JP2015007167A - Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material - Google Patents

Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material Download PDF

Info

Publication number
JP2015007167A
JP2015007167A JP2013132289A JP2013132289A JP2015007167A JP 2015007167 A JP2015007167 A JP 2015007167A JP 2013132289 A JP2013132289 A JP 2013132289A JP 2013132289 A JP2013132289 A JP 2013132289A JP 2015007167 A JP2015007167 A JP 2015007167A
Authority
JP
Japan
Prior art keywords
polyurethane foam
rigid polyurethane
mold
foam
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013132289A
Other languages
Japanese (ja)
Inventor
光彦 渡辺
Mitsuhiko Watanabe
光彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013132289A priority Critical patent/JP2015007167A/en
Publication of JP2015007167A publication Critical patent/JP2015007167A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing rigid polyurethane foam capable of being excellently molded by commonly-used molding, having smaller anisotropy, larger effective strain range and higher stress absorption performance, and also to provide rigid polyurethane foam and an impact absorbing material obtained by the method.SOLUTION: A method for manufacturing rigid polyurethane foam 31 includes a step of molding polyurethane foam through foaming and reacting, inside a mold 10, a polyurethane foam formation composition 21 including a polyhydroxy compound, a polyisocyanate compound, a foaming agent, a catalyst and a foam stabilizer. The composition 21 further includes, based on 100 pts.mass of the polyhydroxy compound, 25-70 pts.mass of powder whose average particle diameter is 0.05-10 μm and specific surface area is 0.2-4.5 m/g. The step of molding the polyurethane foam is performed inside the mold 10 that is substantially airtight. Rigid polyurethane foam and an impact absorbing material can be obtained by the method.

Description

本発明は、自動車の衝撃吸収部材等に好適に用いられる硬質ポリウレタンフォームの製造方法、その製造方法により得られる硬質ポリウレタンフォーム、及びその硬質ポリウレタンフォームからなる衝撃吸収材に関する。   The present invention relates to a method for producing a rigid polyurethane foam suitably used for an automobile impact absorbing member and the like, a rigid polyurethane foam obtained by the production method, and an impact absorbing material comprising the rigid polyurethane foam.

従来から、自動車のドアトリムの内側等の内装やバンパー等の外装、運動場の壁やフェンス、ヘルメットの内張り、梱包用緩衝材等に硬質ポリウレタンフォームからなる衝撃吸収材が広く用いられている。熱硬化性樹脂であるポリウレタンフォーム、特に架橋密度の高い硬質ポリウレタンフォームは、ポリスチレン、ポリエチレン、ポリプロピレン等の熱可塑性樹脂のフォームと比較して、温度に対するエネルギー吸収特性の変化幅が小さく、高温下での使用する衝撃吸収材に適している。ただし、硬質ポリウレタンフォームは、歪みと応力の関係においては、熱可塑性樹脂のフォームに比べて歪みに対して応力が変化し難いものの、歪みに対して応力が一旦上昇した後、降下するという降伏点がみられるため、応力吸収性能における安定性に問題があり、歪みの変化に対して応力がより一定で、更に応力吸収性能の高い硬質ポリウレタンフォームが求められていた。   2. Description of the Related Art Conventionally, shock absorbers made of rigid polyurethane foam have been widely used for interiors such as the interior of automobile door trims, exteriors such as bumpers, athletic field walls and fences, helmet linings, packing cushioning materials, and the like. Polyurethane foams that are thermosetting resins, especially rigid polyurethane foams with high crosslink density, have a smaller change in energy absorption characteristics with respect to temperature than thermoplastic resin foams such as polystyrene, polyethylene, and polypropylene. Suitable for shock absorbers used. However, the rigid polyurethane foam is less susceptible to change in strain than the thermoplastic resin foam in the relationship between strain and stress. Therefore, there is a problem in the stability of the stress absorption performance, and there has been a demand for a rigid polyurethane foam having a higher stress absorption performance, in which the stress is more constant with respect to changes in strain.

その問題に対し、特許文献1では、硬質ポリウレタンフォームを製造する際に、特定の物性の整泡剤や紛体を配合し、発泡速度条件を調整することで応力−圧縮歪曲線で降伏値を持たない硬質ポリウレタンフォームを製造する方法が開発されている。この方法においては、通常、硬質ポリウレタン発泡原料をフリー発泡した硬質ポリウレタンフォームのスラブ品(厚板品)を製造し、所望の衝撃吸収材の形状に削り出して成形する方法が用いられる。   In order to solve this problem, Patent Document 1 has a yield value in a stress-compression strain curve by blending a foam stabilizer or powder having specific physical properties and adjusting a foaming speed condition when producing a rigid polyurethane foam. Methods have been developed to produce no rigid polyurethane foam. In this method, a method of producing a slab product (thick plate product) of hard polyurethane foam obtained by free foaming of a hard polyurethane foam raw material, and cutting out into a desired shape of an impact absorbing material is generally used.

硬質ポリウレタンフォームを製造する別の方法としては、所望の衝撃吸収材の形状のモールド(金型)中にポリウレタン発泡原料を導入し、発泡、反応させてフォームを成形するモールド成形による方法が知られている。特許文献1に記載されたフリー発泡は、モールド中で発泡させるよりもフォームのセルのアスペクト比(セル断面形状の長径/短径)を大きくすることができ、セルの長径方向において、座屈ストロークが長く、応力−圧縮歪曲線の応力が一定の範囲(以下、「有効歪範囲」ともいう)が大きいフォームとし、応力吸収性能を高くすることができることが知られている。しかしながら、通常、フォーム中のセルの長径の方向が一定になるため、フォームの圧縮方向によって応力吸収能力が異なるという異方性が生じる。更に、スラブ品を所望の形状に削り出す加工は繁雑な工程が必要で、加工形状にも限界があり、削り屑も産業廃棄物となるためコスト増、環境負荷になるといった問題もある。   As another method for producing a rigid polyurethane foam, there is known a method by mold molding in which a polyurethane foam raw material is introduced into a mold (mold) having a desired shock absorber shape, foamed and reacted to mold the foam. ing. The free foaming described in Patent Document 1 can increase the aspect ratio of the foam cell (major axis / minor axis of the cell cross-sectional shape) compared to foaming in the mold, and the buckling stroke in the major axis direction of the cell. It is known that the foam can be made long and the stress in the stress-compression strain curve has a large constant range (hereinafter also referred to as “effective strain range”), and the stress absorption performance can be enhanced. However, since the direction of the major axis of the cells in the foam is usually constant, anisotropy occurs in which the stress absorption capacity varies depending on the compression direction of the foam. Furthermore, the process of cutting a slab product into a desired shape requires a complicated process, and there is a limit to the processed shape, and there is a problem that the shavings become industrial waste, resulting in an increase in cost and an environmental burden.

一方、モールドのよる成形の場合は、直接所望の形状が得られるので、削り出しが不要となり、モールドが作製できればどのような形状も可能であり、量産性も向上する。しかしながら、フリー発泡に比べて異方性は軽減できるものの、フォームのセルのアスペクト比が1に近づくため、座屈ストロークが短くなり、有効歪範囲が小さく応力吸収性能が低いフォームとなる場合が多い。そのため、特許文献2では、硬質ポリウレタンフォームをモールド成形する際に、モールドにスペーサで間隙を設ける等により、モールド成形品のコア部分のパック率(フリー発泡のスラブ品のコア部分との密度比)を抑えることでスラブ品を成形した場合と同様な応力吸収性能を有するモールド成形品を得る製造方法を開発している。   On the other hand, in the case of molding with a mold, a desired shape can be obtained directly, so that no cutting is required, and any shape can be used as long as the mold can be produced, and mass productivity is improved. However, although the anisotropy can be reduced as compared with free foaming, the foam cell has an aspect ratio approaching 1, so the buckling stroke is shortened, the effective strain range is small and the stress absorption performance is often low. . Therefore, in Patent Document 2, when molding a rigid polyurethane foam, the packing ratio of the core portion of the molded product (density ratio with the core portion of the free-foamed slab product) is obtained by providing a gap in the mold with a spacer or the like. A manufacturing method has been developed to obtain a molded product having the same stress absorption performance as when a slab product is molded by suppressing the slab.

特開平5−331365号公報JP-A-5-331365 特開平7−156162号公報JP 7-156162 A

しかしながら、特許文献2においては、間隙を有する特殊なモールドを用いる必要があり、材料漏れにより、更なる削り出し成形が必要になる場合もあり、異方性の問題も解消しない場合がある。   However, in Patent Document 2, it is necessary to use a special mold having a gap, and further cutting and forming may be necessary due to material leakage, and the problem of anisotropy may not be solved.

従って、本発明の目的は、一般的なモールド成形により、良好に成形可能で、異方性が小さく、有効歪範囲が大きく、応力吸収性能の高い硬質ポリウレタンフォームの製造方法、その方法により得られる硬質ポリウレタンフォーム、及びその硬質ポリウレタンフォームからなる衝撃吸収材を提供することにある。   Accordingly, the object of the present invention can be obtained by a method for producing a rigid polyurethane foam that can be molded well by general molding, has low anisotropy, has a large effective strain range, and has high stress absorption performance, and the method. It is an object of the present invention to provide a rigid polyurethane foam and a shock absorber made of the rigid polyurethane foam.

上記目的は、ポリヒドロキシ化合物、ポリイソシアネート化合物、発泡剤、触媒及び整泡剤を含むポリウレタンフォーム形成用組成物を、モールド内で発泡、反応させることでポリウレタンフォームを成形する工程を含む硬質ポリウレタンフォームの製造方法であって、前記組成物が、更に、平均粒径が0.05〜10μm、比表面積が0.2〜4.5m/gの紛体を、ポリヒドロキシ化合物100質量部に対して25〜70質量部含み、且つ前記ポリウレタンフォームを成形する工程が、実質的に密閉されたモールド内で行われることを特徴とする硬質ポリウレタンフォームの製造方法によって達成される。 The object mentioned above is a rigid polyurethane foam comprising a step of forming a polyurethane foam by foaming and reacting a composition for forming a polyurethane foam containing a polyhydroxy compound, a polyisocyanate compound, a foaming agent, a catalyst and a foam stabilizer in a mold. The composition further comprises a powder having an average particle size of 0.05 to 10 μm and a specific surface area of 0.2 to 4.5 m 2 / g based on 100 parts by mass of the polyhydroxy compound. The step of forming 25 to 70 parts by mass and molding the polyurethane foam is achieved by a method for producing a rigid polyurethane foam, wherein the process is performed in a substantially sealed mold.

ポリウレタンフォーム形成用組成物に、上記範囲の平均粒径の紛体を、上記の含有量で配合することで、特許文献2のように間隙を設けたモールドでなく、実質的に密閉されたモールド内で成形しても、応力−圧縮歪曲線の応力が一定の範囲(有効歪範囲)が大きく、応力吸収性能が高い硬質ポリウレタンフォームが得られる。この要因としては、上記条件においては、組成物内に紛体がより均一に分散されるように粘度を制御できるため、微小な紛体がリブ(セルを構成する柱部)内に適度に均一に存在したフォームが得られ、圧縮によるセル破壊において、各リブ内に破壊点が適度に増え、有効歪範囲が増大するためと考えられる。   In the composition for forming polyurethane foam, the powder having the average particle size in the above range is blended with the above content, so that the inside of the substantially sealed mold is not a mold having a gap as in Patent Document 2. Even if it shape | molds by (1), the rigid polyurethane foam with a large stress-compression-strain curve with a large fixed range (effective strain range) and high stress absorption performance is obtained. The reason for this is that, under the above conditions, the viscosity can be controlled so that the powder is more evenly dispersed in the composition, so that fine powder exists in the ribs (columns constituting the cells) in a moderately uniform manner. This is thought to be due to the fact that, in the cell destruction due to compression, the breaking point increases moderately in each rib and the effective strain range increases.

本発明に係わる硬質ポリウレタンフォームの製造方法の好ましい態様は以下の通りである。   The preferable aspect of the manufacturing method of the rigid polyurethane foam concerning this invention is as follows.

(1)前記紛体の平均粒径が1.0〜2.5μmであり、比表面積が0.8〜2.3m/gである。これにより、更に有効歪範囲が大きい硬質ポリウレタンフォームを製造することができる。
(2)硬質ポリウレタンフォームのセルのアスペクト比(セル断面形状の長径/短径)が1〜1.2である。
(3)前記組成物の整泡剤の表面張力が16〜31dyn/cmである。本発明においてはポリウレタンフォーム形成用組成物をモールド内で発泡させるので、フリー発泡の場合よりも安定性が高いセルが得られるため、フリー発泡の場合よりも高い表面張力の整泡剤を使用することができる。
(4) 前記紛体が、炭酸カルシウム、タルク、ウォラスナイト及びドロマイトから選択される少なくとも1種を含む。
(1) The powder has an average particle size of 1.0 to 2.5 μm and a specific surface area of 0.8 to 2.3 m 2 / g. Thereby, a rigid polyurethane foam having a larger effective strain range can be produced.
(2) The cell aspect ratio (major axis / minor axis of the cell cross-sectional shape) of the rigid polyurethane foam is 1-1.2.
(3) The surface tension of the foam stabilizer of the composition is 16 to 31 dyn / cm. In the present invention, since the polyurethane foam-forming composition is foamed in the mold, cells having higher stability than in the case of free foaming can be obtained. Therefore, a foam stabilizer having a higher surface tension than in the case of free foaming is used. be able to.
(4) The powder includes at least one selected from calcium carbonate, talc, wollastonite, and dolomite.

本発明においては、ポリウレタンフォーム形成用組成物に配合する紛体の平均粒径及び含有量を適正化することで、一般的なモールド成形により、有効歪範囲が大きく、応力吸収性能の高く、且つ異方性が低減された硬質ポリウレタンフォームを容易に製造することができる。従って、応力吸収性能が高く、異方性が低減された衝撃吸収材を低コストで提供することができる。   In the present invention, by optimizing the average particle size and content of the powder blended in the polyurethane foam-forming composition, the effective strain range is large, the stress absorption performance is high, and different by general molding. Rigid polyurethane foam with reduced directionality can be easily produced. Therefore, it is possible to provide an impact absorbing material having high stress absorption performance and reduced anisotropy at low cost.

本発明の硬質ポリウレタンフォームの製造方法の代表的な一例を示す概略断面図である。It is a schematic sectional drawing which shows a typical example of the manufacturing method of the rigid polyurethane foam of this invention. 硬質ポリウレタンフォームの応力−圧縮歪曲線における応力が一定の範囲(有効歪範囲)を説明するための図である。It is a figure for demonstrating the range (effective strain range) where the stress in the stress-compression strain curve of a rigid polyurethane foam is constant.

本発明の硬質ポリウレタンフォームの製造方法について図面を参照にしながら説明する。図1は、本発明の硬質ポリウレタンフォームの製造方法の代表的な一例を示す概略断面図である。まず、ポリヒドロキシ化合物、ポリイソシアネート化合物、発泡剤、触媒及び整泡剤を含み、更に平均粒径が0.05〜10μm、比表面積が0.2〜4.5m/gの紛体を、前記ポリヒドロキシ化合物100質量部に対して25〜70質量部含むポリウレタンフォーム形成用組成物21を上型12及び下型11を有するモールド10内に導入する(図1(a))。組成物の導入は、ウレタン注型成形で使用される一般的な低圧注入機、高圧注入機を用いて行うことができる。次いで、通常のモールド成形方法と同様に上型12及び下型11によりモールド10内を実質的に密閉する(図1(b))。モールド10内は実質的に密封されていれば良く、フォームが流出しないような微小な間隙や内部の気圧を調整する弁等があっても良い。この状態で組成物21を常法により発泡、反応させてモールド10の内側形状に応じた硬質ポリウレタンフォーム31を成形する(図1(c))。最後に、モールド10を脱型し硬質ポリウレタンフォーム31を得る(図1(d))。 The manufacturing method of the rigid polyurethane foam of this invention is demonstrated referring drawings. FIG. 1 is a schematic cross-sectional view showing a typical example of the method for producing a rigid polyurethane foam of the present invention. First, a powder containing a polyhydroxy compound, a polyisocyanate compound, a foaming agent, a catalyst, and a foam stabilizer, and having an average particle size of 0.05 to 10 μm and a specific surface area of 0.2 to 4.5 m 2 / g, A polyurethane foam-forming composition 21 containing 25 to 70 parts by mass with respect to 100 parts by mass of the polyhydroxy compound is introduced into a mold 10 having an upper mold 12 and a lower mold 11 (FIG. 1 (a)). The composition can be introduced using a general low-pressure injector or high-pressure injector used in urethane cast molding. Next, the inside of the mold 10 is substantially sealed with the upper mold 12 and the lower mold 11 in the same manner as in a normal mold forming method (FIG. 1B). The mold 10 only needs to be substantially sealed, and there may be a minute gap that prevents the foam from flowing out, a valve that adjusts the internal air pressure, or the like. In this state, the composition 21 is foamed and reacted by a conventional method to form a rigid polyurethane foam 31 corresponding to the inner shape of the mold 10 (FIG. 1C). Finally, the mold 10 is removed to obtain a rigid polyurethane foam 31 (FIG. 1 (d)).

本発明においては、後述する実施例で示すように、ポリウレタンフォーム形成用組成物21に、上記範囲の平均粒径の紛体を、上記の含有量で配合することで、実質的に密閉されたモールド10内で成形しても、応力−圧縮歪曲線の応力が一定の範囲(有効歪範囲)が大きく、応力吸収性能が高い硬質ポリウレタンフォームが得られる。この要因としては、上記条件においては、組成物内に紛体がより均一に分散されるように粘度を制御できているため、微小な紛体がリブ内に適度に均一に存在したフォームが得られ、圧縮によるセル破壊において、各リブ内に破壊点が適度に増え、有効歪範囲が増大するためと考えられる。これにより、モールド成形によって、モールド内に充填されパックが掛ることでセルのアスペクト比(セル断面形状の長径/短径)が1に近くなり、有効歪範囲は小さくなる傾向になっても、十分な有効歪範囲を得られるものと考えられる。そして、本発明の方法で得られた硬質ポリウレタンフォームはセルのアスペクト比が1に近くすることで、異方性を低減することができる。従って、フォームのセルのアスペクト比は、1〜1.2が好ましい。   In the present invention, as shown in the examples described later, a mold that is substantially sealed by blending a powder having an average particle size in the above range with the above content into the polyurethane foam-forming composition 21. Even if molded within 10, a rigid polyurethane foam having a large stress-compressive strain curve with a constant stress range (effective strain range) and high stress absorption performance can be obtained. As this factor, under the above conditions, the viscosity can be controlled so that the powder is more uniformly dispersed in the composition, so that a foam in which minute powder is present in the ribs in a moderately uniform manner is obtained. It is considered that in the cell fracture due to compression, the fracture points increase moderately in each rib and the effective strain range increases. As a result, even when the mold is molded and the pack is filled into the mold, the cell aspect ratio (the major axis / minor axis of the cell cross-sectional shape) is close to 1, and the effective strain range tends to be small. It is considered that an effective strain range can be obtained. And the rigid polyurethane foam obtained by the method of the present invention can reduce anisotropy when the aspect ratio of the cell is close to 1. Therefore, the aspect ratio of the foam cell is preferably 1 to 1.2.

本発明において、組成物21に配合する紛体の平均粒子が大き過ぎたり、比表面積が小さ過ぎたりすると、組成物21中の沈降速度が速く、紛体が均一に分散した状態が保てなかったり、モールド10内に注入する際に、注入機のノズルにおける摩擦が激しくなるため、特殊な装置が必要になったりする場合がある。また、紛体の平均粒子が小さく、比表面積が大きい程、セル内の破壊点が増加し、有効歪範囲を大きくできるが、粒子径が小さ過ぎたり、比表面積が大き過ぎたりすると粒子の凝集が生じやすくなるため、逆にセル内の破壊点が減少し、上記効果が得られない場合がある。更に有効歪範囲が大きい硬質ポリウレタンフォームを製造するため、紛体の平均粒子径は、0.5〜10μmが好ましく、1.0〜2.5μmが更に好ましく、比表面積は0.4〜4.5m/gが好ましく、0.8〜2.3m/gが更に好ましい。なお、紛体の平均粒子径は、比表面積から換算した平均粒子径にて算出した。 In the present invention, if the average particle size of the powder blended in the composition 21 is too large or the specific surface area is too small, the sedimentation speed in the composition 21 is high, and the powder cannot be uniformly dispersed, When pouring into the mold 10, the friction at the nozzle of the pouring machine becomes intense, which may require a special device. In addition, the smaller the average particle size of the powder and the larger the specific surface area, the greater the failure point in the cell and the larger the effective strain range. However, if the particle size is too small or the specific surface area is too large, the particles will aggregate. Since it tends to occur, the destruction point in the cell decreases, and the above effect may not be obtained. Further, in order to produce a rigid polyurethane foam having a large effective strain range, the average particle size of the powder is preferably 0.5 to 10 μm, more preferably 1.0 to 2.5 μm, and the specific surface area is 0.4 to 4.5 m. 2 / g is preferable, and 0.8 to 2.3 m 2 / g is more preferable. The average particle size of the powder was calculated as the average particle size converted from the specific surface area.

粉体としては、本発明の効果が得られれば、特に制限はない。例えば、炭酸カルシウム、水酸化アルミニウム、シリカ、水酸化マグネシウム等の無機化合物の粉末、鉄、アルミニウム、銅等の金属粉、タルク、マイカ、ウォラスナイト、ドロマイト等の鉱物破砕物、更にポリアミド、ポリ塩化ビニル、メラミン等の有機物等が挙げられ、これらの1種を単独で又は2種以上を併用して用いることができる。効果の点で、炭酸カルシウム、タルク、ウォラスナイト、ドロマイトから選択される少なくとも1種を含むことが好ましく、特に、炭酸カルシウムの粉末が好ましい。粒子の形状は、特に制限はなく、球状、多面体状、不定形、薄片状、鱗片状でも良い。また、粒子表面を脂肪酸等により処理された紛体も、紛体の凝集が抑制される点で好ましい。加工方法においても重質炭酸カルシウム、軽質炭酸カルシウムのどちらを使用しても良い。   The powder is not particularly limited as long as the effects of the present invention can be obtained. For example, powders of inorganic compounds such as calcium carbonate, aluminum hydroxide, silica and magnesium hydroxide, metal powders such as iron, aluminum and copper, crushed minerals such as talc, mica, wollastonite and dolomite, as well as polyamide and polychlorinated Examples thereof include organic substances such as vinyl and melamine, and these can be used alone or in combination of two or more. In view of the effect, it is preferable to include at least one selected from calcium carbonate, talc, wollastonite, and dolomite, and calcium carbonate powder is particularly preferable. The shape of the particles is not particularly limited, and may be spherical, polyhedral, indefinite, flaky, or flaky. Moreover, the powder which processed the particle | grain surface with the fatty acid etc. is preferable at the point which aggregation of a powder is suppressed. In the processing method, either heavy calcium carbonate or light calcium carbonate may be used.

本発明においてポリウレタンフォーム形成用組成物に配合するポリヒドロキシ化合物としては、特に制限はなく、例えば、グリセリン、シュクロース、エチレンジアミン、ソルビトール、トリレンジアミン、モノエタノールアミン等にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを開環付加重合して得られるポリエーテルポリオール類、アジピン酸、コハク酸等の多塩基酸とエチレングリコール、プロピレングリコール等のポリヒドロキシ化合物との重縮合反応或いはラクトン類の開環重合によって得られるポリエステルポリオール類等が挙げられ、これらの1種を単独で又は2種以上を併用して使用することができる。この場合、本発明においては、硬質ポリウレタンフォームの耐熱性を向上させるため、全ポリヒドロキシ化合物の平均OH価として200以上、好ましくは300以上とするのが好ましい。   The polyhydroxy compound to be blended in the polyurethane foam-forming composition in the present invention is not particularly limited, and examples thereof include glycerin, sucrose, ethylenediamine, sorbitol, tolylenediamine, monoethanolamine, and the like such as ethylene oxide and propylene oxide. Polyether polyols obtained by ring-opening addition polymerization of alkylene oxide, polycondensation reaction between polybasic acids such as adipic acid and succinic acid and polyhydroxy compounds such as ethylene glycol and propylene glycol, or ring-opening polymerization of lactones Examples include polyester polyols to be obtained, and one of these can be used alone or in combination of two or more. In this case, in the present invention, in order to improve the heat resistance of the rigid polyurethane foam, the average OH value of all the polyhydroxy compounds is preferably 200 or more, preferably 300 or more.

一方、本発明においてポリウレタンフォーム形成用組成物に配合するポリイソシアネート化合物としては、ジフェニルメタンジイソシアネ−ト(MDI)、トリレンジイソシアネート(TDI)等の芳香族系イソシアネート類、イソホロンジイソシアネート等の脂環族系イソシアネート類、ヘキサメチレンジイソシアネート等の脂肪族系イソシアネート類、これらの粗製物などの1種を単独で又は2種以上を併用して使用できる。尚、ポリヒドロキシ化合物及び水等の活性水素を有する化合物の全量に対するポリイソシアネート化合物の使用量、即ちイソシアネート指数は、通常の硬質ウレタンフォームを製造する場合は80〜130の範囲、イソシアヌレート変性硬質ウレタンフォームを製造する場合は150〜350の範囲とすることが望ましい。   On the other hand, the polyisocyanate compound to be blended in the polyurethane foam forming composition in the present invention includes aromatic isocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and alicyclic rings such as isophorone diisocyanate. One type of aliphatic isocyanates such as aliphatic isocyanates, hexamethylene diisocyanate, and crude products thereof can be used alone or in combination of two or more. The amount of polyisocyanate compound used relative to the total amount of the active compound such as polyhydroxy compound and water, that is, the isocyanate index ranges from 80 to 130 when producing an ordinary rigid urethane foam. Isocyanurate-modified rigid urethane In the case of producing a foam, it is desirable to be in the range of 150 to 350.

本発明において、ポリウレタンフォーム形成用組成物に配合する触媒としては特に制限はなく、硬質ポリウレタンフォームの製造に使用される公知のものを用いることができる。例えば、ジブチル錫ジラウレート、鉛オクトエート、スタナスオクトエート等の有機金属系化合物、トリエチレンジアミン、テトラメチルヘキサメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルプロピレンジアミン、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、N,N,N’,N”,N”−ペンタメチル−(3−アミノプロピル)エチレンジアミン、N,N,N’,N”,N”−ペンタメチルジプロピレントリアミン、N,N,N’,N’−テトラメチルグアニジン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、N,N’−ジメチルピペラジン、ジメチルシクロヘキシルアミン、N−メチルモルホリン、N−エチルモルホリン、ビス(2−ジメチルアミノエチル)エーテル、1−メチルイミダゾール、1,2−ジメチルイミダゾール、1−イソブチル−2−メチルイミダゾール、1−ジメチルアミノプロピルイミダゾール等の第三級アミン化合物等のアミン系化合物、更にN,N‘,N”−トリス(ジアミノプロピル)ヘキサヒドロ−s−トリアジン、酢酸カリウム、オクチル酸カリウム等のイソシアヌレート変性に使用される公知のものを用いることができる。また、発泡剤としては、硬質ポリウレタンフォ−ムの製造に使用されている公知のものを用いることができ、例えば、水、トリクロロフルオロメタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン等のクロロフルオロカーボン類、ジクロロトリフルオロエタン、ジクロロテトラフルオロエタン等のハイドロクロロフルオロカーボン類、塩化メチレン等のハイドロクロロカーボン類、ヘキサフルオロプロパン等のハイドロフルオロカーボン類、ペンタン等のハイドロカーボン類等が使用できる。これらの中でも、大気への拡散による環境への影響に鑑みて水が特に好ましく、組成物における水の含有量はポリヒドロキシ化合物100質量部に対して、0.5〜10質量部の範囲が好ましい。   In this invention, there is no restriction | limiting in particular as a catalyst mix | blended with the composition for polyurethane foam formation, The well-known thing used for manufacture of a rigid polyurethane foam can be used. For example, organometallic compounds such as dibutyltin dilaurate, lead octoate, stannous octoate, triethylenediamine, tetramethylhexamethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, N, N, N ′, N ″, N ″ -pentamethyl- (3-aminopropyl) ethylenediamine, N, N, N ′, N ″, N ″ -pentamethyldipropylenetriamine, N, N, N ′, N′-tetramethylguanidine, 1,8-diazabicyclo [5.4.0] undecene-7, N, N '-Dimethylpiperazine, dimethylcyclohexylamine, N-methylmorpholine, N-ethylmorpholine, bis (2-dimethyl) Amine compounds such as tertiary amine compounds such as 1-methylimidazole, 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-dimethylaminopropylimidazole, and N, N ′, N ″ -tris (diaminopropyl) hexahydro-s-triazine, potassium acetate, potassium octylate, and the like used for isocyanurate modification can be used. As the foaming agent, rigid polyurethane foam is used. For example, water, trichlorofluoromethane, chlorofluorocarbons such as 1,1,2-trichloro-1,2,2-trifluoroethane, dichlorotrifluoro, and the like can be used. Hydro such as ethane and dichlorotetrafluoroethane Hydrochlorocarbons such as chlorofluorocarbons, methylene chloride and the like, hydrofluorocarbons such as hexafluoropropane, hydrocarbons such as pentane, etc. Among these, water in view of the environmental impact due to diffusion to the atmosphere Is particularly preferable, and the water content in the composition is preferably in the range of 0.5 to 10 parts by mass with respect to 100 parts by mass of the polyhydroxy compound.

本発明において、ポリウレタンフォーム形成用組成物に配合する整泡剤としては、本発明の効果を阻害しない限り、特に制限はない。例えば、ポリオキシアルキレンアルキルエ−テル等のポリオキシアルキレン系のもの、オルガノポリシロキサン等のシリコ−ン系のもの等が挙げられる。本発明においては、表面張力が16〜31dyn/cmの範囲の整泡剤を用いることが好ましい。本発明においては、上述のようにポリウレタンフォーム形成用組成物をモールド内で発泡させるので、特許文献1におけるフリー発砲の場合より、安定性の高いセルが得られる。従って、フリー発泡の場合よりも高い表面張力の整泡剤を用いることができる。整泡剤の表面張力は、16〜22dyn/cmが更に好ましく、特に18〜21.5dyn/cmの範囲が好ましい。表面張力が小さい整泡剤を使用すると、セル荒れなどの現象が発生する場合がある。組成物における整泡剤の含有量は、ポリヒドロキシ化合物100質量部に対して、0.5〜5質量部の範囲が好ましい。   In the present invention, the foam stabilizer added to the polyurethane foam-forming composition is not particularly limited as long as the effects of the present invention are not impaired. For example, polyoxyalkylene-based materials such as polyoxyalkylene alkyl ether, silicone-based materials such as organopolysiloxane, and the like can be mentioned. In the present invention, it is preferable to use a foam stabilizer having a surface tension in the range of 16 to 31 dyn / cm. In the present invention, since the polyurethane foam-forming composition is foamed in the mold as described above, a more stable cell can be obtained than in the case of free firing in Patent Document 1. Therefore, a foam stabilizer having a higher surface tension than that of free foaming can be used. The surface tension of the foam stabilizer is more preferably 16 to 22 dyn / cm, and particularly preferably 18 to 21.5 dyn / cm. When a foam stabilizer having a small surface tension is used, a phenomenon such as cell roughening may occur. The content of the foam stabilizer in the composition is preferably in the range of 0.5 to 5 parts by mass with respect to 100 parts by mass of the polyhydroxy compound.

なお、上記組成物には、本発明の効果を阻害しない範囲で上記成分以外に任意の成分、例えば難燃剤等を使用することができる。   In addition, arbitrary components other than the said component, for example, a flame retardant etc., can be used for the said composition in the range which does not inhibit the effect of this invention.

本発明の硬質ポリウレタンフォームの製造方法によって製造された、本発明の硬質ポリウレタンフォームは、応力−圧縮歪曲線の応力が一定の範囲(有効歪範囲)が大きく、応力吸収性能が高く、且つ、異方性が低減された硬質ポリウレタンフォームである。従って、本発明の硬質ポリウレタンフォームからなる本発明の衝撃吸収材は、自動車のドアトリムの内側等の内装やバンパー等の外装、運動場の壁やフェンス、ヘルメットの内張り、梱包用緩衝材等に極めて有効な衝撃吸収材である。   The rigid polyurethane foam of the present invention produced by the method of producing a rigid polyurethane foam of the present invention has a large stress range in the stress-compression strain curve (effective strain range), high stress absorption performance, and different characteristics. Rigid polyurethane foam with reduced directionality. Therefore, the shock absorber of the present invention comprising the rigid polyurethane foam of the present invention is extremely effective for interiors such as the interior of automobile door trims, exteriors such as bumpers, sports field walls and fences, helmet linings, and cushioning materials for packaging. Shock absorber.

以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described with reference to examples.

1.硬質ポリウレタンフォームの作製
表1に示す実施例1〜9、及び比較例1〜3の配合の組成物(ポリヒドロキシ化合物液(ポリイソシアネート以外の材料を混合した液)の液温30〜60℃、ポリイソシアネート液の液温20〜40℃)を、120mm×120mm×70mmのモールド(型温40〜60℃)に注入し、(図1参照)、キュア時間180〜300秒で硬質ポリウレタンフォームのモールド成形品を作製した。また、比較のため同様な配合でフリー発泡の硬質ポリウレタンフォームを作製した。
1. Production of Rigid Polyurethane Foam Compositions of Examples 1 to 9 and Comparative Examples 1 to 3 shown in Table 1 (polyhydroxy compound liquid (liquid mixed with materials other than polyisocyanate) liquid temperature 30 to 60 ° C., A polyisocyanate liquid temperature of 20 to 40 ° C. is poured into a 120 mm × 120 mm × 70 mm mold (mold temperature of 40 to 60 ° C.) (see FIG. 1), and a rigid polyurethane foam mold with a curing time of 180 to 300 seconds. A molded product was produced. For comparison, a free-foaming rigid polyurethane foam was prepared with the same composition.

2.評価方法
(1)液安定性
組成物のポリヒドロキシ化合物液(紛体を含む)を200gを、250mlメスシリンダーに投入し、40℃に静置し、分離状態を目視観察した。1日以上分離が認められない場合を○とし、1日未満で分離が認められた場合を×とした。
(2)液粘度
組成物のポリヒドロキシ化合物液(紛体を含む)の粘度をB型粘度計で45℃にて測定した。注入機により安定して注入可能で、、ポリヒドロキシ化合物液とポリイソシアネート化合物液が安定して拡販できる粘度として、3000mPa/s(45℃)未満を○とし、3000mPa/s(45℃)以上を×とした。
(3)成形性
各組成物を、キュア時間180秒の時にモールドの容積に対し、1〜1.2倍量になるように入れ、脱型後に成形品の中心に割れが生じるかを目視観察した。割れが認められない場合を○とし、認められた場合を×とした。
(4)フォーム密度
各モールド成形品のコア部から50mm×50mm×50mmの試料を切り出し、正確な寸法及び質量を測定して算出した。
(5)圧縮応力
各モールド成形品及びフリー発泡品のコア部から50mm×50mm×50mmの試料を切り出し、圧縮試験機(オートグラフ(島図製作所社製))により上部から50min/minの速度で圧縮し、圧縮率に対する応力を測定し、図2に示したような応力−圧縮歪曲線を作成する。基準として50%圧縮時の応力を比較した。
(6)有効歪範囲
図2に示すように、(5)における50%圧縮時の応力の±10%の応力を示す圧縮率の範囲を有効歪範囲とした。
2. Evaluation Method (1) Liquid Stability 200 g of the polyhydroxy compound liquid (including powder) of the composition was put into a 250 ml graduated cylinder, allowed to stand at 40 ° C., and the separated state was visually observed. The case where no separation was observed for 1 day or more was marked with ◯, and the case where separation was observed in less than 1 day was marked with x.
(2) Liquid viscosity The viscosity of the polyhydroxy compound liquid (including powder) of the composition was measured with a B-type viscometer at 45 ° C. As a viscosity that can be stably injected by an injection machine, and the polyhydroxy compound liquid and the polyisocyanate compound liquid can be stably sold, the viscosity is less than 3000 mPa / s (45 ° C.), and the viscosity is 3000 mPa / s (45 ° C.) or more. X.
(3) Formability
Each composition was put so as to be 1 to 1.2 times the volume of the mold when the curing time was 180 seconds, and it was visually observed whether or not a crack occurred in the center of the molded product after demolding. The case where cracking was not recognized was marked with ◯, and the case where cracking was recognized was marked with ×.
(4) Foam density A 50 mm × 50 mm × 50 mm sample was cut out from the core portion of each molded product, and the accurate dimensions and mass were measured and calculated.
(5) Compressive stress A 50 mm x 50 mm x 50 mm sample is cut out from the core part of each molded product and free-foamed product, and at a rate of 50 min / min from the top using a compression tester (Autograph (manufactured by Shimazu Seisakusho)). Compress and measure the stress relative to the compressibility to create a stress-compression strain curve as shown in FIG. As a reference, the stress at 50% compression was compared.
(6) Effective strain range As shown in FIG. 2, the range of the compression rate which shows the stress of +/- 10% of the stress at the time of 50% compression in (5) was made into the effective strain range.

Figure 2015007167
Figure 2015007167

3.評価結果
表1に示したように、紛体を25〜70質量部配合した実施例1〜9の組成物をモールド成形した硬質ウレタンフォームは、組成物の液安定性、液粘度が合格であり、得られたモール成形品も十分な圧縮応力と、大きい有効歪範囲を示した。一方、紛体の配合量が多い比較例1は液安定性が低く、液粘度も注入機にかけられないほど高くなり、良好にフォームを作製することができなかった。また紛体の配合量が少ない比較例2及び3はフォーム密度にかかわらず、有効歪範囲が小さくなった。また、表面張力が22.6dyn/cmの整泡剤を用いた実施例9においても、十分大きい有効歪範囲が得られた。
3. Evaluation results As shown in Table 1, the hard urethane foam obtained by molding the composition of Examples 1 to 9 containing 25 to 70 parts by mass of powder is liquid stability and liquid viscosity of the composition, The obtained molded molding also showed sufficient compressive stress and a large effective strain range. On the other hand, Comparative Example 1 having a large amount of powder was low in liquid stability, and the liquid viscosity was so high that it could not be applied to an injection machine, so that a foam could not be produced satisfactorily. In Comparative Examples 2 and 3 with a small amount of powder, the effective strain range was small regardless of the foam density. Also in Example 9 using a foam stabilizer with a surface tension of 22.6 dyn / cm, a sufficiently large effective strain range was obtained.

なお、本発明は上記の実施の形態の構成及び実施例に限定されるものではなく、発明の要旨の範囲内で種々変形が可能である。   In addition, this invention is not limited to the structure and Example of said embodiment, A various deformation | transformation is possible within the range of the summary of invention.

本発明により、応力吸収性能が高く、異方性が低減された衝撃吸収材を低コストで提供することができる。   According to the present invention, it is possible to provide a shock absorber having high stress absorption performance and reduced anisotropy at low cost.

10 モールド
11 下型
12 上型
21 ポリウレタンフォーム形成用組成物
31 硬質ポリウレタンフォーム
10 Mold 11 Lower mold 12 Upper mold
21 Composition for forming polyurethane foam 31 Rigid polyurethane foam

Claims (7)

ポリヒドロキシ化合物、ポリイソシアネート化合物、発泡剤、触媒及び整泡剤を含むポリウレタンフォーム形成用組成物を、モールド内で発泡、反応させることでポリウレタンフォームを成形する工程を含む硬質ポリウレタンフォームの製造方法であって、
前記組成物が、更に、平均粒径が0.05〜10μm、比表面積0.2〜4.5m/gの紛体を、前記ポリヒドロキシ化合物100質量部に対して25〜70質量部含み、且つ
前記ポリウレタンフォームを成形する工程が、実質的に密閉されたモールド内で行われることを特徴とする硬質ポリウレタンフォームの製造方法。
A method for producing a rigid polyurethane foam comprising a step of forming a polyurethane foam by foaming and reacting a composition for forming a polyurethane foam containing a polyhydroxy compound, a polyisocyanate compound, a foaming agent, a catalyst and a foam stabilizer in a mold. There,
The composition further comprises 25 to 70 parts by mass of a powder having an average particle size of 0.05 to 10 μm and a specific surface area of 0.2 to 4.5 m 2 / g, based on 100 parts by mass of the polyhydroxy compound, And the process of shape | molding the said polyurethane foam is performed within the substantially sealed mold, The manufacturing method of the rigid polyurethane foam characterized by the above-mentioned.
前記紛体の平均粒径が1.0〜2.5μmであり、比表面積が0.8〜2.3m/gである請求項1に記載の硬質ポリウレタンフォームの製造方法。 2. The method for producing a rigid polyurethane foam according to claim 1, wherein the powder has an average particle diameter of 1.0 to 2.5 μm and a specific surface area of 0.8 to 2.3 m 2 / g. 硬質ポリウレタンフォームのセルのアスペクト比(セル断面形状の長径/短径)が1〜1.2である請求項1又は2に記載の硬質ポリウレタンフォームの製造方法。   The method for producing a rigid polyurethane foam according to claim 1 or 2, wherein the cell aspect ratio of the rigid polyurethane foam (major axis / minor axis of the cell cross-sectional shape) is 1 to 1.2. 前記組成物の整泡剤の表面張力が16〜31dyn/cmである請求項1〜3のいずれか1項に記載の硬質ポリウレタンフォームの製造方法。   The method for producing a rigid polyurethane foam according to any one of claims 1 to 3, wherein the foam stabilizer of the composition has a surface tension of 16 to 31 dyn / cm. 前記紛体が、炭酸カルシウム、タルク、ウォラスナイト及びドロマイトから選択される少なくとも1種を含む請求項1〜4に記載の硬質ポリウレタンフォームの製造方法。   The method for producing a rigid polyurethane foam according to claim 1, wherein the powder contains at least one selected from calcium carbonate, talc, wollastonite, and dolomite. 請求項1〜5のいずれか1項に記載の製造方法によって製造された硬質ポリウレタンフォーム。   The rigid polyurethane foam manufactured by the manufacturing method of any one of Claims 1-5. 請求項6に記載の硬質ポリウレタンフォームからなる衝撃吸収材。   An impact absorbing material comprising the rigid polyurethane foam according to claim 6.
JP2013132289A 2013-06-25 2013-06-25 Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material Pending JP2015007167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013132289A JP2015007167A (en) 2013-06-25 2013-06-25 Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013132289A JP2015007167A (en) 2013-06-25 2013-06-25 Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material

Publications (1)

Publication Number Publication Date
JP2015007167A true JP2015007167A (en) 2015-01-15

Family

ID=52337666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013132289A Pending JP2015007167A (en) 2013-06-25 2013-06-25 Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material

Country Status (1)

Country Link
JP (1) JP2015007167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540625A (en) * 2019-08-21 2019-12-06 佳化化学科技发展(上海)有限公司 Hard foam heat-insulating material and preparation method thereof
KR102191495B1 (en) * 2019-08-27 2020-12-15 에스디코리아(주) Polysiloxane surfactant, method of preparing the same and polyurethane foam composition including polysiloxane surfactant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447751A (en) * 1977-09-02 1979-04-14 Bayer Ag Stable suspension dispersing inorganic filler in organic polyhydroxy compound
JPH07156162A (en) * 1993-12-07 1995-06-20 Bridgestone Corp Production of impact absorbing molded product
JPH09169036A (en) * 1995-12-20 1997-06-30 Bridgestone Corp Production of impact absorbing molded product and mold used therein
JP2000095048A (en) * 1998-07-23 2000-04-04 Bridgestone Corp Shock absorbing pad
WO2005012381A1 (en) * 2003-08-01 2005-02-10 Bridgestone Corporation Method of producing polyurethane mold foam and polyurethane mold foam
JP2010132738A (en) * 2008-12-03 2010-06-17 Sanyo Chem Ind Ltd Polymer polyol, method for producing the same and method for producing polyurethane resin
JP2010174200A (en) * 2009-01-30 2010-08-12 Pentel Corp Correction fluid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447751A (en) * 1977-09-02 1979-04-14 Bayer Ag Stable suspension dispersing inorganic filler in organic polyhydroxy compound
JPH07156162A (en) * 1993-12-07 1995-06-20 Bridgestone Corp Production of impact absorbing molded product
JPH09169036A (en) * 1995-12-20 1997-06-30 Bridgestone Corp Production of impact absorbing molded product and mold used therein
JP2000095048A (en) * 1998-07-23 2000-04-04 Bridgestone Corp Shock absorbing pad
WO2005012381A1 (en) * 2003-08-01 2005-02-10 Bridgestone Corporation Method of producing polyurethane mold foam and polyurethane mold foam
JP2010132738A (en) * 2008-12-03 2010-06-17 Sanyo Chem Ind Ltd Polymer polyol, method for producing the same and method for producing polyurethane resin
JP2010174200A (en) * 2009-01-30 2010-08-12 Pentel Corp Correction fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540625A (en) * 2019-08-21 2019-12-06 佳化化学科技发展(上海)有限公司 Hard foam heat-insulating material and preparation method thereof
CN110540625B (en) * 2019-08-21 2021-06-29 佳化化学科技发展(上海)有限公司 Hard foam heat-insulating material and preparation method thereof
KR102191495B1 (en) * 2019-08-27 2020-12-15 에스디코리아(주) Polysiloxane surfactant, method of preparing the same and polyurethane foam composition including polysiloxane surfactant

Similar Documents

Publication Publication Date Title
CN1951973B (en) Process for the manufacture of cold-cure polyurethane foams
JP2011506697A (en) Viscoelastic polyurethane foam
CN1508166A (en) Flexible polyurethane foam plastics
KR20030077609A (en) Spring element
KR20080078782A (en) Process for producing polyurethane flexible foamed materials having low bulk density
US8609740B2 (en) Closed-loop recycled polyurethane foam, methods of manufacture and products therefrom
JP7368102B2 (en) Polyurethane foam and its manufacturing method
KR101916508B1 (en) composition for manufacturing polyurethane foam and molded article thereof
JP2015007167A (en) Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material
JP2015007169A (en) Rigid polyurethane foam and impact absorbing material
JP6892853B2 (en) Manufacturing method of soft polyester urethane foam with reinforced compression hardness
JP5986838B2 (en) Sound absorbing shock absorber and method for manufacturing the same
EP3710506A1 (en) Polyurethane foam composite panel
KR20200069864A (en) Polyurethane foam and manufacturing method of the same
CN110741026A (en) Composition for flexible polyurethane foam, and seat pad for vehicle
US10202482B2 (en) Viscoelastic foams having high dissipation energy
JP7165511B2 (en) Protective material
EP3677610A1 (en) Preparation of polyurethane foam
JP3173137B2 (en) Method for producing rigid polyurethane foam
CN104004215A (en) Heat-insulating molding and process for producing the same
JP2010280855A (en) Flexible polyurethane foam for vehicle seat cushion and production method thereof
JP2015007168A (en) Method for manufacturing rigid polyurethane foam, rigid polyurethane foam and impact absorbing material
JP3173136B2 (en) Shock absorber
JP3204828B2 (en) Molded article for shock absorption and method for producing the same
JPH09169036A (en) Production of impact absorbing molded product and mold used therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508