評価値)を呼び出すと共に、作業員が予め設定してメモリ39に記憶させていたMAC値(指標値)も呼び出し、両値を比較して健全度を評価する(ステップS8)。具体的には、MAC値(指標値)が例えば0.995と設定されている場合に、MAC値(評価値)≧MAC値(指標値)の関係が成立すれば健全と評価し、MAC値(評価値)<MAC値(指標値)の関係が成立すれば不健全(損傷)、つまり要交換等と評価する。評価結果はディスプレイ40に表示されると共にメモリ39に記憶される。   Next, the soundness evaluation unit 37 calls the MAC value (evaluation value) stored in the memory 39, and also calls the MAC value (index value) that is set in advance by the worker and stored in the memory 39. The soundness is evaluated by comparing the values (step S8). Specifically, when the MAC value (index value) is set to 0.995, for example, if a relationship of MAC value (evaluation value) ≧ MAC value (index value) is established, it is evaluated as healthy, and the MAC value (evaluation) Value) <MAC value (index value), it is evaluated as unhealthy (damaged), that is, replacement is required. The evaluation result is displayed on the display 40 and stored in the memory 39.

次に、本発明の実施例について説明する。
図3(a)〜(d)は防護柵支柱モデルに対して振動モード解析を行うことで得た各次数の振動モードであり、縦軸(Y軸)は振幅値(モード振幅)、横軸(X軸)は地表面からの距離を防護柵支柱モデルの長さで割って無次元化した値を示している。
評価対象とした振動モード(支柱高700mmの場合)は(a)8次振動(2次系,パターン1)、(b)13次振動(2次系,パターン2)、(c)15次振動(3次系,パターン1)、(d)17次振動(3次系,パターン2)である。
防護柵支柱モデルは全長1,100mm、直径139.8mm、肉厚4.5mmの実物支柱(STK400、引張強さ472-476N/mm2)を下端から400mmの位置で固定支持してモデル化したものである。
本実施例ではこれら各次数の振動モードのうち、図3に示した2次モード形状(パターン2)を基準モードとして選択した。その理由としては、基部に近い部分が腹になっている振動モードであり、加振により励起しやすい振動モード(2000Hz付近)だからである。
Next, examples of the present invention will be described.
3A to 3D are vibration modes of respective orders obtained by performing vibration mode analysis on the guard fence support model, and the vertical axis (Y axis) is the amplitude value (mode amplitude), and the horizontal axis. (X-axis) shows a dimensionless value obtained by dividing the distance from the ground surface by the length of the protective fence support model.
The vibration modes to be evaluated (when the column height is 700 mm) are (a) 8th vibration (secondary system, pattern 1), (b) 13th vibration (secondary system, pattern 2), and (c) 15th vibration. (3rd order system, pattern 1), (d) 17th order vibration (3rd order system, pattern 2).
The guard fence prop model is a model with a real support (STK400, tensile strength 472-476N / mm 2 ) with a total length of 1,100mm, a diameter of 139.8mm, and a thickness of 4.5mm, fixed and supported at a position 400mm from the lower end. .
In the present embodiment, the secondary mode shape (pattern 2) shown in FIG. 3 is selected as the reference mode among the vibration modes of the respective orders. The reason for this is that the vibration mode has a belly portion near the base, and is a vibration mode (around 2000 Hz) that is easily excited by excitation.

そして、評価対象となる防護柵支柱に対して7個のセンサを地表面高さから50mmずつそれぞれ配置した。
図4は各センサから得た振幅値に基づいて得た実測モードであり、上記基準モードと比較するとX軸方向にシフトしていることが分かる。
図5は実測モードに対してカーブフィット処理を行った状態を示しており、実測モードと基準モードの重なり度合いが高くなったことが分かる。
カーブフィット処理を行った後の状態における基準モードと実測モードのMAC値(評価値)は0.996となった。
Then, seven sensors were arranged 50 mm each from the height of the ground surface with respect to the protective fence column to be evaluated.
FIG. 4 shows an actual measurement mode obtained based on the amplitude value obtained from each sensor, and it can be seen that it is shifted in the X-axis direction as compared with the reference mode.
FIG. 5 shows a state in which the curve fitting process is performed on the actual measurement mode, and it can be seen that the degree of overlap between the actual measurement mode and the reference mode is increased.
The MAC value (evaluation value) in the reference mode and the actual measurement mode after the curve fitting process was 0.996.

ここで、図6は11種類の試験体のパラメータを示しており、図7は各試験体に対して行なった曲げ試験(非線形解析)の結果を示している。図中、例えば「case_036_00_10」と記載されている試験体は、試験体の基部のうち地表面から露出している箇所をその中心点から36度の角度範囲で幅10mmを切り欠いた(円弧状の開口を設けた)ことを表しており、これは試験体の一部が腐食により穴が空いた状態を模擬している。また、例えば「case_360_25_10」と記載されている試験体は、その外周全体(360°)を厚み2.5mm、幅10mmの寸法で切除したことを表しており、これは試験体の全周において穴が空くことなく腐食した状態(肉厚が薄くなった状態)を模擬している。
図7より、試験体の先端(自由端)から100mmの位置に荷重を載荷する曲げ試験において、国土交通省「防護柵の設置基準」で定める60kNまで耐えられたのは健全状態の試験体を含む全5体であることが分かる。
Here, FIG. 6 shows the parameters of 11 types of test specimens, and FIG. 7 shows the results of a bending test (nonlinear analysis) performed on each specimen. In the figure, for example, a test body described as “case_036_00_10” is a portion of the base of the test body that is exposed from the ground surface with a 10 mm width cut out at an angle range of 36 degrees from the center point (arc-shaped). This is a simulation of a state in which a part of the specimen is punctured due to corrosion. For example, the specimen described as “case_360_25_10” indicates that the entire outer circumference (360 °) was cut out with a thickness of 2.5 mm and a width of 10 mm. Simulates the state of corrosion without becoming empty (thickness is reduced).
From Fig. 7, in a bending test in which a load is loaded at a position of 100 mm from the tip (free end) of the test specimen, the test specimen in a healthy state was able to withstand 60 kN as defined by the Ministry of Land, Infrastructure, Transport and Tourism "protection fence installation standards". It turns out that it is all 5 including.

図8は同じスペックの11種類の試験体のMAC値を示しており、これを上記曲げ試験の結果と照らし合わせると、評価対象である防護柵支柱のMAC値が解析上0.995以上であれば60kNの荷重に耐えられるとの推定が成り立つ。したがって、本実施例ではMAC値(指標値)=0.995と決定した。
以上より、上記[MAC値(評価値):0.996≧[MAC値(指標値):0.995]が成立するので、評価対象の防護柵支柱は充分な健全度を有していると評価することができる。
なお、当然のことながらMAC値(指標値)は上記手法以外の方法で決定しても良い。また、本実施例ではMAC値(指標値)=0.995としたが、この値はあくまで解析上得られたものにすぎず、本発明に係る方法及び装置を実際に使用する際には異なる値を採用してもよい。
FIG. 8 shows the MAC values of 11 types of specimens with the same specifications. When this is compared with the results of the above bending test, 60 kN if the MAC value of the guard fence post to be evaluated is 0.995 or more in the analysis. It is estimated that it can withstand this load. Therefore, in this embodiment, the MAC value (index value) is determined to be 0.995.
From the above, since [MAC value (evaluation value): 0.996 ≧ [MAC value (index value): 0.995] is established, it is possible to evaluate that the protection fence post subject to evaluation has sufficient soundness. it can.
As a matter of course, the MAC value (index value) may be determined by a method other than the above method. In this embodiment, the MAC value (index value) is set to 0.995. However, this value is merely obtained by analysis, and a different value is used when the method and apparatus according to the present invention are actually used. It may be adopted.

本発明は、設置から長期間が経過して支柱基部の支持条件が設計段階とは変化した場合であっても健全度を非破壊にて正確に評価できる防護柵支柱の健全度評価方法及び健全度評価装置に関するものであり、産業上の利用可能性を有する。   The present invention relates to a method for evaluating the health level of a protective fence post and a soundness that can accurately evaluate the soundness in a non-destructive manner even when the support condition of the support base changes from the design stage after a long period of time has elapsed since installation. It relates to a degree evaluation device and has industrial applicability.

10 健全度評価装置
11 防護柵支柱
11a 基部
20 センサ
30 情報処理装置
31 振動モード取得部
32 基準モード選択部
33 振幅値取得部
34 実測モード取得部
35 カーブフィット処理部
36 MAC値算出部
37 健全度評価部
38 CPU
39 メモリ
40 ディスプレイ
DESCRIPTION OF SYMBOLS 10 Soundness evaluation apparatus 11 Guard fence support | pillar 11a Base 20 Sensor 30 Information processing apparatus 31 Vibration mode acquisition part 32 Reference mode selection part 33 Amplitude value acquisition part 34 Actual measurement mode acquisition part 35 Curve fitting process part 36 MAC value calculation part 37 Soundness Evaluation unit 38 CPU
39 Memory 40 Display

Claims (4)

防護柵支柱モデルに対して振動モード解析を行うことで当該モデルの振動モードを得るステップと、
前記振動モードのうち任意の次数の振動モードを基準モードとするステップと、
評価対象となる防護柵支柱に対して所定位置で振動を加えることで、当該防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得るステップと、
前記複数位置における振幅値に基づいて実測モードを得るステップと、
前記実測モードを構成する各振幅値と前記基準モードに含まれる振幅値との差の二乗和が最小になる位置を算出することでカーブフィット処理を行うステップと、
前記カーブフィット処理を行った後の状態における前記基準モードと実測モードのMAC値(MAC:Modal Assurance Criterion)を算出するステップと、
算出したMAC値から防護柵支柱の健全度を評価するステップを含むことを特徴とする防護柵支柱の健全度評価方法。
Obtaining a vibration mode of the model by performing a vibration mode analysis on the guard fence support model;
A step of setting a vibration mode of an arbitrary order among the vibration modes as a reference mode;
Obtaining amplitude values at the plurality of positions from sensors arranged at a plurality of positions of the protection fence column by applying vibration at a predetermined position to the protection fence column to be evaluated;
Obtaining an actual measurement mode based on amplitude values at the plurality of positions;
Performing curve fitting processing by calculating a position where the sum of squares of the difference between each amplitude value constituting the actual measurement mode and the amplitude value included in the reference mode is minimized;
Calculating a MAC value (MAC: Modal Assurance Criterion) of the reference mode and the actual measurement mode in a state after performing the curve fitting process;
A method for evaluating the degree of health of a guard fence post, comprising the step of evaluating the degree of health of the guard fence post from the calculated MAC value.
防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る際に、防護柵支柱の一部に取り付けた加振手段によって当該防護柵支柱を共振させることを特徴とする請求項1記載の健全度評価方法。   2. When the amplitude values at the plurality of positions are obtained from sensors arranged at a plurality of positions on the guard fence post, the guard fence pillar is resonated by a vibration means attached to a part of the guard fence pillar. The soundness evaluation method described. 防護柵支柱モデルに対して振動モード解析を行うことで当該モデルの振動モードを得る振動モード取得部と、
前記振動モードのうち任意の次数の振動モードを基準モードとする基準モード選択部と、
評価対象となる防護柵支柱に対して所定位置で振動を加えることで、当該防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る振幅値取得部と、
前記複数位置における振幅値に基づいて実測モードを得る実測モード取得部と、
前記実測モードを構成する各振幅値と前記基準モードに含まれる振幅値との差の二乗和が最小になる位置を算出することでカーブフィット処理を行うカーブフィット処理部と、
前記カーブフィット処理を行った後の状態における前記基準モードと実測モードのMAC値(MAC:Modal Assurance Criterion)を算出するMAC値算出部と、
算出したMAC値から防護柵支柱の健全度を評価する健全度評価部を含むことを特徴とする防護柵支柱の健全度評価装置。
A vibration mode acquisition unit that obtains a vibration mode of the model by performing vibration mode analysis on the guard fence support model,
A reference mode selection unit having a vibration mode of any order among the vibration modes as a reference mode;
An amplitude value acquisition unit that obtains amplitude values at the plurality of positions from sensors arranged at a plurality of positions of the protection fence column by applying vibration at a predetermined position to the protection fence column to be evaluated;
An actual measurement mode obtaining unit for obtaining an actual measurement mode based on amplitude values at the plurality of positions;
A curve fit processing unit that performs a curve fit process by calculating a position at which the sum of squares of the difference between each amplitude value constituting the actual measurement mode and the amplitude value included in the reference mode is minimized;
A MAC value calculation unit for calculating a MAC value (MAC: Modal Assurance Criterion) of the reference mode and the actual measurement mode in a state after performing the curve fitting process;
A device for evaluating the degree of health of a protective fence post, comprising a degree of health evaluation unit for evaluating the degree of health of the protective fence post from the calculated MAC value.
防護柵支柱の複数位置に配置したセンサから当該複数位置における振幅値を得る際に、防護柵支柱の一部に取り付けた加振手段によって当該防護柵支柱を共振させることを特徴とする請求項3記載の健全度評価装置。

4. When the amplitude values at the plurality of positions are obtained from sensors arranged at a plurality of positions on the guard fence post, the guard fence pillar is resonated by vibration means attached to a part of the guard fence pillar. The soundness evaluation device described.

JP2013168800A 2013-08-15 2013-08-15 Protective fence support soundness evaluation method and soundness evaluation device Expired - Fee Related JP6205091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013168800A JP6205091B2 (en) 2013-08-15 2013-08-15 Protective fence support soundness evaluation method and soundness evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013168800A JP6205091B2 (en) 2013-08-15 2013-08-15 Protective fence support soundness evaluation method and soundness evaluation device

Publications (2)

Publication Number Publication Date
JP2015036661A true JP2015036661A (en) 2015-02-23
JP6205091B2 JP6205091B2 (en) 2017-09-27

Family

ID=52687213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013168800A Expired - Fee Related JP6205091B2 (en) 2013-08-15 2013-08-15 Protective fence support soundness evaluation method and soundness evaluation device

Country Status (1)

Country Link
JP (1) JP6205091B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058478A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Vibration determination device, vibration determination method, and program
WO2019098226A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Damage diagnosing device, damage diagnosing method, and recording medium having damage diagnosing program stored thereon
CN110219503A (en) * 2019-07-01 2019-09-10 江苏固耐特围栏***股份有限公司 A kind of anti-stress damage structure of upright column of fence and upright fence post and fence system
CN111401678A (en) * 2020-01-19 2020-07-10 北京华路安交通科技有限公司 Vehicle model verification system and method for guardrail safety performance evaluation
CN113125133A (en) * 2021-03-26 2021-07-16 天津华铁科为科技有限公司 System and method for monitoring state of railway bridge and culvert height limiting protection frame
CN114659765A (en) * 2022-02-28 2022-06-24 东风柳州汽车有限公司 Method, equipment, storage medium and device for testing constrained mode of gearbox shell
KR102464879B1 (en) * 2021-12-17 2022-11-09 주식회사 세종지오텍 A system and method for integrity evaluation of concrete sleepers using modal testing technique
JP7193672B1 (en) 2022-06-21 2022-12-20 中日本ハイウェイ・エンジニアリング東京株式会社 Sound barrier inspection system
CN118065445A (en) * 2024-04-17 2024-05-24 深圳大学 Pile foundation integrity detection method and device, readable storage medium and terminal equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879430B2 (en) * 2018-03-23 2021-06-02 日本電気株式会社 Abnormality diagnosis device, abnormality diagnosis method, and program
US11307175B2 (en) 2018-06-05 2022-04-19 Nec Corporation Diagnosis apparatus, diagnosis method, and computer-readable recording medium
WO2020044565A1 (en) * 2018-08-31 2020-03-05 日本電気株式会社 Diagnostic device, diagnostic method, and computer-readable recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327358A (en) * 1991-08-07 1994-07-05 The Texas A&M University System Apparatus and method for damage detection
US6779404B1 (en) * 1999-11-03 2004-08-24 Rune Brincker Method for vibration analysis
JP2008268116A (en) * 2007-04-24 2008-11-06 Tsutsui Denshi:Kk Buried object soundness assorting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327358A (en) * 1991-08-07 1994-07-05 The Texas A&M University System Apparatus and method for damage detection
US6779404B1 (en) * 1999-11-03 2004-08-24 Rune Brincker Method for vibration analysis
JP2008268116A (en) * 2007-04-24 2008-11-06 Tsutsui Denshi:Kk Buried object soundness assorting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. T. PETERSON ET AL.: "Application of Dynamic System Identification to Timber Beams. I", JOURNAL OF STRUCTURAL ENGINEERING, vol. 127, no. 4, JPN6017031935, April 2001 (2001-04-01), pages 418 - 425, XP009147996, ISSN: 0003625711, DOI: 10.1061/(ASCE)0733-9445(2001)127:4(418) *
SHERIF BESKHYROUN ET AL.: "Assesment of vibration-based damage indentification techniques using localized excitation source", JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, vol. 3, no. 3, JPN6017031933, 9 April 2013 (2013-04-09), pages 207 - 223, ISSN: 0003625710 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058478A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Vibration determination device, vibration determination method, and program
JPWO2019058478A1 (en) * 2017-09-21 2020-10-15 日本電気株式会社 Vibration judgment device, vibration judgment method and program
WO2019098226A1 (en) * 2017-11-16 2019-05-23 日本電気株式会社 Damage diagnosing device, damage diagnosing method, and recording medium having damage diagnosing program stored thereon
CN110219503A (en) * 2019-07-01 2019-09-10 江苏固耐特围栏***股份有限公司 A kind of anti-stress damage structure of upright column of fence and upright fence post and fence system
CN111401678A (en) * 2020-01-19 2020-07-10 北京华路安交通科技有限公司 Vehicle model verification system and method for guardrail safety performance evaluation
CN111401678B (en) * 2020-01-19 2024-03-05 北京华路安交通科技有限公司 Vehicle model verification system and method for guardrail safety performance evaluation
CN113125133A (en) * 2021-03-26 2021-07-16 天津华铁科为科技有限公司 System and method for monitoring state of railway bridge and culvert height limiting protection frame
KR102464879B1 (en) * 2021-12-17 2022-11-09 주식회사 세종지오텍 A system and method for integrity evaluation of concrete sleepers using modal testing technique
CN114659765A (en) * 2022-02-28 2022-06-24 东风柳州汽车有限公司 Method, equipment, storage medium and device for testing constrained mode of gearbox shell
JP7193672B1 (en) 2022-06-21 2022-12-20 中日本ハイウェイ・エンジニアリング東京株式会社 Sound barrier inspection system
JP2024000745A (en) * 2022-06-21 2024-01-09 中日本ハイウェイ・エンジニアリング東京株式会社 Sound insulation wall inspection system
CN118065445A (en) * 2024-04-17 2024-05-24 深圳大学 Pile foundation integrity detection method and device, readable storage medium and terminal equipment

Also Published As

Publication number Publication date
JP6205091B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6205091B2 (en) Protective fence support soundness evaluation method and soundness evaluation device
Chen et al. Operational modal analysis of an eleven-span concrete bridge subjected to weak ambient excitations
Gentile et al. Operational modal testing of historic structures at different levels of excitation
Hanif et al. Damage assessment of reinforced concrete structures using a model-based nonlinear approach–A comprehensive review
Rahmatalla et al. Finite element modal analysis and vibration-waveforms in health inspection of old bridges
JP6845434B2 (en) Condition inspection method, equipment and program for columnar structures
Altunisik et al. Non-destructive modal parameter identification of historical timber bridges using ambient vibration tests after restoration
Soyoz et al. Instantaneous damage detection of bridge structures and experimental verification
Gentile et al. Condition assessment and dynamic system identification of a historic suspension footbridge
Beskopylny et al. Complex method of defects diagnostics in underground structures
Zenunovic et al. Identification of modal parameters of bridges using ambient vibration measurements
Calvert et al. Bridge structural health monitoring system using fiber grating sensors: development and preparation for a permanent installation
Sokol et al. System identification of a composite beam
JP5120818B2 (en) RC member damage level evaluation method and system
Miskiewicz et al. Load tests of the movable footbridge over the port canal in Ustka
Barton et al. Structural finite element model updating using vibration tests and modal analysis for NPL Footbridge–SHM demonstrator
Benndorf et al. Mobile bridge integrity assessment
Manolis et al. Identification of pedestrian bridge dynamic response through field measurements and numerical modeling: Case studies
Quintana et al. Damage detection on a cable stayed bridge using wave propagation analysis
Beutelhauser et al. Case study-System identification of an old reinforced concrete bridge
RU2392403C1 (en) Method for detection of changes in deflected mode of building or structure components
Kortiš et al. Operational modal analysis of the cablestayed footbridge
Gamache et al. Non-intrusive digital optical means to develop bridge performance information
Gaute-Alonso et al. Structural safety assessment criteria for dismantling operations of unique structures. San Mames Roof Arch Experience
Panting et al. Verification of structural performance of a main tower inclined suspension bridge by simple monitoring and FE analysis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170902

R150 Certificate of patent or registration of utility model

Ref document number: 6205091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees