JP2014516115A - Solvent for fluoropolymers - Google Patents

Solvent for fluoropolymers Download PDF

Info

Publication number
JP2014516115A
JP2014516115A JP2014514133A JP2014514133A JP2014516115A JP 2014516115 A JP2014516115 A JP 2014516115A JP 2014514133 A JP2014514133 A JP 2014514133A JP 2014514133 A JP2014514133 A JP 2014514133A JP 2014516115 A JP2014516115 A JP 2014516115A
Authority
JP
Japan
Prior art keywords
weight
solvent system
dmso
ketone
fluoropolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014514133A
Other languages
Japanese (ja)
Inventor
シユミツト ポール−ギイヨーム
ボートウラン メラニー
Original Assignee
アルケマ フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルケマ フランス filed Critical アルケマ フランス
Publication of JP2014516115A publication Critical patent/JP2014516115A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、50wt%〜99.9wt%の、ジメチルスルホキシドを含む組成物(A)と、0.1wt%〜50wt%の、少なくとも1つのケトンを含む組成物(B)とを含むフッ素重合体用の溶媒系に関する。本発明は、上記溶媒系と上記フッ素重合体とを含む溶液、並びにフィルム、膜及びコーティングの製造へのそれらの使用にも関する。
【選択図】なし
The present invention relates to a fluoropolymer comprising 50 wt% to 99.9 wt% of a composition (A) containing dimethyl sulfoxide and 0.1 wt% to 50 wt% of a composition (B) containing at least one ketone. Solvent system for use. The invention also relates to solutions comprising the solvent system and the fluoropolymer, and their use in the production of films, membranes and coatings.
[Selection figure] None

Description

本発明は、フッ素重合体用の溶媒の分野、及びフィルム、膜、コーティング等の調製における溶解した該フッ素重合体の使用に関する。   The present invention relates to the field of solvents for fluoropolymers and the use of the dissolved fluoropolymers in the preparation of films, membranes, coatings and the like.

フッ素重合体は現在、その機械的及び化学的な強度特性並びに長い寿命のために非常に広く使用されている。実際に、フッ素重合体は、ますます多くの用途に使用されるようになっている。   Fluoropolymers are currently very widely used because of their mechanical and chemical strength properties and long life. In fact, fluoropolymers are being used for an increasing number of applications.

これらの用途の中で最も一般的なのは、フッ素重合体をフィルム、膜又はコーティング状に成形することである。通例、フッ素重合体は、支持されていても又は支持されていなくてもよい、厚さが数十ナノメートルから数ミリメートルまで様々なフィルムの形態とする場合に実に有利に適用される。   The most common of these applications is to form the fluoropolymer into a film, membrane or coating. As a rule, fluoropolymers have a very advantageous application when they are in the form of films that can be supported or unsupported, with thicknesses ranging from tens of nanometers to several millimeters.

したがって、非限定的な例としては、フッ素重合体はフィルム、膜及びコーティングの製造又はLiイオン型電池等の電池の製造において使用される。   Thus, as a non-limiting example, fluoropolymers are used in the manufacture of films, membranes and coatings, or in the manufacture of batteries such as Li-ion batteries.

かかる用途では、フッ素重合体を、まず第一に多少濃縮した溶液に溶解する必要があり、その後に溶媒(単数又は複数)を例えば蒸発若しくは第3の溶媒を用いた抽出、又は当業者に既知の任意の他の方法で除去することによってフィルムを作製する。   In such applications, the fluoropolymer must first be dissolved in a somewhat concentrated solution, and then the solvent or solvents are extracted, for example by evaporation or using a third solvent, or known to those skilled in the art. The film is made by removing by any other method.

フッ素重合体、特にPVDFという名でよく知られているポリ(フッ化ビニリデン)は現在、一般にN−メチル−2−ピロリドン(NMP)に溶解される。NMPはフッ素重合体の成形に適切であるが、多くの欠点を示す。これは、NMPが高い毒性リスクを有する化合物であり、今後は生殖毒性として分類されるためである。そのため、NMPをより良好な毒性プロファイルを有する溶媒に置き換えることには利点がある。   Fluoropolymers, particularly poly (vinylidene fluoride), well known under the name PVDF, are now commonly dissolved in N-methyl-2-pyrrolidone (NMP). NMP is suitable for molding fluoropolymers, but exhibits many drawbacks. This is because NMP is a compound with a high toxicity risk and will be classified as reproductive toxicity in the future. Therefore, there are advantages to replacing NMP with a solvent that has a better toxicity profile.

DMSO(すなわちジメチルスルホキシド)は、或る特定のグレードのPVDF、例えばArkemaによって販売される製品であるKynar(登録商標)及びKynar Flex(登録商標)、又は更にはSolvayによって販売される製品であるSolef(登録商標)、Hylar(登録商標)、Halar(登録商標)若しくはHyflon(登録商標)の溶解を可能にする既知の溶媒である。DMSOの使用によって、粘度がNMPで得られる粘度と同程度の溶液を得ることが可能となる。しかしながら、この溶解を可能とするには、DMSOを約50℃、更にはそれ以上の温度まで加熱する必要がある。   DMSO (ie, dimethyl sulfoxide) is a specific grade of PVDF, such as Kynar® and Kynar Flex®, products sold by Arkema, or even Solef, a product sold by Solvay. (Registered trademark), Hylar (registered trademark), Halar (registered trademark) or Hyflon (registered trademark) is a known solvent that enables dissolution. By using DMSO, it is possible to obtain a solution having a viscosity comparable to that obtained with NMP. However, to enable this dissolution, DMSO must be heated to a temperature of about 50 ° C. and higher.

加えて、このように調製したPVDFのDMSO溶液は長期にわたって安定ではなく、多くの場合、溶液のゲル化又は混濁が僅か1、2日後から観察される。結果として、所要のフィルムを作製するには、使用者は迅速に溶液を使用及び適用せざるを得ず、このことがNMPを置き換える妨げとなっている。   In addition, PVDF in DMSO prepared in this way is not stable over time, and in many cases gelation or turbidity of the solution is observed after only 1 or 2 days. As a result, to make the required film, the user is forced to use and apply the solution quickly, which prevents NMP from being replaced.

特許文献1は、PVDFの部品を接着によって組み立てる方法であって、接着剤がPVDFの希薄溶媒溶液であり、該溶媒をジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAC)、テトラヒドロフラン(THF)、ジメチルスルホキシド(DMSO)、シクロヘキサノン(CyHone)、ヘキサメチルホスホルアミド(HMPA)、ブチロラクトン及びそれらの混合物から選択することが可能である、方法を記載している。実施例は、PVDFをDMFに溶解することができるが、温度が60℃であるこ
とを実質的に示している。
Patent Document 1 is a method of assembling PVDF parts by bonding, wherein the adhesive is a dilute solvent solution of PVDF, and the solvent is dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), tetrahydrofuran (THF). ), Dimethyl sulfoxide (DMSO), cyclohexanone (CyHone), hexamethylphosphoramide (HMPA), butyrolactone and mixtures thereof are described. The examples show that PVDF can be dissolved in DMF, but the temperature is substantially 60 ° C.

特許文献2は、任意の温度でのPVDFの溶解を可能にする溶媒/共溶媒混合物を用いた膜の調製を教示している。考え得る多くの混合物が提示されているが、NMP及びDMF又は酢酸n−ブチルをベースとする混合物のみが効果的であり、それらしか実施例に記載されていないことがこの教示から明らかである。   U.S. Patent No. 6,057,032 teaches the preparation of membranes using a solvent / cosolvent mixture that allows dissolution of PVDF at any temperature. Although many possible mixtures are presented, it is clear from this teaching that only mixtures based on NMP and DMF or n-butyl acetate are effective and only those are described in the examples.

さらに特許文献3は、フッ素重合体を溶媒に溶解することによって多孔質膜を調製する方法を記載している。この方法に好適な溶媒は、ケトン、エーテル、アミド及びスルホキシド並びにそれらの混合物から選択される。最適な溶媒はアセトン/DMF混合物であることが示されている。このことは実施例によって確認されるが、実施例にはこの溶媒混合物しか例示されていない。加えて、その実施例には、溶解を高温条件下で行う必要があり、重合体溶液を早急に使用する必要があることが教示されている。   Further, Patent Document 3 describes a method for preparing a porous membrane by dissolving a fluoropolymer in a solvent. Suitable solvents for this process are selected from ketones, ethers, amides and sulfoxides and mixtures thereof. The optimum solvent has been shown to be an acetone / DMF mixture. This is confirmed by the examples, which only illustrate this solvent mixture. In addition, the examples teach that dissolution must be done under high temperature conditions and the polymer solution must be used immediately.

さらに特許文献4は、高沸点の溶媒と低沸点の溶媒とからなる混合物に事前に溶解したフッ素重合体から膜を調製する方法を記載している。かかる溶媒混合物の例として、アセトンとDMF、DMAC、DMSO及びそれらの混合物から選択される別の溶媒との混合物が挙げられている。   Further, Patent Document 4 describes a method for preparing a film from a fluoropolymer previously dissolved in a mixture of a high-boiling solvent and a low-boiling solvent. Examples of such solvent mixtures include a mixture of acetone and another solvent selected from DMF, DMAC, DMSO and mixtures thereof.

特許文献4の実施例には、アセトン/DMAC混合物へのフッ素重合体の溶解しか提示されていない。この場合、常にDMACと比べて大部分がアセトンである。加えて、この混合物は適切なフィルム形成の前に50℃で1時間加熱する必要がある。   In the example of the patent document 4, only dissolution of a fluoropolymer in an acetone / DMAC mixture is presented. In this case, the majority is always acetone compared to DMAC. In addition, the mixture needs to be heated at 50 ° C. for 1 hour prior to proper film formation.

特許文献5は、分離操作に使用することのできるアクリロニトリル/PVDF複合膜を記載している。膜の構成重合体は、任意にアセトン、メタノール、エタノール、ホルムアミド、水、メチルエチルケトン等から選択される共溶媒の存在下でNMP、DMF、DMSO、HMPA、DMAC、ジオキサン及びそれらの混合物から選択される溶媒に溶解することができる。提示の実施例には、ポリアクリロニトリル(PAN)膜、及びNMP、DMF、DMSO、トルエン、メチルエチルケトン、アセトン等の溶媒に対するその良好な耐性しか示されていない。   Patent Document 5 describes an acrylonitrile / PVDF composite membrane that can be used in a separation operation. The constituent polymer of the membrane is selected from NMP, DMF, DMSO, HMPA, DMAC, dioxane and mixtures thereof, optionally in the presence of a co-solvent selected from acetone, methanol, ethanol, formamide, water, methyl ethyl ketone, etc. It can be dissolved in a solvent. The examples presented show only their good resistance to polyacrylonitrile (PAN) membranes and solvents such as NMP, DMF, DMSO, toluene, methyl ethyl ketone, acetone.

仏国特許出願公開第2285227号明細書French Patent Application Publication No. 2285227 欧州特許第0639106号明細書European Patent No. 0639106 欧州特許出願公開第0223709号明細書European Patent Application No. 0223709 米国特許第5387378号明細書US Pat. No. 5,387,378 欧州特許第0574957号明細書European Patent No. 0574957

したがって、現在既知の従来技術の技法は、いずれもフッ素重合体用の溶媒系で標準溶媒であるNMPを有利に置き換えることができる技法として認めることができないため、満足のいくものではない。   Therefore, none of the currently known prior art techniques are satisfactory because they cannot be recognized as a technique that can advantageously replace NMP, the standard solvent, in a solvent system for fluoropolymers.

これは、従来技術に記載の技法には、溶媒系へのフッ素重合体の溶解を高温条件下、すなわち少なくとも50℃の温度で行う必要があることが示されているためである。   This is because the techniques described in the prior art indicate that the dissolution of the fluoropolymer in the solvent system must be performed under high temperature conditions, ie at a temperature of at least 50 ° C.

従来技術の技法には、得られる溶液を調製後迅速に使用する必要があることも教示されているため、当業者であれば、得られる溶液が長期にわたって安定ではないこと、又は常
温若しくはフッ素重合体の溶液を形成する温度まで冷却した場合に安定ではないことを理解するであろう。
Prior art techniques also teach that the resulting solution needs to be used quickly after preparation, so one skilled in the art will recognize that the resulting solution is not stable over time or is It will be understood that it is not stable when cooled to a temperature to form a coalesced solution.

加えて、従来技術の技法は得られる溶液の粘度の問題には関連しないようであるが、この問題はフッ素重合体の成形に非常に重要であり、NMPが現在広く使用されていることの理由の一つである。これは、フッ素重合体のNMP溶液が低い粘度を示し、重合体含量の高い溶液を得ること、したがってフィルムの調製に使用される溶媒の量を減らすことを可能にするためである。   In addition, although the prior art techniques do not appear to be related to the problem of viscosity of the resulting solution, this problem is very important for the molding of fluoropolymers and why NMP is now widely used one of. This is because the NMP solution of the fluoropolymer exhibits a low viscosity, making it possible to obtain a solution with a high polymer content and thus to reduce the amount of solvent used in the preparation of the film.

したがって、本発明の目的の1つは、上述の従来技術に見られる欠点を示さないフッ素重合体用の溶媒系を提供することである。   Accordingly, one object of the present invention is to provide a solvent system for fluoropolymers that does not exhibit the disadvantages found in the prior art described above.

より具体的には、本発明の第1の目的は、NMPよりも毒性が低い、特に弱毒性の、更には非毒性のフッ素重合体用の溶媒系を提供することである。   More specifically, a first object of the present invention is to provide a solvent system for fluoropolymers that is less toxic than NMP, in particular less toxic and even non-toxic.

別の目的は、溶液の加熱を必要としないか、又は最低限でも約50℃、更には50℃未満の温度への加熱しか必要とせず、好ましくは常温での上記フッ素重合体の溶解を可能にするフッ素重合体用の溶媒系を提供することである。   Another objective is that it does not require heating of the solution, or only requires heating to a temperature of at least about 50 ° C. or even less than 50 ° C., preferably allowing the fluoropolymer to dissolve at room temperature. To provide a solvent system for the fluoropolymer.

更に別の目的は、長期にわたって安定な溶液、すなわち経時安定性がNMP溶液で得られる安定性と同様であり、概してNMP、DMSO、ケトン、DMAC等の従来技術の既知の溶媒を用いる場合よりも安定な溶液をもたらすフッ素重合体用の溶媒系を提供することである。   Yet another object is that the solution is stable over time, i.e., the stability over time is similar to that obtained with NMP solutions, and is generally better than with known solvents of the prior art such as NMP, DMSO, ketones, DMAC. It is to provide a solvent system for fluoropolymers that results in a stable solution.

更に別の目的は、粘度がフッ素重合体のNMP溶液と同様であり、概して従来技術の技法で使用される溶媒で得られる溶液の粘度よりも実質的に低い重合体溶液をもたらすフッ素重合体用の溶媒系を提供することである。   Yet another object is for fluoropolymers that are similar in viscosity to NMP solutions of fluoropolymers and generally result in a polymer solution substantially lower than the viscosity of solutions obtained with solvents used in prior art techniques. To provide a solvent system of

今回、本発明の溶媒系によって上述の目的を完全に又は少なくとも部分的に達成することができることが判明した。本発明の主題によって達成することのできる他の更なる目的は、以下の記載から明らかとなろう。   It has now been found that the above objectives can be fully or at least partially achieved by the solvent system of the present invention. Other further objects that can be achieved by the subject matter of the present invention will become apparent from the following description.

第1の態様によると、本発明は、フッ素重合体を高温で加熱することなく溶解することと、粘度がDMSO単独で得られる粘度よりも低い溶液を得ることと、DMSOを用いる場合よりも、またNMPを用いる場合と同程度に長期にわたってはるかに安定であるフッ素重合体の溶液を得ることとを可能にするDMSOベースの溶媒系に関する。本発明による溶媒系の別の利点は、フッ素重合体の溶液に純粋なDMSOよりも低い、すなわちおよそ18℃未満の結晶点がもたらされることである。   According to the first aspect, the present invention provides a solution in which a fluoropolymer is dissolved without heating at a high temperature, a solution having a viscosity lower than that obtained with DMSO alone, and a case where DMSO is used, It also relates to a DMSO-based solvent system that makes it possible to obtain fluoropolymer solutions that are much more stable over the long term as with NMP. Another advantage of the solvent system according to the present invention is that a solution of fluoropolymer results in a crystal point that is lower than pure DMSO, i.e. below approximately 18 ° C.

より具体的には、本発明は、フッ素重合体用の溶媒系であって、
50重量%〜99.9重量%の、ジメチルスルホキシド(DMSO)を含む組成物(A)と、
0.1重量%〜50重量%の、少なくとも1つのケトンを含む組成物(B)と、
を含む、フッ素重合体用の溶媒系に関する。
More specifically, the present invention is a solvent system for a fluoropolymer,
A composition (A) comprising 50% to 99.9% by weight of dimethyl sulfoxide (DMSO);
0.1% to 50% by weight of a composition (B) comprising at least one ketone;
To a solvent system for fluoropolymers.

これは、本発明によるDMSOベースの溶媒系が、驚くべきことに、ケトン(複数の場合もあり)の量が50重量%以下であるにもかかわらず、粘度が従来技術の既知の溶媒中のフッ素重合体の溶液、特にNMP溶液の粘度値と全く同程度である、長期にわたって安定なフッ素重合体の溶液を得ることを可能にすることが判明したためである。   This is because the DMSO-based solvent system according to the present invention surprisingly has a viscosity in known solvents of the prior art despite the amount of ketone (s) being less than 50% by weight. This is because it has been found that it is possible to obtain a fluoropolymer solution which is completely the same as the viscosity value of a fluoropolymer solution, particularly an NMP solution, and which is stable over a long period of time.

したがって、本発明による溶媒系に溶解することのできるフッ素重合体(すなわちフッ素樹脂)は、当業者に既知の任意のタイプのもの、特にフッ素化及び/又はクロロフッ素化した単独重合体及び共重合体、例えばArkemaによってKynar(登録商標)及びKynar Flex(登録商標)という名で販売されるもの、例えばKynar(登録商標)761、SolvayによってSolexis(登録商標)という名で販売されるもの(懸濁重合によって得られる単独重合体及び共重合体)、Solef(登録商標)という名で販売されるもの、例えば単独重合体1010、1012、1013、1015、6008、6010、6012、6013、6020及び5130、PVDF−HFP共重合体11008、11010、21508及び21216、又はPVDF−CTFE共重合体31008、31508及び32008、Hylar(登録商標)という名で販売されるもの(乳化重合による単独重合体及び共重合体、Hylar(登録商標)461)、Halar(登録商標)という名で販売されるECTFE(エチレン/クロロトリフルオロエチレン)共重合体、並びにパーフルオロアイオノマーHyflon(登録商標)E79、E87及びD83等であり得る(一部を挙げたにすぎず、限定を意図するわけではない)。   Thus, the fluoropolymers (ie fluoropolymers) that can be dissolved in the solvent system according to the invention are of any type known to those skilled in the art, in particular fluorinated and / or chlorofluorinated homopolymers and copolymers. Couplings such as those sold under the names Kynar® and Kynar Flex® by Arkema, for example Kynar® 761, sold by Solvay under the name Solexis® (suspension) Homopolymers and copolymers obtained by polymerization), those sold under the name Solef®, for example homopolymers 1010, 1012, 1013, 1015, 6008, 6010, 6012, 6013, 6020 and 5130, PVDF-HFP copolymer 11008, 1101 21508 and 21216, or PVDF-CTFE copolymers 31008, 31508 and 32008, sold under the name Hylar® (homopolymers and copolymers by emulsion polymerization, Hylar® 461), ECTFE (ethylene / chlorotrifluoroethylene) copolymer sold under the name Halar®, and perfluoroionomers Hyflon® E79, E87 and D83 etc. (only a few are mentioned) Not intended to be limiting).

本発明による溶媒系は、少なくとも1つのポリ(フッ化ビニリデン)の単独重合体及び/又は共重合体(以下、PVDFと表す)を含むフッ素樹脂の溶解に特に適している。   The solvent system according to the invention is particularly suitable for the dissolution of fluororesins comprising at least one poly (vinylidene fluoride) homopolymer and / or copolymer (hereinafter referred to as PVDF).

本発明の溶媒系は、50重量%以上の量のDMSOベースの組成物(A)を含む。一実施の形態によると、組成物(A)はDMSOを単独で含む。DMSO単独、又はより簡単にはDMSOとは、80重量%超、好ましくは90重量%超、より好ましくは95重量%超のDMSOを含む組成物(A)を意味すると理解され、残部が任意の精製後のDMSOの製造につきものの不純物(国際公開第1997/019047号、欧州特許第0878454号及び欧州特許第0878466号に記載される)、及び/又は臭気物質(国際公開第2011/012820号に記載される)、及び/又は限定を意図するものではないが、例えばUV安定剤を含む安定剤、着色剤、防腐剤、殺生物剤等から選択される当業者に既知の任意の他の添加剤からなることが可能である。   The solvent system of the present invention comprises DMSO-based composition (A) in an amount of 50% by weight or more. According to one embodiment, composition (A) comprises DMSO alone. DMSO alone or more simply DMSO is understood to mean a composition (A) comprising more than 80% by weight, preferably more than 90% by weight, more preferably more than 95% by weight DMSO, the balance being any Impurities (described in WO 1997/019047, EP 0878454 and EP 0878466) and / or odorous substances (described in WO 2011/012820) associated with the production of DMSO after purification And / or any other additive known to those skilled in the art selected from, for example, but not limited to, stabilizers including UV stabilizers, colorants, preservatives, biocides, etc. Can consist of:

本発明の別の実施の形態においては、組成物(A)は、DMSOに加えて、ケトン以外の1つ又は複数の他のフッ素重合体用の溶媒を含み得る。有利には、組成物(A)の他の溶媒(単数又は複数)はDMSOの結晶点を低下させることを目的として添加される。かかる溶媒は当業者に既知のもの、特にエステル、ジエステル、実に好ましくは炭酸プロピレン、炭酸ジメチル、コハク酸ジエチル、アジピン酸ジメチル、グルタル酸ジメチル及びそれらの混合物から選択することができ、これらのジエステルはDBE(二塩基酸エステル)という総称でよく知られている。RhodiaはこれらのDBEの一部、特にグルタル酸ジメチルをRhodiasolv Iris(登録商標)という商品名で販売している。Dupont/Invistaもコハク酸ジメチル、アジピン酸ジメチル及びグルタル酸ジメチルの多様な組成を有するDBEをDBE−2、DBE−3、DBE−4、DBE−5、DBE−6及びDBE−9という名で販売している。   In another embodiment of the present invention, composition (A) may contain a solvent for one or more other fluoropolymers other than ketones in addition to DMSO. Advantageously, the other solvent (s) of composition (A) are added for the purpose of lowering the crystal point of DMSO. Such solvents can be selected from those known to those skilled in the art, in particular esters, diesters, very preferably propylene carbonate, dimethyl carbonate, diethyl succinate, dimethyl adipate, dimethyl glutarate and mixtures thereof, these diesters being It is well known by the generic name DBE (dibasic acid ester). Rhodia sells some of these DBEs, particularly dimethyl glutarate, under the trade name Rhodiasolv Iris®. Dupont / Invista also sells DBEs with various compositions of dimethyl succinate, dimethyl adipate and dimethyl glutarate under the names DBE-2, DBE-3, DBE-4, DBE-5, DBE-6 and DBE-9 doing.

DMSOとともに組成物(A)中に存在する溶媒(複数の場合もあり)の量は、概して組成物(A)の総重量に対して0重量%〜50重量%、好ましくは0重量%〜40重量%、より好ましくは0重量%〜30重量%であり、100%までの残部が単独の、又は不純物、臭気物質及び/又は上記の他の添加剤と組み合わせたDMSOからなる。   The amount of solvent (s) present in the composition (A) with DMSO is generally 0% to 50%, preferably 0% to 40%, based on the total weight of the composition (A). % By weight, more preferably from 0% to 30% by weight, the balance up to 100% consisting of DMSO alone or in combination with impurities, odorous substances and / or other additives mentioned above.

組成物(B)に関しては、当業者に既知の任意のタイプの少なくとも1つのケトン、好ましくは少なくとも1つの脂肪族ケトン、脂環式ケトン又は芳香族ケトン、及びこれらのケトンの2つ以上の混合物が含まれる。好ましくは、組成物(B)中に含まれるケトンは
直鎖状又は分岐状の脂肪族ケトン及び/又は脂環式ケトンから選択され、例えば限定を意図するものではないが、ケトンはジメチルケトン(すなわちアセトン)、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン、任意に置換されたシクロヘキサノン、例えばトリメチルシクロヘキサノン(TMCHONE)、シクロペンタノン等、並びにあらゆる割合のこれらのケトンの2つ以上の混合物から選択される。
With respect to composition (B), at least one ketone of any type known to those skilled in the art, preferably at least one aliphatic ketone, cycloaliphatic ketone or aromatic ketone, and mixtures of two or more of these ketones Is included. Preferably, the ketone contained in the composition (B) is selected from linear or branched aliphatic ketones and / or alicyclic ketones, for example, but not intended to be limiting, the ketone is dimethyl ketone ( Ie acetone), diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, optionally substituted cyclohexanone, such as trimethylcyclohexanone (TMCHONE), cyclopentanone, etc., and mixtures of two or more of these ketones in any proportion.

極めて驚くべきことに、DMSOへの少なくとも1つのケトンの添加は、粘度及び経時安定性の観点から理解される非線形結果、すなわちDMSO単独又はケトン単独へのフッ素重合体の溶解時に観察される結果よりも良好な結果の観察を可能にする。   Very surprisingly, the addition of at least one ketone to DMSO is more than a non-linear result understood in terms of viscosity and stability over time, i.e. a result observed upon dissolution of the fluoropolymer in DMSO alone or ketone alone. Also allows observation of good results.

本発明の一実施の形態では、DMSOの沸点、より具体的には組成物(A)の沸点に近い沸点を有するケトン若しくはケトンの混合物、又はDMSO若しくは組成物(A)と共沸混合物を形成するケトン若しくはケトンの混合物が好ましい。この好ましい実施の形態では、フッ素重合体を溶解するフッ素重合体用の溶媒系の除去が容易になるため、組成物(A)及び組成物(B)を加熱、蒸発等によって同時に除去することが可能である。   In one embodiment of the invention, a ketone or a mixture of ketones having a boiling point of DMSO, more specifically a boiling point close to that of composition (A), or an azeotrope with DMSO or composition (A) is formed. Preferred are ketones or mixtures of ketones. In this preferred embodiment, since the removal of the solvent system for the fluoropolymer that dissolves the fluoropolymer is facilitated, the composition (A) and the composition (B) can be simultaneously removed by heating, evaporation or the like. Is possible.

組成物(A)と組成物(B)とが同様若しくは同一の沸点を有すること、又はそうでなければ組成物(A)と組成物(B)とが共沸混合物を形成することに関する別の利点は、それらの精製及び再利用が容易になることである。   Another relating to the fact that the composition (A) and the composition (B) have similar or identical boiling points, or else the composition (A) and the composition (B) form an azeotrope. The advantage is that they can be easily purified and reused.

アセトン、シクロヘキサノン及びトリメチルシクロヘキサノンが本発明の溶媒系の組成物(B)として特に好適かつ効果的であり、フッ素重合体の溶液に対して2週間、3週間又は更には数週間にまで及ぶ優れた貯蔵安定性をもたらす。加えて、トリメチルシクロヘキサノンはDMSOの沸点に極めて近い沸点を有する。   Acetone, cyclohexanone, and trimethylcyclohexanone are particularly suitable and effective as the solvent-based composition (B) of the present invention, and are excellent for fluoropolymer solutions of up to 2, 3 or even several weeks. Provides storage stability. In addition, trimethylcyclohexanone has a boiling point very close to that of DMSO.

本発明の溶媒系では、組成物(B)は溶媒系の総重量の0.1重量%〜50重量%を占め、上で規定した組成物(A)が100%までの残部を占める。好ましくは、組成物(B)は本発明による溶媒系の総重量の0.1重量%〜25重量%、より好ましくは0.1重量%〜20重量%、実に好ましくは0.1重量%〜15重量%を占める。   In the solvent system according to the invention, the composition (B) accounts for 0.1% to 50% by weight of the total weight of the solvent system, and the composition (A) defined above accounts for the remainder up to 100%. Preferably, the composition (B) is from 0.1% to 25% by weight of the total weight of the solvent system according to the invention, more preferably from 0.1% to 20%, indeed preferably from 0.1% to Occupies 15% by weight.

本発明の好ましい実施の形態によると、フッ素重合体用の溶媒系は、
a.70重量%〜95重量%、例えばおよそ75重量%のDMSOと、
b.5重量%〜30重量%、例えばおよそ25重量%のシクロヘキサノン、トリメチルシクロヘキサノン及びあらゆる割合のそれらの混合物から選択される少なくとも1つのケトンと、
を含む。
According to a preferred embodiment of the present invention, the solvent system for the fluoropolymer is:
a. 70% to 95% by weight, for example approximately 75% by weight DMSO,
b. At least one ketone selected from 5% to 30% by weight, for example approximately 25% by weight of cyclohexanone, trimethylcyclohexanone and mixtures thereof in any proportion;
including.

別の好ましい実施の形態によると、本発明によるフッ素重合体用の溶媒系は、
a.85重量%〜99重量%、例えばおよそ95重量%のDMSOと、
b.1重量%〜15重量%、例えばおよそ5重量%のアセトンと、
を含む。
According to another preferred embodiment, the solvent system for the fluoropolymer according to the invention is
a. 85% to 99% by weight, for example approximately 95% by weight DMSO,
b. 1% to 15% by weight of acetone, for example approximately 5% by weight acetone,
including.

更に別の好ましい実施の形態によると、本発明のフッ素重合体用の溶媒系は、
a.85重量%〜99重量%、好ましくはおよそ95重量%の、50重量%のDMSOと50重量%のDBE、好ましくはグルタル酸ジメチルとの混合物と、
b.1重量%〜15重量%、好ましくはおよそ5重量%のアセトンと、
を含む。
According to yet another preferred embodiment, the solvent system for the fluoropolymer of the present invention is:
a. 85% to 99% by weight, preferably approximately 95% by weight, of a mixture of 50% by weight DMSO and 50% by weight DBE, preferably dimethyl glutarate;
b. 1% to 15% by weight, preferably about 5% by weight of acetone,
including.

本発明の更に別の好ましい実施の形態によると、フッ素重合体用の溶媒系は、
a.70重量%〜95重量%、好ましくはおよそ75重量%の、50重量%のDMSO
と50重量%のDBE、好ましくはグルタル酸ジメチルとの混合物と、
b.5重量%〜30重量%、好ましくはおよそ25重量%のシクロヘキサノン、トリメチルシクロヘキサノン及びあらゆる割合のそれらの混合物から選択される少なくとも1つのケトンと、
を含む。
According to yet another preferred embodiment of the present invention, the solvent system for the fluoropolymer is:
a. 70 wt% to 95 wt%, preferably about 75 wt%, 50 wt% DMSO
And a mixture of 50% by weight DBE, preferably dimethyl glutarate,
b. At least one ketone selected from 5 wt% to 30 wt%, preferably approximately 25 wt% of cyclohexanone, trimethylcyclohexanone and any mixture thereof;
including.

先に規定した本発明の溶媒系は、フッ素重合体、特にポリ(フッ化ビニリデン)を、溶解をDMSO単独で行う場合に要求される温度よりも低い温度で溶解することが可能であるという利点を更に示し、場合によっては、この溶解をフッ素重合体の性質及び溶媒系の性質に応じて常温で行うことも可能である。   The solvent system of the present invention as defined above has the advantage that fluoropolymers, in particular poly (vinylidene fluoride), can be dissolved at temperatures lower than those required when dissolution is carried out with DMSO alone. In some cases, this dissolution can be performed at room temperature depending on the properties of the fluoropolymer and the solvent system.

更に別の利点は、本発明による溶媒系がフッ素重合体の溶液に対して相対的に低い粘度、すなわちDMSOが唯一の溶媒である場合に観察される粘度よりも低い粘度をもたらすという点にある。この利点のために、NMP単独又はDMSO単独を用いる場合よりも高い含量のフッ素重合体を溶解するか、又は更にはより高いモル質量を有するフッ素重合体を溶解することが可能である。   Yet another advantage is that the solvent system according to the present invention provides a relatively low viscosity for fluoropolymer solutions, i.e. lower than that observed when DMSO is the only solvent. . Because of this advantage, it is possible to dissolve a higher content of fluoropolymer than even when using NMP alone or DMSO alone, or even dissolve a fluoropolymer having a higher molar mass.

したがって、別の態様によると、本発明はフッ素重合体、特にポリ(フッ化ビニリデン)の溶解への上記に規定した少なくとも1つの溶媒系の使用に関する。   Thus, according to another aspect, the invention relates to the use of at least one solvent system as defined above for the dissolution of fluoropolymers, in particular poly (vinylidene fluoride).

更に別の態様によると、本発明はフッ素重合体、特にPVDFを溶解する方法であって、該フッ素重合体を上記に規定した少なくとも1つの溶媒系と接触させる工程を少なくとも含む、方法に関する。   According to yet another aspect, the present invention relates to a method for dissolving a fluoropolymer, in particular PVDF, comprising at least the step of contacting said fluoropolymer with at least one solvent system as defined above.

この接触操作は常温、又は常温〜80℃、好ましくは常温〜60℃、より好ましくは常温〜50℃の温度で撹拌しながら行うのが好ましい。フッ素重合体を任意の形態で少なくとも1つの本発明による溶媒系と接触させることができるが、溶解速度の理由から、該フッ素重合体は粉末形態であるのが好ましい。   This contact operation is preferably performed while stirring at normal temperature, or normal temperature to 80 ° C, preferably normal temperature to 60 ° C, more preferably normal temperature to 50 ° C. The fluoropolymer can be contacted in any form with at least one solvent system according to the present invention, but for reasons of dissolution rate, the fluoropolymer is preferably in powder form.

本発明による溶媒系はフッ素重合体、特にPVDFの溶解に実に好適である。言い換えると、本発明の溶媒系は長期にわたって澄明かつ安定なフッ素重合体の溶液を得ることを可能にする。   The solvent system according to the invention is indeed suitable for dissolving fluoropolymers, in particular PVDF. In other words, the solvent system of the invention makes it possible to obtain a solution of a fluoropolymer that is clear and stable over time.

本発明の溶媒系に溶解することのできるフッ素重合体(複数の場合もあり)の量は、重合体の性質及び溶媒系の性質に応じて大きな割合で変化し、フッ素重合体+溶媒系の最終溶液の総重量に対して概して1重量%〜50重量%、好ましくは1重量%〜40重量%、より好ましくは1重量%〜25重量%、例えばおよそ10重量%のフッ素重合体である。   The amount of fluoropolymer (s) that can be dissolved in the solvent system of the present invention varies in large proportions depending on the nature of the polymer and the nature of the solvent system, The fluoropolymer is generally 1% to 50% by weight, preferably 1% to 40% by weight, more preferably 1% to 25% by weight, for example approximately 10% by weight, based on the total weight of the final solution.

別の態様によると、本発明は、
a.1重量%〜50重量%、好ましくは1重量%〜40重量%、より好ましくは1重量%〜25重量%の少なくとも1つのフッ素重合体、好ましくは少なくとも1つのPVDFと、
b.50重量%〜99重量%、好ましくは60重量%〜99重量%、より好ましくは75重量%〜99重量%の上記に規定した少なくとも1つの溶媒系と、
を含む、溶液に関する。
According to another aspect, the present invention provides:
a. 1% to 50% by weight, preferably 1% to 40% by weight, more preferably 1% to 25% by weight of at least one fluoropolymer, preferably at least one PVDF;
b. 50% to 99% by weight, preferably 60% to 99% by weight, more preferably 75% to 99% by weight of at least one solvent system as defined above;
The solution.

上述したように、フッ素樹脂、特にPVDFは現在、その優れた耐薬品性、顕著な機械的特性及び優れた経時安定性で知られている。これら全ての特質のために、フッ素樹脂は、その用途のほんの一部を挙げると、濾過及び限外濾過用の膜としての使用並びに電池の製造に最適な材料となっている。   As mentioned above, fluororesins, especially PVDF, are now known for their excellent chemical resistance, outstanding mechanical properties and excellent aging stability. Because of all these attributes, fluororesins have become the material of choice for use as membranes for filtration and ultrafiltration and for the manufacture of batteries, to name just a few of their applications.

したがって、フッ素樹脂、特にPVDFは本発明の溶媒系におけるその溶解性のために、位相反転法(溶液流延法)に従う溶剤中での成型によって容易に成形することができ、又はシート、繊維、中空繊維、パイプ等の形態に作製することもできる。   Therefore, fluororesins, especially PVDF, can be easily molded by molding in a solvent according to the phase inversion method (solution casting method) because of its solubility in the solvent system of the present invention, or sheets, fibers, It can also be produced in the form of a hollow fiber, a pipe or the like.

本発明は、フィルム、膜及びコーティングの製造における上記に規定したフッ素重合体用の溶媒系、又は上記に規定した溶媒系中のフッ素重合体の溶液の使用にも関する。   The invention also relates to the use of a solvent system for a fluoropolymer as defined above or a solution of a fluoropolymer in a solvent system as defined above in the manufacture of films, membranes and coatings.

応用分野には、飲料水及び廃水の処理、血液及びタンパク質の濾過、極めて高い純度の水の調製、医療診断、並びに特に非常に優れた耐薬品性が要求される場合の化学的方法に関する濾過が含まれる。   Applications include drinking water and wastewater treatment, blood and protein filtration, preparation of extremely high purity water, medical diagnostics, and filtration for chemical methods, especially when very good chemical resistance is required. included.

加えて、一部のPVDF樹脂、例えばKynar(登録商標)樹脂は食品接触が認可されているため、食品加工業及び飲料業における濾過の分野で最適な材料となっている。高密度PVDF膜、特にKynar(登録商標)膜をパーベーパレイションによる溶媒分離に使用することができる。微孔性PVDF膜、特にKynar(登録商標)膜を複合重合体製の膜の調製に基材として使用することができる。   In addition, some PVDF resins, such as Kynar® resins, are approved for food contact, making them optimal materials in the field of filtration in the food processing and beverage industries. High density PVDF membranes, particularly Kynar® membranes, can be used for solvent separation by pervaporation. Microporous PVDF membranes, in particular Kynar® membranes, can be used as substrates for the preparation of composite polymer membranes.

PVDF膜、特にKynar(登録商標)膜及びKynar Flex(登録商標)膜は、電荷密度の高い電池の製造にも使用されることが知られている。したがって、本発明の溶媒系は、Liイオン/ポリマー型及びリチウム−液体電解質型の電池の製造において特にフッ素樹脂、特にPVDF樹脂、とりわけKynar(登録商標)樹脂及びKynar Flex(登録商標)樹脂の溶解を可能にする。溶媒系を当業者に既知の任意のシステム、例えば加熱によって蒸発させることが可能である。   PVDF membranes, in particular Kynar® membranes and Kynar Flex® membranes, are known to be used in the manufacture of batteries with high charge density. Thus, the solvent system of the present invention is particularly useful in the production of Li ion / polymer type and lithium-liquid electrolyte type batteries, especially for the dissolution of fluororesins, especially PVDF resins, especially Kynar® resins and Kynar Flex® resins. Enable. The solvent system can be evaporated by any system known to those skilled in the art, for example by heating.

電池の作製については、本発明の溶媒系は、フッ素樹脂(単数又は複数)に加えて、該電池の合成に通常用いられる任意のタイプの添加剤及び充填剤、特に炭、活性炭、又は代替的にはカーボンナノチューブ(CNT)のいずれかの形態で炭素を含み得る。   For battery fabrication, the solvent system of the present invention can be used with any type of additives and fillers commonly used in the synthesis of the battery in addition to the fluororesin (s), particularly charcoal, activated carbon, or alternatively May include carbon in any form of carbon nanotubes (CNT).

ここで、以下の実施例を用いて本発明を説明するが、実施例はいかなる場合でも添付の特許請求の範囲に請求される保護範囲を限定するものではない。   The present invention will now be described using the following examples, which in no way limit the scope of protection claimed in the appended claims.

実施例1
Arkema製のKynar(登録商標)761 PVDFの溶解試験を、NMP、DMSO、DMSO/TMCHONE(70重量%/30重量%)混合物、DMSO/TMCHONE(50重量%/50重量%)混合物、DMSO/TMCHONE(30重量%/70重量%)混合物及びTMCHONE単独を用いて行った。
Example 1
A dissolution test of Kynar® 761 PVDF from Arkema was performed using NMP, DMSO, DMSO / TMCHONE (70 wt% / 30 wt%) mixture, DMSO / TMCHONE (50 wt% / 50 wt%) mixture, DMSO / TMCHONE (30 wt% / 70 wt%) The mixture and TMCHONE alone were used.

10重量%のKynar(登録商標)761を試験溶媒に投入する。混合物を静かに撹拌しながら50℃で加熱する。   10% by weight of Kynar® 761 is added to the test solvent. The mixture is heated at 50 ° C. with gentle stirring.

数分後、30重量%/70重量%のDMSO/TMCHONE混合物の場合を除いて、Kynar(登録商標)761が完全に溶解し、これら全ての溶媒について透明な溶液が得られる。溶液を常温に戻す。   After a few minutes, except in the case of a 30 wt% / 70 wt% DMSO / TMCHONE mixture, Kynar® 761 is completely dissolved and a clear solution is obtained for all these solvents. Return the solution to room temperature.

次いで、Kynar(登録商標)761を溶解した溶液の粘度を、30℃でBrookfieldのコーンプレート型粘度計によって特性化する。観察結果を下記表1に並べる。   The viscosity of the solution in which Kynar® 761 is dissolved is then characterized by a Brookfield cone plate viscometer at 30 ° C. The observation results are listed in Table 1 below.

Figure 2014516115
Figure 2014516115

50重量%以下の量、更にはDMSOと同量のケトンをDMSOに添加することは、フッ素重合体の溶解性を損なわないどころか、DMSO単独への溶解に比べて粘度の低下を促すことが分かる。一方で、より多量のケトンはフッ素重合体の溶解を妨げる。   It can be seen that the addition of a ketone of 50% by weight or less, and the same amount of DMSO as DMSO, does not impair the solubility of the fluoropolymer, but also promotes a decrease in viscosity compared to dissolution in DMSO alone. . On the other hand, a larger amount of ketone prevents dissolution of the fluoropolymer.

実施例2
Kynar(登録商標)761の溶解を可能にした実施例1の4つの溶液を常温で放置し、それらの経時安定性を検討する。
Example 2
The four solutions of Example 1 that enable dissolution of Kynar (registered trademark) 761 are allowed to stand at room temperature, and their temporal stability is examined.

7日後に溶液の視覚分析を行い、結果を下記表2に示す。   The solution was visually analyzed after 7 days and the results are shown in Table 2 below.

Figure 2014516115
Figure 2014516115

時間とともに、不安定な溶液は変化し、透明な液体状態から混濁した液体状態、続いて混濁した固体ゲル状態へと移行する。本発明による溶媒の組成物のみがフッ素重合体の溶解に関してNMPと同様の特徴を示す。   Over time, the unstable solution changes and transitions from a clear liquid state to a turbid liquid state followed by a turbid solid gel state. Only the solvent composition according to the invention exhibits similar characteristics to NMP in terms of dissolution of the fluoropolymer.

したがって、特にDMSOとTMCHONEとを70重量%/30重量%の比率で含む組成物は、純粋なDMSO溶液又はTMCHONE含量が50重量%を超えるDMSO/TMCHONE溶液とは異なり、長期にわたって安定な10%Kynar(登録商標)761溶液を得ることを可能にする。   Thus, in particular, a composition comprising DMSO and TMCHONE in a ratio of 70% by weight / 30% by weight is different from a pure DMSO solution or a DMSO / TMCHONE solution having a TMCHONE content of more than 50% by weight. It makes it possible to obtain a Kynar® 761 solution.

実施例3
同様に、Kynar(登録商標)761の溶解試験を、DMSO/TMCHONE(80重量%/20重量%)混合物を用いて行う。
Example 3
Similarly, a dissolution test of Kynar® 761 is performed using a DMSO / TMCHONE (80 wt% / 20 wt%) mixture.

10重量%のKynar(登録商標)761を試験溶媒に投入する。混合物を静かに撹拌しながら50℃で加熱する。   10% by weight of Kynar® 761 is added to the test solvent. The mixture is heated at 50 ° C. with gentle stirring.

数分後、Kynar(登録商標)761は完全に溶解した。溶液を常温に戻した後、常温で放置して、その経時安定性を検討する。   After a few minutes, Kynar® 761 was completely dissolved. After returning the solution to room temperature, the solution is allowed to stand at room temperature and its stability over time is examined.

21日後に溶液の視覚分析を行うが、溶液は依然として透明な液体である。   Visual analysis of the solution is performed after 21 days, but the solution is still a clear liquid.

実施例4
同様に、Kynar(登録商標)761の溶解試験を、NMP、DMSO、DMSO/シクロヘキサノン(80重量%/20重量%)混合物、DMSO/シクロヘキサノン(50重量%/50重量%)混合物、DMSO/シクロヘキサノン(30重量%/70重量%)混合物及びシクロヘキサノン単独を用いて行う。
Example 4
Similarly, the dissolution test of Kynar® 761 was performed using NMP, DMSO, DMSO / cyclohexanone (80 wt% / 20 wt%) mixture, DMSO / cyclohexanone (50 wt% / 50 wt%) mixture, DMSO / cyclohexanone ( 30% by weight / 70% by weight) and the mixture and cyclohexanone alone.

10重量%のKynar(登録商標)761を試験溶媒に投入する。混合物を静かに撹拌しながら50℃で加熱する。数分後、シクロヘキサノン単独の場合を除いて、Kynar(登録商標)761が完全に溶解し、これら全ての溶媒について透明な溶液が得られる。溶液を常温に戻す。   10% by weight of Kynar® 761 is added to the test solvent. The mixture is heated at 50 ° C. with gentle stirring. After a few minutes, except for cyclohexanone alone, Kynar® 761 is completely dissolved and a clear solution is obtained for all these solvents. Return the solution to room temperature.

次いで、Kynar(登録商標)761を溶解した溶液の粘度を、30℃でBrookfieldのコーンプレート型粘度計によって特性化する。観察結果を下記表3に並べる。   The viscosity of the solution in which Kynar® 761 is dissolved is then characterized by a Brookfield cone plate viscometer at 30 ° C. The observation results are listed in Table 3 below.

Figure 2014516115
Figure 2014516115

本発明による溶媒組成物は、DMSO単独で得られる粘度よりも低く、NMPと同程度の粘度を得ることを可能にする。   The solvent composition according to the invention is lower than the viscosity obtained with DMSO alone and makes it possible to obtain a viscosity comparable to NMP.

実施例5
Kynar(登録商標)761の溶解を可能にする実施例4の溶液を常温で放置して、それらの経時安定性を検討する。
Example 5
The solutions of Example 4 that allow dissolution of Kynar® 761 are left at room temperature to study their stability over time.

3日後に溶液の視覚分析を行い、結果を下記表4に並べる。   Visual analysis of the solution is performed after 3 days and the results are listed in Table 4 below.

Figure 2014516115
Figure 2014516115

時間とともに、不安定な溶液は変化し、透明な液体状態から混濁した液体状態、続いて混濁した固体ゲル状態へと移行する。本発明によるDMSO/ケトン混合物は、純粋なDMSO溶液又はケトン含量が70重量%を超えるDMSO/ケトン溶液とは異なり、長期にわたって安定なフッ素重合体の10%溶液を得ることを可能にする。   Over time, the unstable solution changes and transitions from a clear liquid state to a turbid liquid state followed by a turbid solid gel state. The DMSO / ketone mixture according to the invention makes it possible to obtain a 10% solution of a fluoropolymer which is stable over time, unlike a pure DMSO solution or a DMSO / ketone solution whose ketone content exceeds 70% by weight.

DMSO/シクロヘキサノン(80重量%/20重量%)溶液は、21日後も依然として透明な液体である。   The DMSO / cyclohexanone (80 wt% / 20 wt%) solution is still a clear liquid after 21 days.

実施例6
Kynar(登録商標)761の溶解試験を、NMP、DMSO、DMSO/アセトン(95重量%/5重量%)混合物、DMSO/アセトン(80重量%/20重量%)混合物及びアセトン単独を用いて行う。
Example 6
The dissolution test of Kynar® 761 is performed using NMP, DMSO, DMSO / acetone (95 wt% / 5 wt%) mixture, DMSO / acetone (80 wt% / 20 wt%) mixture and acetone alone.

10重量%のKynar(登録商標)761を試験溶媒に投入する。混合物を静かに撹拌しながら50℃で加熱する。数分後、これら全ての溶媒にKynar(登録商標)761が完全に溶解し、これら全ての溶媒について透明な溶液が得られる。溶液を常温に戻す。   10% by weight of Kynar® 761 is added to the test solvent. The mixture is heated at 50 ° C. with gentle stirring. After a few minutes, Kynar® 761 is completely dissolved in all these solvents and a clear solution is obtained for all these solvents. Return the solution to room temperature.

次いで、Kynar(登録商標)761を溶解した溶液の粘度を、30℃でBrookfieldのコーンプレート型粘度計によって特性化する。観察結果を下記表5に並べる。   The viscosity of the solution in which Kynar® 761 is dissolved is then characterized by a Brookfield cone plate viscometer at 30 ° C. The observation results are listed in Table 5 below.

Figure 2014516115
Figure 2014516115

したがって、DMSO/アセトン混合物は、DMSO又はNMP単独で得られる粘度よりもはるかに低い粘度を得ることを可能にする。   Thus, DMSO / acetone mixtures make it possible to obtain viscosities much lower than those obtained with DMSO or NMP alone.

実施例7
実施例6の5つの溶液を常温で放置して、それらの経時安定性を検討する。3日後に溶液の視覚分析を行う。観察結果を下記表6に並べる。
Example 7
The five solutions of Example 6 are allowed to stand at room temperature, and their temporal stability is examined. Visual analysis of the solution is performed after 3 days. The observation results are listed in Table 6 below.

Figure 2014516115
Figure 2014516115

時間とともに、不安定な溶液は、透明な液体状態から混濁した液体状態、続いて混濁した固体ゲル状態へと変化する。   Over time, the unstable solution changes from a clear liquid state to a turbid liquid state followed by a turbid solid gel state.

DMSO/アセトン(95%/5%)溶液は10日後も依然として安定であり、外観は透明な液体である。DMSO/アセトン(80%/20%)溶液は45日後も依然として安定であり、外観は透明な液体である。   The DMSO / acetone (95% / 5%) solution is still stable after 10 days and the appearance is a clear liquid. The DMSO / acetone (80% / 20%) solution is still stable after 45 days and the appearance is a clear liquid.

したがって、DMSO/アセトン(80重量%/20重量%又は95重量%/5重量%)混合物は、純粋なDMSO溶液又は純粋なアセトン溶液とは異なり、長期にわたって安定な10%Kynar(登録商標)761溶液を得ることを可能にする。   Thus, a DMSO / acetone (80 wt% / 20 wt% or 95 wt% / 5 wt%) mixture is different from a pure DMSO solution or a pure acetone solution and is stable over time with a 10% Kynar® 761 Makes it possible to obtain a solution.

実施例8
Kynar(登録商標)761の溶解試験を、DMSO、DMSO/グルタル酸ジメチル/アセトン(66.5重量%/28.5重量%/5重量%)混合物、DMSO/グルタル酸ジメチル(70重量%/30重量%)混合物及びグルタル酸ジメチル単独を用いて行う。
Example 8
The dissolution test of Kynar® 761 was performed using DMSO, DMSO / dimethyl glutarate / acetone (66.5 wt% / 28.5 wt% / 5 wt%) mixture, DMSO / dimethyl glutarate (70 wt% / 30 % By weight) and the mixture and dimethyl glutarate alone.

10重量%のKynar(登録商標)761を試験溶媒に投入する。混合物を静かに撹拌しながら50℃で加熱する。数分後、グルタル酸ジメチル単独の場合を除いたこれら全ての溶媒に、Kynar(登録商標)761が完全に溶解し、これら全ての溶媒について透明な溶液が得られる。溶液を常温に戻す。   10% by weight of Kynar® 761 is added to the test solvent. The mixture is heated at 50 ° C. with gentle stirring. After a few minutes, Kynar® 761 is completely dissolved in all these solvents except in the case of dimethyl glutarate alone, and a clear solution is obtained for all these solvents. Return the solution to room temperature.

次いで、Kynar(登録商標)761を溶解した溶液の粘度を、30℃でBrookfieldのコーンプレート型粘度計によって特性化する。観察結果を下記表7に並べる。   The viscosity of the solution in which Kynar® 761 is dissolved is then characterized by a Brookfield cone plate viscometer at 30 ° C. The observation results are listed in Table 7 below.

Figure 2014516115
Figure 2014516115

したがって、DMSO/グルタル酸ジメチル/アセトン混合物は、DMSO単独で得られる粘度よりも低い粘度を得ることを可能にする。グルタル酸ジメチルは、単独では50℃でのKynar(登録商標)761の溶解を可能にしない。これを達成するには、およそ100℃に加熱する必要があり、有益ではない。   Thus, the DMSO / dimethyl glutarate / acetone mixture makes it possible to obtain a viscosity lower than that obtained with DMSO alone. Dimethyl glutarate alone does not allow the dissolution of Kynar® 761 at 50 ° C. Achieving this requires heating to approximately 100 ° C. and is not beneficial.

実施例9
Kynar(登録商標)761の溶解を可能にする実施例8の3つの溶液を常温で放置して、それらの経時安定性を検討する。
Example 9
The three solutions of Example 8 that allow dissolution of Kynar® 761 are allowed to stand at ambient temperature and their stability over time is examined.

7日後に溶液の視覚分析を行う。観察結果を下記表8に並べる。   Visual analysis of the solution is performed after 7 days. The observation results are listed in Table 8 below.

Figure 2014516115
Figure 2014516115

したがって、DMSO/グルタル酸ジメチル/アセトン(66.5重量%/28.5重量%/5重量%)混合物は、純粋なDMSO溶液又は純粋なグルタル酸ジメチル溶液とは異なり、長期にわたって安定な10%Kynar(登録商標)761溶液を得ることを可能にする。   Thus, a DMSO / dimethyl glutarate / acetone (66.5 wt% / 28.5 wt% / 5 wt%) mixture, unlike a pure DMSO solution or a pure dimethyl glutarate solution, is 10% stable over time. It makes it possible to obtain a Kynar® 761 solution.

Claims (14)

フッ素重合体用の溶媒系であって、
50重量%〜99.9重量%の、ジメチルスルホキシド(DMSO)を含む組成物(A)と、
0.1重量%〜50重量%の、少なくとも1つのケトンを含む組成物(B)と、
を含む、フッ素重合体用の溶媒系。
A solvent system for a fluoropolymer,
A composition (A) comprising 50% to 99.9% by weight of dimethyl sulfoxide (DMSO);
0.1% to 50% by weight of a composition (B) comprising at least one ketone;
A solvent system for fluoropolymers, comprising:
前記フッ素重合体が、懸濁重合又は乳化重合によって得られるフッ素化及び/又はクロロフッ素化した単独重合体及び共重合体、ECTFE(エチレン/クロロトリフルオロエチレン)共重合体、並びにパーフルオロアイオノマー等、好ましくは少なくとも1つのポリ(フッ化ビニリデン)の単独重合体及び/又は共重合体を含むフッ素樹脂から選択される、請求項1に記載の溶媒系。   Fluorinated and / or chlorofluorinated homopolymers and copolymers obtained by suspension polymerization or emulsion polymerization, ECTFE (ethylene / chlorotrifluoroethylene) copolymer, perfluoroionomer, etc. The solvent system according to claim 1, preferably selected from fluororesins comprising at least one poly (vinylidene fluoride) homopolymer and / or copolymer. 前記組成物(A)が、前記DMSOに加えて、ケトン以外の1つ又は複数の他のフッ素重合体用の溶媒を含む、請求項1又は2に記載の溶媒系。   The solvent system according to claim 1 or 2, wherein the composition (A) comprises, in addition to the DMSO, a solvent for one or more other fluoropolymers other than ketones. ケトン以外の前記他のフッ素重合体用の溶媒(単数又は複数)がエステル、ジエステル、好ましくは炭酸プロピレン、炭酸ジエチル、コハク酸ジメチル、アジピン酸ジメチル、グルタル酸ジメチル及びそれらの混合物から選択される、請求項3に記載の溶媒系。   The solvent (s) for said other fluoropolymers other than ketones are selected from esters, diesters, preferably propylene carbonate, diethyl carbonate, dimethyl succinate, dimethyl adipate, dimethyl glutarate and mixtures thereof. The solvent system according to claim 3. 前記DMSOとともに前記組成物(A)中に存在する溶媒(複数の場合もあり)の量が、該組成物(A)の総重量に対して0重量%〜50重量%、好ましくは0重量%〜40重量%、より好ましくは0重量%〜30重量%であり、100%までの残部が単独の、又は不純物、臭気物質及び/又は他の添加剤と組み合わせた前記DMSOからなる、請求項3又は4に記載の溶媒系。   The amount of solvent (s) present in the composition (A) with the DMSO is 0% to 50% by weight, preferably 0% by weight, based on the total weight of the composition (A). 4. 40% by weight, more preferably 0% by weight to 30% by weight, the balance up to 100% consisting of said DMSO alone or in combination with impurities, odorous substances and / or other additives. Or the solvent system of 4. 前記組成物(B)中に含まれる少なくとも1つのケトンが、直鎖状又は分岐状の脂肪族ケトン及び/又は脂環式ケトン、好ましくはジメチルケトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン、任意に置換されたシクロヘキサノン、トリメチルシクロヘキサノン(TMCHONE)、シクロペンタノン等、及びあらゆる割合のこれらのケトンの2つ以上の混合物から選択される、請求項1〜5のいずれか一項に記載の溶媒系。   The at least one ketone contained in the composition (B) is a linear or branched aliphatic ketone and / or alicyclic ketone, preferably dimethyl ketone, diethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, optionally 6. A solvent system according to any one of the preceding claims, selected from substituted cyclohexanone, trimethylcyclohexanone (TMCHONE), cyclopentanone, etc., and mixtures of two or more of these ketones in any proportion. a.70重量%〜95重量%、例えばおよそ75重量%のDMSOと、
b.5重量%〜30重量%、例えばおよそ25重量%のシクロヘキサノン、トリメチルシクロヘキサノン及びあらゆる割合のそれらの混合物から選択される少なくとも1つのケトンと、
を含む、請求項1〜6のいずれか一項に記載の溶媒系。
a. 70% to 95% by weight, for example approximately 75% by weight DMSO,
b. At least one ketone selected from 5% to 30% by weight, for example approximately 25% by weight of cyclohexanone, trimethylcyclohexanone and mixtures thereof in any proportion;
The solvent system according to claim 1, comprising:
c.85重量%〜99重量%、例えばおよそ95重量%のDMSOと、
d.1重量%〜15重量%、例えばおよそ5重量%のアセトンと、
を含む、請求項1〜6のいずれか一項に記載の溶媒系。
c. 85% to 99% by weight, for example approximately 95% by weight DMSO,
d. 1% to 15% by weight of acetone, for example approximately 5% by weight acetone,
The solvent system according to claim 1, comprising:
e.85重量%〜99重量%、好ましくはおよそ95重量%の、50重量%のDMSOと50重量%のDBE、好ましくはグルタル酸ジメチルとの混合物と、
f.1重量%〜15重量%、好ましくはおよそ5重量%のアセトンと、
を含む、請求項1〜6のいずれか一項に記載の溶媒系。
e. 85% to 99% by weight, preferably approximately 95% by weight, of a mixture of 50% by weight DMSO and 50% by weight DBE, preferably dimethyl glutarate;
f. 1% to 15% by weight, preferably about 5% by weight of acetone,
The solvent system according to claim 1, comprising:
g.70重量%〜95重量%、好ましくはおよそ75重量%の、50重量%のDMSO
と50重量%のDBE、好ましくはグルタル酸ジメチルとの混合物と、
h.5重量%〜30重量%、好ましくはおよそ25重量%のシクロヘキサノン、トリメチルシクロヘキサノン及びあらゆる割合のそれらの混合物から選択される少なくとも1つのケトンと、
を含む、請求項1〜6のいずれか一項に記載の溶媒系。
g. 70 wt% to 95 wt%, preferably about 75 wt%, 50 wt% DMSO
And a mixture of 50% by weight DBE, preferably dimethyl glutarate,
h. At least one ketone selected from 5 wt% to 30 wt%, preferably approximately 25 wt% of cyclohexanone, trimethylcyclohexanone and any mixture thereof;
The solvent system according to claim 1, comprising:
フッ素重合体、特にポリ(フッ化ビニリデン)の溶解への請求項1〜10のいずれか一項に記載の少なくとも1つの溶媒系の使用。   Use of at least one solvent system according to any one of claims 1 to 10 for the dissolution of fluoropolymers, in particular poly (vinylidene fluoride). フッ素重合体、特にポリ(フッ化ビニリデン)を溶解する方法であって、該フッ素重合体を請求項1〜10のいずれか一項に記載の少なくとも1つの溶媒系と接触させる工程を少なくとも含む、方法。   A method of dissolving a fluoropolymer, in particular poly (vinylidene fluoride), comprising at least a step of contacting said fluoropolymer with at least one solvent system according to any one of claims 1-10. Method. 溶液であって、
i.1重量%〜50重量%、好ましくは1重量%〜40重量%、より好ましくは1重量%〜25重量%の少なくとも1つのフッ素重合体、好ましくは少なくとも1つのポリ(フッ化ビニリデン)と、
j.50重量%〜99重量%、好ましくは60重量%〜99重量%、より好ましくは75重量%〜99重量%の請求項1〜10のいずれか一項に記載の少なくとも1つの溶媒系と、
を含む、溶液。
A solution,
i. 1% to 50% by weight, preferably 1% to 40% by weight, more preferably 1% to 25% by weight of at least one fluoropolymer, preferably at least one poly (vinylidene fluoride);
j. At least one solvent system according to any one of claims 1 to 10, of 50% to 99% by weight, preferably 60% to 99% by weight, more preferably 75% to 99% by weight;
Containing solution.
フィルム、膜及びコーティングの製造、並びに電池の製造における請求項1〜10のいずれか一項に記載のフッ素重合体用の溶媒系、又は請求項13に記載の溶媒系中のフッ素重合体の溶液の使用。   A solvent system for a fluoropolymer according to any one of claims 1 to 10, or a solution of a fluoropolymer in a solvent system according to claim 13 in the manufacture of films, membranes and coatings, and in the manufacture of batteries. Use of.
JP2014514133A 2011-06-06 2012-06-05 Solvent for fluoropolymers Pending JP2014516115A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1154907 2011-06-06
FR1154907A FR2975995B1 (en) 2011-06-06 2011-06-06 SOLVENTS OF FLUORINATED POLYMERS
PCT/FR2012/051248 WO2012168641A1 (en) 2011-06-06 2012-06-05 Fluoropolymer solvents

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015187706A Division JP6159767B2 (en) 2011-06-06 2015-09-25 Method for dissolving fluoropolymer

Publications (1)

Publication Number Publication Date
JP2014516115A true JP2014516115A (en) 2014-07-07

Family

ID=46420426

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014514133A Pending JP2014516115A (en) 2011-06-06 2012-06-05 Solvent for fluoropolymers
JP2015187706A Active JP6159767B2 (en) 2011-06-06 2015-09-25 Method for dissolving fluoropolymer

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015187706A Active JP6159767B2 (en) 2011-06-06 2015-09-25 Method for dissolving fluoropolymer

Country Status (15)

Country Link
US (1) US9522989B2 (en)
EP (1) EP2718352B1 (en)
JP (2) JP2014516115A (en)
KR (1) KR101662915B1 (en)
CN (1) CN103562276B (en)
DK (1) DK2718352T3 (en)
ES (1) ES2541579T3 (en)
FR (1) FR2975995B1 (en)
HU (1) HUE025059T2 (en)
MX (1) MX344852B (en)
PL (1) PL2718352T3 (en)
SG (1) SG195234A1 (en)
SI (1) SI2718352T1 (en)
TW (1) TWI542573B (en)
WO (1) WO2012168641A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501792A (en) * 2010-08-27 2014-01-23 フラウンフォーファー−ゲゼルシャフト ズール フェルデルンク デル アンゲヴァンデッテン フォルシュング エ ファウ Solution or suspension containing a fluoropolymer, process for its production and its use in the production of piezoelectric and pyroelectric layers
JP2018534384A (en) * 2015-09-21 2018-11-22 アルケマ フランス Solvent system comprising a mixture of dimethyl sulfoxide and at least one lactone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040997B1 (en) * 2015-09-15 2019-12-27 Arkema France SOLVENT COMPOSITION (S) COMPRISING A MIXTURE OF A MOLECULE HAVING A SULFOXIDE FUNCTION AND OF A MOLECULE HAVING AN AMIDE FUNCTION
GB2551383A (en) * 2016-06-17 2017-12-20 Sumitomo Chemical Co Fabrication of organic electronic devices
JP6620359B2 (en) * 2016-12-19 2019-12-18 株式会社三共 Game machine
FR3066495B1 (en) * 2017-05-22 2020-12-11 Arkema France FORMULATION OF ELECTROACTIVE INK FOR INKJET PRINTING
US20230295371A1 (en) * 2022-03-21 2023-09-21 Advent Technologies Holdings, Inc. Membrane fabrication of quaternary ammonium functionalized polyphenylene polymers by green sustainable organic solvents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898105A (en) * 1981-12-07 1983-06-10 Toray Ind Inc Fluoride type wet separation membrane and preparation thereof
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPH04100522A (en) * 1990-08-14 1992-04-02 Nok Corp Preparation of polyvinylidene fluoride porous hollow yarn membrane
JPH10298298A (en) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd Method for dissolving polyvinylidene fluoride resin

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3006715A (en) * 1957-10-18 1961-10-31 Du Pont Process of spinning acrylonitrile polymer filaments from solution of dimethyl sulfoxide and a non-solvent
US2955095A (en) * 1958-01-08 1960-10-04 Du Pont Composition comprising chain extended polyurethane dissolved in dialkyl sulfoxide and a ketone and process of coating therewith
US3468994A (en) * 1966-06-27 1969-09-23 Phillips Petroleum Co Dimethylsulfoxide in solvent system for polyolefin coating composition
JPS4815931B1 (en) * 1970-10-05 1973-05-18
BE792836A (en) * 1971-12-17 1973-06-15 Ciba Geigy Uk Ltd IMPROVEMENTS IN THE MANUFACTURING OF ALVEOLAR PRODUCTS
DE2217375A1 (en) * 1972-04-11 1973-11-08 Sueddeutsche Kalkstickstoff Stable polyvinylidene fluoride solns - produced at low temps using acetone as solvent
FR2285227A1 (en) 1974-09-20 1976-04-16 Ugine Kuhlmann PROCESS FOR ASSEMBLING VINYLIDENE POLYFLUORIDE PARTS
JPS62115043A (en) 1985-11-14 1987-05-26 Terumo Corp Production of porous membrane
EP0574957B1 (en) 1989-04-14 2002-01-02 Membrane Products Kiryat Weizmann Ltd. Acrylonitrile- and polyvinylidene fluoride-derived membranes
JPH0697001A (en) * 1992-03-13 1994-04-08 Hitachi Ltd Fixing method for wire of component of electronic apparatus such as feedthrough capacitor and case earthing conductor, assembling method for electronic apparatus, electronic apparatus, and air flowmeter
DE69322776T2 (en) 1992-05-06 1999-08-05 Costar Corp METHOD FOR PRODUCING A MICROPOROUS POLYVINYLIDE FLUORIDE MEMBRANE
US5387378A (en) * 1993-04-21 1995-02-07 Tulane University Integral asymmetric fluoropolymer pervaporation membranes and method of making the same
US5973178A (en) 1995-11-22 1999-10-26 Dystar L.P. Dye intermediates
FR2763333B1 (en) 1997-05-15 1999-06-25 Elf Aquitaine DIMETHYLSULFOXIDE (DMSO) PURIFICATION PROCESS
FR2763330B1 (en) 1997-05-15 1999-07-30 Atochem Elf Sa PROCESS FOR THE PURIFICATION OF NEAR ANHYDROUS ORGANIC LIQUIDS
US5929005A (en) * 1998-12-04 1999-07-27 Decora, Incorporated Graffiti remover which comprises an active solvent, a secondary solvent, an emollient and a particulate filler and method for its use
FR2850114B1 (en) * 2003-01-17 2005-02-18 Atofina NOVEL COMPOSITIONS CONTAINING FLUORINATED HYDROCARBONS AND OXYGEN SOLVENTS
FR2948661B1 (en) 2009-07-31 2011-07-29 Arkema France COMPOSITION BASED ON ORGANIC SULFIDE WITH MASKED ODOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898105A (en) * 1981-12-07 1983-06-10 Toray Ind Inc Fluoride type wet separation membrane and preparation thereof
JPS6097001A (en) * 1983-11-02 1985-05-30 Teijin Ltd Polyvinylidene fluoride porous membrane and its preparation
JPH04100522A (en) * 1990-08-14 1992-04-02 Nok Corp Preparation of polyvinylidene fluoride porous hollow yarn membrane
JPH10298298A (en) * 1997-04-23 1998-11-10 Kureha Chem Ind Co Ltd Method for dissolving polyvinylidene fluoride resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501792A (en) * 2010-08-27 2014-01-23 フラウンフォーファー−ゲゼルシャフト ズール フェルデルンク デル アンゲヴァンデッテン フォルシュング エ ファウ Solution or suspension containing a fluoropolymer, process for its production and its use in the production of piezoelectric and pyroelectric layers
JP2018534384A (en) * 2015-09-21 2018-11-22 アルケマ フランス Solvent system comprising a mixture of dimethyl sulfoxide and at least one lactone

Also Published As

Publication number Publication date
EP2718352B1 (en) 2015-04-15
JP2016104848A (en) 2016-06-09
FR2975995B1 (en) 2015-03-20
EP2718352A1 (en) 2014-04-16
HUE025059T2 (en) 2016-01-28
US9522989B2 (en) 2016-12-20
ES2541579T3 (en) 2015-07-21
KR20140024456A (en) 2014-02-28
CN103562276B (en) 2018-03-30
DK2718352T3 (en) 2015-05-26
TWI542573B (en) 2016-07-21
FR2975995A1 (en) 2012-12-07
US20140100313A1 (en) 2014-04-10
MX344852B (en) 2017-01-10
JP6159767B2 (en) 2017-07-05
CN103562276A (en) 2014-02-05
PL2718352T3 (en) 2015-10-30
WO2012168641A1 (en) 2012-12-13
SG195234A1 (en) 2013-12-30
SI2718352T1 (en) 2015-08-31
KR101662915B1 (en) 2016-10-05
TW201302688A (en) 2013-01-16
MX2013013630A (en) 2013-12-12

Similar Documents

Publication Publication Date Title
JP6159767B2 (en) Method for dissolving fluoropolymer
JP6698827B2 (en) Solvent system containing a mixture of dimethyl sulfoxide and at least one lactone
US9676909B2 (en) Hydrophilic fluoropolymer
US20080078718A1 (en) Porous Membrane for Water Treatment and Method of Manufacturing the Same
JP5856887B2 (en) Method for producing porous membrane
KR102054838B1 (en) Cellulosic membrane for water treatment with good anti-fouling property and Method thereof
JP6577781B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
EP2461897A1 (en) Process for the preparation of ethylene/chlorotrifluoroethylene polymer membranes
CN108654410A (en) A kind of preparation method of hydrophilic modifying polyvinylidene fluoride film
AU2016321993B2 (en) Solvent composition comprising a mixture of a molecule having a sulphoxide function and a molecule having an amide function
JP2019502544A (en) Porous polymer membrane containing silicate
US10688447B2 (en) Process for manufacturing fluoropolymer membranes
WO2019016179A1 (en) Membranes comprising fluorinated polymers and use thereof
JP2016183301A (en) Porous polyvinylidene fluoride membrane for water treatment, and method for producing porous polyvinylidene fluoride membrane for water treatment
CN109621745B (en) Method for preparing microfiltration membrane by dry-wet phase conversion
Zhang et al. Phase behavior of polyetherimide/benzophenone/triethylene glycol ternary system and its application for the preparation of microporous membranes
KR20160044661A (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
WO2019016177A1 (en) Membranes comprising fluorinated polymers and use thereof
JP2014200752A (en) Porous polymer membrane
Ismail et al. Solvent in polymeric membrane formation
Ursino et al. Innovative fluorinated membranes for water and organic solvent treatment application
Khosravi et al. Effect of different additives in the casting solution on the formation and morphology of poly (vinylidenefluoride)(PVDF) membranes
Khosravi et al. Effect of solvent and coagulation bath temperature on the structure and morphology of poly (vinylidene fluoride)(PVDF) membranes

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150527