JP5120818B2 - RC member damage level evaluation method and system - Google Patents

RC member damage level evaluation method and system Download PDF

Info

Publication number
JP5120818B2
JP5120818B2 JP2008326360A JP2008326360A JP5120818B2 JP 5120818 B2 JP5120818 B2 JP 5120818B2 JP 2008326360 A JP2008326360 A JP 2008326360A JP 2008326360 A JP2008326360 A JP 2008326360A JP 5120818 B2 JP5120818 B2 JP 5120818B2
Authority
JP
Japan
Prior art keywords
measurement object
ground motion
correction coefficient
damage level
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008326360A
Other languages
Japanese (ja)
Other versions
JP2010144487A (en
Inventor
正道 曽我部
幸裕 谷村
達也 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2008326360A priority Critical patent/JP5120818B2/en
Publication of JP2010144487A publication Critical patent/JP2010144487A/en
Application granted granted Critical
Publication of JP5120818B2 publication Critical patent/JP5120818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、主として鉄道用RCラーメン高架橋に適用されるRC部材の損傷レベル評価方法及びシステムに関する。   The present invention relates to a damage level evaluation method and system for RC members mainly applied to RC ramen viaducts for railways.

鉄道用高架橋の下部構造は、鉄筋コンクリートのラーメン架構として構築されることが多いが、その設計施工の際には、高架橋の耐震性を十分検討する必要があるとともに、被災後に地震被害調査を適切に行い、その調査結果を設計施工にフィードバックしていくこともまた重要となる。   Railroad viaduct substructures are often constructed as reinforced concrete ramen frames, but when designing and constructing them, it is necessary to fully study the seismic resistance of the viaduct and to conduct an appropriate earthquake damage survey after the disaster. It is also important to conduct the survey and feed back the survey results to the design and construction.

一方、昨今のラーメン架構を構成する柱は、大地震による被害経験から鋼板巻立てによる耐震補強が施されている場合が多く、それゆえ、目視による地震被害調査を的確に行うことが困難になっている。   On the other hand, the pillars that make up today's ramen frames are often reinforced with earthquake resistance by rolling up steel sheets based on the experience of damage caused by large earthquakes, so it is difficult to conduct an accurate survey of seismic damage by visual inspection. ing.

かかる状況下、柱端部に生じる最大応答部材角と損傷レベルとの関係が概ね把握されていることを利用し、最大応答部材角をセンサーで測定することによって柱の損傷レベルを迅速に評価することが可能な損傷レベル検知システムが開発されている。   Under such circumstances, utilizing the fact that the relationship between the maximum response member angle generated at the column end and the damage level is generally grasped, the damage level of the column is quickly evaluated by measuring the maximum response member angle with a sensor. Possible damage level detection systems have been developed.

「鉄道RCラーメン高架橋柱の損傷レベル検知システムの開発」(コンクリート工学年次論文集、Vol.29, No.2, 2007)“Development of damage level detection system for RC RC ramen viaduct” (Annual Proceedings of Concrete Engineering, Vol.29, No.2, 2007)

上記システムによれば、ラーメン架構の柱にセンサーを設置して該柱の最大応答部材角を計測することにより、柱の損傷レベルを評価することが可能であり、柱の目視が不要であるため、鋼板巻立てによる耐震補強が施されている柱であっても、柱の損傷を適切に把握することが可能となる。   According to the above system, it is possible to evaluate the damage level of the column by installing a sensor on the column of the rigid frame and measuring the maximum response member angle of the column. Even in the case of a column that has been subjected to earthquake-proof reinforcement by rolling up a steel plate, it becomes possible to properly grasp the column damage.

ここで、鉄道用の高架橋は、複数のラーメン高架橋を所定の間隔をおきながら列状に立設するとともにそれらの間に調整桁を架け渡してなるものが多く、各ラーメン高架橋は、構築される場所の交通状況や地盤性状に応じて長さや幅あるいは高さといった構造物形状や支持基盤の深さがそれぞれ異なり、各ラーメン高架橋は、場所によって異なる地震時挙動を呈する。   Here, there are many railway viaducts, in which a plurality of ramen viaducts are erected in a row with predetermined intervals, and adjustment girders are bridged between them, and each ramen viaduct is constructed. The structure shape such as length, width, or height and the depth of the support base are different depending on the traffic conditions and ground properties of each place, and each ramen viaduct exhibits different behavior during earthquakes depending on the place.

そのため、上記システムにおいては、ラーメン高架橋ごとにセンサーを設置しなければならないが、ラーメン高架橋ごとにセンサーを設置するシステム構成では、全体コストが膨大となり、システムの設置範囲はおのずと制約を受けてしまう。   Therefore, in the above system, a sensor must be installed for each ramen viaduct. However, in a system configuration in which a sensor is installed for each ramen viaduct, the overall cost becomes enormous and the installation range of the system is naturally restricted.

本発明は、上述した事情を考慮してなされたもので、柱の目視を行う必要がなくかつ合理的なコストで損傷レベルを評価することが可能なRC部材の損傷レベル評価方法及びシステムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and provides a damage level evaluation method and system for an RC member that can evaluate damage levels at a reasonable cost without the need to visually check a column. The purpose is to do.

上記目的を達成するため、本発明に係るRC部材の損傷レベル評価方法は請求項1に記載したように、橋軸方向に沿って列状に配置された複数の橋梁構造物からなる構造物群のうち、一部の橋梁構造物を計測対象物とし、該計測対象物に生じた最大応答部材角を計測するとともに、該最大応答部材角を、水平変位に変換して観測水平変位とし、   In order to achieve the above object, a damage level evaluation method for RC members according to the present invention is a structure group comprising a plurality of bridge structures arranged in a line along the bridge axis direction as described in claim 1. Among them, a part of the bridge structure is a measurement object, and the maximum response member angle generated in the measurement object is measured, and the maximum response member angle is converted into a horizontal displacement to be an observed horizontal displacement,

観測地震動に乗ずる倍率をパラメータとした前記計測対象物の動的非線形解析を行うことにより、動的水平応答変位が前記観測水平変位にほぼ一致する倍率を前記計測対象物ごとに求め、   By performing a dynamic nonlinear analysis of the measurement object with the magnification multiplied by the observed earthquake motion as a parameter, a magnification at which the dynamic horizontal response displacement substantially matches the observed horizontal displacement is determined for each measurement object,

該計測対象物ごとに算出された倍率から前記観測地震動に乗じる入力地震動補正係数を評価し、   Evaluating the input ground motion correction coefficient to multiply the observed ground motion from the magnification calculated for each measurement object,

前記橋梁構造物のうち、前記計測対象物を除いた残りの橋梁構造物を非計測対象物とするとともに、前記観測地震動に前記入力地震動補正係数を乗じることで修正地震動を作成し、   Among the bridge structures, the remaining bridge structure excluding the measurement object is a non-measurement object, and a corrected earthquake motion is created by multiplying the observed earthquake motion by the input earthquake motion correction coefficient,

該修正地震動に対して前記非計測対象物の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出し、   A dynamic horizontal response displacement with respect to the corrected ground motion is calculated by performing a dynamic nonlinear analysis of the non-measurement object with respect to the corrected ground motion,

静的非線形解析から得られた前記非計測対象物ごとの水平変位と損傷レベルとの関係に前記動的水平応答変位を適用することによって、該非計測対象物の損傷レベルを評価するものである。   The damage level of the non-measurement object is evaluated by applying the dynamic horizontal response displacement to the relationship between the horizontal displacement and the damage level for each non-measurement object obtained from static nonlinear analysis.

また、本発明に係るRC部材の損傷レベル評価方法は、前記計測対象物ごとに算出された倍率の平均値又は最大値を前記入力地震動補正係数としたものである。   Moreover, the damage level evaluation method for RC members according to the present invention uses the average value or the maximum value of the magnification calculated for each measurement object as the input seismic motion correction coefficient.

また、本発明に係るRC部材の損傷レベル評価方法は、前記計測対象物ごとに算出された倍率を該各計測対象物の固有周期と関連付けることによって前記入力地震動補正係数を固有周期の関数として評価し、該入力地震動補正係数に前記非計測対象物の固有周期を適用することによって該非計測対象物ごとの入力地震動補正係数を求めるとともに、求められた入力地震動補正係数を観測地震動に乗ずることで非計測対象物ごとの修正地震動を作成するものである。   The RC member damage level evaluation method according to the present invention evaluates the input ground motion correction coefficient as a function of the natural period by associating the magnification calculated for each measurement object with the natural period of each measurement object. And applying the natural period of the non-measurement object to the input seismic motion correction coefficient to obtain an input seismic motion correction coefficient for each non-measurement object, and multiplying the observed seismic motion by the obtained input seismic motion correction coefficient. A modified earthquake motion is created for each measurement object.

また、本発明に係るRC部材の損傷レベル評価システムは請求項4に記載したように、橋軸方向に沿って列状に配置された複数の橋梁構造物からなる構造物群のうち、一部の橋梁構造物にそれぞれ設置され、該一部の橋梁構造物を計測対象物として最大応答部材角を計測する計測手段と、   In addition, the RC member damage level evaluation system according to the present invention is, as described in claim 4, a part of a structure group including a plurality of bridge structures arranged in a row along the bridge axis direction. Measuring means for measuring the maximum response member angle with each part of the bridge structure as a measurement object,

前記橋梁構造物のうち、前記計測対象物を除いた残りの橋梁構造物を非計測対象物とし、該非計測対象物の損傷レベルを前記最大応答部材角を用いて評価する演算処理部とを備え、   The remaining bridge structure excluding the measurement object among the bridge structures is set as a non-measurement object, and includes an arithmetic processing unit that evaluates the damage level of the non-measurement object using the maximum response member angle. ,

該演算処理部は、前記最大応答部材角を水平変位に変換して観測水平変位とし、観測地震動に乗ずる倍率をパラメータとした前記計測対象物の動的非線形解析を行うことにより、動的水平応答変位が前記観測水平変位にほぼ一致する倍率を前記計測対象物ごとに求め、該計測対象物ごとに算出された倍率から前記観測地震動に乗じる入力地震動補正係数を評価し、前記観測地震動に前記入力地震動補正係数を乗じることで修正地震動を作成し、該修正地震動に対して前記非計測対象物の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出し、静的非線形解析から得られた前記非計測対象物ごとの水平変位と損傷レベルとの関係に前記動的水平応答変位を適用することによって前記非計測対象物の損傷レベルを評価するものである。   The arithmetic processing unit converts the maximum response member angle into a horizontal displacement to obtain an observed horizontal displacement, and performs a dynamic non-linear analysis of the measurement object using a magnification multiplied by the observed earthquake motion as a parameter, thereby obtaining a dynamic horizontal response. A magnification at which a displacement substantially coincides with the observed horizontal displacement is obtained for each measurement object, an input ground motion correction coefficient to be multiplied by the observed ground motion is evaluated from the magnification calculated for each measurement object, and the input to the observed ground motion A modified ground motion is created by multiplying the ground motion correction coefficient, and a dynamic horizontal response displacement is calculated for the modified ground motion by performing a dynamic nonlinear analysis of the non-measurement object with respect to the modified ground motion. The damage level of the non-measurement object is evaluated by applying the dynamic horizontal response displacement to the relationship between the horizontal displacement and the damage level for each non-measurement object obtained from Than is.

また、本発明に係るRC部材の損傷レベル評価システムは、前記計測対象物ごとに算出された倍率の平均値又は最大値を前記入力地震動補正係数としたものである。   Moreover, the damage level evaluation system for RC members according to the present invention uses the average value or maximum value of the magnification calculated for each measurement object as the input seismic motion correction coefficient.

また、本発明に係るRC部材の損傷レベル評価システムは、前記計測対象物ごとに算出された倍率を該各計測対象物の固有周期と関連付けることによって前記入力地震動補正係数を固有周期の関数として評価し、該入力地震動補正係数に前記非計測対象物の固有周期を適用することによって該非計測対象物ごとの入力地震動補正係数を求めるとともに、求められた入力地震動補正係数を観測地震動に乗ずることで非計測対象物ごとの修正地震動を作成するものである。   The RC member damage level evaluation system according to the present invention evaluates the input ground motion correction coefficient as a function of the natural period by associating the magnification calculated for each measurement object with the natural period of each measurement object. And applying the natural period of the non-measurement object to the input seismic motion correction coefficient to obtain an input seismic motion correction coefficient for each non-measurement object, and multiplying the observed seismic motion by the obtained input seismic motion correction coefficient. A modified earthquake motion is created for each measurement object.

本発明に係るRC部材の損傷レベル評価方法及びシステムにおいては、従来のように各橋梁構造物の最大応答部材角をすべて計測し、あるいは最大応答部材角を計測する計測手段をすべての橋梁構造物に設置するのではなく、各橋梁構造物からなる構造物群を計測対象物と非計測対象物とに分け、その上で計測対象物の最大応答部材角だけを計測し、あるいは最大応答部材角を計測するための計測手段を計測対象物だけに設置する。   In the damage level evaluation method and system for RC members according to the present invention, all the maximum response member angles of each bridge structure are measured as in the past, or the measuring means for measuring the maximum response member angle is used for all bridge structures. Rather than installing the system, the structure group consisting of each bridge structure is divided into measurement objects and non-measurement objects, and then only the maximum response member angle of the measurement object is measured, or the maximum response member angle A measuring means for measuring is installed only on the measurement object.

このようにすれば、計測に係るコストダウンを図ることが可能となるが、その一方、計測を行わない橋梁構造物の損傷レベルをいかにして評価するかが課題となる。   In this way, it is possible to reduce the cost related to measurement, but on the other hand, how to evaluate the damage level of a bridge structure that is not measured becomes a problem.

本出願人は、非線形の振動モデルを作成するとともに該振動モデルに所定の地震動を入力して動的非線形解析を行う場合、実際の地震時挙動を適切にシミュレーションすることは本来的に容易ではないことを踏まえながらも、動的非線形解析の結果が計測対象物で計測された計測値に一致するように地震動を修正し、その修正された地震動で非計測対象物の動的非線形解析を行えば、その解析結果は工学的に十分妥当であって適切な損傷レベルの評価を行うことができるというきわめて有用な知見を得たものである。   When the applicant creates a non-linear vibration model and inputs a predetermined seismic motion to the vibration model to perform dynamic non-linear analysis, it is inherently not easy to appropriately simulate the actual earthquake behavior. However, if the seismic motion is corrected so that the result of the dynamic nonlinear analysis matches the measured value of the measurement object, and the dynamic non-linear analysis of the non-measurement object is performed with the corrected seismic motion, The analysis results are extremely useful from an engineering point of view, and we have obtained very useful knowledge that an appropriate damage level can be evaluated.

すなわち、本発明に係るRC部材の損傷レベル評価方法及びシステムにおいては、まず、橋軸方向に沿って列状に配置された複数の橋梁構造物からなる構造物群のうち、一部の橋梁構造物を計測対象物、残りの橋梁構造物は非計測対象物とし、計測対象物にのみ最大応答部材角を計測する計測手段を設置する。   That is, in the damage level evaluation method and system for RC members according to the present invention, first, a part of the bridge structure among a plurality of bridge structures arranged in a row along the bridge axis direction. An object is a measurement object, and the remaining bridge structure is a non-measurement object, and a measuring means for measuring the maximum response member angle is installed only on the measurement object.

ここで、橋梁構造物とは、橋梁に作用する鉛直荷重を支持するRC柱状部材からなる構造要素又は該RC柱状部材を含み全体として一体に振動する構造集合体を指し、構造集合体にはラーメン橋梁や桁式橋梁が含まれる。ちなみに、構造集合体がラーメン橋梁の場合、その構造要素は柱となり、構造集合体が桁式橋梁である場合には、その構造要素は橋脚となる。なお、構造集合体には、河川を跨いで設置されるものや陸上に設置されるものが広く含まれ、立地によって限定されるものではない。   Here, the bridge structure refers to a structural element composed of RC columnar members that support a vertical load acting on the bridge or a structural aggregate that includes the RC columnar members and vibrates as a whole, and the structural aggregate includes Includes bridges and girder bridges. Incidentally, when the structural aggregate is a ramen bridge, the structural element is a column, and when the structural aggregate is a girder bridge, the structural element is a pier. In addition, the structure aggregate widely includes those installed across rivers and those installed on land, and is not limited by location.

構造物群に属する各橋梁構造物を計測対象物と非計測対象物のいずれに分類するかは任意の基準で判断すればよいが、立地場所が偏らないように、あるいは構造規模や構造形式が偏らないように、計測対象物を選択することが一つの基準として考えられる。   Whether to classify each bridge structure belonging to a structure group as a measurement object or a non-measurement object can be determined by any standard, but the location location is not biased, or the structure scale and structure type are One criterion is to select the measurement object so as not to be biased.

なお、入力地震動補正係数を、計測対象物ごとの倍率の平均値又は最大値ではなく、計測対象物ごとの固有周期の関数として評価する場合には、計測対象物を、固有周期が所定の周期範囲に均等に分散している橋梁構造物から選択するのが望ましい。   If the input seismic motion correction coefficient is evaluated as a function of the natural period for each measurement object, not the average or maximum value of the magnification for each measurement object, the natural period is a predetermined period. It is desirable to select from bridge structures that are evenly distributed over the range.

次に、所定の地震動に対し、計測対象物に生じた最大応答部材角を計測手段で計測する。計測手段は、例えばピークセンサーを用いて構成することができる。   Next, the maximum response member angle generated in the measurement object is measured by a measuring unit with respect to a predetermined earthquake motion. The measuring means can be configured using, for example, a peak sensor.

次に、計測された最大応答部材角を水平変位に変換して観測水平変位とする。最大応答部材角を水平変位に変換するには例えば、静的非線形解析を行うことによって計測対象物ごとの最大応答部材角と水平変位との関係を予め作成しておき、かかる関係に上述した最大応答部材角を適用するようにすればよい。   Next, the measured maximum response member angle is converted into a horizontal displacement to obtain an observed horizontal displacement. In order to convert the maximum response member angle into a horizontal displacement, for example, a relationship between the maximum response member angle and the horizontal displacement for each measurement object is created in advance by performing static nonlinear analysis, and the above-described maximum A response member angle may be applied.

一方、観測地震動に乗ずる倍率をパラメータとした計測対象物の動的非線形解析を行うことにより、該動的非線形解析で得られた動的水平応答変位が、上述の観測水平変位にほぼ一致する倍率を計測対象物ごとに求める。   On the other hand, by performing dynamic nonlinear analysis of the measurement object using the magnification multiplied by the observed seismic motion as a parameter, the dynamic horizontal response displacement obtained by the dynamic nonlinear analysis is a magnification that substantially matches the observed horizontal displacement described above. For each measurement object.

観測地震動に乗ずる倍率は、例えば初期値を1として演算を開始し、演算結果である動的水平応答変位が観測水平変位にほぼ一致するまで、増分を例えば0.1として演算を繰り返し、両者が一致した時点で演算を中止するようにすることが考えられる。なお、初期値や増分については、観測地震動を計測した位置等を勘案して適宜選定すればよい。   The multiplication factor of the observed ground motion is, for example, started with an initial value of 1, and the calculation is repeated with an increment of, for example, 0.1 until the dynamic horizontal response displacement, which is the result of the calculation, substantially matches the observed horizontal displacement. It is conceivable to stop the calculation when they match. The initial value and increment may be selected as appropriate in consideration of the position where the observed seismic motion is measured.

次に、計測対象物ごとに算出された倍率から観測地震動に乗じる入力地震動補正係数を評価する。   Next, the input ground motion correction coefficient by which the observed ground motion is multiplied is evaluated from the magnification calculated for each measurement object.

評価の仕方は、例えば以下の3通りが考えられる。   For example, the following three methods can be considered.

i)計測対象物ごとに算出された倍率の平均値を入力地震動補正係数とする。     i) The average value of the magnification calculated for each measurement object is used as the input ground motion correction coefficient.

ii)計測対象物ごとに算出された倍率の最大値を入力地震動補正係数とする。    ii) The maximum value of the magnification calculated for each measurement object is used as the input ground motion correction coefficient.

iii)計測対象物ごとに算出された倍率を該各計測対象物の固有周期と関連付けることによって、入力地震動補正係数を固有周期の関数として評価する。   iii) Assessing the input ground motion correction coefficient as a function of the natural period by associating the magnification calculated for each measurement object with the natural period of each measurement object.

次に、観測地震動に入力地震動補正係数を乗じることで修正地震動を作成する。   Next, the corrected ground motion is created by multiplying the observed ground motion by the input ground motion correction coefficient.

ここで、入力地震動補正係数を上記3つめのケースで評価した場合においては、該入力地震動補正係数に非計測対象物の固有周期を適用することによって該非計測対象物ごとの入力地震動補正係数を求めるとともに、求められた入力地震動補正係数を観測地震動に乗ずることで修正地震動を作成する。   When the input seismic motion correction coefficient is evaluated in the third case, the input seismic motion correction coefficient for each non-measurement object is obtained by applying the natural period of the non-measurement object to the input seismic motion correction coefficient. At the same time, the corrected ground motion is created by multiplying the observed ground motion by the calculated input ground motion correction coefficient.

次に、修正地震動に対して非計測対象物の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出する。   Next, the dynamic horizontal response displacement with respect to the corrected ground motion is calculated by performing dynamic nonlinear analysis of the non-measurement object with respect to the corrected ground motion.

次に、動的水平応答変位を用いて前記非計測対象物の損傷レベルを推定する。具体的には、静的非線形解析を行うことによって非計測対象物ごとの水平変位と損傷レベルとの関係を予め作成しておき、かかる関係に上述した動的水平応答変位を適用することでそれに対応する損傷レベルを特定するようにすればよい。   Next, the damage level of the non-measurement object is estimated using dynamic horizontal response displacement. Specifically, a relationship between the horizontal displacement and the damage level for each non-measurement object is created in advance by performing static nonlinear analysis, and the above-described dynamic horizontal response displacement is applied to the relationship. The corresponding damage level may be specified.

以下、本発明に係るRC部材の損傷レベル評価方法及びシステムの実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。   Embodiments of a damage level evaluation method and system for RC members according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.

図1は、本実施形態に係るRC部材の損傷レベル評価システムを示したブロック図、図2は損傷レベル評価システム1が適用される構造物群21の側面図である。これらの図でわかるように、本実施形態に係るRC部材の損傷レベル評価システム1は、橋軸方向に沿って列状に配置された計測対象物としてのラーメン高架橋4a,4b,4c及び非計測対象物としてのラーメン高架橋4a′,4b′からなる構造物群21の柱損傷レベル評価に適用されるものであり、計測手段としてのピークセンサー2a,2b,2cと、該ピークセンサーからの計測データを演算処理する演算処理部3とから構成してある。   FIG. 1 is a block diagram showing a damage level evaluation system for RC members according to this embodiment, and FIG. 2 is a side view of a structure group 21 to which the damage level evaluation system 1 is applied. As can be seen from these drawings, the RC member damage level evaluation system 1 according to this embodiment includes the ramen viaducts 4a, 4b, 4c as non-measurement objects as measurement objects arranged in a line along the bridge axis direction. This is applied to the column damage level evaluation of the structure group 21 composed of the ramen viaducts 4a 'and 4b' as the object, and the peak sensors 2a, 2b and 2c as the measuring means and the measurement data from the peak sensors And an arithmetic processing unit 3 for arithmetic processing.

ピークセンサー2a,2b,2cは、ラーメン高架橋4a,4b,4cにそれぞれ設置してあり、所定の地震動に対してラーメン高架橋4a,4b,4cの柱5a,5b,5cに生じた直交水平2成分の正側及び負側の最大変位量を計測し記憶できるようになっている。   The peak sensors 2a, 2b and 2c are installed on the ramen viaducts 4a, 4b and 4c, respectively, and two orthogonal horizontal components generated in the columns 5a, 5b and 5c of the ramen viaducts 4a, 4b and 4c with respect to a predetermined earthquake motion. The maximum displacement amount on the positive side and the negative side can be measured and stored.

図3はピークセンサー2a,2b,2cの設置図、図4は、ピークセンサー2a,2b,2cを用いて最大応答部材角θを算出する手順を示した説明図である。   FIG. 3 is an installation diagram of the peak sensors 2a, 2b, and 2c, and FIG. 4 is an explanatory diagram illustrating a procedure for calculating the maximum response member angle θ using the peak sensors 2a, 2b, and 2c.

これらの図でわかるように、最大応答部材角θを算出する際、柱頭部近傍で塑性ヒンジが形成された場合の計測誤差を避けるため、ラーメン高架橋4a,4b,4cの柱頭部近傍の梁下を上部計測点31、該上部計測点から1m程度低い下方位置を下部計測点32とし、これらに測定ロッド33の上下端をそれぞれピン接合して該測定ロッドの角度を計測するようにすればよい。   As can be seen from these figures, when calculating the maximum response member angle θ, in order to avoid measurement errors when a plastic hinge is formed in the vicinity of the column head, under the beam near the column head of the ramen viaducts 4a, 4b, 4c. Is an upper measurement point 31 and a lower position about 1 m lower than the upper measurement point is a lower measurement point 32, and the upper and lower ends of the measurement rod 33 are respectively pin-joined to measure the angle of the measurement rod. .

ピークセンサー2a,2b,2cは、上部計測点31から鉛直距離H1だけ離間した位置における相対水平変位w1を計測するため、上部計測点31から鉛直距離H2だけ離間した下部計測点32における相対水平変位w2は、
2=w1(H2/H1)
となり、測定ロッドの角度θ′は、
θ′=tan-1(w2/H2
で求められる。
Since the peak sensors 2a, 2b, and 2c measure the relative horizontal displacement w 1 at a position separated from the upper measurement point 31 by the vertical distance H 1 , the peak sensors 2a, 2b, and 2c are at the lower measurement point 32 that is separated from the upper measurement point 31 by the vertical distance H 2 . The relative horizontal displacement w 2 is
w 2 = w 1 (H 2 / H 1 )
The angle θ ′ of the measuring rod is
θ ′ = tan −1 (w 2 / H 2 )
Is required.

一方、ハンチ部34は剛体挙動し、測定ロッドの角度θ′は最大応答部材角θに一致しない。そのため、ハンチ部34の高さをBとして、最大応答部材角θは、以下の式で換算する。
θ=H2/(H2―B)・θ′
On the other hand, the haunch portion 34 behaves as a rigid body, and the angle θ ′ of the measuring rod does not coincide with the maximum response member angle θ. Therefore, the maximum response member angle θ is converted by the following equation, where B is the height of the hunch 34.
θ = H 2 / (H 2 −B) · θ ′

演算処理部3は、ピークセンサー2a,2b,2cからの測定データから最大応答部材角θa,θb,θcを求める部材角算出部6と、該最大応答部材角をラーメン高架橋4a,4b,4cの観測水平変位δa,δb,δcに変換する変換部7と、観測地震動に乗ずる倍率αをパラメータとしたラーメン高架橋4a,4b,4cの動的非線形解析を行うことにより、動的水平応答変位が観測水平変位にほぼ一致する倍率としてラーメン高架橋4a,4b,4cごとにαa,αb,αcを求める動的非線形解析部8と、ラーメン高架橋4a,4b,4cごとに算出された倍率αa,αb,αcから観測地震動に乗じる入力地震動補正係数λを評価する補正係数評価部9と、観測地震動に入力地震動補正係数λを乗じることで修正地震動を作成する修正地震動作成部10と、修正地震動に対してラーメン高架橋4a′,4b′の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出する動的非線形解析部11と、動的水平応答変位を用いてラーメン高架橋4a′,4b′の損傷レベルを評価する損傷評価部12とからなる。   The arithmetic processing unit 3 includes a member angle calculating unit 6 that obtains the maximum response member angles θa, θb, and θc from the measurement data from the peak sensors 2a, 2b, and 2c, and the maximum response member angle is determined by the ramen viaducts 4a, 4b, and 4c. Dynamic horizontal response displacement is observed by performing dynamic nonlinear analysis of the ramen viaducts 4a, 4b, and 4c using the conversion unit 7 that converts the observed horizontal displacements δa, δb, and δc and the magnification α multiplied by the observed seismic motion as a parameter. A dynamic nonlinear analysis unit 8 that obtains αa, αb, and αc for each of the ramen viaducts 4a, 4b, and 4c as a magnification that substantially matches the horizontal displacement, and a magnification αa, αb, and αc calculated for each of the ramen viaducts 4a, 4b, and 4c A correction coefficient evaluation unit 9 that evaluates the input ground motion correction coefficient λ multiplied by the observed ground motion, and a modified ground motion generation unit 10 that generates the corrected ground motion by multiplying the observed ground motion by the input ground motion correction coefficient λ. The dynamic non-linear analysis unit 11 that calculates the dynamic horizontal response displacement for the modified ground motion by performing dynamic nonlinear analysis of the ramen viaducts 4a ′ and 4b ′ for the modified ground motion, and the dynamic horizontal response displacement is used. It comprises a damage evaluation unit 12 for evaluating the damage level of the ramen viaducts 4a ′ and 4b ′.

図5乃至図7は、本実施形態に係るRC部材の損傷レベル評価システム1を用いて構造物群21の柱損傷レベルを評価する手順を示したフローチャートである。これらの図に示すように、損傷レベル評価システム1を用いて構造物群21の柱損傷レベルを評価するには、まず、構造物群21に属する複数の橋梁構造物を、最大応答部材角θがピークセンサー2で計測される計測対象物と、計測されない非計測対象物とに分類する(ステップ101)。   5 to 7 are flowcharts showing a procedure for evaluating the column damage level of the structure group 21 using the RC member damage level evaluation system 1 according to the present embodiment. As shown in these drawings, in order to evaluate the column damage level of the structure group 21 using the damage level evaluation system 1, first, a plurality of bridge structures belonging to the structure group 21 are set to the maximum response member angle θ. Are classified into measurement objects measured by the peak sensor 2 and non-measurement objects that are not measured (step 101).

ここで、構造物群21に属する各橋梁構造物は、互いに異なる固有周期で振動するが、それぞれについては軌道階を質点とした1質点系モデルでその振動をあらわせるものとし、複数のラーメン高架橋4a,4a′,4b,4b′,4cを調整桁6で連結しながら橋軸方向に沿って列状に構築してなる構造物群21の場合であれば、各ラーメン高架橋が本実施形態でいう橋梁構造物となる。   Here, each bridge structure belonging to the structure group 21 vibrates with a different natural period, but each of them is represented by a one-mass system model with the orbital floor as a mass point, and a plurality of ramen viaducts are used. In the case of the structure group 21 constructed by connecting 4a, 4a ′, 4b, 4b ′, and 4c with the adjustment girder 6 and arranged in a row along the bridge axis direction, each ramen viaduct is used in this embodiment. This is a bridge structure.

次に、所定の地震動に対してラーメン高架橋4a,4b,4cの柱5a,5b,5cに生じた直交水平2成分の正側及び負側の最大変位量をピークセンサー2a,2b,2cで計測する(ステップ102)。   Next, the peak sensors 2a, 2b, and 2c measure the maximum displacements of the positive and negative two orthogonal horizontal components generated in the columns 5a, 5b, and 5c of the ramen viaducts 4a, 4b, and 4c with respect to a predetermined earthquake motion. (Step 102).

次に、ピークセンサー2a,2b,2cから伝送されてきた測定データから最大応答部材角θa,θb,θcを部材角算出部6で求める(ステップ103)。   Next, the maximum response member angles θa, θb, θc are obtained by the member angle calculation unit 6 from the measurement data transmitted from the peak sensors 2a, 2b, 2c (step 103).

次に、最大応答部材角θa,θb,θcを、水平変位に変換して観測水平変位δa,δb,δcとする(ステップ104)。   Next, the maximum response member angles θa, θb, θc are converted into horizontal displacements to obtain observed horizontal displacements δa, δb, δc (step 104).

最大応答部材角θa,θb,θcを観測水平変位δa,δb,δcに変換するには、静的非線形解析を行うことによってラーメン高架橋4a,4b,4cごとの最大応答部材角と水平変位との関係を予め作成しておき、かかる関係に上述した最大応答部材角θa,θb,θcを適用するようにすればよい。   In order to convert the maximum response member angles θa, θb, and θc into the observed horizontal displacements δa, δb, and δc, the static response analysis is performed to determine the maximum response member angle and the horizontal displacement for each of the ramen viaducts 4a, 4b, and 4c. A relationship is created in advance, and the above-described maximum response member angles θa, θb, and θc may be applied to the relationship.

図8は、ラーメン高架橋4に対して静的非線形解析を行うための解析モデルとその結果を表形式で整理した一例であり、グレーで塗りつぶした箇所は剛域であることを示す。同図に示すように、静的非線形解析を行うにあたっては、所定の震度における水平変位と応答部材角を各節点ごとに求めておく。   FIG. 8 is an example in which the analysis model for performing the static nonlinear analysis on the ramen viaduct 4 and the results thereof are arranged in a tabular form, and the portion painted in gray is a rigid region. As shown in the figure, when performing static nonlinear analysis, the horizontal displacement and response member angle at a predetermined seismic intensity are obtained for each node.

例えば、図8に示された表がラーメン高架橋4aについて行われた静的非線形解析の結果であって、柱(節点1)での最大応答部材角θaが0.00245であったとすると、それに対応する震度を探してその震度での水平変位を拾えばよい。ちなみに、同表では、震度が0.3334で水平変位が上記の値となっているので、構造物天端(節点0)の水平変位は、36.0であるとわかる。   For example, if the table shown in FIG. 8 is the result of the static nonlinear analysis performed on the ramen viaduct 4a and the maximum response member angle θa at the column (node 1) is 0.00245, the corresponding seismic intensity To find the horizontal displacement at that seismic intensity. By the way, in the same table, the horizontal displacement at the top of the structure (node 0) is 36.0 because the seismic intensity is 0.3334 and the horizontal displacement is the above value.

なお、図8は、水平変位や応答部材角のほか、損傷レベルについても整理されているが、計測対象物であるラーメン高架橋4a,4b,4cについては所定の震度における水平変位と応答部材角を各節点ごとに求めておけば足りるし、非計測対象物であるラーメン高架橋4a′,4b′については所定の震度における水平変位と損傷レベルを各節点ごとに求めておけば足りる。   In addition to the horizontal displacement and response member angle in FIG. 8, the damage level is also organized, but for the ramen viaducts 4a, 4b, and 4c that are measurement objects, the horizontal displacement and response member angle at a predetermined seismic intensity are shown. It suffices to obtain each node, and for the ramen viaducts 4a 'and 4b' which are non-measurement objects, it is sufficient to obtain the horizontal displacement and damage level at a predetermined seismic intensity for each node.

ここで、同図に示した水平変位は、地表面から所定深さに位置する基盤面を基準としており、応答部材角を算出する際には、構造物天端の水平変位を柱高さで割るのではなく、構造物の水平変位から地盤の水平変位を差し引いた値を柱高さで割るようにする。   Here, the horizontal displacement shown in the figure is based on the base plane located at a predetermined depth from the ground surface, and when calculating the response member angle, the horizontal displacement of the top of the structure is the column height. Instead of dividing, the value obtained by subtracting the horizontal displacement of the ground from the horizontal displacement of the structure is divided by the column height.

以下、非計測対象物であるラーメン高架橋4a′,4b′の損傷評価を行うためのステップとなる。ラーメン高架橋4a,4b,4cについては、ピークセンサー2a,2b,2cの計測データから最大応答部材角θa,θb,θcが直接算出されているので、これらを用いて損傷評価をすればよい。   Hereinafter, it becomes a step for performing damage evaluation of the ramen viaducts 4a ′ and 4b ′ which are non-measurement objects. For the ramen viaducts 4a, 4b, and 4c, since the maximum response member angles θa, θb, and θc are directly calculated from the measurement data of the peak sensors 2a, 2b, and 2c, damage evaluation may be performed using these.

まず、ラーメン高架橋4a,4b,4cの1質点系振動モデルをそれぞれ作成する(ステップ105a)。ここで、ラーメン高架橋4a,4b,4cは、それらの軌道階、すなわち軌道スラブとそれを支持する縦梁及び横梁とが地震時に一体挙動するため、ラーメン高架橋4a,4b,4cの1質点系振動モデルは、それぞれの軌道階を質点としてモデル化するのが合理的である。   First, one-mass system vibration models of the ramen viaducts 4a, 4b, and 4c are respectively created (step 105a). Here, the ramen viaducts 4a, 4b, and 4c have their orbital floors, that is, the orbital slabs and the vertical beams and transverse beams that support them integrally behave at the time of an earthquake. It is reasonable to model each orbital floor as a mass point.

次に、観測地震動A(t)に倍率αを乗じたものを入力値とした動的非線形解析を、上述したラーメン高架橋4aの1質点系振動モデルを用いて動的非線形解析部8で行う(ステップ105b)。倍率αの初期値は例えば1.0とする。   Next, the dynamic nonlinear analysis unit 8 performs the dynamic nonlinear analysis using the observed earthquake motion A (t) multiplied by the magnification α as an input value using the above-described one-mass system vibration model of the ramen viaduct 4a ( Step 105b). The initial value of the magnification α is, for example, 1.0.

図9(a)は、観測地震動A(t)の加速度時刻歴波形を示したものである。   FIG. 9A shows the acceleration time history waveform of the observed ground motion A (t).

次に、演算結果である動的水平応答変位δDを観測水平変位δaと比較し(ステップ105c)、動的水平応答変位δDが観測水平変位δaを下回っていれば、前ステップの倍率αに増分Δαとして例えば0.1を加え、そのあらたな倍率αを観測地震動A(t)に乗じて、再度、動的非線形解析を行う(ステップ105b)。   Next, the dynamic horizontal response displacement δD, which is the calculation result, is compared with the observed horizontal displacement δa (step 105c). If the dynamic horizontal response displacement δD is less than the observed horizontal displacement δa, it is incremented to the magnification α of the previous step. For example, 0.1 is added as Δα, the new magnification α is multiplied by the observed ground motion A (t), and dynamic nonlinear analysis is performed again (step 105b).

一方、動的水平応答変位δDが観測水平変位δaと同じかこれを上回れば、繰り返し演算を中止するとともに、そのときの倍率αをαaと定める(ステップ105d)。   On the other hand, if the dynamic horizontal response displacement δD is equal to or exceeds the observed horizontal displacement δa, the repetitive calculation is stopped and the magnification α at that time is determined as αa (step 105d).

ラーメン高架橋4b,4cについても、同様に上述のステップを実行し、倍率αb、αcを定める(ステップ105e〜105j)。   For the ramen viaducts 4b and 4c, the above-described steps are similarly executed to determine the magnifications αb and αc (steps 105e to 105j).

次に、ラーメン高架橋4a,4b,4cごとに算出された倍率αa,αb,αcから観測地震動に乗じる入力地震動補正係数λを補正係数評価部9で評価する(ステップ106)。本実施形態では、ラーメン高架橋4a,4b,4cごとに算出された倍率αa,αb,αcの平均値を入力地震動補正係数λとする。すなわち、
λ=(αa+αb+αc)/3
Next, the correction coefficient evaluation unit 9 evaluates the input ground motion correction coefficient λ multiplied by the observed ground motion from the magnification αa, αb, αc calculated for each of the ramen viaducts 4a, 4b, 4c (step 106). In the present embodiment, the average value of the magnifications αa, αb, αc calculated for each of the ramen viaducts 4a, 4b, 4c is set as the input ground motion correction coefficient λ. That is,
λ = (αa + αb + αc) / 3

次に、修正地震動作成部10において観測地震動A(t)に入力地震動補正係数λを乗じ、修正地震動A′(t)を作成する(ステップ107)。すなわち、
A′(t)=λ・A(t)
Next, the corrected ground motion creation unit 10 multiplies the observed ground motion A (t) by the input ground motion correction coefficient λ to create a modified ground motion A ′ (t) (step 107). That is,
A '(t) = λ ・ A (t)

図9(b)は、修正地震動A′(t)の加速度時刻歴波形を示したものである。   FIG. 9B shows an acceleration time history waveform of the modified ground motion A ′ (t).

次に、修正地震動A′(t)に対するラーメン高架橋4a′,4b′の動的非線形解析を動的非線形解析部11で行うことで該修正地震動に対する動的水平応答変位δa′,δb′を算出する(ステップ108)。   Next, the dynamic non-linear analysis unit 11 performs dynamic nonlinear analysis of the ramen viaducts 4a 'and 4b' for the corrected ground motion A '(t) to calculate dynamic horizontal response displacements δa' and δb 'for the corrected ground motion. (Step 108).

動的非線形解析は、ラーメン高架橋4a′,4b′について1質点系振動モデルをそれぞれ作成し、次いで、それら1質点系モデルにλ・A(t)をそれぞれ入力することで、ラーメン高架橋4a′,4b′の動的水平応答変位δa′,δb′を求める。   In the dynamic nonlinear analysis, one-mass system vibration models are respectively created for the ramen viaducts 4a ′ and 4b ′, and then λ · A (t) is input to each one-mass system model, so that the ramen viaduct 4a ′, The dynamic horizontal response displacements δa ′ and δb ′ of 4b ′ are obtained.

ラーメン高架橋4a′,4b′の1質点系振動モデルは、ラーメン高架橋4a,4b,4cと同様、それらの軌道階が剛域となってほぼ一体挙動するため、該軌道階を質点としてそれぞれモデル化する。   The one-mass system vibration model of the ramen viaducts 4a 'and 4b' is modeled by using the orbital floor as a mass point, because the orbital floors are almost rigid and behave like a rigid zone, like the ramen viaducts 4a, 4b and 4c. To do.

最後に、動的水平応答変位δa′,δb′を用いることにより、ラーメン高架橋4a′,4b′の損傷レベルを損傷評価部12で評価する(ステップ109)。   Finally, the damage evaluation unit 12 evaluates the damage level of the ramen viaducts 4a ′ and 4b ′ by using the dynamic horizontal response displacements δa ′ and δb ′ (step 109).

動的水平応答変位δa′,δb′からラーメン高架橋4a′,4b′の損傷レベルを評価するには、ラーメン高架橋4a′,4b′ごとに図8の表形式でそれぞれ求められた静的非線形解析の結果を用い、同表に動的水平応答変位δa′,δb′を適用することで損傷レベルを評価する。   In order to evaluate the damage level of the ramen viaducts 4a ′ and 4b ′ from the dynamic horizontal response displacements δa ′ and δb ′, the static nonlinear analysis obtained for each of the ramen viaducts 4a ′ and 4b ′ in the table form of FIG. The damage level is evaluated by applying the dynamic horizontal response displacements δa ′ and δb ′ to the table.

例えば、図8に示された表がラーメン高架橋4a′について行われた静的非線形解析の結果であって、動的水平応答変位δa′が43.0であったとすると、該動的水平応答変位は、軌道階において評価されているため、構造物天端(節点0)で水平変位が43.0となっている震度を探してその震度での損傷レベルを拾えばよい。ちなみに、同表では、震度が0.3923で水平変位が上記の値となっているので、柱(節点1)の損傷レベルは2、基礎(節点102)の損傷レベルは1と評価できる。   For example, if the table shown in FIG. 8 is the result of the static nonlinear analysis performed on the ramen viaduct 4a ′ and the dynamic horizontal response displacement δa ′ is 43.0, the dynamic horizontal response displacement is Since it is evaluated on the orbital floor, you can search for the seismic intensity with a horizontal displacement of 43.0 at the top of the structure (node 0) and pick the damage level at that seismic intensity. By the way, in the table, the seismic intensity is 0.3923 and the horizontal displacement is the above value. Therefore, the damage level of the column (node 1) can be evaluated as 2, and the damage level of the foundation (node 102) can be evaluated as 1.

以上説明したように、本実施形態に係るRC部材の損傷レベル評価システム1及び方法によれば、観測地震動に乗ずる倍率をパラメータとしたラーメン高架橋4a,4b,4cの動的非線形解析を行うことによって、観測地震動に乗じる入力地震動補正係数λを評価し、該入力地震動補正係数を観測地震動に乗じた修正地震動に対してラーメン高架橋4a′,4b′の動的非線形解析を行って動的水平応答変位を算出することにより、最大応答部材角を計測しないラーメン高架橋4a′,4b′についても、損傷レベルを評価することが可能となる。   As described above, according to the RC member damage level evaluation system 1 and method according to the present embodiment, by performing dynamic nonlinear analysis of the ramen viaducts 4a, 4b, and 4c using the multiplication factor of the observed earthquake motion as a parameter. , Evaluate the input ground motion correction factor λ multiplied by the observed ground motion, perform dynamic nonlinear response analysis of the ramen viaducts 4a 'and 4b' for the modified ground motion multiplied by the input ground motion correction factor It is possible to evaluate the damage level for the ramen viaducts 4a ′ and 4b ′ that do not measure the maximum response member angle.

本実施形態では、計測対象物であるラーメン高架橋4a,4b,4cの最大応答部材角θa,θb,θcを水平変位に変換する際も、非計測対象物であるラーメン高架橋4a′,4b′の動的水平応答変位から損傷レベルを評価する際も、図8の表を用いて説明したが、これは、ラーメン高架橋4a,4b,4cごとに行われた静的非線形解析の各結果を整理するための一例として、また、ラーメン高架橋4a′,4b′ごとに行われた静的非線形解析の各結果を整理するための一例として、図8に示した形式の表を用いることができるという意味であって、ラーメン高架橋4a,4b,4cとラーメン高架橋4a′,4b′とが同一構造でない限り、それらの静的非線形解析の結果は当然に異なる。   In the present embodiment, when the maximum response member angles θa, θb, θc of the ramen viaducts 4a, 4b, 4c that are measurement objects are converted into horizontal displacements, the ramen viaducts 4a ′, 4b ′ that are non-measurement objects are also converted. Although the damage level was evaluated from the dynamic horizontal response displacement using the table in FIG. 8, this is to organize each result of the static nonlinear analysis performed for each of the ramen viaducts 4a, 4b, and 4c. As an example for the purpose, and as an example for organizing the results of the static nonlinear analysis performed for each of the ramen viaducts 4a ′ and 4b ′, the table in the form shown in FIG. 8 can be used. As long as the ramen viaducts 4a, 4b, 4c and the ramen viaducts 4a ′, 4b ′ are not of the same structure, the results of their static nonlinear analysis are naturally different.

また、本実施形態では、ラーメン高架橋4a,4b,4cごとに算出された倍率αa,αb,αcの平均値(αa+αb+αc)/3を入力地震動補正係数λとしたが、これに代えて、それらのうちの最大値を入力地震動補正係数としてもよい。   In this embodiment, the average value (αa + αb + αc) / 3 of the magnifications αa, αb, αc calculated for each of the ramen viaducts 4a, 4b, 4c is set as the input ground motion correction coefficient λ. The maximum value may be used as the input seismic motion correction coefficient.

さらに、ラーメン高架橋4a,4b,4cごとに算出された倍率αa,αb,αcを該各ラーメン高架橋の固有周期と関連付けることによって、入力地震動補正係数λを固有周期Tの関数として評価するようにしてもよい。   Further, the input ground motion correction coefficient λ is evaluated as a function of the natural period T by associating the magnification αa, αb, αc calculated for each of the ramen viaducts 4a, 4b, 4c with the natural period of each ramen viaduct. Also good.

かかる変形例における演算手順を図10に示す。同図に示したフローチャートでわかるように、入力地震動補正係数λを固有周期Tの関数として評価するには、上述の実施形態と同様にしてラーメン高架橋4a,4b,4cごとの倍率αa,αb,αcを算出した後(ステップ101〜109)、これらの算出結果を、ラーメン高架橋4a,4b,4cの固有周期Ta,Tb,Tcと倍率αa,αb,αcとの関係に整理し直し、しかる後、観測地震動に乗じる入力地震動補正係数λを補正係数評価部9で評価する(ステップ111)。   The calculation procedure in this modification is shown in FIG. As can be seen from the flowchart shown in the figure, in order to evaluate the input ground motion correction coefficient λ as a function of the natural period T, the magnification αa, αb, After calculating αc (steps 101 to 109), these calculation results are rearranged into the relationship between the natural periods Ta, Tb, Tc of the ramen viaducts 4a, 4b, 4c and the magnifications αa, αb, αc, and then Then, the input ground motion correction coefficient λ multiplied by the observed ground motion is evaluated by the correction coefficient evaluation unit 9 (step 111).

図11(a)は、横軸に固有周期T、縦軸に入力地震動補正係数λをとったグラフである。かかるグラフを作成するには、固有周期Ta,Tb,Tcと倍率αa,αb,αcをプロットし、それらの間を線形補間し、あるいは公知の近似手法、例えば最小二乗法を用いて適宜補間すればよい。なお、同図では、ラーメン高架橋4a,4b,4cの固有周期Ta,Tb,Tcが、
Tb>Tc>Ta,
FIG. 11A is a graph with the natural period T on the horizontal axis and the input ground motion correction coefficient λ on the vertical axis. In order to create such a graph, the natural periods Ta, Tb, and Tc and the magnifications αa, αb, and αc are plotted, and linear interpolation is performed between them, or interpolation is appropriately performed using a known approximation method such as a least square method. That's fine. In the figure, the natural periods Ta, Tb, Tc of the ramen viaducts 4a, 4b, 4c are
Tb>Tc> Ta,

と仮定してある。 It is assumed.

このようにして入力地震動補正係数λを評価したならば、図11(b)に示すように入力地震動補正係数λに非計測対象物としてのラーメン高架橋4a′,4b′の固有周期Ta′,Tb′を適用することによって、該ラーメン高架橋ごとの入力地震動補正係数λa′,λb′を求める(ステップ112)。   When the input ground motion correction coefficient λ is evaluated in this way, as shown in FIG. 11B, the natural periods Ta ′ and Tb of the ramen viaducts 4a ′ and 4b ′ as non-measurement objects are added to the input ground motion correction coefficient λ. By applying ′, input ground motion correction coefficients λa ′ and λb ′ for each ramen viaduct are obtained (step 112).

次に、該入力地震動補正係数を観測地震動A(t)に乗ずることで修正地震動を作成する(ステップ113)。すなわち、
Aa′(t)=λa′・A(t)
Next, a corrected ground motion is created by multiplying the input ground motion correction coefficient by the observed ground motion A (t) (step 113). That is,
Aa ′ (t) = λa ′ · A (t)

Ab′(t)=λb′・A(t)   Ab ′ (t) = λb ′ · A (t)

次に、修正地震動Aa′(t)を用いてラーメン高架橋4a′の動的非線形解析を行い、該修正地震動に対する動的水平応答変位δa″を算出するとともに、修正地震動Ab′(t)を用いてラーメン高架橋4b′の動的非線形解析を行い、該修正地震動に対する動的水平応答変位δb″を算出する(ステップ114)。   Next, a dynamic nonlinear analysis of the ramen viaduct 4a 'is performed using the corrected ground motion Aa' (t) to calculate a dynamic horizontal response displacement δa "for the corrected ground motion, and the corrected ground motion Ab '(t) is used. Then, a dynamic nonlinear analysis of the ramen viaduct 4b 'is performed, and a dynamic horizontal response displacement δb "for the corrected ground motion is calculated (step 114).

次に、動的水平応答変位δa″,δb″を用いてラーメン高架橋4a′,4b′の損傷レベルを損傷評価部12で評価する(ステップ114)。   Next, the damage evaluation unit 12 evaluates the damage level of the ramen viaducts 4a ′ and 4b ′ using the dynamic horizontal response displacements δa ″ and δb ″ (step 114).

かかる変形例によれば、構造物群21に属するラーメン高架橋4a,4b,4c及びラーメン高架橋4a′,4b′の固有周期が互いに離れていて、その差が比較的大きい場合であっても、入力地震動補正係数λを固有周期Tの関数として評価したことにより、動的非線形解析の精度を向上させ、ひいては損傷レベルをより適切に評価することが可能となる。   According to such a modification, even if the natural periods of the ramen viaducts 4a, 4b, 4c and the ramen viaducts 4a ′, 4b ′ belonging to the structure group 21 are separated from each other and the difference between them is relatively large, the input By evaluating the seismic motion correction coefficient λ as a function of the natural period T, it is possible to improve the accuracy of the dynamic nonlinear analysis and thus more appropriately evaluate the damage level.

また、本実施形態では特に言及しなかったが、本発明に係る損傷レベル評価方法及びシステムは、橋軸方向及びそれに直交する方向のいずれにも適用することが可能であり、よって橋軸方向に対して任意の角度で入力する地震動に対し、上述の2方向に振動成分を分解することで両方向において損傷レベルの評価を行うことが可能である。   Although not specifically mentioned in the present embodiment, the damage level evaluation method and system according to the present invention can be applied to both the bridge axis direction and the direction orthogonal thereto, and thus the bridge axis direction. On the other hand, it is possible to evaluate the damage level in both directions by decomposing the vibration component in the above-mentioned two directions with respect to the earthquake motion input at an arbitrary angle.

本実施形態に係る損傷レベル評価システム1のブロック図。1 is a block diagram of a damage level evaluation system 1 according to the present embodiment. 損傷レベル評価システム1が適用される構造物群21の側面図。The side view of the structure group 21 to which the damage level evaluation system 1 is applied. ピークセンサー2a,2b,2cの設置図。Installation drawing of peak sensors 2a, 2b, 2c. ピークセンサー2a,2b,2cを用いて最大応答部材角θを算出する手順を示した説明図。Explanatory drawing which showed the procedure which calculates maximum response member angle | corner (theta) using the peak sensors 2a, 2b, 2c. 損傷レベル評価システム1を用いて構造物群21の柱損傷レベルを評価する手順を示したフローチャート。The flowchart which showed the procedure which evaluates the column damage level of the structure group 21 using the damage level evaluation system 1. FIG. 引き続き損傷レベル評価システム1を用いて構造物群21の柱損傷レベルを評価する手順を示したフローチャート。The flowchart which showed the procedure which evaluates the column damage level of the structure group 21 using the damage level evaluation system 1 continuously. 引き続き損傷レベル評価システム1を用いて構造物群21の柱損傷レベルを評価する手順を示したフローチャート。The flowchart which showed the procedure which evaluates the column damage level of the structure group 21 using the damage level evaluation system 1 continuously. ラーメン高架橋4に対して静的非線形解析を行うための解析モデルとその結果を示した説明図。FIG. 3 is an explanatory diagram showing an analysis model for performing static nonlinear analysis on the ramen viaduct 4 and its result. 地震動の加速度時刻歴波形を示したグラフであり、(a)は観測地震動A(t)、(b)は修正地震動A′(t)のグラフ。It is the graph which showed the acceleration time history waveform of the ground motion, (a) is the observed ground motion A (t), (b) is the modified ground motion A '(t) graph. 変形例に係る損傷レベル評価システムを用いて構造物群21の柱損傷レベルを評価する手順を示したフローチャート。The flowchart which showed the procedure which evaluates the column damage level of the structure group 21 using the damage level evaluation system which concerns on a modification. 変形例に係る損傷レベル評価方法において固有周期を関数とした入力地震動補正係数λの求め方とそれを用いてラーメン高架橋4a′,4b′ごとの入力地震動補正係数λa′,λb′の特定の仕方を説明した説明図。In the damage level evaluation method according to the modification, the method for obtaining the input ground motion correction coefficient λ as a function of the natural period and the method for specifying the input ground motion correction coefficients λa ′ and λb ′ for each of the ramen viaducts 4a ′ and 4b ′ Explanatory drawing explaining.

符号の説明Explanation of symbols

1 RC部材の損傷レベル評価システム
2a,2b,2c ピークセンサー(計測手段)
3 演算処理部
4a,4b,4c ラーメン高架橋(計測対象物)
4a′,4b′ ラーメン高架橋(非計測対象物)
5a,5b,5c 柱
1 RC member damage level evaluation system 2a, 2b, 2c Peak sensor (measuring means)
3 arithmetic processing units 4a, 4b, 4c Ramen viaduct (measurement object)
4a ', 4b' Ramen viaduct (non-measurement object)
5a, 5b, 5c pillar

Claims (6)

橋軸方向に沿って列状に配置された複数の橋梁構造物からなる構造物群のうち、一部の橋梁構造物を計測対象物とし、該計測対象物に生じた最大応答部材角を計測するとともに、該最大応答部材角を、水平変位に変換して観測水平変位とし、
観測地震動に乗ずる倍率をパラメータとした前記計測対象物の動的非線形解析を行うことにより、動的水平応答変位が前記観測水平変位にほぼ一致する倍率を前記計測対象物ごとに求め、
該計測対象物ごとに算出された倍率から前記観測地震動に乗じる入力地震動補正係数を評価し、
前記橋梁構造物のうち、前記計測対象物を除いた残りの橋梁構造物を非計測対象物とするとともに、前記観測地震動に前記入力地震動補正係数を乗じることで修正地震動を作成し、
該修正地震動に対して前記非計測対象物の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出し、
静的非線形解析から得られた前記非計測対象物ごとの水平変位と損傷レベルとの関係に前記動的水平応答変位を適用することによって、該非計測対象物の損傷レベルを評価することを特徴とするRC部材の損傷レベル評価方法。
Of the group of structures consisting of multiple bridge structures arranged in a row along the bridge axis direction, measure some of the bridge structures as the measurement object and measure the maximum response member angle generated in the measurement object And the maximum response member angle is converted into a horizontal displacement to obtain an observed horizontal displacement,
By performing a dynamic nonlinear analysis of the measurement object with the magnification multiplied by the observed earthquake motion as a parameter, a magnification at which the dynamic horizontal response displacement substantially matches the observed horizontal displacement is determined for each measurement object,
Evaluating the input ground motion correction coefficient to multiply the observed ground motion from the magnification calculated for each measurement object,
Among the bridge structures, the remaining bridge structure excluding the measurement object is a non-measurement object, and a corrected earthquake motion is created by multiplying the observed earthquake motion by the input earthquake motion correction coefficient,
A dynamic horizontal response displacement with respect to the corrected ground motion is calculated by performing a dynamic nonlinear analysis of the non-measurement object with respect to the corrected ground motion,
Evaluating the damage level of the non-measurement object by applying the dynamic horizontal response displacement to the relationship between the horizontal displacement and the damage level for each non-measurement object obtained from static nonlinear analysis, Method for evaluating damage level of RC member.
前記計測対象物ごとに算出された倍率の平均値又は最大値を前記入力地震動補正係数とした請求項1記載のRC部材の損傷レベル評価方法。 The RC member damage level evaluation method according to claim 1, wherein an average value or a maximum value of a magnification calculated for each measurement object is used as the input seismic motion correction coefficient. 前記計測対象物ごとに算出された倍率を該各計測対象物の固有周期と関連付けることによって前記入力地震動補正係数を固有周期の関数として評価し、該入力地震動補正係数に前記非計測対象物の固有周期を適用することによって該非計測対象物ごとの入力地震動補正係数を求めるとともに、求められた入力地震動補正係数を観測地震動に乗ずることで非計測対象物ごとの修正地震動を作成する請求項1記載のRC部材の損傷レベル評価方法。 The input earthquake motion correction coefficient is evaluated as a function of the natural period by associating the magnification calculated for each measurement object with the natural period of each measurement object. The corrected ground motion for each non-measurement target is created by multiplying the observed ground motion by the input seismic motion correction coefficient for each non-measurement target by obtaining the input ground motion correction coefficient by applying the period. RC member damage level evaluation method. 橋軸方向に沿って列状に配置された複数の橋梁構造物からなる構造物群のうち、一部の橋梁構造物にそれぞれ設置され、該一部の橋梁構造物を計測対象物として最大応答部材角を計測する計測手段と、
前記橋梁構造物のうち、前記計測対象物を除いた残りの橋梁構造物を非計測対象物とし、該非計測対象物の損傷レベルを前記最大応答部材角を用いて評価する演算処理部とを備え、
該演算処理部は、前記最大応答部材角を水平変位に変換して観測水平変位とし、観測地震動に乗ずる倍率をパラメータとした前記計測対象物の動的非線形解析を行うことにより、動的水平応答変位が前記観測水平変位にほぼ一致する倍率を前記計測対象物ごとに求め、該計測対象物ごとに算出された倍率から前記観測地震動に乗じる入力地震動補正係数を評価し、前記観測地震動に前記入力地震動補正係数を乗じることで修正地震動を作成し、該修正地震動に対して前記非計測対象物の動的非線形解析を行うことで該修正地震動に対する動的水平応答変位を算出し、静的非線形解析から得られた前記非計測対象物ごとの水平変位と損傷レベルとの関係に前記動的水平応答変位を適用することによって前記非計測対象物の損傷レベルを評価することを特徴とするRC部材の損傷レベル評価システム。
Among the group of structures consisting of a plurality of bridge structures arranged in a row along the bridge axis direction, each is installed in a part of the bridge structure, and the maximum response with the part of the bridge structure as a measurement object A measuring means for measuring a member angle;
The remaining bridge structure excluding the measurement object among the bridge structures is set as a non-measurement object, and includes an arithmetic processing unit that evaluates the damage level of the non-measurement object using the maximum response member angle. ,
The arithmetic processing unit converts the maximum response member angle into a horizontal displacement to obtain an observed horizontal displacement, and performs a dynamic non-linear analysis of the measurement object using a magnification multiplied by the observed earthquake motion as a parameter, thereby obtaining a dynamic horizontal response. A magnification at which a displacement substantially coincides with the observed horizontal displacement is obtained for each measurement object, an input ground motion correction coefficient to be multiplied by the observed ground motion is evaluated from the magnification calculated for each measurement object, and the input to the observed ground motion A modified ground motion is created by multiplying the ground motion correction coefficient, and a dynamic horizontal response displacement is calculated for the modified ground motion by performing a dynamic nonlinear analysis of the non-measurement object with respect to the modified ground motion. The damage level of the non-measurement object is evaluated by applying the dynamic horizontal response displacement to the relationship between the horizontal displacement and the damage level for each non-measurement object obtained from Damage level evaluation system RC member characterized by and.
前記計測対象物ごとに算出された倍率の平均値又は最大値を前記入力地震動補正係数とした請求項4記載のRC部材の損傷レベル評価システム。 The damage level evaluation system for RC members according to claim 4, wherein an average value or a maximum value of the magnification calculated for each measurement object is the input ground motion correction coefficient. 前記計測対象物ごとに算出された倍率を該各計測対象物の固有周期と関連付けることによって前記入力地震動補正係数を固有周期の関数として評価し、該入力地震動補正係数に前記非計測対象物の固有周期を適用することによって該非計測対象物ごとの入力地震動補正係数を求めるとともに、求められた入力地震動補正係数を観測地震動に乗ずることで非計測対象物ごとの修正地震動を作成する請求項4記載のRC部材の損傷レベル評価システム。 The input earthquake motion correction coefficient is evaluated as a function of the natural period by associating the magnification calculated for each measurement object with the natural period of each measurement object. The corrected ground motion for each non-measurement object is created by multiplying the observed ground motion by the obtained input ground motion correction coefficient while obtaining the input ground motion correction coefficient for each non-measurement object by applying a period. RC member damage level evaluation system.
JP2008326360A 2008-12-22 2008-12-22 RC member damage level evaluation method and system Expired - Fee Related JP5120818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326360A JP5120818B2 (en) 2008-12-22 2008-12-22 RC member damage level evaluation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326360A JP5120818B2 (en) 2008-12-22 2008-12-22 RC member damage level evaluation method and system

Publications (2)

Publication Number Publication Date
JP2010144487A JP2010144487A (en) 2010-07-01
JP5120818B2 true JP5120818B2 (en) 2013-01-16

Family

ID=42565189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326360A Expired - Fee Related JP5120818B2 (en) 2008-12-22 2008-12-22 RC member damage level evaluation method and system

Country Status (1)

Country Link
JP (1) JP5120818B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6180019B2 (en) * 2013-07-22 2017-08-16 清水建設株式会社 Unit water measurement method for fresh concrete or fresh mortar
JP6482490B2 (en) * 2016-03-18 2019-03-13 公益財団法人鉄道総合技術研究所 Member angle measuring device
CN107447671B (en) * 2017-09-01 2020-06-30 苏交科集团股份有限公司 Practical calculation method for concrete cast-in-place box girder bearing support
CN116561875B (en) * 2023-07-07 2023-09-15 合肥工业大学 Bridge network vulnerability analysis method considering bridge seismic response correlation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150043A (en) * 2001-11-09 2003-05-21 East Japan Railway Co Earthquake resistant design arithmetic unit for structure, and earthquake resistant design method for structure
JP3837099B2 (en) * 2002-08-08 2006-10-25 ヤマト設計株式会社 Structure damage estimation system and program
JP2006064483A (en) * 2004-08-25 2006-03-09 Okumura Corp Inspection support method and inspection support system for building struck by earthquake
JP4609892B2 (en) * 2005-10-28 2011-01-12 株式会社エヌ・ティ・ティ・データ Bridge monitoring apparatus, bridge monitoring method and program
JP5064740B2 (en) * 2006-08-25 2012-10-31 公益財団法人鉄道総合技術研究所 Maximum response member angle measuring device for viaduct columns

Also Published As

Publication number Publication date
JP2010144487A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
Potenza et al. Long-term structural monitoring of the damaged Basilica S. Maria di Collemaggio through a low-cost wireless sensor network
JP5120818B2 (en) RC member damage level evaluation method and system
Costa et al. Rehabilitation assessment of a centenary steel bridge based on modal analysis
Gentile et al. Condition assessment and dynamic system identification of a historic suspension footbridge
El-Betar Seismic performance of existing RC framed buildings
Erdélyi et al. Pedestrian bridge monitoring using terrestrial laser scanning
Gara et al. Dynamic monitoring of an isolated steel arch bridge during static load test
Mansour et al. Numerical verification of composite rods theory on multi-story buildings analysis
JP5376702B2 (en) RC member damage level evaluation method and system
Pucinotti et al. Multi-Span Steel–Concrete Bridges With Anti-seismic Devices: A Case Study
JP5376703B2 (en) RC member damage level evaluation method and system
Almajhali et al. Seismic response evaluation of high-rise building with and without fluid viscous damper
Wibowo et al. Drift capacity of a precast soft-storey building in Melbourne
Saracco et al. Robustness evaluation of a steel bridge in the district of Potenza (Italy)
Gallardo Barreto Evaluación del desempeño Sísmico utilizando el Análisis Estático no Lineal aplicado en una infraestructura
Kim et al. Evaluation of ambient vibration test method for historic wooden buildings based on the rigid diaphragm assumption
Barreto Evaluation of Estructural performance using Nonlinear Static Analysis applied in an infrastructure
ShahMohammadi A Novel Tapered Box Cold-formed Steel Portal Framing System: Full-Scale Testing, Simulation and Design Optimisation
Ren et al. Modal properties of the Roebling suspension bridge- FEM modeling and ambient testing.
Reddy et al. Comparative Study on The Analysis Results of Multi-Storeyed Commercial Building (G+ 12) by Using Staad. Pro and ETABS
Liu et al. Modal parameter identification and numerical simulation for self-anchored suspension bridges based on ambient vibration
Salyamova et al. Seismic resistance evaluation of multi-story buildings using the modern LIRA-SAPR SP
CN115828393A (en) Bridge informatization management method and system, electronic equipment and medium
Nasiri et al. Estimating the Loading Pattern Factor of Modal Pushover Analysis (MPA) for Integrated Bridges Using IDA Responses
Mercado A hybrid testing platform for realistic characterization of infrastructure sensor technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5120818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees