JP2015010014A - Production method of carbon plate material, and carbon plate material - Google Patents

Production method of carbon plate material, and carbon plate material Download PDF

Info

Publication number
JP2015010014A
JP2015010014A JP2013135851A JP2013135851A JP2015010014A JP 2015010014 A JP2015010014 A JP 2015010014A JP 2013135851 A JP2013135851 A JP 2013135851A JP 2013135851 A JP2013135851 A JP 2013135851A JP 2015010014 A JP2015010014 A JP 2015010014A
Authority
JP
Japan
Prior art keywords
plate material
carbon plate
fabric
impregnated
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013135851A
Other languages
Japanese (ja)
Inventor
和人 松江
Kazuto Matsue
和人 松江
恭寛 秋山
Yasuhiro Akiyama
恭寛 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP2013135851A priority Critical patent/JP2015010014A/en
Publication of JP2015010014A publication Critical patent/JP2015010014A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a carbon plate material, with which a carbon plate material with thickness larger than that of the conventional carbon plate material can be produced, while preventing risk of increase of pores and lowering of mechanical strength.SOLUTION: A production method of a carbon plate material is configured so as to include: a preheat treatment step of heat-treating a fabric of which the raw material is cellulose fibers at 150-300°C; an impregnation step of obtaining an impregnated fabric by impregnating the heat-treated fabric with a mixed solution including a phenol resin mixed with a drying oil or a constituent fatty acid of the drying oil; a drying step of drying the impregnated fabric; a lamination and compression bonding step of obtaining a lamination formed body by laminating a plurality of dried impregnated fabrics and compressing the laminate, and a carbonization step of obtaining an amorphous carbon plate material by burning and carbonizing the lamination formed body in non-oxidizing atmosphere.

Description

本発明は、緻密質の炭素板材の製造方法、及び、該製造方法により製造される炭素板材に関するものである。   The present invention relates to a method for producing a dense carbon plate, and a carbon plate produced by the production method.

緻密質の炭素薄板の製造方法として、従来、フェノール樹脂等の熱硬化性樹脂の溶液を紙に含浸させ、樹脂液が含浸した紙の複数枚を積層し圧着して積層体とし、その積層体を焼成して炭化させる方法が提案されている(例えば、特許文献1参照)。このようにして得られる炭素薄板は、非晶質の炭素からなり、燃料電池のセパレータなど、ガス不透過性と電気伝導性が要請される用途に用いられている。   As a method for producing a dense carbon thin plate, conventionally, a paper is impregnated with a solution of a thermosetting resin such as a phenol resin, and a plurality of sheets of paper impregnated with a resin solution are laminated and pressed to form a laminated body. There has been proposed a method of firing and carbonizing (see, for example, Patent Document 1). The carbon thin plate thus obtained is made of amorphous carbon, and is used for applications that require gas impermeability and electrical conductivity, such as fuel cell separators.

上記の製造方法では、焼成時の樹脂の分解によるガスの発生に伴い積層体において発泡し、得られる炭素薄板に多くの気孔が形成されるおそれがある。そこで、熱硬化性樹脂の溶液に、乾性油又はその構成脂肪酸を混合することが提案されている(特許文献2参照)。これにより、樹脂が変性して熱分解反応が穏やかとなり、気孔の形成が抑制されると考えられている。   In the above production method, there is a possibility that foaming occurs in the laminate with the generation of gas due to decomposition of the resin during firing, and many pores are formed in the resulting carbon thin plate. Therefore, it has been proposed to mix a drying oil or a constituent fatty acid thereof with a thermosetting resin solution (see Patent Document 2). Thereby, it is considered that the resin is denatured, the thermal decomposition reaction becomes gentle, and the formation of pores is suppressed.

しかしながら、上記の従来技術では、焼成前の積層体(成形体)の厚さはせいぜい1.5mm程度にとどまっており、焼成後(炭化後)に得られる炭素薄板の厚さは、0.5mm未満であった。炭素板材には、ヒータや焼成時に使用される敷き板(セッタ)等の潜在的な用途も考えられており、そのためにも、より厚さの大きい炭素板材が要請されていた。単純には、樹脂液を含浸させた紙を積層する枚数を増加させることを想到し得るが、その場合は層間に空隙が形成されて気孔が増大するおそれがあり、また、層間で剥離が生じ易くなり機械的強度が低下するおそれがある。   However, in the above prior art, the thickness of the laminate (molded body) before firing is only about 1.5 mm, and the thickness of the carbon thin plate obtained after firing (after carbonization) is 0.5 mm. Was less than. The carbon plate material is considered to have potential uses such as a heater and a laying plate (setter) used at the time of firing. For this reason, a carbon plate material having a larger thickness has been demanded. Simply, it can be envisaged to increase the number of sheets of paper impregnated with resin liquid, but in that case there is a risk that voids will be formed between the layers and the pores will increase, and peeling will occur between the layers. There is a risk that the mechanical strength may be reduced.

そこで、本発明は、上記の実情に鑑み、気孔の増大や機械的強度の低下のおそれを抑制しつつ、従来に比べて厚さの大きい炭素板材を製造することができる炭素板材の製造方法、及び、該製造方法により製造される炭素板材の提供を課題とするものである。   Therefore, in view of the above situation, the present invention is a method for producing a carbon plate material capable of producing a carbon plate material having a thickness larger than conventional, while suppressing the risk of increase in pores and reduction in mechanical strength. An object of the present invention is to provide a carbon plate produced by the production method.

上記の課題を解決するため、本発明にかかる炭素板材の製造方法は、「セルロース繊維を原料とする織物を150℃〜300℃で熱処理する前熱処理工程と、熱処理された前記織物に、乾性油または乾性油の構成脂肪酸を混合したフェノール樹脂を含む混合溶液を含浸させ、含浸織物を得る含浸工程と、前記含浸織物を乾燥させる乾燥工程と、乾燥させた前記含浸織物の複数枚を積層し圧着して積層成形体を得る積層圧着工程と、前記積層成形体を非酸化性雰囲気で焼成して炭化し、非晶質炭素板材を得る炭化工程と、を具備する」ものである。   In order to solve the above-described problems, the method for producing a carbon plate material according to the present invention includes: a pre-heat treatment step of heat-treating a fabric made of cellulose fiber at 150 ° C. to 300 ° C .; Or impregnating a mixed solution containing a phenolic resin mixed with a constituent fatty acid of a drying oil to obtain an impregnated fabric, a drying step of drying the impregnated fabric, and laminating a plurality of dried impregnated fabrics and pressing And a carbonization step of obtaining an amorphous carbon plate material by firing and carbonizing the laminate compact in a non-oxidizing atmosphere.

「セルロース繊維を原料とする織物」としては、綿、麻、木材パルプ、コウゾ、ミツマタなどの天然セルロース繊維、天然セルロースの再生繊維(レーヨンなど)を原料とする織物を例示することができる。   Examples of the “woven fabric using cellulose fiber as a raw material” include natural cellulose fibers such as cotton, hemp, wood pulp, mulberry, Mitsumata, and a woven fabric using natural cellulose regenerated fibers (such as rayon) as raw materials.

「乾性油または乾性油の構成脂肪酸」における「乾性油」としては、桐油、アマニ油、ケシ油、シソ油、エゴマ油、ベニバナ油、ヒマワリ油、クレオソート油を例示することができる。また、これらとフェノール樹脂を含む「混合溶液」は、有機溶媒で濃度及び粘度を調整した溶液を使用することができ、有機溶媒としては、トルエン、アセトン、エタノール等を使用することができる。なお、以下では、フェノール樹脂、及び、乾性油または乾性油の構成脂肪酸との混合により変性したフェノール樹脂を、「変性樹脂」と称することがある。   Examples of “drying oil” in “drying oil or constituent fatty acid of drying oil” include tung oil, linseed oil, poppy oil, perilla oil, sesame oil, safflower oil, sunflower oil, and creosote oil. Moreover, the "mixed solution" containing these and a phenol resin can use the solution which adjusted the density | concentration and the viscosity with the organic solvent, and toluene, acetone, ethanol etc. can be used as an organic solvent. Hereinafter, a phenol resin and a phenol resin modified by mixing with a dry oil or a constituent fatty acid of the dry oil may be referred to as a “modified resin”.

「非酸化性雰囲気」は、アルゴンガス等の不活性ガス、窒素ガス、これらの混合ガス雰囲気、または、真空雰囲気とすることができる。   The “non-oxidizing atmosphere” can be an inert gas such as argon gas, a nitrogen gas, a mixed gas atmosphere thereof, or a vacuum atmosphere.

本発明者らは検討の結果、セルロース繊維が紡績され製織されて織物となった状態のものを原料とすることで、気孔の増大や機械的強度の低下のおそれを抑制しつつ、従来に比べて厚さの大きい炭素板材を製造することができることを見出し、本発明に至ったものである。上述のように、従来技術では、繊維を結合剤と混合し抄紙したものを原料としており、織物となったものを原料とするというアイデアは、従来になかったものである。   As a result of the study, the inventors of the present invention, using cellulose fibers spun and woven into a woven fabric, as a raw material, while suppressing the risk of increased pores and mechanical strength, compared to the conventional Thus, the inventors have found that a carbon plate material having a large thickness can be produced, and have reached the present invention. As described above, in the prior art, a material obtained by mixing a fiber with a binder and making a paper is used as a raw material, and the idea of using a woven fabric as a raw material has never existed.

また、本発明者らは検討の結果、フェノール樹脂は150℃以上の温度でも機械的強度をある程度維持しており、そのために織物に由来して発生するガスが樹脂の内部に残存し易く、これが炭化のための焼成時に膨れや剥離などの不良が生じる一因となっていることを見出した。そこで、原料としての織物を、変性樹脂を含有する混合溶液を含浸させる含浸工程に先立って、150℃〜300℃の温度で熱処理する前熱処理工程を行うという手段を採用した。これにより、炭化のための焼成における低温域で、織物の熱分解に由来して発生するはずのガス成分を予め除去しておくことができるため、炭化工程での膨れや剥離の発生を、有効に抑制することができる。前熱処理工程の温度が150℃より低いと、織物の熱分解がほとんど進行せず、熱分解に際して副次的に起きる水生成反応により生成する水分子など、熱分解により発生する分子量の大きなガスを除くことができない。一方、前熱処理工程の温度が300℃を超えると、織物を構成するセルロース繊維が劣化し、得られる炭素板材の機械的強度が低下するおそれがある。なお、この前熱処理工程では、織物に元々含まれていた水分も除かれる。   Further, as a result of the study by the inventors, the phenolic resin maintains a mechanical strength to some extent even at a temperature of 150 ° C. or higher. Therefore, the gas generated from the fabric tends to remain inside the resin, It has been found that this is one cause of defects such as blistering and peeling during firing for carbonization. Therefore, a means of performing a pre-heat treatment step of heat-treating the woven fabric as a raw material at a temperature of 150 ° C. to 300 ° C. was adopted prior to the impregnation step of impregnating the mixed solution containing the modified resin. This makes it possible to remove in advance the gas components that should be generated due to the thermal decomposition of the fabric in the low temperature range in the firing for carbonization, so that the occurrence of blistering and peeling in the carbonization process is effective. Can be suppressed. When the temperature of the pre-heat treatment process is lower than 150 ° C., the thermal decomposition of the fabric hardly proceeds, and a gas having a large molecular weight generated by the thermal decomposition such as a water molecule generated by a water generation reaction that occurs secondary to the thermal decomposition. It cannot be removed. On the other hand, if the temperature of the pre-heat treatment step exceeds 300 ° C., the cellulose fibers constituting the woven fabric are deteriorated, and the mechanical strength of the resulting carbon plate material may be lowered. In this pre-heat treatment step, moisture originally contained in the fabric is also removed.

本発明にかかる炭素板材の製造方法は、上記構成に加え、「前記炭化工程は、前記積層成形体を膨張黒鉛シート間に挟んだ状態で行われる」ものとすることができる。   In addition to the above configuration, the carbon plate material manufacturing method according to the present invention may be “the carbonization step is performed in a state where the laminated molded body is sandwiched between expanded graphite sheets”.

膨張黒鉛シートは、層間化合物とした黒鉛を急激に加熱し、層間の物質をガス化して層間隔を押し広げ、その後圧延することにより得られる黒鉛シートであり、厚さ0.5mm〜2.0mmのものを好適に使用することができる。なお、上記の従来技術では、反り等を防止することを目的として、積層成形体を“黒鉛板”に挟んだ状態で焼成することを開示しているが、黒鉛板は機械加工上の制約から厚さが5mm以上の板材とならざるを得ず、本発明の膨張黒鉛シートとは異なる。   An expanded graphite sheet is a graphite sheet obtained by rapidly heating graphite as an intercalation compound, gasifying an interlayer material to widen a layer interval, and then rolling, and has a thickness of 0.5 mm to 2.0 mm. Can be preferably used. In the above prior art, for the purpose of preventing warpage and the like, it is disclosed that the laminated molded body is fired in a state of being sandwiched between “graphite plates”. It must be a plate material having a thickness of 5 mm or more, and is different from the expanded graphite sheet of the present invention.

膨張黒鉛シートは、面方向の熱伝導率が大きい。従って、積層成形体を膨張黒鉛シートに挟んだ状態で炭化することにより、積層成形体における温度分布を均一に近付けることができる。また、膨張黒鉛シートは滑り性に優れる。そのため、膨張黒鉛シート間に挟まれた積層成形体は、膨張黒鉛シートに沿って滑らかに収縮し易い。従って、上記構成の本発明によれば、炭化工程における積層成形体の反りやうねり等を抑制し、変形のない炭素板材を高い収率で製造することができる。   The expanded graphite sheet has a large thermal conductivity in the surface direction. Therefore, by performing carbonization with the laminated molded body sandwiched between the expanded graphite sheets, the temperature distribution in the laminated molded body can be made closer to uniform. Further, the expanded graphite sheet is excellent in slipperiness. For this reason, the laminated molded body sandwiched between the expanded graphite sheets tends to contract smoothly along the expanded graphite sheet. Therefore, according to the present invention having the above-described configuration, it is possible to suppress the warpage and undulation of the laminated molded body in the carbonization step, and to produce a carbon plate material without deformation at a high yield.

本発明にかかる炭素板材の製造方法は、上記構成に加え、「前記含浸工程は、炭素質フィラーを含有する前記混合溶液を使用して行われる」ものとすることができる。   In addition to the above configuration, the method for producing a carbon plate material according to the present invention may be “the impregnation step is performed using the mixed solution containing a carbonaceous filler”.

「炭素質フィラー」としては、炭素繊維、黒鉛粉末、カーボンブラック等を使用可能である。   As the “carbonaceous filler”, carbon fiber, graphite powder, carbon black and the like can be used.

炭化工程を経て得られる炭素板材のマトリクスは非晶質の炭素であり、炭素材料としては電気伝導率が高いとは言えない。そこで、炭素質フィラーを混合溶液に含有させることにより、製造される炭素板材の電気伝導性を高めることができる。   The matrix of the carbon plate material obtained through the carbonization step is amorphous carbon, and it cannot be said that the carbon material has high electrical conductivity. Then, the electrical conductivity of the carbon plate material manufactured can be improved by containing a carbonaceous filler in a mixed solution.

本発明にかかる炭素板材の製造方法は、上記構成に加え、「前記非晶質炭素板材を非酸化性雰囲気で1700℃〜2600℃で焼成し黒鉛化させる黒鉛化工程を具備する」ものとすることができる。   In addition to the above-described structure, the method for producing a carbon plate material according to the present invention includes “a graphitization step in which the amorphous carbon plate material is calcined and graphitized at 1700 ° C. to 2600 ° C. in a non-oxidizing atmosphere”. be able to.

炭化工程を経て得られる非晶質炭素板材を、更に1700℃〜2600℃で焼成することにより、非晶質炭素が黒鉛化し、電気伝導性の高い炭素板材を製造することができる。ところが、黒鉛化した炭素の結晶成長が進行すると、気孔が増大すると共に層間剥離が生じ易くなり、機械的強度が低下する。本発明では、黒鉛化の温度を2600℃を超えない温度とすることにより、気孔の増大や機械的強度の低下を抑制しつつ、電気伝導性が高められた炭素板材を製造することができる。   By firing the amorphous carbon plate material obtained through the carbonization step at 1700 ° C. to 2600 ° C., the amorphous carbon is graphitized, and a carbon plate material having high electrical conductivity can be produced. However, when crystal growth of graphitized carbon proceeds, pores increase and delamination easily occurs, and mechanical strength decreases. In the present invention, by setting the graphitization temperature to a temperature not exceeding 2600 ° C., it is possible to produce a carbon plate material with improved electrical conductivity while suppressing an increase in pores and a decrease in mechanical strength.

次に、本発明にかかる炭素板材は、「厚さが2.5mm〜7.0mmであり、水銀圧入法により測定されたモード径としての気孔径が1.6μm以下である」ものである。   Next, the carbon plate material according to the present invention is “having a thickness of 2.5 mm to 7.0 mm and a pore diameter as a mode diameter measured by a mercury intrusion method of 1.6 μm or less”.

上述の前熱処理工程、含浸工程、乾燥工程、積層圧着工程、及び、炭化工程を具備する炭素板材の製造方法により、詳細は後述するように、気孔の大きさや機械的強度を実用的な範囲にとどめながら、2.5mm〜7.0mmという従来に比べて非常に厚さの大きな炭素板材を提供することができる。なお、平均気孔径が3μm以下であれば、緻密質であることが要請される炭素板材として使用可能である。   As described in detail later, the pore size and mechanical strength are within a practical range by the carbon plate material manufacturing method including the pre-heat treatment step, the impregnation step, the drying step, the lamination pressure bonding step, and the carbonization step. However, it is possible to provide a carbon plate material that is much thicker than the conventional 2.5 mm to 7.0 mm. If the average pore diameter is 3 μm or less, it can be used as a carbon plate material that is required to be dense.

なお、上述の製造方法によって、従来技術では不可能であった、厚さの大きい炭素板材を提供することができるが、上述の製造方法によって従来と同程度の厚さの炭素板材(炭素薄板)を提供できることは、もちろんである。   Although the above-described manufacturing method can provide a carbon plate material having a large thickness, which was impossible with the prior art, a carbon plate material (carbon thin plate) having the same thickness as the conventional one by the above-described manufacturing method. Of course, it can provide.

以上のように、本発明の効果として、気孔の増大や機械的強度の低下のおそれを抑制しつつ、従来に比べて厚さの大きい炭素板材を製造することができる炭素板材の製造方法、及び、該製造方法により製造される炭素板材を、提供することができる。   As described above, as an effect of the present invention, a method for producing a carbon plate material capable of producing a carbon plate material having a thickness larger than the conventional one while suppressing the risk of increase in pores and reduction in mechanical strength, and The carbon plate material manufactured by the manufacturing method can be provided.

以下、本発明の具体的な実施形態について、説明する。本発明の第一実施形態の炭素板材の製造方法(以下、単に「製造方法」と称する)は、セルロース繊維を原料とする織物を150℃〜300℃の温度で熱処理する前熱処理工程と、熱処理された織物に、乾性油または乾性油の構成脂肪酸を混合したフェノール樹脂を含む混合溶液を含浸させ、含浸織物を得る含浸工程と、含浸織物を乾燥させる乾燥工程と、乾燥させた含浸織物の複数枚を積層し圧着して積層成形体を得る積層圧着工程と、積層成形体を非酸化性雰囲気で焼成して炭化し、非晶質炭素板材を得る炭化工程と、非晶質炭素板材を非酸化性雰囲気で1700℃〜2600℃で焼成し黒鉛化させる黒鉛化工程と、を具備するものである。   Hereinafter, specific embodiments of the present invention will be described. The method for producing a carbon plate material of the first embodiment of the present invention (hereinafter simply referred to as “manufacturing method”) includes a pre-heat treatment step of heat-treating a fabric made of cellulose fiber at a temperature of 150 ° C. to 300 ° C., and a heat treatment The impregnated fabric is impregnated with a dry oil or a mixed solution containing a phenol resin mixed with a constituent fatty acid of the dry oil to obtain an impregnated fabric, a drying step of drying the impregnated fabric, and a plurality of dried impregnated fabrics A lamination pressure bonding step of laminating and pressure bonding sheets to obtain a laminated molded body, a carbonization step of firing and carbonizing the laminated molded body in a non-oxidizing atmosphere, and an amorphous carbon plate material And a graphitization step of baking and graphitizing at 1700 ° C. to 2600 ° C. in an oxidizing atmosphere.

より具体的に説明すると、セルロース繊維を原料とする織物としては、綿織物、麻織物を例示することができる。ここで、セルロース繊維としては、炭化率が10%〜60%のものが望ましい。炭化率が10%より小さいと、原料として必要な量が増大し、焼成中に発生するガス量も増大するため、膨れや剥離による不良が生じ易くなる。一方、炭化率が60%を超えると、得られた炭素板材の機械的強度が低下する傾向がある。なお、炭化率は、800℃で数時間の炭化処理を行った場合に、次式により求められる。
炭化率(%)=W/W×100
:炭化処理前の質量
:炭化処理後の質量
More specifically, examples of the fabric made from cellulose fibers include cotton fabric and hemp fabric. Here, as a cellulose fiber, a thing with a carbonization rate of 10%-60% is desirable. If the carbonization rate is less than 10%, the amount required as a raw material increases, and the amount of gas generated during firing also increases, so that defects due to blistering and peeling tend to occur. On the other hand, when the carbonization rate exceeds 60%, the mechanical strength of the obtained carbon plate tends to decrease. The carbonization rate is obtained by the following equation when carbonization is performed at 800 ° C. for several hours.
Carbonization rate (%) = W c / W 0 × 100
W 0 : Mass before carbonization treatment W c : Mass after carbonization treatment

前熱処理工程は、加熱乾燥機等を使用し、150℃〜300℃の所定温度で30分程度加熱することにより行う。   The pre-heat treatment step is performed by heating at a predetermined temperature of 150 ° C. to 300 ° C. for about 30 minutes using a heat dryer or the like.

含浸工程で織物に含浸させる混合溶液は、乾性油または乾性油の構成脂肪酸を混合したフェノール樹脂を、有機溶媒に溶解した溶液を使用する。有機溶媒としては、トルエン、アセトン、エタノール等を使用可能である。   As the mixed solution for impregnating the fabric in the impregnation step, a solution obtained by dissolving a dry resin or a phenol resin mixed with a constituent fatty acid of the dry oil in an organic solvent is used. As the organic solvent, toluene, acetone, ethanol or the like can be used.

含浸工程を経て得られた含浸織物は、乾燥工程において、110℃〜150℃の範囲の所定の温度に一定に保持された乾燥機内で乾燥させる。   The impregnated fabric obtained through the impregnation step is dried in a drier maintained at a predetermined temperature in the range of 110 ° C. to 150 ° C. in the drying step.

乾燥工程を経た含浸織物は、積層圧着工程で複数枚を積層し、加熱圧着して積層成形体とする。加熱はスチームによる加熱とすることができ、その場合、圧着ヘッドの温度をスチーム加熱温度である130℃〜150℃とすることが好ましい。圧着圧力は、1.5MPa〜5.0MPaとすることが望ましい。圧力が小さ過ぎれば、積層された含浸織物同士の接着が弱いものとなる一方、圧力が大き過ぎれば積層された含浸織物同士の密着性が高すぎ、後に行われる炭化工程で、樹脂の熱分解等により発生するガスがスムーズに排出されにくくなる。積層圧着工程における圧力を1.5MPa〜5.0MPaの範囲とすることにより、熱分解により発生するガスが排出される経路が残る程度に、積層成形体において各層が接着される。これにより、焼成時の膨れや剥離が抑制され、高い収率で良品を得ることができる。   The impregnated woven fabric that has undergone the drying step is laminated in a laminating and crimping step, and is heat-pressed to form a laminated molded body. Heating can be performed by steam. In that case, it is preferable that the pressure of the pressure-bonding head is 130 ° C. to 150 ° C. which is the steam heating temperature. The pressure for pressure bonding is desirably 1.5 MPa to 5.0 MPa. If the pressure is too low, the adhesion between the laminated impregnated fabrics will be weak, while if the pressure is too high, the adhesion between the laminated impregnated fabrics will be too high, and the thermal decomposition of the resin in the subsequent carbonization step It is difficult to smoothly discharge gas generated due to the above. By setting the pressure in the lamination pressure bonding step to a range of 1.5 MPa to 5.0 MPa, each layer is bonded to the laminated molded body to such an extent that a path for exhausting gas generated by thermal decomposition remains. Thereby, the swelling and peeling at the time of baking are suppressed and a good product can be obtained with a high yield.

炭化工程では、積層圧着工程を経て得られた積層成形体を、膨張黒鉛シートに挟み込んだ状態で焼成する。このとき、複数の積層成形体それぞれの間に膨張黒鉛シートを挟んで複数の積層成形体を積み重ね、更にその全体を外側から黒鉛板で挟んだ状態で、詰め粉に埋設し、焼成することができる。このように、熱伝導率の高い膨張黒鉛シートに積層成形体を挟み込むことにより、積層成形体における温度分布が均一化すると共に、滑り性の高い膨張黒鉛シートに沿って積層成形体が滑らかに収縮するため、積層成形体の反りや変形が抑制される。更に、複数の積層成形体の全体が黒鉛板に挟み込まれ、詰め粉に埋設された状態で焼成されるため、積層成形体の反りや変形がより有効に抑制される。   In the carbonization step, the laminated molded body obtained through the lamination pressure bonding step is fired while being sandwiched between expanded graphite sheets. At this time, it is possible to stack a plurality of laminated molded bodies by sandwiching an expanded graphite sheet between each of the plurality of laminated molded bodies, and further embed and bak them in the packing powder with the whole sandwiched between the graphite plates from the outside. it can. As described above, by sandwiching the laminated molded body with the expanded graphite sheet having high thermal conductivity, the temperature distribution in the laminated molded body is made uniform, and the laminated molded body contracts smoothly along the expanded graphite sheet having high slidability. Therefore, warpage and deformation of the laminated molded body are suppressed. Furthermore, since the whole of the plurality of laminated molded bodies is sandwiched between the graphite plates and fired in a state of being embedded in the filling powder, warping and deformation of the laminated molded bodies are more effectively suppressed.

炭化工程における焼成は、非酸化性雰囲気に保持した電気炉内で、常温から800℃まで昇温することにより行う。昇温速度は小さい方が変性樹脂の熱分解が穏やかとなり、膨れや剥離による不良品の発生率が低下する一方、昇温速度が小さ過ぎれば、焼成のための所要時間(日数)が長く炭素板材の製造効率が悪い。従って、常温から800℃まで、数日程度かけて昇温することが望ましい。   Firing in the carbonization step is performed by raising the temperature from room temperature to 800 ° C. in an electric furnace maintained in a non-oxidizing atmosphere. If the heating rate is small, the thermal decomposition of the modified resin becomes gentle, and the incidence of defective products due to blistering or peeling decreases. On the other hand, if the heating rate is too small, the time required for firing (days) becomes longer and carbon. The production efficiency of the plate material is poor. Therefore, it is desirable to raise the temperature from room temperature to 800 ° C. over several days.

黒鉛化工程では、炭化工程を経て得られた非晶質炭素板材を、数枚〜10枚程度積み重ねて膨張黒鉛シートで挟み込む。これを一単位として、複数単位を積層し、全体を炭素板で挟み込んだ状態で、詰め粉に埋設し焼成する。非晶質炭素板材は、炭化前の積層成形体に比べて高い熱伝導性を有するため、炭素板材一枚ごとに膨張黒鉛シートで挟み込むことまではしなくても、反りや変形を防止して、黒鉛化した炭素板材を収率良く製造することができる。   In the graphitization step, several to 10 sheets of amorphous carbon plate materials obtained through the carbonization step are stacked and sandwiched between expanded graphite sheets. Using this as a unit, a plurality of units are laminated, and the whole is sandwiched between carbon plates, embedded in a filling powder and fired. Amorphous carbon plates have higher thermal conductivity than carbonized laminates before carbonization, so they can prevent warping and deformation without having to be sandwiched between expanded graphite sheets for each carbon plate. The graphitized carbon plate material can be produced with good yield.

黒鉛化工程における焼成は、非酸化性雰囲気に保持したアチソン炉などの電気炉内で、数時間から数十時間をかけて1700℃〜2600℃の所定温度まで昇温して行う。焼成温度が2600℃を超えると、黒鉛の結晶が異常成長して気孔が増大するおそれがある。また、黒鉛の結晶における異方性に起因して層間剥離が生じ易くなり、収率が低下するおそれがある。   Firing in the graphitization step is performed by raising the temperature to a predetermined temperature of 1700 ° C. to 2600 ° C. over several hours to several tens of hours in an electric furnace such as an Atchison furnace maintained in a non-oxidizing atmosphere. When the firing temperature exceeds 2600 ° C., graphite crystals may grow abnormally and the pores may increase. Further, delamination is likely to occur due to anisotropy in graphite crystals, and the yield may be reduced.

次に、第二実施形態の製造方法について説明する。第二実施形態の製造方法は、上記と同様に、前熱処理工程、含浸工程、乾燥工程、積層圧着工程、炭化工程の順に行われるが、含浸工程が炭素質フィラーを含有する混合溶液を使用して行われる点で、第一実施形態と相違している。   Next, the manufacturing method of 2nd embodiment is demonstrated. The manufacturing method of the second embodiment is performed in the order of a pre-heat treatment step, an impregnation step, a drying step, a lamination pressure bonding step, and a carbonization step, as described above, but the impregnation step uses a mixed solution containing a carbonaceous filler. This is different from the first embodiment.

炭素質フィラーとしては、炭素繊維、黒鉛粉末、カーボンブラック等を使用可能である。そのサイズはでるだけ小さいことが望ましく、炭素繊維の場合は、繊維直径が20μm以下で長さが3mm以下、黒鉛粉末及びカーボンブラックの場合は、粒子直径が20μm以下であることが望ましい。炭素質フィラーのサイズが大きい場合は、織物の表面に付着する炭素質フィラーによって織物同士の接着が妨げられ、焼成時に剥離しやすくなる。なお、混合溶液における炭素質フィラーの割合は、変性樹脂に対して数質量%とすれば、焼成時の剥離を抑制して実用的な機械的強度を有し、且つ、電気伝導性が高められた炭素板材を製造することができる。   As the carbonaceous filler, carbon fiber, graphite powder, carbon black or the like can be used. The size is desirably as small as possible. In the case of carbon fiber, the fiber diameter is 20 μm or less and the length is 3 mm or less. In the case of graphite powder and carbon black, the particle diameter is preferably 20 μm or less. When the size of the carbonaceous filler is large, adhesion between the fabrics is hindered by the carbonaceous filler adhering to the surface of the fabric, and the carbonaceous filler is easily peeled off during firing. In addition, if the ratio of the carbonaceous filler in the mixed solution is several mass% with respect to the modified resin, it has practical mechanical strength by suppressing peeling during firing, and electrical conductivity is enhanced. Carbon plate material can be manufactured.

第一実施形態の実施例として、実施例1〜3の試料を作製した。何れの試料も、坪量約500g/mの平織り綿織物を原料とし、290℃の温度で30分間熱処理をした(前熱処理工程)。熱処理された織物に、昭和電工製の桐油変性フェノール樹脂(桐油とフェノールを混合してからホルマリンを加えて反応を進行させて得られた桐油変性フェノール樹脂)をアセトンに溶解した混合溶液を含浸させ、含浸織物とした(含浸工程)。混合溶液における変性樹脂の割合は、固形分換算で40質量%とした。 As examples of the first embodiment, samples of Examples 1 to 3 were produced. All samples were heat-treated at a temperature of 290 ° C. for 30 minutes using a plain weave cotton fabric having a basis weight of about 500 g / m 2 (pre-heat treatment step). The heat-treated fabric is impregnated with a mixed solution of Tung oil-modified phenolic resin (Tung oil-modified phenolic resin obtained by mixing formal oil with phenol after mixing tung oil and phenol) dissolved in acetone. And impregnated fabric (impregnation step). The ratio of the modified resin in the mixed solution was 40% by mass in terms of solid content.

含浸織物は130℃で3分間乾燥させた(乾燥工程)。乾燥させた含浸織物を、210mm×210mmに裁断し、実施例1では10枚を積層し、実施例2では15枚を積層し、実施例3では20枚を積層して、温度150℃、圧力2MPaで加熱圧着して積層成形体とした(積層圧着工程)。得られた積層成形体の周縁をトリミングして200mm×200mmのサイズに整え、厚さを測定すると共に、サイズと質量の測定から嵩密度を求めた。測定は、複数の試料について行った。   The impregnated fabric was dried at 130 ° C. for 3 minutes (drying process). The dried impregnated fabric was cut into 210 mm × 210 mm, 10 sheets were stacked in Example 1, 15 sheets were stacked in Example 2, 20 sheets were stacked in Example 3, and the temperature was 150 ° C. and pressure It was thermocompression-bonded at 2 MPa to obtain a laminated molded body (laminate crimping step). The peripheral edge of the obtained laminated molded body was trimmed and adjusted to a size of 200 mm × 200 mm, the thickness was measured, and the bulk density was determined from the measurement of the size and mass. The measurement was performed on a plurality of samples.

積層成形体を800℃の温度で2時間、非酸化性雰囲気で焼成し、非晶質炭素板材を得た(炭化工程)。このとき、800℃まで4日間をかけて昇温した。また、焼成に際しては、積層成形体と膨張黒鉛シートを交互に重ねて積層成形体2個を積み重ね、更にその全体を、厚さ5mmの一対の黒鉛板で挟み、詰め粉に埋設した。膨張黒鉛シートとしては、TYK製グラファイトシート、厚さ0.8mmを使用した。   The laminated molded body was fired at a temperature of 800 ° C. for 2 hours in a non-oxidizing atmosphere to obtain an amorphous carbon plate material (carbonization step). At this time, the temperature was raised to 800 ° C. over 4 days. In firing, the laminated molded body and the expanded graphite sheet were alternately stacked to stack two laminated molded bodies, and the whole was sandwiched between a pair of graphite plates having a thickness of 5 mm and embedded in the filling powder. As the expanded graphite sheet, a TYK graphite sheet having a thickness of 0.8 mm was used.

得られた試料(非晶質炭素板材)について、厚さ及び嵩密度を測定すると共に、10mm×100mmの短冊状の試験片を複数切り出し、支点間距離20mm、クロスヘッドスピード1.5mm/minの条件で三点曲げ強さを測定した。また、体積1cmの試験片を切り出し、水銀ポロシメータ(Micromeritics社製、 Pore Sizer 9300)を使用して水銀圧入法により測定した気孔径分布から、モード径(最頻度径)として、平均気孔径(直径)を求めた。 For the obtained sample (amorphous carbon plate material), the thickness and bulk density were measured, and a plurality of 10 mm × 100 mm strip-shaped test pieces were cut out, the distance between fulcrums was 20 mm, and the crosshead speed was 1.5 mm / min. Three-point bending strength was measured under the conditions. Further, a test piece having a volume of 1 cm 3 was cut out, and from the pore diameter distribution measured by a mercury intrusion method using a mercury porosimeter (manufactured by Micromeritics, Pore Sizer 9300), an average pore diameter ( Diameter).

試料ごとに、含浸織物の積層枚数、積層成形体の厚さ及び嵩密度、800℃で炭化した非晶質炭素板材の厚さ、三点曲げ強さ、平均気孔径を、表1にまとめて示す。また、比較として、前熱処理工程を行わない以外は、それぞれ実施例1及び実施例2と同様に作製した比較例1及び比較例2の結果を、表1にあわせて示す。   For each sample, the number of laminated impregnated fabrics, the thickness and bulk density of the laminated molded body, the thickness of the amorphous carbon plate carbonized at 800 ° C., the three-point bending strength, and the average pore diameter are summarized in Table 1. Show. For comparison, the results of Comparative Example 1 and Comparative Example 2 prepared in the same manner as Example 1 and Example 2, respectively, except that the pre-heat treatment step is not performed, are also shown in Table 1.

Figure 2015010014
Figure 2015010014

実施例1〜3の何れも、試料の全数について、膨れや剥離のない良品の非晶質炭素板材が得られた。得られた非晶質炭素板材の厚さは、含浸織物の積層枚数が10枚である実施例1では2.5mm〜2.8mmであり、含浸織物の積層枚数が15枚である実施例2では4.9mm〜5.1mmであり、従来の炭素薄板(厚さ0.5mm程度)と比べると、非常に肉厚であった。また、含浸織物の積層枚数が20枚と最も多い実施例3では、厚さが平均7.0mmであり、実施例2より更に肉厚であった。このことから、含浸織物の積層枚数を増加させることにより、バルク体に近い厚さの炭素板材を製造できる可能性があると考えられた。三点曲げ強さについては、実施例1〜3の何れも79MPa〜83MPaと実用的な範囲内であり、平均気孔径については、実施例1〜3の何れも緻密質の炭素材に要請される範囲内であった。一方、前熱処理工程を行わなかった比較例1及び比較例2では、炭化工程の際に膨れが生じ、良品を得ることができなかった。このことから、含浸工程の前に原料である織物に前熱処理を行うことが、織物に由来して熱分解により発生するガスに起因する発泡や膨れを抑制する上で、非常に有効であると考えられた。   In all of Examples 1 to 3, a good amorphous carbon plate material without swelling or peeling was obtained for the total number of samples. The thickness of the obtained amorphous carbon plate material is 2.5 mm to 2.8 mm in Example 1 in which the number of laminated impregnated fabrics is 10, and Example 2 in which the number of laminated impregnated fabrics is 15 pieces. Is 4.9 mm to 5.1 mm, which is very thick compared to a conventional carbon thin plate (thickness of about 0.5 mm). Further, in Example 3, where the number of laminated impregnated fabrics was as large as 20, the average thickness was 7.0 mm, which was even thicker than Example 2. From this, it was considered that by increasing the number of laminated impregnated fabrics, it is possible to manufacture a carbon plate having a thickness close to that of the bulk body. Regarding the three-point bending strength, all of Examples 1 to 3 are within a practical range of 79 MPa to 83 MPa, and for the average pore diameter, all of Examples 1 to 3 are required for dense carbon materials. It was within the range. On the other hand, in Comparative Example 1 and Comparative Example 2 in which the pre-heat treatment step was not performed, swelling occurred during the carbonization step, and a good product could not be obtained. From this, it is said that performing a pre-heat treatment on the raw material fabric before the impregnation step is very effective in suppressing foaming and swelling caused by the gas generated by thermal decomposition originating from the fabric. it was thought.

実施例1〜3の非晶質炭素板材を、上記と同様に膨張黒鉛シートで挟み、詰め粉に埋設して、2200℃の温度で1時間加熱し、黒鉛化した(黒鉛化工程)。黒鉛化した炭素板材について、上記と同様に、厚さ、三点曲げ強度、平均気孔径を測定した。その結果を表2に示す。   The amorphous carbon plate materials of Examples 1 to 3 were sandwiched between expanded graphite sheets in the same manner as described above, embedded in stuffed powder, heated at a temperature of 2200 ° C. for 1 hour, and graphitized (graphitization step). The graphitized carbon plate was measured for thickness, three-point bending strength, and average pore diameter in the same manner as described above. The results are shown in Table 2.

Figure 2015010014
Figure 2015010014

実施例1〜3の何れも、試料の全数について、割れや剥離のない良品の黒鉛化した炭素板材が得られた。厚さは、非晶質炭素板材に比べるとやや薄くなったが、それでも2.5mm〜6.6mmであり、従来の黒鉛化された炭素板材(厚さ0.4mm程度)に比べると、極めて肉厚であると言える。平均気孔径は黒鉛化することで非晶質炭素板材より小さくなっており、三点曲げ強度は、黒鉛化する前と同程度であった。   In all of Examples 1 to 3, a good graphitized carbon plate material free from cracking and peeling was obtained with respect to the total number of samples. The thickness is slightly thinner than the amorphous carbon plate, but it is still 2.5 mm to 6.6 mm, which is extremely low compared to the conventional graphitized carbon plate (thickness of about 0.4 mm). It can be said that it is thick. The average pore diameter was smaller than that of the amorphous carbon plate by graphitization, and the three-point bending strength was the same as that before graphitization.

次に、第二実施形態の実施例4について説明する。実施例1〜3と異なる点は、含浸させる混合溶液に炭素質フィラーを含有させている点である。炭素質フィラーとしては、粉砕により短繊維化された炭素繊維(大阪ガスケミカル製、ドナカーボ)繊維直径約10μm、繊維長約1mmを使用した。混合溶液中の炭素繊維の割合は、混合溶液から揮発分を除去した固形分に対する炭素繊維の割合として、3質量%とした。なお、混合溶液から揮発分を除去した固形分に対する炭素繊維の割合は、次式により算出した。
(一定量の混合溶液中の炭素繊維の質量)×100/(一定量の混合溶液を150℃で所定時間加熱した後の残存分の質量)
Next, Example 4 of the second embodiment will be described. A different point from Examples 1 to 3 is that a carbonaceous filler is contained in the mixed solution to be impregnated. As the carbonaceous filler, a carbon fiber (DonaCarbo, manufactured by Osaka Gas Chemical Co., Ltd.) shortened by pulverization and a fiber length of about 1 mm were used. The ratio of the carbon fiber in the mixed solution was 3% by mass as the ratio of the carbon fiber to the solid content obtained by removing the volatile component from the mixed solution. In addition, the ratio of the carbon fiber with respect to solid content which removed the volatile matter from the mixed solution was computed by following Formula.
(Mass of carbon fiber in a certain amount of mixed solution) × 100 / (Mass of remaining amount after heating a certain amount of mixed solution at 150 ° C. for a predetermined time)

また、「変性樹脂の固形分と炭素繊維の質量の和」の混合溶液に対する割合は、45質量%であった。炭素繊維を含有する混合溶液を、実施例1〜3と同じ綿織物に含浸させ、含浸織物の15枚を積層して積層成形体とした。その他の工程及び各種試験方法は、実施例1〜3と同様である。実施例4の非晶質炭素板材について、厚さ、三点曲げ強さ、平均気孔径の測定結果を、表3に示す。   The ratio of “the sum of the solid content of the modified resin and the mass of the carbon fiber” to the mixed solution was 45% by mass. The same cotton fabric as in Examples 1 to 3 was impregnated with the mixed solution containing carbon fiber, and 15 sheets of the impregnated fabric were laminated to form a laminated molded body. Other steps and various test methods are the same as those in Examples 1 to 3. Table 3 shows the measurement results of the thickness, three-point bending strength, and average pore diameter of the amorphous carbon plate material of Example 4.

Figure 2015010014
Figure 2015010014

実施例4の厚さ及び三点曲げ強さは、積層枚数の等しい実施例2と同程度であった。また、炭素繊維を含有する混合溶液を使用することで、平均気孔径は実施例1〜3に比べるとやや大きくなったが、それでも緻密質の炭素材として要請される3μm以下である、1.5〜1.6μmであった。   The thickness and three-point bending strength of Example 4 were almost the same as those of Example 2 with the same number of laminated layers. Moreover, although the average pore diameter became slightly larger than Examples 1-3 by using the mixed solution containing carbon fiber, it is still 3 μm or less which is required as a dense carbon material. It was 5 to 1.6 μm.

実施例4の非晶質炭素板材から、20mm幅の短冊状の試験片を切り出し、電圧端子間距離50mmとし、四端子法で電気比抵抗を測定した。また、対比のために、実施例2の非晶質炭素板材、及び、黒鉛化された炭素板材について、同様に比抵抗を測定した。その結果を、表4に示す。   A strip-shaped test piece having a width of 20 mm was cut out from the amorphous carbon plate of Example 4, and the electrical resistivity was measured by a four-terminal method with a voltage terminal distance of 50 mm. For comparison, the specific resistance of the amorphous carbon plate of Example 2 and the graphitized carbon plate were measured in the same manner. The results are shown in Table 4.

Figure 2015010014
Figure 2015010014

表4に示すように、織物に含浸させた混合溶液に炭素質フィラーを含まない実施例2では、非晶質炭素板材の比抵抗値は5000μΩcmを超えており、黒鉛化することで比抵抗値が3340μΩcmに低下し、電気伝導性が高まった。これに対し、炭素質フィラーを含有する混合溶液を織物に含浸させた実施例4では、黒鉛化させていない非晶質炭素板材であっても、黒鉛化させた実施例2の試料と同程度である比抵抗値3300〜3380μΩcmを示した。以上の結果から、織物に含浸させる混合溶液に炭素質フィラーを含有させることにより、黒鉛化する手間、時間、エネルギーを要することなく、黒鉛化させた炭素板材と同程度の電気伝導性の高い炭素板材を製造できること、及び、混合溶液に炭素質フィラーを含有させても、気孔の増大や機械的強度の低下のおそれを抑制しつつ、従来に比べて厚さの大きい炭素板材を製造できること、が確認された。   As shown in Table 4, in Example 2 in which the mixed solution impregnated into the fabric does not contain a carbonaceous filler, the specific resistance value of the amorphous carbon plate material exceeds 5000 μΩcm, and the specific resistance value is obtained by graphitization. Decreased to 3340 μΩcm, and electrical conductivity increased. On the other hand, in Example 4 in which the woven fabric was impregnated with the mixed solution containing the carbonaceous filler, even the amorphous carbon plate material that was not graphitized was almost the same as the graphitized sample of Example 2. A specific resistance value of 3300 to 3380 μΩcm was shown. From the above results, by adding a carbonaceous filler to the mixed solution to be impregnated into the fabric, carbon having high electrical conductivity equivalent to that of the graphitized carbon plate material is not required for graphitizing labor, time and energy. It is possible to produce a plate material, and even if a carbonaceous filler is included in the mixed solution, a carbon plate material having a thickness larger than that of the conventional one can be produced while suppressing the risk of increase in pores and mechanical strength. confirmed.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above-described embodiments, and various improvements and design changes can be made without departing from the scope of the present invention. It is.

例えば、上記では、織物に含浸させる混合溶液に含有させる炭素質フィラーとして、短繊維化された炭素繊維を使用した実施例を例示したが、炭素質フィラーとしてカーボンブラックの微粒子を使用することができる。炭素繊維に比べてアスペクト比の小さい炭素微粒子を使用することにより、より気孔径を小さく抑えつつ、電気伝導性を高めることができると考えられる。   For example, in the above, an example in which carbon fibers shortened as a carbonaceous filler to be included in a mixed solution impregnated in a fabric is illustrated, but carbon black fine particles can be used as the carbonaceous filler. . By using carbon fine particles having a smaller aspect ratio than that of carbon fiber, it is considered that the electrical conductivity can be increased while suppressing the pore diameter to be smaller.

特開昭60−161144号公報Japanese Patent Laid-Open No. 60-161144 特開昭60−231470号公報JP 60-231470 A

Claims (5)

セルロース繊維を原料とする織物を150℃〜300℃の温度で熱処理する前熱処理工程と、
熱処理された前記織物に、乾性油または乾性油の構成脂肪酸を混合したフェノール樹脂を含む混合溶液を含浸させ、含浸織物を得る含浸工程と、
前記含浸織物を乾燥させる乾燥工程と、
乾燥させた前記含浸織物の複数枚を積層し圧着して積層成形体を得る積層圧着工程と、
前記積層成形体を非酸化性雰囲気で焼成して炭化し、非晶質炭素板材を得る炭化工程と
を具備することを特徴とする炭素板材の製造方法。
A pre-heat treatment step of heat-treating a fabric made of cellulose fiber at a temperature of 150 ° C. to 300 ° C .;
An impregnation step of impregnating the heat-treated fabric with a mixed solution containing a phenol resin mixed with a drying oil or a constituent fatty acid of the drying oil to obtain an impregnated fabric;
A drying step of drying the impregnated fabric;
Laminating and pressing step of laminating a plurality of dried impregnated fabrics and press-bonding to obtain a laminated molded body; and
A carbon plate material manufacturing method comprising: a carbonization step of firing and carbonizing the laminated molded body in a non-oxidizing atmosphere to obtain an amorphous carbon plate material.
前記炭化工程は、前記積層成形体を膨張黒鉛シート間に挟んだ状態で行われる
ことを特徴とする請求項1に記載の炭素板材の製造方法。
The method for producing a carbon plate material according to claim 1, wherein the carbonization step is performed in a state where the laminated molded body is sandwiched between expanded graphite sheets.
前記含浸工程は、炭素質フィラーを含有する前記混合溶液を使用して行われる
ことを特徴とする請求項1または請求項2に記載の炭素板材の製造方法。
The said impregnation process is performed using the said mixed solution containing a carbonaceous filler, The manufacturing method of the carbon plate material of Claim 1 or Claim 2 characterized by the above-mentioned.
前記炭化工程の後に、前記非晶質炭素板材を非酸化性雰囲気で1700℃〜2600℃で焼成し黒鉛化させる黒鉛化工程を具備する
ことを特徴とする請求項1乃至請求項3の何れか一つに記載の炭素板材の製造方法。
4. The graphitization step of calcinating the amorphous carbon plate material at 1700 ° C. to 2600 ° C. in a non-oxidizing atmosphere after the carbonization step is provided. 5. The manufacturing method of the carbon plate material as described in one.
厚さが2.5mm〜7.0mmであり、
水銀圧入法により測定されたモード径としての気孔径が1.6μm以下である
ことを特徴とする炭素板材。
The thickness is 2.5 mm to 7.0 mm,
A carbon plate material having a pore diameter as a mode diameter measured by a mercury intrusion method of 1.6 μm or less.
JP2013135851A 2013-06-28 2013-06-28 Production method of carbon plate material, and carbon plate material Pending JP2015010014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013135851A JP2015010014A (en) 2013-06-28 2013-06-28 Production method of carbon plate material, and carbon plate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013135851A JP2015010014A (en) 2013-06-28 2013-06-28 Production method of carbon plate material, and carbon plate material

Publications (1)

Publication Number Publication Date
JP2015010014A true JP2015010014A (en) 2015-01-19

Family

ID=52303489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013135851A Pending JP2015010014A (en) 2013-06-28 2013-06-28 Production method of carbon plate material, and carbon plate material

Country Status (1)

Country Link
JP (1) JP2015010014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108227A (en) * 2015-04-30 2017-08-29 Skc株式会社 Graphite flake and preparation method thereof
KR20180012999A (en) * 2016-07-28 2018-02-07 에스케이씨 주식회사 Composite sheet, antenna module and preparation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108227A (en) * 2015-04-30 2017-08-29 Skc株式会社 Graphite flake and preparation method thereof
JP2018506492A (en) * 2015-04-30 2018-03-08 エスケーシー カンパニー,リミテッド Graphite sheet and method for producing the same
JP2019073438A (en) * 2015-04-30 2019-05-16 エスケーシー カンパニー,リミテッド Graphite sheet and production method therefor
TWI727945B (en) * 2015-04-30 2021-05-21 南韓商Skc股份有限公司 Graphite sheet and method for preparing same
US11040516B2 (en) 2015-04-30 2021-06-22 Skc Co., Ltd. Graphite sheet and method for manufacturing same
US11541634B2 (en) 2015-04-30 2023-01-03 Skc Co., Ltd. Graphite sheet and method for manufacturing same
KR20180012999A (en) * 2016-07-28 2018-02-07 에스케이씨 주식회사 Composite sheet, antenna module and preparation thereof
KR102006344B1 (en) * 2016-07-28 2019-08-02 에스케이씨 주식회사 Composite sheet, antenna module and preparation thereof

Similar Documents

Publication Publication Date Title
JP5205671B2 (en) Heat resistant composite material
KR102529541B1 (en) High Strength Graphene Fiber and Manufacturing Method Thereof
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
JP6729373B2 (en) Porous carbon electrode substrate, method for producing the same, gas diffusion layer, and membrane-electrode assembly for fuel cell
CN108610049B (en) Isotropic graphite material, method for the production thereof and use thereof
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
KR101324703B1 (en) Method for preparing carbon substrate comprising activated carbon fiber, carbon substrate prepared thereby
TW201522218A (en) Flexible composites containing graphite and fillers
KR102078974B1 (en) Manufacturing method of carbon papers having excellent thermal conductivity and carbon papers manufactured therefrom
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
JP2015010014A (en) Production method of carbon plate material, and carbon plate material
KR20210015240A (en) Method for preparing graphite sheet
KR101473432B1 (en) Method for fabricating graphite
JP2004214072A (en) Carbon fiber sheet and its manufacturing method
KR101392232B1 (en) Method for fabrication of carbon paper wet-laid by onzone-treated carbon fibers with hydrophilic functional groups, the carbon paper prepared using the method and fuel cell comprising the carbon paper
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JP5687184B2 (en) Method for producing dense carbon sheet and carbon sheet
JP2009234851A (en) Porous carbon sheet and its manufacturing process
JP2009280437A (en) Method for producing porous carbon sheet
JP2004111341A (en) Manufacturing method of carbon fiber woven fabric or nonwoven fabric for fuel cell gas diffusion layer
KR101064944B1 (en) Producing method of fuel Cell Separator Using pure-carbon Composite
TWI610887B (en) Isotropic graphite material, method of producing the same and application thereof
JPH0520386B2 (en)
JP2009155193A (en) Porous carbon sheet and method for manufacturing the same, and membrane electrode fusion product using porous carbon sheet
JP2010228934A (en) Method for heat-treating thin plate-like molding