JPH0520386B2 - - Google Patents

Info

Publication number
JPH0520386B2
JPH0520386B2 JP59095263A JP9526384A JPH0520386B2 JP H0520386 B2 JPH0520386 B2 JP H0520386B2 JP 59095263 A JP59095263 A JP 59095263A JP 9526384 A JP9526384 A JP 9526384A JP H0520386 B2 JPH0520386 B2 JP H0520386B2
Authority
JP
Japan
Prior art keywords
paper
carbon
weight
pitch
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59095263A
Other languages
Japanese (ja)
Other versions
JPS60239358A (en
Inventor
Akio Yoshida
Shigetoshi Yasujima
Masaru Hiruta
Hatsuo Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59095263A priority Critical patent/JPS60239358A/en
Publication of JPS60239358A publication Critical patent/JPS60239358A/en
Publication of JPH0520386B2 publication Critical patent/JPH0520386B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は緻密でガス透過性が小さく電気伝導の
良い炭素質薄板およびその製造方法に関する。更
に詳しくは、基材として使用された実質的に炭素
化された薄い紙状支持体と、偏光顕微鏡下に異方
性を示す粒子の大きさが10μm以下の微細モザイ
ク状または等方性の光学的構造を示す炭素質マト
リツクスとの複合体よりなる炭素質薄板であつ
て、炭素含有量が95重量%以上で、ガス透過係数
が10-5〜10-7cm2/s、厚さ方向の電気比抵抗が2
×10-3〜6×10-3Ω・cm、嵩密度が1.4〜1.9g/
cm3の物性を有する厚さが0.1〜1mmの炭素質およ
びその製造方法を提供するものである。 (産業上の利用分野) 本発明の炭素質薄板は、炭素材料固有の耐熱・
耐蝕性をもち、電気比抵抗が10-2Ωcm以下、ガス
透過係数が10-5cm2/s以下であり、例えばリン酸
型燃料電池のセパレータ等耐熱、耐蝕性と同時に
導電性、熱伝導性およびガス不透過性が要求され
る用途に効果がある。本発明の薄板が上記以外の
用途、例えば電解用電極や耐熱、耐蝕性熱交換器
の隔膜その他に使用できることは勿論である。 (従来の技術) 黒鉛製薄板及びその製造法として特開昭59−
26907号公報に予め2700℃以上に熱処理した粒度
100ミクロン以下の黒鉛微粉に液状熱硬化性樹脂
を加え混練したペーストをロール成形機により薄
板状に成形し、次いで加熱硬化もしくは該薄板の
両側に加熱板を当接し加圧しながら硬化させ、そ
の後常法により加熱炭化処理した黒鉛製薄板及び
その製造法が開示されている。しかしかかる黒鉛
製薄板においては、黒鉛微粉末と熱硬化性樹脂と
の接着性が悪く、炭化処理時に界面に空〓が生じ
やすく通気率が1×10-5cm2/s以下にすることは
困難とされていた。このため高度のガス不透過性
が要求される場合は板厚を厚くしなければならな
い欠点を有する。 特開昭59−21512号公報には、塩素化塩化ビニ
ル樹脂及び/または塩化ビニル樹脂をフラン樹脂
と混合し、混練し、得られた混合物をフイルムま
たはシート状に成形し、得られた成形物に炭素前
駆体化処理を施した後、不活性雰囲気中で焼成す
ることから成るガラス状炭素薄板の製造法が開示
されているが、通気率は10-11〜10-10cm2/s(He,
ΔP=1atm)と小さいが、焼成炭化処理における
樹脂の炭化収率が小さく収縮率が大きいため形状
の大きい薄板を割れやクラツクを発生させずに寸
法精度良く製造することはきわめて困難である。
またこの方法においては原料樹脂が塩素原子を含
有するため、この塩素原子が熱処理時に腐蝕性の
強い塩素ガスまたは塩酸ガスとして脱離するた
め、工業的に実施する場合は装置および装置の材
質に特別の配慮が必要となる。 特開昭58−150275号公報には、液状のフラン樹
脂またはフエノール樹脂もしくはこれらの混合樹
脂を成形炭化したガラス状カーボンで構成した燃
料電池セルセパレーターが開示されている。しか
しガラス状カーボンは機体透過度はきわめて小さ
いがその製造には非常な長時間を要し、生産性が
低く、コストが高くなる。 (解決しようとする問題点) 本発明の第1の目的は、上述の如き従来問題と
なつていた大きな形状の例えば縦、横各1m程度
の炭素質薄板を製造する場合、割れやクラツクの
発生のない緻密でガス透過係数が10-5cm2/s以下
とガスを殆んど透さず、電気比抵抗が6×10-3
Ω・cm以下と良い電気導電性を示す炭素質薄板を
提供することにある。 本発明の第2の目的は、上述の如き従来問題と
されていた、ガス不透過性で良導電性の炭素質薄
板を製造するために、マトリツクス樹脂の含浸、
焼成などを繰り返す複雑な工程を要しない、1連
の1回だけのマトリツクス樹脂の担持、成形、焼
成によつて容易に所望の炭素質薄板を工業的かつ
経済的に製造する方法を提供することにある。 本発明の炭素質薄板の厚さは数十ミクロン乃至
数ミリメートルの範囲を提供することを目的とす
るものであるが、特にリン酸型燃料電池のガス分
離板向け用途を想定してタテ、ヨコ各1m程度の
寸法で薄板の機械的な強さ、ガス透過性、電池の
厚さ等を考慮して0.1乃至1mm程度を対象とする
ことにした。 (問題点を解決するための手段) 本発明の炭素質薄板は、炭素化可能な薄い紙状
支持体に、炭化により偏光顕微鏡下に異方性を示
す粒子の大きさが10μm以下の微細モザイク状ま
たは等方性の光学的構造を示す炭素を与える炭素
前駆体(以下マトリツクス樹脂とも称する)を、
溶液または懸濁液(スラリー)として担持させた
後、溶液または懸濁液に使用した溶媒を蒸発乾燥
させ、該担持物(以下グリーンシートとも称す
る)を単独でまたは複数枚積層して、加圧下に加
熱・硬化させ、更に炭化焼成する方法によつて得
られる。 本発明者は、炭素前駆体を均一に担持させ、成
形金型内で起りやすい炭素前駆体粉末などの仕込
みムラを未然に防止することができ、更に高温焼
成時の成形品の曲りや反りを防止することができ
るものとして、厚さを任意に選べる炭素化可能な
または炭素化された紙状支持体を使用することに
よつて、大型の寸法の薄板でも均質で厚さが一様
な成形体が得られるようにした。更に、以下に述
べるような炭化時にクラツクを生じない特定の炭
素前駆体を、この紙状支持体に担持させ、炭化焼
成により紙状支持体の炭素化された部分と炭素前
駆体の炭素化された炭素質マトリツクスが緊密に
一体化複合されて、機械強度、ガス不透過性、熱
伝導性、導電性などが改善された炭素質薄板が得
られるのである。 炭化時にクラツクやクラツクが連接した割れが
生じない炭素前駆体に関しては次のような知見が
あり、本発明者はこの知見に基づき、本発明の炭
化により偏光顕微鏡下に異方性を示す部分が
10μm以下の微細なモザイク状を示す光学的異方
性構造または等方性の光学的組織の炭素を与える
ピツチ状物質(炭素前駆体)を選択することによ
り本発明に至つたものである。 ピツチ状物質を焼成炭化して得られる炭素材料
の断面を研磨して偏光顕微鏡下に観察すると、出
発原料の差等によつて大別して流れ状もしくはモ
ザイク状の模様(組織)が観察されるかまたは光
学的に均一で一様に見えるかの三つのタイプに分
かれる。これらの差異は炭素材料を構成する巨大
な平面分子ともいえる六員環網状平面の積層構造
の発達の程度によるものである。即ち流れ状の組
織を示す炭素材料は網状平面の積層構造の良く発
達した炭素材料であり、層の厚さとともにその平
面方向の大きさも大きく六員環網状平面が積層さ
れた構造を有し、黒鉛構造に近い構造の炭素材料
であり、易黒鉛化性炭素とよばれている。一方モ
ザイク状の組織が観察される炭素材料は網状平面
の積層構造がモザイクの大きさと等しい大きさで
あり、流れ状組織のものに比べて積層構造の発達
の程度は小さい。光学的に均一な炭素は積層構造
の未発達な炭素で難黒鉛化性炭素とよばれてい
る。 炭素材料を研磨して偏光顕微鏡下に観察した
時、流れ状もしくはモザイク状の模様が観察され
るかまたは光学的に均一で一様に見える炭素を以
後単にそれぞれ流れ状炭素、モザイク状炭素およ
び等方性炭素と称する。 炭素材料の構造はピツチ状物質が固化する炭素
化の初期、約500℃以下の温度域でほぼ決定され
る。固化したピツチ状物質をさらに加熱して炭化
をすすめると揮発分を放出して収縮する。この収
縮によつてクラツクが入ることがある。層構造の
良く発達した流れ状組織を有するものは非常にク
ラツクが入りやすい。収縮は六員環網状平面が重
つた層状構造の層と平行な方向より層に垂直な方
向の方がより大きい。モザイク状又は等方性炭素
の場合は層の厚さおよび平面方向の大きさも小さ
く、層構造はランダムな方向に分布しているため
マクロ的には等方的で収縮による応力集中がおこ
りにくくクラツクが入りにくい。これに比べて層
構造の良く発達した流れ状組織のものは収縮の異
方性が大きく応力集中が起こりやすくクラツクが
入りやすい。 (発明の構成と作用) 本発明に使用される炭素化可能な紙状支持体と
しては、前に述べたように炭素化可能な炭素前駆
体を均一に保持することができる繊維からなる網
目空間を有する薄い紙状物質であつて、担持した
炭素前駆体が熱硬化する約500℃の温度までは少
なくともこの担持物を支持できるような高軟化点
の繊維からなる紙状物質であることが望ましい。 このような目的に適合する炭素化可能な紙状支
持体としては具体的に次のようなものが使用され
る。 木材などの植物体を、機械的または化学的に
処理し、その植物繊維をバラバラにして取出し
た天然植物繊維パルプを抄造して製造した紙。
天然パルプ紙には色々な種類があるが白土、酸
化チタン等の填料を添加せずに抄造し、塗被加
工等の後加工を施さない紙が本発明には特に好
ましい。 植物繊維パルプ70重量%以上と化学繊維を親
水性に修飾した合成パルプを残余の量として、
混抄して製造した混抄紙。化学繊維としてはポ
リエチレン、ポリプロピレン、レーヨン、アセ
テート、ビニロン、ナイロン、アクリルおよび
ポリエステルなどが用いられる。 ポリアクリロニトリル、ポリビニルアルコー
ル、セルロースおよびフエノール樹脂のいずれ
かによりなる合成繊維を不活性ガス雰囲気の中
で600℃以下の温度に熱処理した該合成繊維を
抄造または熱融着して製造した合成繊維紙。 石油系または石炭系タールを熱処理して得ら
れたピツチを紡糸した後、2.5重量%以上の酸
素を導入したピツチ糸を抄造または熱融着して
製造した酸化ピツチ繊維紙。 前記酸化ピツチ系を不活性ガス雰囲気の中で
600℃以下で熱処理した酸化ピツチ糸を抄造し
て製造した酸化ピツチ繊維紙。 常法により得られた炭素繊維を抄造して製造
された炭素繊維紙。 前記乃至の各種繊維の1種以上の繊維を
任意の割合に混抄して製造した混抄紙。 本発明の対象とするリン酸型燃料電池用ガス分
離板などに使用される炭素化可能な紙状支持体の
厚さは、製造する炭素質薄板の厚さによつても左
右されるが、目付量の単位で50g/m3以下が特に
好ましい。 本発明の方法では、上述の炭化可能な紙状支持
体に炭化によりクラツクを生じないマトリツクス
樹脂を溶液または懸濁液として担持させるが、紙
状支持体へのマトリツクス樹脂の担持量はマトリ
ツクス樹脂溶液または懸濁液に使用した溶媒を蒸
発乾燥させた担持物(グリーンシート)に対して
70乃至90重量%であることが好ましい。マトリツ
クス樹脂の担持量が70重量%より少ないと、得ら
れる炭素質薄板がポーラスになりガス透過度が大
きくなる。90重量%より多くなると均一な担持が
困難となる。 成形された薄板を焼成炭化する際、マトリツク
ス樹脂は分解、重縮合反応により低分子量分子を
ガス状物質として放出しながら固化炭化する。従
つてガス状物質の放出が多いと薄板中に気泡が生
成したり、マトリツクス樹脂の収縮が大きくな
り、薄板が割れたり、クラツクの原因となり好ま
しくない。一方炭化時のガス状物質の放出の少な
いものとしては、いわゆる高炭化収率のマトリツ
クス樹脂を用いればよい。ところが高炭化収率の
マトリツクス樹脂は一般に軟化点が高く、成形時
および焼成炭化時にマトリツクス樹脂相互間およ
び紙状支持体との間の接着が不充分となり、ガス
透過度の大きい炭素質薄板しか得られない。この
ように本発明のマトリツクス樹脂に要求される特
性は炭化収率と接着強度とに関して互いに相矛盾
するが、900℃焼成における炭化収率が60重量パ
ーセント以上で軟化点が450℃以下のピツチ状物
質が本発明を実施する上に好適である。 本発明の目的のためには、上述したように炭化
によつて流れ状炭素を与えるピツチ状物質はクラ
ツクを多く含みガス透過度の大きい炭素質薄板を
与えるため好ましくなく、炭化により微細なモザ
イク状炭素または等方性の炭素を与えるピツチ状
物質が好ましい。モザイク組織の大きさは10ミク
ロン以下が好ましい。 本発明は炭化により10ミクロン以下好ましくは
5ミクロン以下の大きさのモザイク状炭素または
等方性の炭素に転化可能で、900℃焼成での炭化
収率が60重量%以上好ましくは70〜95重量%、軟
化点が250〜400℃のピツチ状物質を使用すること
によつてより効果的に達成することができる。 ここで示される軟化点は以下のようにして測定
される。島津製作所製高化式フローテスターを用
い、250ミクロン以下に粉砕された試料1gを直
径1mmのノズルを底部に有する断面積1cm2のシリ
ンダーに充填し、10Kg/cm2の荷重を加えながら6
℃/mmの速度で昇温する。温度の上昇にともない
粉体粒子が軟化し充填率が向上し、試料粉体の体
積は減少するが、ある温度以上では体積の減少は
停止する。更に昇温を続けるとシリンダー下部の
ノズルより試料が溶融して流出する。この時の試
料粉体の体積減少が停止する温度をその試料の軟
化点と定義する。なお軟化点の高い試料において
はノズルからの試料の溶融流出は起こらない場合
もある。 本発明に使用される軟化点が450℃以下、900℃
での炭化収率60重量パーセント以上で、炭化によ
つて微細なモザイク状炭素または等方性の炭素に
転化可能なピツチ状物質は、コールタールまたは
石油タール等のタール類に酸素、硫黄、硝酸等を
加え、150〜450℃の温度で加熱処理して酸素、硫
黄または窒素の導入されたピツチを得る方法、ま
たはピツチ類を酸化処理する例えば特公昭53−
31116号公報記載の方法等により容易に得られる。
たとえばピツチ状物質に酸素を導入した場合導入
される酸素量の増大にともなつてこれを炭化して
得られる炭素の光学的組織は流れ状、モザイク状
から等方性へと変化する。本発明に好適な微細な
モザイク状または等方性の炭素質マトリツクスを
与えるピツチ状物質としては2.5重量%以上の酸
素を含有することが必要である。 またこれらの方法で製造されたピツチに炭素化
収率を向上させる目的で黒鉛等の炭素質微粉末を
添加してマトリツクス樹脂として使用することも
可能であるが、これら炭素質微粉末の添加量が多
くなると得られる炭素質薄板のガス透過度が大き
くなるので添加量はマトリツクス樹脂全体の半分
以下にとどめるほうが良い。 また上記の方法で製造されたピツチ類とフエノ
ール樹脂またはフラン樹脂等の熱硬化性樹脂の混
合物をマトリツクス樹脂とすることも可能であ
る。この場合熱硬化性樹脂を溶解する溶媒を用い
て担持用のスラリーを調製すると、熱硬化性樹脂
の増粘作用によりスラリーが安定化しまた得られ
るグリーンシートのマトリツクス樹脂相互または
支持体との接着が強固になり、取扱いが容易とな
る利点も有する。これら熱硬化性樹脂の添加量が
多くなると、得られる炭素質薄板のガス透過度が
大きくなるので、添加量はマトリツクス樹脂全体
の40重量%未満にとどめるほうが良い。炭素化可
能な紙状支持体にマトリツクス樹脂を担持させグ
リーンシートを製造するには、マトリツクス樹脂
を溶液またはスラリーとして浸漬または塗布した
後、該溶液中の溶剤または該スラリー中の溶媒を
蒸発して乾燥する方法が用いられる。 マトリツクス樹脂溶液を用いる場合には、マト
リツクス樹脂を適当な溶剤に溶解した溶液に紙状
支持体を浸漬するかまたは該溶液を紙状支持体に
塗布した後、溶剤を蒸発する。この場合に用いる
溶剤にはメタノール、エタノール、アセトン、ベ
ンゼン、トルエンまたはそれらの混合物がある。
溶液中のマトリツクス樹脂の濃度は、ジエツトミ
ルなどの粉砕機で予め微粉砕したマトリツクス樹
脂に上記溶剤を添加して、紙状支持体に浸透しや
すい粘度が得られるように10〜50重量%の範囲に
調整する。この場合マトリツクス樹脂は完全に溶
解することが好ましいが、完全に溶解しないで一
部微細な粒子で存在しても支障はない。 またマトリツクス樹脂をスラリーとして用いる
場合には、予めジエツトミル(乾式)またはボー
ルミル(湿式)などで微粉砕された微粉末マトリ
ツクス樹脂を適当な溶媒に分散させたスラリーを
紙状支持体に塗布した後、溶媒を蒸発する。この
場合に用いる溶媒には、水、メタノール、エタノ
ール、アセトンまたはそれらの混合物がある。ス
ラリー中のマトリツクス樹脂濃度は上記溶媒の添
加量により10〜50重量%となるように調整され
る。 これらの方法において、マトリツクス樹脂相互
および紙状支持体との付着性を良くするためまた
はスラリーの安定性を向上させる等のために少量
の第三物質たとえば増粘剤、界面活性剤等を加え
ても良い。 上記の方法でマトリツクス樹脂溶液またはスラ
リーを担持した紙状支持体の溶剤または溶媒を蒸
発、乾燥してグリーンシート(マトリツクス樹脂
担持のドライ紙状物質)とするが、蒸発乾燥条件
は60〜150℃の温度範囲で、50mmHg以下の減圧
状態で、溶媒残留量が1%以下になるまで真空炉
内で熱処理する。 上述のような方法で製造されたグリーンシート
は1枚または複数枚積層して所定の金型に供給
し、加熱プレスして薄板状に成形した後、焼成炭
化して炭素質薄板を製造する。プレス成形の条件
は150〜400℃の温度、圧力100Kg/cm2以下、圧保
持時間10〜120分間の範囲が用いられる。 焼成は0.1〜30Kg/cm2の加圧下、600℃まで昇温
した後、一旦除圧してから更に不活性ガス雰囲気
中で800〜3000℃の温度で焼成炭化する。 加圧下に焼成することは、薄板の反りを防ぎ、
より緻密な炭素質薄板を製造する上で特に好まし
い。グリーンシートは加熱により約500℃で固化
するので約600℃まで加圧下に焼成した後、不活
性ガス雰囲気中で更に900℃以上で炭化した後黒
鉛化することが好ましい。高導電性が要求される
場合には2000℃以上で処理することが望ましい。 (本発明の効果) 本発明の特徴の一つは炭素化可能な薄い紙状支
持体を使用することによつてきわめて厚さの均一
な大きな形状の炭素質薄板を容易に提供できるこ
とにある。紙状支持体を使用しない方法、たとえ
ばマトリツクス樹脂を金型に充填して加熱プレス
して大きな面積をもつた薄板を製造する場合、高
炭化収率のマトリツクス樹脂は軟化点が高く流動
性が悪いため大きな面積にわたつてきわめて均一
にかつ薄くマトリツクス樹脂を充填する必要があ
る。これを工業的に実施することはきわめて困難
である。 本発明の他の特徴は炭化により微細モザイク状
炭素または等方性炭素に転化可能で炭素化収率が
高くかつ軟化点が低い、すなわち焼結性の良い特
定された範囲のマトリツクス樹脂を炭素化可能な
紙状支持体に担持せしめ、薄板状に成形した後焼
成炭化することによつて緻密でクラツクが少な
く、ガス透過度が小さく、電気伝導度の大きい炭
素質薄板をマトリツクス樹脂の含浸焼成をくり返
す等の複雑な工程を経ることなく一回の成形・焼
成のみによつてきわめて容易に提供することにあ
る。本発明に使用する炭素化可能なまたは炭素化
された紙状支持体は焼成炭化によりマトリツクス
炭素と緊密に一体化するため得られる炭素質薄板
は緻密でガス透過度が小さく導電性は大きい。 本発明の炭素質薄板は研磨し、偏光顕微鏡で観
察することによつて炭素質支持体と炭素質マトリ
ツクスの光学的異方性構造を識別することが可能
である。 なお本発明および以下の実施例で使用するガス
透過係数は、「プラスチツクフイルムおよびシー
トの酸素ガス移動率の測定法」ASTM D−3985
−81に準拠して測定されたもので、薄板材料の一
方に窒素ガスを流して大気からの酸素の拡散を遮
断し、他方に純度100%の酸素ガスを導入し、窒
素ガス側に試料薄板の厚さを通して拡散透過する
酸素ガス量を酸素センサーによる電量定量法で測
定して求められたものである。従つて本発明のガ
ス透過係数(cm3(S.T.P)/cm・s)の値は全圧
が1気圧下の酸素(酸素ガス分圧ΔP=1atm.)
の場合の測定値であり、測定温度は20℃で、測定
値は標準状態のガス量に換算した値で表わしてあ
る。なお本発明の炭素質薄板試料は均質なものと
仮定して、測定されるガス透過率(cm3(S.T.
P)/cm2・s)に試料の厚さを乗じて薄板のガス
透過係数(cm2/s;O2,ΔP=1atm)とした。 以下実施例により本発明を更に詳しく説明す
る。 実施例 1 エチレンボトム油を370℃で3時間処理して重
質化を進めると同時に低沸点分を除去してピツチ
(A)を製造した。このピツチ(A)を100ミクロン以下
に粉砕して10℃/hrの速度で190℃まで空気中で
昇温してピツチ(B)を製造した。ピツチ(B)は軟化点
285℃,900℃焼成での炭化収率72重量%であつ
た。ピツチ(B)を更に不活性ガス雰囲気中で400℃
で2時間熱処理して、軟化点314℃,900℃での炭
化収率82重量パーセントのピツチ(C)を製造した。
このピツチ(C)を粒径10ミクロン以下が90重量パー
セント以上になるように粉砕した微粉ピツチ(C)20
重量部、メチルセルロース(信越化学株式会社
製:メトローズ90SH−4000)0.4重量部、水80重
量部を均一に混合したスラリーを調製した。この
スラリーを無機物を添加せずパルプだけを抄造し
た目付40g/m3の紙の両面にスプレー法により均
一に塗布した後乾燥して目付200g/m3のグリー
ンシートを製造した。このグリーンシートを6枚
積層して金型に充填し、300℃/hrの速度で370℃
まで昇温し、10Kg/cm2の圧力で30分間プレスした
後圧力を1Kg/cm2とし、50℃/hrの速度で600℃
まで昇温した後冷却して薄板を製造した。この薄
板を不活性ガス雰囲気中で2000℃で焼成して厚さ
0.59mmの炭素質薄板を製造した。この炭素質薄板
を研磨して偏光顕微鏡で観察するとパルプ由来の
紙状の炭素質支持体が層状に積層されており、炭
素質マトリツクスは5ミクロン以下の微細なモザ
イク状の炭素であることが観察された。この炭素
質薄板の炭素含有量は99重量%以上であつた。ま
たその特性を表−1に示す。 本炭素質薄板をリン酸型燃料電池のセルセパレ
ータとして電池セルを構成し、温度190℃、電流
密度220mA/cm2で700時間運転したがセルセパレ
ータ材質の劣化は認められずに電池は安定に作動
した。 表−1 嵩密度 ガス透過係数 電気比抵抗 引張強度 (g/cm2) (cm2/s) (Ωcm) (Kg/cm2) 1.85 3.3×10-7 3.9×10-3 590 実施例 2 実施例1で製造したピツチ(B)(軟化点285℃,
900℃焼成での炭化収率72重量%)を粒径10ミク
ロン以下が90重量%以上になるように粉砕した微
粉ピツチ(B)12重量部、粒径10ミクロン以下のグラ
フアイト粉8重量部、メチルセルロース0.5重量
部、水80重量部を均一に混合してスラリーを調整
した。このスラリーをピツチ系低弾性率炭素繊維
を抄造して製造した目付30g/m3のカーボンペー
パーに均一に塗布した後乾燥して目付230g/m3
のグリーンシートを製造した。このグリーンシー
ト4枚を積層して金型に充填し、370℃でのプレ
ス圧を15Kg/cm2にした外は実施例1と同様にして
2000℃まで焼成炭化して厚さ0.57mmの炭素質薄板
を製造した。得られた炭素質薄板の特性を表−2
に示す。また本炭素質薄板を研磨し、偏光顕微鏡
で観察したところ炭素繊維と炭素質マトリツクス
は明瞭に識別でき、炭素質マトリツクスは10ミク
ロン以下の微細なモザイク状の炭素であつた。 この炭素質薄板の特性を表−2に示す通りであ
つた。
The present invention relates to a dense carbon thin plate with low gas permeability and good electrical conductivity, and a method for manufacturing the same. More specifically, the substantially carbonized thin paper-like support used as the base material and the fine mosaic-like or isotropic optical material with particle sizes of 10 μm or less that exhibit anisotropy under a polarized light microscope. A carbonaceous thin plate made of a composite with a carbonaceous matrix exhibiting a typical structure, with a carbon content of 95% by weight or more, a gas permeability coefficient of 10 -5 to 10 -7 cm 2 /s, and a thickness direction of electrical resistivity is 2
×10 -3 ~6×10 -3 Ω・cm, bulk density 1.4~1.9g/
The present invention provides a carbonaceous material with a thickness of 0.1 to 1 mm and a physical property of cm 3 and a method for producing the same. (Field of Industrial Application) The carbon thin plate of the present invention has heat resistance and
It has corrosion resistance, with an electrical resistivity of 10 -2 Ωcm or less and a gas permeability coefficient of 10 -5 cm 2 /s or less, such as separators for phosphoric acid fuel cells. It is effective in applications that require high transparency and gas impermeability. It goes without saying that the thin plate of the present invention can be used for purposes other than those described above, such as electrodes for electrolysis, diaphragms for heat-resistant and corrosion-resistant heat exchangers, and the like. (Prior art) Japanese Patent Application Laid-Open No. 1983-1983 for a graphite thin plate and its manufacturing method
Particle size that has been heat-treated to 2700℃ or higher according to Publication No. 26907
A paste made by adding a liquid thermosetting resin to graphite fine powder of 100 microns or less and kneading it is formed into a thin plate using a roll forming machine, and then cured by heating or by pressing a hot plate against both sides of the thin plate, and then curing under constant pressure. Disclosed is a graphite thin plate that has been heat-carbonized by a method and a method for producing the same. However, in such graphite thin plates, the adhesion between the fine graphite powder and the thermosetting resin is poor, and voids tend to form at the interface during carbonization, making it difficult to reduce the air permeability to 1×10 -5 cm 2 /s or less. It was considered difficult. Therefore, if a high degree of gas impermeability is required, the plate must be thick. JP-A No. 59-21512 discloses that chlorinated vinyl chloride resin and/or vinyl chloride resin are mixed with furan resin, kneaded, the resulting mixture is molded into a film or sheet, and the resulting molded product is disclosed. A method for manufacturing a glassy carbon thin plate is disclosed in which the glass-like carbon thin plate is subjected to a carbon precursor treatment and then fired in an inert atmosphere, but the air permeability is 10 -11 to 10 -10 cm 2 /s ( He,
ΔP = 1 atm), but due to the low carbonization yield and large shrinkage rate of the resin in the firing carbonization process, it is extremely difficult to manufacture large thin plates with high dimensional accuracy without cracking or cracking.
In addition, in this method, since the raw material resin contains chlorine atoms, these chlorine atoms are released as highly corrosive chlorine gas or hydrochloric acid gas during heat treatment. consideration is required. JP-A-58-150275 discloses a fuel cell separator made of glassy carbon obtained by molding and carbonizing liquid furan resin, phenol resin, or a mixed resin thereof. However, although glassy carbon has extremely low airframe permeability, it takes a very long time to manufacture, resulting in low productivity and high costs. (Problems to be Solved) The first object of the present invention is to solve the problem of the occurrence of cracks and cracks when manufacturing large-sized carbon thin plates, for example, about 1 m in length and width, which has been a problem in the past. It is dense and has a gas permeability coefficient of 10 -5 cm 2 /s or less, which means it hardly allows gas to pass through, and its electrical resistivity is 6×10 -3
The object of the present invention is to provide a carbonaceous thin plate that exhibits good electrical conductivity of Ω·cm or less. A second object of the present invention is to impregnate a carbonaceous sheet with a matrix resin in order to produce a gas-impermeable and highly conductive carbon thin plate, which has been a problem in the past as described above.
To provide a method for easily industrially and economically producing a desired carbonaceous thin plate by carrying, molding, and firing a series of matrix resins only once, without requiring complicated steps such as repeated firing. It is in. The thickness of the carbonaceous thin plate of the present invention is intended to be in the range of several tens of microns to several millimeters, but it is intended to provide a thickness in the range of several tens of microns to several millimeters. Each size is about 1 m, and we decided to target the thickness of about 0.1 to 1 mm, taking into consideration the mechanical strength of the thin plates, gas permeability, battery thickness, etc. (Means for Solving the Problems) The carbonaceous thin plate of the present invention is a fine mosaic of particles having a size of 10 μm or less that exhibits anisotropy under a polarizing microscope due to carbonization on a thin paper-like support that can be carbonized. A carbon precursor (hereinafter also referred to as matrix resin) that provides carbon exhibiting a symmetrical or isotropic optical structure,
After being supported as a solution or suspension (slurry), the solvent used in the solution or suspension is evaporated to dryness, and the supported material (hereinafter also referred to as green sheet) is laminated singly or in multiple sheets and then deposited under pressure. It is obtained by a method of heating and hardening and then carbonizing and firing. The present inventor has discovered that it is possible to uniformly support a carbon precursor, prevent uneven charging of carbon precursor powder, etc. that tends to occur in a mold, and further reduce bending and warping of molded products during high-temperature firing. By using a carbonizable or carbonized paper-like support of arbitrary thickness, it is possible to prevent the formation of homogeneous and uniform thickness sheets even in large dimensions. I made it possible for the body to be obtained. Furthermore, a specific carbon precursor that does not cause cracks during carbonization as described below is supported on this paper-like support, and the carbonized portion of the paper-like support and the carbonized portion of the carbon precursor are separated by carbonization firing. The carbonaceous matrix is tightly integrated and composited to obtain a carbonaceous thin plate with improved mechanical strength, gas impermeability, thermal conductivity, electrical conductivity, etc. The following knowledge exists regarding carbon precursors that do not produce cracks or cracks with connected cracks during carbonization.Based on this knowledge, the present inventors have determined that the carbonization of the present invention results in a portion showing anisotropy under a polarizing microscope.
The present invention was achieved by selecting a pitch-like material (carbon precursor) that provides carbon with an optically anisotropic structure or an isotropic optical structure exhibiting a fine mosaic structure of 10 μm or less. When a cross-section of a carbon material obtained by firing and carbonizing a pitch-like substance is polished and observed under a polarizing microscope, a flow-like or mosaic-like pattern (structure) can be observed depending on the difference in starting materials, etc. There are three types: optically uniform and uniform appearance. These differences are due to the degree of development of the layered structure of six-membered ring network planes, which can be said to be giant planar molecules that constitute the carbon material. In other words, a carbon material exhibiting a flow-like structure is a carbon material with a well-developed layered structure of reticular planes, and has a structure in which six-membered ring reticular planes are laminated, and the size in the plane direction is large as well as the layer thickness. It is a carbon material with a structure similar to graphite, and is called graphitizable carbon. On the other hand, in carbon materials in which a mosaic-like structure is observed, the laminated structure of the net-like planes has a size equal to the size of the mosaic, and the degree of development of the laminated structure is smaller than that of a flow-like structure. Optically uniform carbon has an underdeveloped layered structure and is called non-graphitizable carbon. When a carbon material is polished and observed under a polarizing microscope, a flowing or mosaic pattern is observed, or carbon that appears optically uniform is hereinafter simply referred to as flowing carbon, mosaic carbon, etc. It is called oriented carbon. The structure of carbon materials is almost determined in the initial stage of carbonization, when the pitch-like substance solidifies, in a temperature range of approximately 500°C or less. When the solidified pitch-like material is further heated to promote carbonization, volatile matter is released and the material contracts. This contraction may cause cracks. Those with a well-developed flow-like layered structure are very susceptible to cracks. The contraction is greater in the direction perpendicular to the layers of the layered structure in which the six-membered ring network planes overlap than in the direction parallel to the layers. In the case of mosaic or isotropic carbon, the layer thickness and planar size are small, and the layer structure is distributed in random directions, so it is macroscopically isotropic and stress concentration due to contraction is less likely to occur. is difficult to enter. In contrast, those with a well-developed flow-like layered structure have a large anisotropy of contraction and are prone to stress concentration and cracks. (Structure and operation of the invention) As described above, the carbonizable paper-like support used in the present invention has a mesh space made of fibers that can uniformly hold the carbonizable carbon precursor. It is preferable that the paper-like material is made of fibers with a high softening point that can support the supported carbon precursor at least up to a temperature of about 500°C at which the supported carbon precursor is thermally hardened. . Specifically, the following carbonizable paper-like supports suitable for such purposes are used. Paper produced by mechanically or chemically treating wood or other plants to break up the plant fibers and extracting natural plant fiber pulp.
Although there are various types of natural pulp paper, paper made without the addition of fillers such as clay or titanium oxide and without any post-processing such as coating is particularly preferred for the present invention. The remaining amount is 70% by weight or more of vegetable fiber pulp and synthetic pulp made by modifying chemical fibers to make them hydrophilic.
Mixed paper manufactured by mixing paper. Examples of chemical fibers used include polyethylene, polypropylene, rayon, acetate, vinylon, nylon, acrylic, and polyester. Synthetic fiber paper produced by paper-making or heat-sealing synthetic fibers made of polyacrylonitrile, polyvinyl alcohol, cellulose, or phenolic resin, which are heat-treated at a temperature of 600° C. or lower in an inert gas atmosphere. Oxidized pitch fiber paper manufactured by spinning pitch obtained by heat-treating petroleum-based or coal-based tar, and then forming or heat-sealing pitch yarn into which 2.5% by weight or more of oxygen is introduced. The oxidized pitch system is placed in an inert gas atmosphere.
Oxidized pitch fiber paper made from oxidized pitch yarn heat-treated at temperatures below 600°C. Carbon fiber paper manufactured by paper-making carbon fiber obtained by conventional methods. A mixed paper produced by mixing one or more of the above-mentioned various fibers in an arbitrary ratio. The thickness of the carbonizable paper-like support used for gas separation plates for phosphoric acid fuel cells, etc., which is the object of the present invention, depends on the thickness of the carbon thin plate to be manufactured. It is particularly preferable that the basis weight is 50 g/m 3 or less. In the method of the present invention, a matrix resin that does not cause cracks due to carbonization is supported on the above-mentioned carbonizable paper-like support as a solution or suspension. Or for a support material (green sheet) obtained by evaporating the solvent used in the suspension.
Preferably, it is 70 to 90% by weight. If the amount of matrix resin supported is less than 70% by weight, the resulting carbonaceous thin plate will become porous and have a high gas permeability. When the amount exceeds 90% by weight, it becomes difficult to support the particles uniformly. When the formed thin plate is fired and carbonized, the matrix resin is solidified and carbonized while releasing low molecular weight molecules as gaseous substances through decomposition and polycondensation reactions. Therefore, if a large amount of gaseous substances are emitted, air bubbles will be generated in the thin plate, and the matrix resin will shrink more, which will cause the thin plate to break or crack, which is undesirable. On the other hand, as a material that releases less gaseous substances during carbonization, a matrix resin with a so-called high carbonization yield may be used. However, matrix resins with a high carbonization yield generally have a high softening point, resulting in insufficient adhesion between the matrix resins and the paper-like support during molding and firing carbonization, making it possible to obtain only carbon thin sheets with high gas permeability. I can't. As described above, the properties required for the matrix resin of the present invention are mutually contradictory in terms of carbonization yield and adhesive strength. The materials are suitable for practicing the invention. For the purpose of the present invention, as mentioned above, the pitch-like material that gives flowing carbon by carbonization is not preferable because it gives carbon thin plates with many cracks and high gas permeability. Pitch-like materials that provide carbon or isotropic carbon are preferred. The size of the mosaic structure is preferably 10 microns or less. The present invention can be converted into mosaic carbon or isotropic carbon with a size of 10 microns or less, preferably 5 microns or less, by carbonization, and the carbonization yield when fired at 900°C is 60% by weight or more, preferably 70 to 95% by weight. %, which can be more effectively achieved by using a pitch-like material with a softening point of 250 to 400°C. The softening point shown here is measured as follows. Using a Shimadzu Kogyo flow tester, 1 g of a sample crushed to 250 microns or less was filled into a cylinder with a cross-sectional area of 1 cm 2 and a nozzle with a diameter of 1 mm at the bottom, and was heated for 6 hours while applying a load of 10 kg/cm 2 .
The temperature is increased at a rate of °C/mm. As the temperature rises, the powder particles soften, the filling rate improves, and the volume of the sample powder decreases, but above a certain temperature, the volume stops decreasing. As the temperature continues to rise further, the sample melts and flows out from the nozzle at the bottom of the cylinder. The temperature at which volume reduction of the sample powder stops at this time is defined as the softening point of the sample. Note that in the case of a sample having a high softening point, melting and flowing out of the sample from the nozzle may not occur. The softening point used in the present invention is 450℃ or less, 900℃
Pitch-like substances that can be converted into fine mosaic carbon or isotropic carbon by carbonization with a carbonization yield of 60% or more by carbonization are those that contain coal tar, petroleum tar, or other tars, oxygen, sulfur, and nitric acid. etc. and heat-treated at a temperature of 150 to 450°C to obtain a pitch into which oxygen, sulfur or nitrogen has been introduced, or a method in which pitches are oxidized, e.g.
It can be easily obtained by the method described in Publication No. 31116.
For example, when oxygen is introduced into a pitch-like material, as the amount of introduced oxygen increases, the optical structure of the carbon obtained by carbonizing the material changes from a flow-like or mosaic-like shape to an isotropic one. The pitch-like material that provides the fine mosaic or isotropic carbonaceous matrix suitable for the present invention must contain 2.5% by weight or more of oxygen. It is also possible to add carbonaceous fine powder such as graphite to the pitch produced by these methods and use it as a matrix resin in order to improve the carbonization yield, but the amount of these carbonaceous fine powders added is As the amount increases, the gas permeability of the resulting carbonaceous thin plate increases, so it is better to limit the amount added to less than half of the total matrix resin. It is also possible to use a mixture of pitches produced by the above method and a thermosetting resin such as a phenolic resin or a furan resin as the matrix resin. In this case, if a supporting slurry is prepared using a solvent that dissolves the thermosetting resin, the slurry will be stabilized due to the thickening effect of the thermosetting resin, and the adhesion of the matrix resins of the resulting green sheets to each other or to the support will be reduced. It also has the advantage of being strong and easy to handle. If the amount of these thermosetting resins added increases, the gas permeability of the resulting carbonaceous thin plate will increase, so it is better to keep the amount added to less than 40% by weight of the entire matrix resin. To produce a green sheet by supporting a matrix resin on a carbonizable paper-like support, the matrix resin is dipped or applied as a solution or slurry, and then the solvent in the solution or the solvent in the slurry is evaporated. A drying method is used. When a matrix resin solution is used, the paper-like support is immersed in a solution in which the matrix resin is dissolved in a suitable solvent, or the solution is applied to the paper-like support, and then the solvent is evaporated. Solvents used in this case include methanol, ethanol, acetone, benzene, toluene or mixtures thereof.
The concentration of the matrix resin in the solution is determined in the range of 10 to 50% by weight by adding the above solvent to the matrix resin that has been pulverized in advance using a pulverizer such as a jet mill to obtain a viscosity that allows easy penetration into the paper-like support. Adjust to. In this case, it is preferable that the matrix resin be completely dissolved, but there is no problem even if it is not completely dissolved and some parts are present in the form of fine particles. In addition, when using the matrix resin as a slurry, after coating a paper-like support with a slurry in which finely powdered matrix resin that has been pulverized in a jet mill (dry type) or ball mill (wet type) is dispersed in an appropriate solvent, Evaporate the solvent. Solvents used in this case include water, methanol, ethanol, acetone or mixtures thereof. The matrix resin concentration in the slurry is adjusted to 10 to 50% by weight by the amount of the solvent added. In these methods, small amounts of third substances such as thickeners, surfactants, etc. are added to improve the adhesion of the matrix resins to each other and to the paper-like support, or to improve the stability of the slurry. Also good. The solvent of the paper-like support supporting the matrix resin solution or slurry is evaporated and dried using the above method to obtain a green sheet (dry paper-like material supporting the matrix resin), and the evaporation and drying conditions are 60 to 150°C. Heat treatment is performed in a vacuum furnace at a temperature range of 50 mmHg or less under reduced pressure until the residual amount of solvent is 1% or less. One or more green sheets produced by the method described above are laminated and supplied to a predetermined mold, heated and pressed to form a thin plate, and then fired and carbonized to produce a carbonaceous thin plate. The conditions for press molding are a temperature of 150 to 400°C, a pressure of 100 kg/cm 2 or less, and a pressure holding time of 10 to 120 minutes. Firing is performed by raising the temperature to 600°C under a pressure of 0.1 to 30 kg/cm 2 , then once the pressure is removed, and then firing and carbonizing it at a temperature of 800 to 3000°C in an inert gas atmosphere. Firing under pressure prevents the thin plate from warping,
This is particularly preferred for producing denser carbonaceous thin plates. Since the green sheet solidifies at about 500° C. by heating, it is preferable to calcinate it under pressure to about 600° C., then carbonize it at 900° C. or higher in an inert gas atmosphere, and then graphitize it. When high conductivity is required, it is desirable to process at 2000°C or higher. (Effects of the Present Invention) One of the features of the present invention is that by using a carbonizable thin paper-like support, it is possible to easily provide a large-sized carbonaceous thin plate having an extremely uniform thickness. When manufacturing a thin plate with a large area by filling a mold with matrix resin and hot pressing it using a method that does not use a paper-like support, the matrix resin with a high carbonization yield has a high softening point and poor fluidity. Therefore, it is necessary to fill the matrix resin extremely uniformly and thinly over a large area. It is extremely difficult to implement this industrially. Another feature of the present invention is that it can be converted into fine mosaic carbon or isotropic carbon by carbonization, has a high carbonization yield, and has a low softening point, that is, carbonizes a specified range of matrix resins with good sinterability. By supporting it on a paper-like support that can be used, forming it into a thin plate shape, and then firing and carbonizing it, a dense carbonaceous thin plate with few cracks, low gas permeability, and high electrical conductivity can be obtained by impregnating it with matrix resin and firing it. The object is to provide the product extremely easily by only one molding and baking process without going through complicated steps such as repeating the process. Since the carbonizable or carbonized paper-like support used in the present invention is tightly integrated with matrix carbon by firing carbonization, the obtained carbon thin plate is dense, has low gas permeability, and has high electrical conductivity. By polishing the carbonaceous thin plate of the present invention and observing it with a polarizing microscope, it is possible to distinguish the optically anisotropic structure of the carbonaceous support and the carbonaceous matrix. The gas permeability coefficient used in the present invention and the following examples is based on ASTM D-3985, "Method for Measuring Oxygen Gas Transfer Rate of Plastic Films and Sheets."
-81, nitrogen gas is passed through one side of the thin plate material to block the diffusion of oxygen from the atmosphere, 100% pure oxygen gas is introduced into the other side, and the sample thin plate is placed on the nitrogen gas side. This was determined by measuring the amount of oxygen gas that diffuses and permeates through the thickness of the film using a coulometric method using an oxygen sensor. Therefore, the value of the gas permeability coefficient (cm 3 (STP)/cm・s) of the present invention is the value of oxygen at a total pressure of 1 atm (oxygen gas partial pressure ΔP = 1 atm.)
The measurement temperature is 20℃, and the measurement value is expressed as a value converted to the gas amount in the standard state. Assuming that the carbon thin plate sample of the present invention is homogeneous, the measured gas permeability (cm 3 (ST
P)/cm 2 ·s) was multiplied by the thickness of the sample to obtain the gas permeability coefficient of the thin plate (cm 2 /s; O 2 , ΔP=1 atm). The present invention will be explained in more detail with reference to Examples below. Example 1 Ethylene bottom oil was treated at 370°C for 3 hours to make it heavier and at the same time remove low boiling point components to make it into a pitcher.
(A) was produced. This pitchch (A) was ground to 100 microns or less and heated to 190°C in air at a rate of 10°C/hr to produce pitchch (B). Pitch (B) is the softening point
The carbonization yield was 72% by weight when fired at 285°C and 900°C. Pitch (B) is further heated to 400℃ in an inert gas atmosphere.
Pitch (C) with a softening point of 314°C and a carbonization yield of 82% by weight at 900°C was produced.
Fine powder pitch (C) 20 is obtained by pulverizing this pitch (C) so that the particle size of 10 microns or less is 90% by weight or more.
A slurry was prepared by uniformly mixing 0.4 parts by weight of methylcellulose (Metrose 90SH-4000 manufactured by Shin-Etsu Chemical Co., Ltd.) and 80 parts by weight of water. This slurry was uniformly applied by a spray method to both sides of paper with a basis weight of 40 g/m 3 made from pulp without the addition of inorganic substances, and then dried to produce a green sheet with a basis weight of 200 g/m 3 . Six of these green sheets were stacked and filled into a mold, and heated to 370°C at a rate of 300°C/hr.
After heating to
A thin plate was produced by heating up to 100% and then cooling it. This thin plate is fired at 2000℃ in an inert gas atmosphere to create a thickness
A 0.59mm carbon thin plate was manufactured. When this carbonaceous thin plate was polished and observed under a polarizing microscope, it was observed that paper-like carbonaceous supports derived from pulp were laminated in layers, and the carbonaceous matrix was a fine mosaic of carbon of 5 microns or less. It was done. The carbon content of this carbon thin plate was 99% by weight or more. Its characteristics are shown in Table 1. This carbonaceous thin plate was used as a cell separator in a phosphoric acid fuel cell to construct a battery cell, and the battery was operated for 700 hours at a temperature of 190°C and a current density of 220 mA/cm 2 , but no deterioration of the cell separator material was observed and the battery remained stable. It worked. Table-1 Bulk density Gas permeability coefficient Electrical resistivity Tensile strength (g/cm 2 ) (cm 2 /s) (Ωcm) (Kg/cm 2 ) 1.85 3.3×10 -7 3.9×10 -3 590 Example 2 Implementation Pitch (B) produced in Example 1 (softening point 285℃,
12 parts by weight of fine powder pitch (B), which is obtained by pulverizing 72% by weight carbonization yield at 900℃ firing so that the particle size of 10 microns or less is 90% by weight or more, and 8 parts by weight of graphite powder with a particle size of 10 microns or less , 0.5 parts by weight of methylcellulose, and 80 parts by weight of water were uniformly mixed to prepare a slurry. This slurry was uniformly applied to a carbon paper with a basis weight of 30 g/m 3 made from Pitch-based low-modulus carbon fiber, and dried to produce a fabric weight of 230 g/m 3 .
green sheets were manufactured. The procedure was the same as in Example 1 except that these four green sheets were stacked and filled into a mold, and the press pressure at 370°C was set to 15 kg/cm 2 .
A carbon thin plate with a thickness of 0.57 mm was produced by firing and carbonizing it to 2000℃. Table 2 shows the properties of the obtained carbonaceous thin plate.
Shown below. When this carbonaceous thin plate was polished and observed under a polarizing microscope, the carbon fibers and the carbonaceous matrix could be clearly distinguished, and the carbonaceous matrix was a fine mosaic of carbon of 10 microns or less. The properties of this carbon thin plate were as shown in Table 2.

【表】 実施例 3 実施例1で製造したピツチ(B)(軟化点285℃,
900℃焼成での炭化収率72重量%)を不活性ガス
雰囲気中で450℃で3時間処理してピツチ(D)を製
造した。ピツチ(D)は軟化点360℃,900℃焼成での
炭化収率91重量%であつた。ピツチ(B)15重量部、
ピツチ(D)15重量部、メチルセルロース0.6重量部、
水70重量部をボールミルで5時間粉砕混合を行つ
てスラリーを調整した。このスラリーをピツチ糸
を酸化不融化した後、不活性ガス雰囲気中で600
℃まで焼成した糸を抄造して製造した目付25g/
m3の紙状支持体に均一に塗布して目付200g/m3
のグリーンシートを製造した。このグリーンシー
トを4枚積層して金型に充填し実施例1と同様に
して2000℃まで焼成炭化して厚さ0.47mmの炭素質
薄板を製造した。その特性を表−3に示す。 本炭素質薄板を研磨して偏光顕微鏡で観察した
ところ炭素繊維と炭素質マトリツクスは明瞭に識
別でき炭素質マトリツクスは5ミクロン以下の微
細なモザイク状の炭素であつた。
[Table] Example 3 Pitch (B) produced in Example 1 (softening point 285℃,
Pitch (D) was produced by treating the powder (carbonization yield: 72% by weight when fired at 900°C) at 450°C for 3 hours in an inert gas atmosphere. Pitch (D) had a softening point of 360°C and a carbonization yield of 91% by weight when fired at 900°C. Pituchi (B) 15 parts by weight,
Pituchi (D) 15 parts by weight, methyl cellulose 0.6 parts by weight,
A slurry was prepared by grinding and mixing 70 parts by weight of water in a ball mill for 5 hours. After using this slurry to oxidize and infusible the pitch yarn, it was heated for 600 minutes in an inert gas atmosphere.
Fabric weight 25g/made by papermaking from yarn fired to ℃
Apply uniformly to a paper-like support of m 3 and have a basis weight of 200 g/m 3
green sheets were manufactured. Four of these green sheets were laminated, filled into a mold, and fired and carbonized at 2000° C. in the same manner as in Example 1 to produce a carbonaceous thin plate with a thickness of 0.47 mm. Its characteristics are shown in Table 3. When this carbonaceous thin plate was polished and observed under a polarizing microscope, the carbon fibers and the carbonaceous matrix could be clearly distinguished, and the carbonaceous matrix was a fine mosaic of carbon of 5 microns or less.

【表】 実施例 4 コールタールに空気を吹き込みながら300℃で
3時間処理した後冷却し、100ミクロン以下に粉
砕し、空気中で10℃/hrの速度で225℃まで昇温
してピツチ(E)を製造したピツチ(E)は軟化点330℃,
900℃での炭化収率85重量%であつた。ピツチ(E)
を粒径5ミクロン以下が90重量%以上になるよう
に粉砕した微粉ピツチ(E)14重量部、ノボラツク型
フエノール樹脂6重量部、メタノール80重量部を
均一に混合してスラリーを調製した。フエノール
樹脂は融点95〜110℃,900℃焼成での炭化収率48
重量%でメタノールに可溶である。上記スラリー
を実施例1と同様の目付40g/m3の紙に均一に塗
布した後乾燥して目付300g/m3のグリーンシー
トを製造した。このグリーンシート1枚を180℃
で50Kg/cm2の圧力で30分間プレスして薄板を製造
した。この薄板を反りを防止するため耐熱性の黒
鉛板の間にはさんで不活性ガス雰囲気中で2000℃
まで焼成して厚さ0.18mmの炭素質薄板を製造し
た。この炭素質薄板は炭素含有率が99重量パーセ
ント以上であり、ガス透過係数は2.1×10-7cm2
s、電気比抵抗は5.2×10-3Ωcmであつた。この
薄板を研磨し、偏光顕微鏡で観察すると炭素質支
持体と炭素質マトリツクスは識別可能であり、炭
素質マトリツクスは光学的な異方性を示さず等方
性であつた。
[Table] Example 4 Coal tar was treated at 300°C for 3 hours while blowing air, then cooled, ground to 100 microns or less, and heated to 225°C at a rate of 10°C/hr in air to form pitch powder ( Pituchi (E), which produced E), has a softening point of 330℃.
The carbonization yield at 900°C was 85% by weight. Pitzchi(E)
A slurry was prepared by uniformly mixing 14 parts by weight of fine powder pitch (E), which was ground to a particle size of 5 microns or less at 90% by weight or more, 6 parts by weight of a novolak type phenolic resin, and 80 parts by weight of methanol. Phenol resin has a melting point of 95-110℃ and a carbonization yield of 48 when fired at 900℃.
% by weight in methanol. The above slurry was uniformly applied to paper having a basis weight of 40 g/m 3 similar to that in Example 1, and then dried to produce a green sheet having a basis weight of 300 g/m 3 . 180℃ of this green sheet
A thin plate was produced by pressing at a pressure of 50 kg/cm 2 for 30 minutes. To prevent warping, this thin plate was sandwiched between heat-resistant graphite plates and heated to 2000℃ in an inert gas atmosphere.
A carbonaceous thin plate with a thickness of 0.18 mm was produced by firing to a temperature of 0.18 mm. This carbon thin plate has a carbon content of 99% by weight or more, and a gas permeability coefficient of 2.1×10 -7 cm 2 /
s, and the electrical specific resistance was 5.2×10 −3 Ωcm. When this thin plate was polished and observed under a polarizing microscope, the carbonaceous support and the carbonaceous matrix could be distinguished, and the carbonaceous matrix showed no optical anisotropy and was isotropic.

Claims (1)

【特許請求の範囲】 1 炭素化可能な薄い紙状支持体に、炭化により
偏光顕微鏡下に異方性を示す部分が10μm以下の
モザイク状を示す光学的異方性構造または等方性
の光学的組織の炭素を与える軟化点250〜450℃、
900℃焼成での炭化収率70〜95重量%であるピツ
チ状物質からなる炭素前駆体を担持せしめたグリ
ーンシートを、単独で又は複数枚積層して、加熱
プレス成形した後、更に、炭化焼成することを特
徴とする炭素含有量が95重量%以上で、ガス透過
係数が10-5〜10-7cm2/s、厚さ方向の電気比抵抗
が2×10-3〜6×10-3Ω・cm、嵩密度が1.4〜
1.9g/cm3の物性を有する厚さが0.1〜1mmの炭素
質薄板の製造方法。 2 紙状支持体が、天然植物繊維パルプを抄造し
て製造したものであることを特徴とする特許請求
の範囲第1項に記載の方法。 3 紙状支持体が、ポリアクリロニトリル、ポリ
ビニルアルコール、セルロースおよびフエノール
樹脂のいずれかよりなる合成繊維を、不活性ガス
雰囲気中で600℃以下の温度に熱処理した繊維を
抄造して製造したものであることを特徴とする特
許請求の範囲第1項に記載の方法。 4 紙状支持体が、石油系または石炭系タールを
熱処理して得たピツチを溶融紡糸して製造したピ
ツチ糸に、2.5重量%以上の酸素を導入した後、
不活性ガス雰囲気中で600℃以下の温度に熱処理
した繊維を抄造して製造したものであることを特
徴とする特許請求の範囲第1項に記載の方法。 5 紙状支持体が、炭素繊維を抄造して製造した
ものであることを特徴とする特許請求の範囲第1
項に記載の方法。 6 炭素前駆体が、軟化点250〜450℃、900℃焼
成での炭化収率70〜95重量%であるピツチ状物質
50重量%以上と残余が粒径10μm以下の炭素質微
粉末であることを特徴とする特許請求の範囲第1
項乃至第5項のいずれかに記載の方法。 7 炭素前駆体が、軟化点250〜450℃、900℃焼
成での炭化収率70〜95重量%であるピツチ状物質
50重量%以上と残余がフエノール樹脂またはフラ
ン樹脂であることを特徴とする特許請求の範囲第
1項乃至第5項のいずれかに記載の方法。 8 加熱プレス成形を150〜400℃の温度範囲で、
圧力100Kg/cm2以下で10〜120分間行うことを特徴
とする特許請求の範囲第1項乃至第7項のいずれ
かに記載の方法。 9 炭化焼成を0.1〜30Kg/cm2のプレス加圧下で
500〜600℃まで昇温した後、一旦除圧してから更
に不活性ガス雰囲気中で800〜3000℃の温度で行
うことを特徴とする特許請求の範囲第1項乃至第
8項のいずれかに記載の方法。
[Scope of Claims] 1. An optically anisotropic structure or isotropic optical structure that exhibits a mosaic shape in which the portion exhibiting anisotropy under a polarizing microscope is 10 μm or less upon carbonization on a thin paper-like support that can be carbonized. Softening point 250-450℃, giving carbon structure
A green sheet carrying a carbon precursor made of a pitch-like substance with a carbonization yield of 70 to 95% by weight when fired at 900°C is heated and press-molded either singly or in layers, and then carbonized and fired. The carbon content is 95% by weight or more, the gas permeability coefficient is 10 -5 to 10 -7 cm 2 /s, and the electrical resistivity in the thickness direction is 2 × 10 -3 to 6 × 10 - 3 Ω・cm, bulk density 1.4~
A method for producing a carbon thin plate having a thickness of 0.1 to 1 mm and having physical properties of 1.9 g/cm 3 . 2. The method according to claim 1, wherein the paper-like support is produced by paper-making natural vegetable fiber pulp. 3 The paper-like support is manufactured by paper-making a synthetic fiber made of polyacrylonitrile, polyvinyl alcohol, cellulose, or phenolic resin, which is heat-treated at a temperature of 600°C or less in an inert gas atmosphere. A method according to claim 1, characterized in that: 4. After introducing 2.5% by weight or more of oxygen into a pitch yarn whose paper-like support is produced by melt spinning pitch obtained by heat-treating petroleum-based or coal-based tar,
The method according to claim 1, characterized in that the fiber is produced by paper-making a fiber that has been heat-treated at a temperature of 600° C. or lower in an inert gas atmosphere. 5 Claim 1, characterized in that the paper-like support is manufactured by paper-making carbon fiber.
The method described in section. 6 A pitch-like material in which the carbon precursor has a softening point of 250 to 450°C and a carbonization yield of 70 to 95% by weight when fired at 900°C.
Claim 1, characterized in that the carbonaceous fine powder is 50% by weight or more and the remainder is a particle size of 10 μm or less.
6. The method according to any one of items 5 to 5. 7 Pitch-like material in which the carbon precursor has a softening point of 250 to 450°C and a carbonization yield of 70 to 95% by weight when fired at 900°C
6. The method according to claim 1, wherein 50% by weight or more and the remainder are phenolic resin or furan resin. 8 Heat press molding at a temperature range of 150 to 400℃,
The method according to any one of claims 1 to 7, characterized in that the process is carried out at a pressure of 100 kg/cm 2 or less for 10 to 120 minutes. 9 Carbonization firing under press pressure of 0.1 to 30Kg/ cm2
According to any one of claims 1 to 8, the process is carried out at a temperature of 800 to 3000°C in an inert gas atmosphere after the temperature is raised to 500 to 600°C, and then the pressure is removed. Method described.
JP59095263A 1984-05-11 1984-05-11 Carbonaceous thin plate and manufacture Granted JPS60239358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095263A JPS60239358A (en) 1984-05-11 1984-05-11 Carbonaceous thin plate and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095263A JPS60239358A (en) 1984-05-11 1984-05-11 Carbonaceous thin plate and manufacture

Publications (2)

Publication Number Publication Date
JPS60239358A JPS60239358A (en) 1985-11-28
JPH0520386B2 true JPH0520386B2 (en) 1993-03-19

Family

ID=14132875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095263A Granted JPS60239358A (en) 1984-05-11 1984-05-11 Carbonaceous thin plate and manufacture

Country Status (1)

Country Link
JP (1) JPS60239358A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768064B2 (en) * 1986-05-21 1995-07-26 東燃株式会社 Carbon fiber reinforced composite material
JPS6360155A (en) * 1986-08-28 1988-03-16 株式会社神戸製鋼所 Manufacture of carbon/carbon composite material from nonwoven cloth as raw material
JPH0699187B2 (en) * 1986-08-28 1994-12-07 株式会社神戸製鋼所 Preform body of carbon composite material reinforced with carbon fiber made of non-woven fabric
JPS6476965A (en) * 1987-06-22 1989-03-23 Kureha Chemical Ind Co Ltd Carbonaceous cylindrical unit and production thereof
US4950443A (en) * 1988-01-07 1990-08-21 Mitsubishi Pencil Co., Ltd. Process for producing carbon product with coarse and dense structure
JP2014104717A (en) * 2012-11-29 2014-06-09 Cfc Design Inc Intermediate material for carbon/carbon composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945073A (en) * 1972-09-07 1974-04-27
JPS60161144A (en) * 1984-01-11 1985-08-22 昭和電工株式会社 Manufacture of carbon sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945073A (en) * 1972-09-07 1974-04-27
JPS60161144A (en) * 1984-01-11 1985-08-22 昭和電工株式会社 Manufacture of carbon sheet

Also Published As

Publication number Publication date
JPS60239358A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US4115528A (en) Method for fabricating a carbon electrode substrate
JPH0136670B2 (en)
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
KR101205145B1 (en) Carbon fiber reinforced carbon composite and method for manufacturing the same
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
JPH02106876A (en) Manufacture of porous carbon electrode base for fuel cell
EP0212965B1 (en) Process for producing a thin carbonaceous plate
AU2001245505B2 (en) Flexible graphite capacitor element
US5705106A (en) Heat-insulating structural carbon material and process for producing heat-insulating structural carbon material
US4917923A (en) Carbonaceous cylindrical body and process for producing the same
JPH0520386B2 (en)
JPH03150266A (en) Production of carbon/carbon composite material
AU2001245505A1 (en) Flexible graphite capacitor element
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
EP4093717A1 (en) Thermal insulation materials suitable for use at high temperatures, and process for making said materials
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPS59141170A (en) Electrode substrate for fuel cell and manufacturing method thereof
JPS62171908A (en) Production of carbon plate
US11795114B1 (en) Process far revolutionary, very thick and very high thermal conductivity carbon-carbon composites
JPH03215362A (en) Production of dense carbon plate
JP2632955B2 (en) Manufacturing method of porous carbon plate
JPH04284363A (en) Manufacture of carbon plate
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS63248769A (en) Manufacture of composite carbon material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees