JP2014215166A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2014215166A
JP2014215166A JP2013092501A JP2013092501A JP2014215166A JP 2014215166 A JP2014215166 A JP 2014215166A JP 2013092501 A JP2013092501 A JP 2013092501A JP 2013092501 A JP2013092501 A JP 2013092501A JP 2014215166 A JP2014215166 A JP 2014215166A
Authority
JP
Japan
Prior art keywords
antenna
distance
measuring device
wave
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013092501A
Other languages
Japanese (ja)
Inventor
徹志 上保
Tetsushi Ueyasu
徹志 上保
早衛 萱野
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2013092501A priority Critical patent/JP2014215166A/en
Publication of JP2014215166A publication Critical patent/JP2014215166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measuring device capable of performing a good transmission/reception by widening a transmission/reception directivity angle.SOLUTION: A distance measuring device transmits a detection wave to an object to be detected from an antenna, receives the detection wave reflected by the object to be detected by the antenna, and measures a distance to the object to be detected. The antenna is a patch antenna 1 or a patch antenna array 1 arraying a plurality of patch antennas on a plane. An element 2 side front face is provided with a metal cylinder 3B for gradually increasing an opening area with increasing distance from the antenna or a reduced diameter part 3a for gradually reducing the opening area with increasing distance from the antenna, a connection part 3b continuous to the reduced diameter part and composed of a tube having the same internal diameter as that of the connection part 3b, and an expanded diameter part 3c continuous to the connection part and gradually expanding the opening area with increasing distance from the connection part.

Description

本発明は、検出波を被検出物体に向けて送信し、被検出物体で反射された検出波を受信して被検出物体までの距離を測定する距離測定装置に関する。   The present invention relates to a distance measuring apparatus that transmits a detection wave toward a detected object, receives the detection wave reflected by the detected object, and measures the distance to the detected object.

従来から、マイクロ波やミリ波等の検出波を被測定物体に向けて送信し、被検出物体で反射された検出波(反射波)を受信し、送受信の時間差を基に被検出物体までの距離を測定することが行われている(例えば、特許文献1参照)。   Conventionally, detection waves such as microwaves and millimeter waves are transmitted toward the object to be measured, detection waves reflected by the object to be detected (reflected waves) are received, and the detection object is detected based on the transmission / reception time difference. Measuring distance is performed (for example, refer patent document 1).

特開2007−303966号公報JP 2007-303966 A

距離測定に使用される距離測定装置において、安価なパッチアンテナを用いることが検討されているが、パッチアンテナは、一旦作製すると、検出波の送受信指向角が限定されるという欠点がある。距離測定装置では、被検出物体からの反射波を受信しなければないが、指向角が限定されると、被検出物体からの反射波をうまく受信できずに誤検出する可能性がある。   In a distance measuring device used for distance measurement, it has been studied to use an inexpensive patch antenna. However, once a patch antenna is manufactured, there is a drawback that a transmission / reception directivity angle of a detection wave is limited. In the distance measuring apparatus, it is necessary to receive the reflected wave from the detected object. However, if the directivity angle is limited, the reflected wave from the detected object may not be received well and erroneous detection may occur.

そこで本発明は、安価なパッチアンテナまたはパッチアンテナアレイを用いるとともに、誤検出のおそれの無い距離測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a distance measuring device that uses an inexpensive patch antenna or patch antenna array and that is free from erroneous detection.

上記目的を達成するために本発明は、下記の距離検出装置を提供する。
(1)検出波をアンテナから被検出物体に向けて送信し、前記被検出物体で反射された前記検出波を前記アンテナで受信し、前記検出波の送信から受信までの時間を基に前記演算手段で演算することにより被検出物体までの距離を計測する距離測定装置において、
前記アンテナがパッチアンテナ、または複数のパッチアンテナを平面上に配列したパッチアンテナアレイであり、かつ、素子側前面に、該アンテナから離間するのに伴って開口面積が徐々に拡大する金属筒を付設したことを特徴とする距離測定装置。
(2)前記金属筒が、一端が前記アンテナの素子を包囲できる面積で開口し、前記アンテナから離間するのに伴って開口面積が徐々に縮小する縮径部と、前記縮径部の他端に連続し、他端の開口と同一断面の管からなる連結部と、前記連結部に連続し、連結部から離間するのに伴って開口面積が徐々に拡大する拡径部とからなり、前記縮径部の一端側の開口が前記素子側前面に付設されることを特徴とする上記(1)記載の距離測定装置。
(3)前記金属筒の前記拡径部を前記被検出物体と接近して対向配置するとともに、前記縮径部と、前記パッチアンテナまたはパッチアンテナアレイとを前記被検出物体から離間して配置したことを特徴とする上記(2)記載の距離測定装置。
(4)前記検出波は電界が一方向に回転する回転波であり、かつ、送信した回転波とは逆方向に回転する回転波を受信することを特徴とする上記(1)〜(3)の何れか1項に記載の距離測定装置。
(5)FM−CW方式により距離の測定を行うとともに、実際の周波数−時間特性を測定しておき、直線状に変化する理想周波数−時間特性からの実際の周波数−時間特性の周波数の偏位量(ΔX)を求め、前記ΔXとは正負が逆の偏位量からなる補正用の周波数−時間特性を、実際の周波数−時間特性に重畳させることを特徴とする上記(1)〜(4)の何れか1項に記載の距離測定装置。
In order to achieve the above object, the present invention provides the following distance detector.
(1) A detection wave is transmitted from an antenna toward an object to be detected, the detection wave reflected by the object to be detected is received by the antenna, and the calculation is performed based on a time from transmission to reception of the detection wave. In the distance measuring device that measures the distance to the detected object by calculating by means,
The antenna is a patch antenna or a patch antenna array in which a plurality of patch antennas are arranged on a plane, and a metal cylinder is attached to the front surface of the element side, the opening area of which gradually increases as the distance from the antenna increases. A distance measuring device characterized by that.
(2) The metal cylinder has an opening with an area where one end can surround the antenna element, and a diameter-reducing portion whose opening area gradually decreases as the metal tube is separated from the antenna, and the other end of the diameter-reducing portion And a connecting portion composed of a tube having the same cross section as the opening at the other end, and a diameter-expanded portion that is continuous with the connecting portion and gradually increases in opening area as the distance from the connecting portion increases. The distance measuring device according to (1), wherein an opening on one end side of the reduced diameter portion is attached to the element side front surface.
(3) The enlarged diameter portion of the metal cylinder is arranged close to and opposed to the detected object, and the reduced diameter portion and the patch antenna or the patch antenna array are arranged apart from the detected object. The distance measuring device according to (2) above, wherein
(4) The detection wave is a rotation wave whose electric field rotates in one direction, and receives the rotation wave rotating in the opposite direction to the transmitted rotation wave. The distance measuring device according to any one of the above.
(5) The distance is measured by the FM-CW method, the actual frequency-time characteristic is measured, and the frequency deviation of the actual frequency-time characteristic from the ideal frequency-time characteristic that changes linearly An amount (ΔX) is obtained, and a correction frequency-time characteristic composed of a deviation amount opposite to that of ΔX is superimposed on an actual frequency-time characteristic, (1) to (4) The distance measuring device according to any one of 1).

本発明の距離測定装置では、パッチアンテナまたはパッチアンテナアレイの素子側前面に、特定形状の金属筒を配置して送受信指向角を広げて良好な送受信を行うことができる。   In the distance measuring device of the present invention, a good shape transmission / reception can be performed by disposing a specific shape metal tube on the element-side front surface of the patch antenna or patch antenna array to widen the transmission / reception directivity angle.

金属筒の一例を示す斜視図である。It is a perspective view which shows an example of a metal cylinder. 金属筒の他の例を示す斜視図である。It is a perspective view which shows the other example of a metal cylinder. 図1の金属筒を用いたときの指向角を示す図である。It is a figure which shows the directivity angle when using the metal cylinder of FIG. 図2の金属筒を用いたときの指向角を示す図である。It is a figure which shows the directivity angle when the metal cylinder of FIG. 2 is used. 図2の金属筒の変更例を示す側面図である。It is a side view which shows the example of a change of the metal cylinder of FIG. 検出波として回転波を使用した時の送受信を説明するための概略図である。It is the schematic for demonstrating transmission / reception when using a rotation wave as a detection wave. 回転波を生成して送信し、受信するための構成を示す図である。It is a figure which shows the structure for producing | generating, transmitting, and receiving a rotational wave. 回転波を生成して送信し、受信するための他の構成を示す図である。It is a figure which shows the other structure for producing | generating, transmitting and receiving a rotation wave. FM−CW方式の原理を説明するための図である。It is a figure for demonstrating the principle of FM-CW system. FM−CW方式における補正方法を示す図である。It is a figure which shows the correction method in FM-CW system. 本発明の距離測定装置を、トピードカーの受銑量を検出するために応用した例を示す図である。It is a figure which shows the example which applied the distance measuring device of this invention in order to detect the receiving amount of a topped car.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

距離測定装置では、図示は省略するが、マイクロ波やミリ波等の検出波をアンテナから送信し、被検出物体で反射された検出波(反射波)をアンテナで受信し、送信から受信までの時間差を基に被検出物体からの距離を測定する。本発明では、アンテアにパッチアンテナ、または複数のパッチアンテナを平面上に配列したパッチアンテナアレイを用いるとともに、パッチアンテナまたはパッチアンテナアレイの素子側前面に図1または図2に示す金属筒を配設する。   In the distance measuring device, although not shown, detection waves such as microwaves and millimeter waves are transmitted from the antenna, detection waves reflected by the object to be detected (reflected waves) are received by the antenna, and transmission to reception are performed. The distance from the detected object is measured based on the time difference. In the present invention, a patch antenna or a patch antenna array in which a plurality of patch antennas are arranged on a plane is used for the antenna, and the metal tube shown in FIG. 1 or FIG. To do.

即ち、図1に示すように、パッチアンテナまたはパッチアンテナアレイ(図の例ではパッチアンテナアレイ)1の素子2の前面に、素子2を包囲できる面積で開口し、パッチアンテナ(アレイ)1から離間するのに伴って開口面積が徐々に拡大する金属筒3Aを付設する。   That is, as shown in FIG. 1, an opening is made in the front surface of the element 2 of the patch antenna or patch antenna array (patch antenna array in the illustrated example) 1 so as to surround the element 2, and the patch antenna (array) 1 is separated from the patch antenna (array) 1. Along with this, a metal cylinder 3A whose opening area gradually increases is attached.

あるいは、図2に示すように、一端が素子2を包囲できる面積で開口し、パッチアンテナ(アレイ)1から離間するのに伴って開口面積が徐々に縮小する円錐状の縮径部3aと、縮径部3aの他端に連続し、他端の開口と同一断面の管からなる連結部3bと、連結部3bに連続し、連結部3bから離間するのに伴って開口面積が徐々に拡大する円錐状の拡径部3cとからなる金属筒3Bを用いることもできる。尚、連結部3bは、円管の他にも、断面が矩形の角管であってもよく、それに合わせて縮径部3a及び拡径部3cを角錐状にする。また、連結部3bは、図示されるように直管でもよいし、後述する図11に示すようにL字状等湾曲していてもよい。   Alternatively, as shown in FIG. 2, a conical diameter-reduced portion 3a having one end opened in an area that can surround the element 2 and the opening area gradually decreases as the distance from the patch antenna (array) 1 decreases. Continuing to the other end of the reduced diameter portion 3a, the connecting portion 3b made of a tube having the same cross section as the opening at the other end, and continuing to the connecting portion 3b, the opening area gradually increases as the distance from the connecting portion 3b increases. It is also possible to use a metal cylinder 3B composed of a conical enlarged diameter portion 3c. In addition to the circular tube, the connecting portion 3b may be a rectangular tube having a rectangular cross section, and the reduced diameter portion 3a and the enlarged diameter portion 3c are formed in a pyramid shape accordingly. Further, the connecting portion 3b may be a straight pipe as shown, or may be curved like an L shape as shown in FIG.

図3は、図1に示した金属筒3Aを用いたときの指向角を示す図であるが、水平方向での電力分布が角度0°を中心にして対称に整形されるようになる。但し、水平方向と垂直方向とで電力分布が異なっており、更には垂直方向において電力分布が2つに割れている。しかし、図2に示すような金属筒3Bを用いると、検出波は連結部3bを通過する際に整形され、図4に示すように水平方向及び垂直方向ともに対称な指向角を得るようになる。   FIG. 3 is a diagram showing the directivity angle when the metal cylinder 3A shown in FIG. 1 is used, and the power distribution in the horizontal direction is shaped symmetrically around an angle of 0 °. However, the power distribution is different between the horizontal direction and the vertical direction, and the power distribution is broken into two in the vertical direction. However, when the metal tube 3B as shown in FIG. 2 is used, the detection wave is shaped when passing through the connecting portion 3b, and a directional angle that is symmetrical in both the horizontal and vertical directions is obtained as shown in FIG. .

尚、図2に示した金属筒3Bでは、拡径部3cが円錐状(あるいは角錐状)であったが、図5に示すようにパラボラ状の拡径部3dとすることもできる。その際、金属筒3Bの連結部3bにユニオン4を設けておき、図2に示すような円筒状の拡径部3cや、図5に示すようなパラボラ状の拡径部3dを、目的や用途に応じて付け替えることができる。   In the metal cylinder 3B shown in FIG. 2, the enlarged diameter portion 3c has a conical shape (or a pyramid shape). However, as shown in FIG. 5, it can be a parabolic enlarged diameter portion 3d. At that time, the union 4 is provided in the connecting portion 3b of the metal cylinder 3B, and the cylindrical diameter-expanded portion 3c as shown in FIG. 2 or the parabolic-shaped diameter-expanded portion 3d as shown in FIG. It can be changed according to the application.

また、縮径部3aと連結部3bとの連続部分を、フッ素樹脂等のマイクロ波やミリ波を透過する材料からなる栓部材5で閉塞することもできる。栓部材5は、マイクロ波やミリ波が栓部材5の端面で反射されるのを防いだり、取り付け及び取り外しがしやすいように、図示のように金属筒3Bの縮径部3a側または拡径部3d(3c)側、あるいは縮径部3a側と拡径部3d(3c)側との両方に向かって徐々に細くなる形状とすることができる。あるいは、図示は省略するが、円柱状や樽状、連結部3bが角管の場合は角柱状であってもよい。本発明の距離測定装置は、後述するようなトピードカー(図12参照)の受銑量を測定したり、高炉の炉頂に設けた開口に配置し、検出波を炉内の装入物(鉄鉱石やコークス)に向けて送信し、挿入物の表面までの距離を測定することに使用することができるが、トピードカーの周囲や高炉内には灰等が多く浮遊しており、金属筒3Bの拡径部3cの開口を通じてパッチアンテナ(アレイ)1の素子2に付着したり、更には装置内部へと浸入する。そこで、連結部3bの縮径部3aとの連続部分を栓部材5で閉塞して灰等の浸入を防ぐことが好ましい。   Moreover, the continuous part of the reduced diameter part 3a and the connection part 3b can also be obstruct | occluded with the plug member 5 which consists of material which permeate | transmits microwaves and millimeter waves, such as a fluororesin. The plug member 5 prevents the microwaves and millimeter waves from being reflected from the end face of the plug member 5, and is easy to attach and remove, as shown in the figure on the reduced diameter portion 3 a side or the enlarged diameter of the metal tube 3 B. The shape can be gradually narrowed toward the part 3d (3c) side or both the reduced diameter part 3a side and the enlarged diameter part 3d (3c) side. Or although illustration is abbreviate | omitted, when column shape or barrel shape and the connection part 3b are square tubes, prismatic shape may be sufficient. The distance measuring device of the present invention measures the amount of receiving of a topped car (see FIG. 12) as will be described later, or is placed in an opening provided at the top of the blast furnace, and the detected wave is charged in the furnace (iron ore). Can be used to measure the distance to the surface of the insert, but there is a lot of ash floating around the topped car and in the blast furnace. It adheres to the element 2 of the patch antenna (array) 1 through the opening of the enlarged diameter portion 3c, and further penetrates into the apparatus. Therefore, it is preferable to block the continuous portion of the connecting portion 3b with the reduced diameter portion 3a with the plug member 5 to prevent infiltration of ash or the like.

検出波として、電界の向きが一方向に回転する回転波を用いることが好ましい。回転波は、反射した際に電界の回転方向を逆にする(反転する)性質がある。そこで、図6に示すように、距離測定装置10から、送信波OとしてWで示す右旋回の回転波を送信すると、被検出物体20で反射すると電界向きが反転し、反射波RはWで示す左旋回の回転波となって受信される。この時、例えば、距離測定装置10と被検出物体20との間に他の物体30が存在していると、送信波Oは、被検出物体20で反射した後、他の物体30へと入射し(反射波R1)、他の物体30で反射した後に反射波R2となって受信されることがある。しかし、他の物体30で反射した反射波R2は、WR2で示すように右旋回の回転波であり、被検出物体20で反射した本来の反射波Rとは電界の回転方向が逆になっている。そこで、距離測定装置10において、送信波Oとは電界の回転方向が逆の反射波Rを受信する構成にしておくことにより、他の物体30で反射した反射波R2を排除でき、検出精度が高まる。 As the detection wave, it is preferable to use a rotating wave whose electric field rotates in one direction. Rotational waves have the property of reversing (reversing) the direction of electric field rotation when reflected. Therefore, as shown in FIG. 6, when a clockwise rotation wave indicated by W 2 O is transmitted as the transmission wave O from the distance measurement device 10, the direction of the electric field is reversed when reflected by the detected object 20, and the reflected wave R is It is received a rotary wave left turn indicated by W R. At this time, for example, if another object 30 exists between the distance measuring device 10 and the detected object 20, the transmitted wave O is reflected by the detected object 20 and then enters the other object 30. (Reflected wave R1), and may be received as reflected wave R2 after being reflected by another object 30. However, the reflected wave R2 reflected by other objects 30 is a rotating wave of the right turn as indicated by W R2, in reverse rotation direction of the electric field from the original reflected wave R reflected by the target object 20 It has become. Therefore, in the distance measuring device 10, by receiving a reflected wave R in which the rotation direction of the electric field is opposite to that of the transmission wave O, the reflected wave R 2 reflected by the other object 30 can be eliminated, and the detection accuracy is improved. Rise.

このような回転波による送受信を行うには、図7に示すように、送信側と受信側とで2つのパッチアンテナ1A,1Bを用いる。そして、送信側のパッチアンテナ1Aの素子2Aを、誘電体基板の中心線Xに対し、右上側の角部2Aaと、角部2Aaの対角線上にある角部2Abとを切除した形状とする。これにより、パッチアンテナ1Aからは右旋回の検出波が送信される。また、受信側のパッチアンテナ1Bの素子2Bを、誘電体基板の中心線Xに対し、左上側の角部2Baと、角部2Baの対角線上にある角部2Bbとを切除した形状とする。これにより、パッチアンテナ1Bに入射する種々の検出波の中で、左旋回の検出波のみが受信される。   In order to perform transmission / reception using such a rotating wave, as shown in FIG. 7, two patch antennas 1A and 1B are used on the transmission side and the reception side. Then, the element 2A of the patch antenna 1A on the transmission side has a shape in which the corner 2Aa on the upper right side with respect to the center line X of the dielectric substrate and the corner 2Ab on the diagonal line of the corner 2Aa are cut off. Thereby, the detection wave of the right turn is transmitted from the patch antenna 1A. In addition, the element 2B of the patch antenna 1B on the reception side has a shape obtained by cutting away the upper left corner 2Ba and the corner 2Bb on the diagonal of the corner 2Ba with respect to the center line X of the dielectric substrate. Thereby, only the left-turn detection wave is received among the various detection waves incident on the patch antenna 1B.

また、図8に示すように、図2に示した金属筒3Bの連結部3bに円偏波用の突起6を付設してもよい。但し、送信側のパッチアンテナ1Aを、同図(A)に示すように、誘電体基板7Aの中心線Xと素子2Aの中心線Yとが一致するように形成する。このパッチアンテナ1Aからは電界が上下方向を向く直線波(電界の向き「↑」)が送信される。また、受信側のパッチアンテナ1Bでは、同図(B)に示すように、誘電体基板7Bの中心線Xと素子2Bの中心線Yとが直交するように形成することにより、電界の向きが水平方向を向く直線波(電界の向き「→」)を受信するようにする。それとともに、同図(C)に示すように、連結部3bの内壁に、素子2Aの中心線Yと一致する軸線Zに対して右側に45°傾斜した位置に突起6を付設した金属筒3Bを、金属筒3Bの縮径部3aの開口がパッチアンテナ1A,1Bの両素子2A、2Bを包囲するように配置する。これにより、送信側のパッチアンテナ1Aから電界が上下方向を向く直線波が送信され、金属筒3Bの連結部3bを通過するときに右旋回の回転波に偏波されて拡径部3cから送信される。そして、被検出物体20で反射されて左旋回の回転波となって金属筒3Bの拡径部3cに入射し、連結部3bを通過するときに電界の向きが水平方向を向く直線波に偏波され、受信側のパッチアンテナ1Bで受信される。   Further, as shown in FIG. 8, a circularly polarized protrusion 6 may be attached to the connecting portion 3b of the metal cylinder 3B shown in FIG. However, the patch antenna 1A on the transmission side is formed so that the center line X of the dielectric substrate 7A and the center line Y of the element 2A coincide as shown in FIG. From the patch antenna 1A, a straight wave whose electric field is directed in the vertical direction (electric field direction “↑”) is transmitted. Further, in the patch antenna 1B on the receiving side, as shown in FIG. 5B, the direction of the electric field can be changed by forming the center line X of the dielectric substrate 7B and the center line Y of the element 2B orthogonal to each other. A horizontal wave (direction of electric field “→”) directed in the horizontal direction is received. At the same time, as shown in FIG. 3C, a metal cylinder 3B in which a projection 6 is attached to the inner wall of the connecting portion 3b at a position inclined 45 ° to the right with respect to the axis Z that coincides with the center line Y of the element 2A. Is arranged so that the opening of the reduced diameter portion 3a of the metal tube 3B surrounds both the elements 2A and 2B of the patch antennas 1A and 1B. As a result, a linear wave whose electric field is directed in the vertical direction is transmitted from the patch antenna 1A on the transmission side, and is polarized into a right-handed rotating wave when passing through the connecting portion 3b of the metal tube 3B, and then from the enlarged diameter portion 3c. Sent. Then, it is reflected by the detected object 20 and becomes a left-turning rotating wave that enters the enlarged diameter portion 3c of the metal tube 3B, and when passing through the connecting portion 3b, the direction of the electric field is deviated to a linear wave that faces the horizontal direction. And is received by the patch antenna 1B on the receiving side.

上記した検出波の送受信を基に距離を求めるには、FM−CW方式で行う方法もある。図9に示すように、FM−CW方式では、周波数が時間に対して直線的に増加する検出波を被検出物体に向けて送信する。そして、ある時間(t1)にある周波数(f1)で送信された検出波(送信波)は、被検出物体で反射して往復に要した時間(Δt)後に受信される。そのときの送信波の周波数はf1からf2に変化しており、このときの送信波と受信波の周波数の差(Δf)が、被検出物体までの距離に比例する。そこで、送信波と受信波とをミキシングし、差の周波数を持つ受信信号波形を取り出し、この受信信号波形をFFT(高速フーリエ変換)し、差の周波数を求めて距離信号として出力させる。   In order to obtain the distance based on the transmission / reception of the detection wave described above, there is a method performed by the FM-CW method. As shown in FIG. 9, in the FM-CW system, a detection wave whose frequency increases linearly with respect to time is transmitted toward the detected object. Then, the detection wave (transmission wave) transmitted at a certain frequency (f1) at a certain time (t1) is received after the time (Δt) required for reciprocation after being reflected by the detected object. The frequency of the transmission wave at that time changes from f1 to f2, and the difference (Δf) between the frequency of the transmission wave and the reception wave at this time is proportional to the distance to the detected object. Therefore, the transmission wave and the reception wave are mixed, a reception signal waveform having a difference frequency is extracted, the reception signal waveform is subjected to FFT (Fast Fourier Transform), and the difference frequency is obtained and output as a distance signal.

しかし、実際には、検出波の周波数が時間に対して直線的に増加するとは限らず、例えば図10に示すように、周波数が時間に対して直線的に増加する周波数−時間特性(以下「理想周波数−時間特性」:直線Aで示す)よりも周波数が若干高く偏位した周波数−時間特性(曲線Bで示す)を持つ検出波が送信されることがある。そこで、測定の前に送信波の実際の周波数−時間特性を測定し、理想周波数−時間特性からの偏位量(ΔX)を時系列的に求めておく。そして、絶対値が同じで、正負が逆である負の偏位量(−ΔX)からなる補正用の周波数−時間特性(曲線Cで示す)を算出し、実際の周波数−時間特性に重畳する。補正用の周波数−時間特性は、実際の周波数−時間特性とは、理想周波数−時間特性を中心にした対照形であり、重畳することにより実際の周波数−時間特性を理想の周波数−時間特性に一致させることができる。   However, in practice, the frequency of the detection wave does not always increase linearly with respect to time. For example, as shown in FIG. A detection wave having a frequency-time characteristic (indicated by curve B) in which the frequency is slightly higher than that of “ideal frequency-time characteristic” (indicated by straight line A) may be transmitted. Therefore, before the measurement, the actual frequency-time characteristic of the transmission wave is measured, and the deviation amount (ΔX) from the ideal frequency-time characteristic is obtained in time series. Then, a correction frequency-time characteristic (shown by a curve C) consisting of a negative deviation amount (−ΔX) having the same absolute value and opposite in positive and negative is calculated and superimposed on the actual frequency-time characteristic. . The frequency-time characteristic for correction is a contrast type centered on the ideal frequency-time characteristic with the actual frequency-time characteristic. By superimposing, the actual frequency-time characteristic becomes the ideal frequency-time characteristic. Can be matched.

理想の周波数−時間特性に一致させるために、送信とともにフィードバック制御する方法もあるが、上記した補正用の周波数−時間特性を重畳する方法の方が回路が簡単で、演算負荷を軽減することができる。   In order to match the ideal frequency-time characteristics, there is also a method of feedback control along with transmission, but the method of superimposing the correction frequency-time characteristics described above can simplify the circuit and reduce the computation load. it can.

上記した距離測定装置において、検出波としてマイクロ波やミリ波を用いた場合、製鉄設備での使用に好適である。例えば、高炉では、図11に示すように、傾注樋25からの溶銑26をトピードカー30で受銑し、製綱工程に移送することが行われている。その際、トピードカー30の溶銑液面27に向けてマイクロ波Mを送り、溶銑液面27で反射したマイクロ波Mを受信して溶銑液面27までの距離を測定し、ある距離に達したところで傾注樋25を反転させ(例えば図の左側)、待機中の空の他のトピードカー(例えば、図示のトピードカー30の左側を走行するトピードカー)に受銑させる。溶銑26は高温であり、傾注樋25やトピードカー30の周囲は高温で、粉塵が充満しているが、マイクロ波Mは高温物体の測定が可能であり、粉塵を透過するため安定した測定が可能になる。   In the above distance measuring apparatus, when a microwave or a millimeter wave is used as a detection wave, it is suitable for use in a steel manufacturing facility. For example, in a blast furnace, as shown in FIG. 11, the hot metal 26 from the tilting iron 25 is received by the topped car 30 and transferred to the steelmaking process. At that time, the microwave M is sent toward the hot metal liquid surface 27 of the topped car 30, the microwave M reflected by the hot metal liquid surface 27 is received, the distance to the hot metal liquid surface 27 is measured, and when a certain distance is reached. The tilting rod 25 is reversed (for example, the left side in the figure) and is received by another topped car in the waiting state (for example, a topped car that travels on the left side of the illustrated topped car 30). The hot metal 26 is hot, and the surroundings of the tilting iron 25 and the topped car 30 are hot and filled with dust, but the microwave M can measure high-temperature objects and allows stable measurement because it penetrates the dust. become.

傾注樋25やトピードカー30の通路は鋳床40の下階に位置されており、鋳床40の上を作業用車両が通行したり、作業員が往来している。そのため、距離検出装置が鋳床40の床面より上に突出して設置されていると作業用車両の通行や作業員の往来に支障をきたし、更には傾注樋25やトピードカー30の周囲は高温であることから、本出願人は特許第5004469号において、鋳床40の内部または下面に、トピードカー側に45°傾斜した反射板50と、反射板50の反射面と対向するガイドパイプ51とを配設し、ガイドパイプ51を介してマイクロ波の送受信を行うことを提案している。   The passages of the tilt rod 25 and the topped car 30 are located on the lower floor of the cast floor 40, and work vehicles pass over the cast floor 40 and workers are coming and going. For this reason, if the distance detection device is installed so as to protrude above the floor surface of the cast floor 40, it will hinder the passage of the work vehicle and the traffic of the workers, and the surroundings of the tilting rod 25 and the topped car 30 will be hot. Therefore, in Japanese Patent No. 5004469, the present applicant arranges a reflecting plate 50 inclined at 45 ° toward the topped car side and a guide pipe 51 facing the reflecting surface of the reflecting plate 50 inside or under the cast floor 40. It is proposed to transmit and receive microwaves through the guide pipe 51.

これを応用して本発明では、ガイドパイプ51の反射板50とは反対側の端面に、金属筒3Bの拡径部3cを配置するとともに、鋳床40の内部または下面の、ガイドパイプ51や拡径部3cから離間した位置に設けた収納室52に、マイクロ波の送受信及び距離測定のための演算を行うためのコントローラ53とパッチアンテナ(アレイ)1とを収容し、収納室52の下面に縮径部3aを配置し、縮径部3aと拡径部3cとを長い連結部3bにより連結する。反射板50やガイドパイプ51、金属筒3Bは金属部材であり、溶銑26からの高温に直接曝されても問題はない。また、コントローラ53やパッチアンテナ(アレイ)1は高温源から離間して、実質的に常温であるため熱的影響もない。   By applying this, in the present invention, the enlarged diameter portion 3c of the metal tube 3B is disposed on the end surface of the guide pipe 51 opposite to the reflector 50, and the guide pipe 51 or A controller 53 and a patch antenna (array) 1 for performing calculations for microwave transmission / reception and distance measurement are accommodated in a storage chamber 52 provided at a position separated from the enlarged diameter portion 3c. The reduced diameter portion 3a is disposed in the lower portion, and the reduced diameter portion 3a and the enlarged diameter portion 3c are connected by the long connecting portion 3b. The reflector 50, the guide pipe 51, and the metal cylinder 3B are metal members, and there is no problem even if they are directly exposed to the high temperature from the hot metal 26. In addition, the controller 53 and the patch antenna (array) 1 are separated from the high temperature source and are substantially at normal temperature, so there is no thermal influence.

1 パッチアンテナ(アレイ)
2 素子
3A,3B 金属筒
4 ユニオン
5 栓部材
10 距離測定装置
20 被検出物体
1 Patch antenna (array)
2 Element 3A, 3B Metal cylinder 4 Union 5 Plug member 10 Distance measuring device 20 Object to be detected

Claims (5)

検出波をアンテナから被検出物体に向けて送信し、前記被検出物体で反射された前記検出波を前記アンテナで受信し、前記検出波の送信から受信までの時間を基に前記演算手段で演算することにより被検出物体までの距離を計測する距離測定装置において、
前記アンテナがパッチアンテナ、または複数のパッチアンテナを平面上に配列したパッチアンテナアレイであり、かつ、素子側前面に、該アンテナから離間するのに伴って開口面積が徐々に拡大する金属筒を付設したことを特徴とする距離測定装置。
A detection wave is transmitted from the antenna to the detected object, the detection wave reflected by the detected object is received by the antenna, and the calculation means calculates the time from transmission to reception of the detection wave. In the distance measuring device that measures the distance to the detected object by
The antenna is a patch antenna or a patch antenna array in which a plurality of patch antennas are arranged on a plane, and a metal cylinder is attached to the front surface of the element side, the opening area of which gradually increases as the distance from the antenna increases. A distance measuring device characterized by that.
前記金属筒が、一端が前記アンテナの素子を包囲できる面積で開口し、前記アンテナから離間するのに伴って開口面積が徐々に縮小する縮径部と、前記縮径部の他端に連続し、他端の開口と同一断面の管からなる連結部と、前記連結部に連続し、連結部から離間するのに伴って開口面積が徐々に拡大する拡径部とからなり、前記縮径部の一端側の開口が前記素子側前面に付設されることを特徴とする請求項1記載の距離測定装置。   The metal cylinder has an opening with an area where one end can surround the antenna element, and a reduced diameter part where the opening area gradually decreases as the distance from the antenna increases, and the other end of the reduced diameter part continues. A connecting portion made of a tube having the same cross section as the opening at the other end, and a diameter-expanding portion that is continuous with the connecting portion and gradually increases in opening area as the distance from the connecting portion increases. The distance measuring device according to claim 1, wherein an opening on one end side of the element is attached to the element-side front surface. 前記金属筒の前記拡径部を前記被検出物体と接近して対向配置するとともに、前記縮径部と前記パッチアンテナまたはパッチアンテナアレイとを前記被検出物体から離間して配置したことを特徴とする請求項2記載の距離測定装置。   The enlarged diameter portion of the metal cylinder is arranged close to and opposed to the detected object, and the reduced diameter portion and the patch antenna or the patch antenna array are arranged apart from the detected object. The distance measuring device according to claim 2. 前記検出波は電界が一方向に回転する回転波であり、かつ、送信した回転波とは逆方向に回転する回転波を受信することを特徴とする請求項1〜3の何れか1項に記載の距離測定装置。   4. The detection wave according to claim 1, wherein the detection wave is a rotation wave whose electric field rotates in one direction and receives a rotation wave rotating in a direction opposite to the transmitted rotation wave. The described distance measuring device. FM−CW方式により距離の測定を行うとともに、実際の周波数−時間特性を測定しておき、直線状に変化する理想周波数−時間特性からの実際の周波数−時間特性の周波数の偏位量(ΔX)を求め、前記ΔXとは正負が逆の偏位量からなる補正用の周波数−時間特性を、実際の周波数−時間特性に重畳させることを特徴とする請求項1〜4の何れか1項に記載の距離測定装置。   The distance is measured by the FM-CW method, the actual frequency-time characteristic is measured, and the frequency deviation amount of the actual frequency-time characteristic from the linearly changing ideal frequency-time characteristic (ΔX 5), and a correction frequency-time characteristic composed of a deviation amount opposite to that of ΔX is superimposed on an actual frequency-time characteristic. The distance measuring device described in 1.
JP2013092501A 2013-04-25 2013-04-25 Distance measuring device Pending JP2014215166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092501A JP2014215166A (en) 2013-04-25 2013-04-25 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092501A JP2014215166A (en) 2013-04-25 2013-04-25 Distance measuring device

Publications (1)

Publication Number Publication Date
JP2014215166A true JP2014215166A (en) 2014-11-17

Family

ID=51941039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092501A Pending JP2014215166A (en) 2013-04-25 2013-04-25 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2014215166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516957A (en) * 2016-04-07 2019-06-20 ティーエムティー タッピング−メジャリング−テクノロジー ゲゼルシャフトミット ベシュレンクテル ハフツングTMT Tapping−Measuring−Technology GmbH Radar antenna device and method of shielding radar antenna device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376938A (en) * 1994-04-04 1994-12-27 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for maintaining linearity and frequency accuracy of an FM chirp waveform
US5614874A (en) * 1995-12-06 1997-03-25 The Boeing Company Package integrated planar monopulse comparator
JP2000131418A (en) * 1998-10-29 2000-05-12 Wire Device:Kk Method and apparatus for detecting object using microwave
JP2001168632A (en) * 1999-12-13 2001-06-22 Nippon Antenna Co Ltd Horn antenna and primary radiator
JP2002062355A (en) * 2000-08-15 2002-02-28 Fujitsu Ten Ltd Modulation signal generation in fm-cw radar system
US20020059828A1 (en) * 2000-10-14 2002-05-23 Roland Muller Apparatus for determining the filling level of a filling material in a container
JP2004226264A (en) * 2003-01-23 2004-08-12 Wire Device:Kk Antenna and object detector
JP2006208096A (en) * 2005-01-26 2006-08-10 Isao Ota Microwave transmitter/receiver and distance meter
JP2007178207A (en) * 2005-12-27 2007-07-12 Wire Device:Kk Microwave distance meter
WO2008120826A1 (en) * 2007-04-02 2008-10-09 National Institute Of Information And Communications Technology Microwave/millimeter wave sensor apparatus
JP2009081833A (en) * 2007-09-07 2009-04-16 Sharp Corp Wireless communication device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376938A (en) * 1994-04-04 1994-12-27 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for maintaining linearity and frequency accuracy of an FM chirp waveform
US5614874A (en) * 1995-12-06 1997-03-25 The Boeing Company Package integrated planar monopulse comparator
JP2000131418A (en) * 1998-10-29 2000-05-12 Wire Device:Kk Method and apparatus for detecting object using microwave
JP2001168632A (en) * 1999-12-13 2001-06-22 Nippon Antenna Co Ltd Horn antenna and primary radiator
JP2002062355A (en) * 2000-08-15 2002-02-28 Fujitsu Ten Ltd Modulation signal generation in fm-cw radar system
US20020059828A1 (en) * 2000-10-14 2002-05-23 Roland Muller Apparatus for determining the filling level of a filling material in a container
JP2004226264A (en) * 2003-01-23 2004-08-12 Wire Device:Kk Antenna and object detector
JP2006208096A (en) * 2005-01-26 2006-08-10 Isao Ota Microwave transmitter/receiver and distance meter
JP2007178207A (en) * 2005-12-27 2007-07-12 Wire Device:Kk Microwave distance meter
WO2008120826A1 (en) * 2007-04-02 2008-10-09 National Institute Of Information And Communications Technology Microwave/millimeter wave sensor apparatus
JP2009081833A (en) * 2007-09-07 2009-04-16 Sharp Corp Wireless communication device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019516957A (en) * 2016-04-07 2019-06-20 ティーエムティー タッピング−メジャリング−テクノロジー ゲゼルシャフトミット ベシュレンクテル ハフツングTMT Tapping−Measuring−Technology GmbH Radar antenna device and method of shielding radar antenna device
US11114754B2 (en) 2016-04-07 2021-09-07 Tmt Tapping-Measuring-Technology Gmbh Radar antenna device and method for shielding a radar antenna device

Similar Documents

Publication Publication Date Title
US10222463B2 (en) Systems and methods for 4-dimensional radar tracking
TWI683992B (en) Material level measuring instrument and method for measuring the topography of filler surface and application of material level measuring instrument
US10261051B2 (en) Fluid measuring device including an ultrasonic probe having a wedge with an ultrasonic vibrator
CN105992959B (en) The method and sensor network of arrangement for determining at least two sensors
CN103296479A (en) Dielectric antenna and fill level measuring device operating according to radar principle
CN108152687B (en) Power transformer partial discharge positioning method utilizing ultrasonic inversion
WO2016161897A1 (en) Wireless terminal testing system and method for controlling same
JPH0619471B2 (en) Method and apparatus for identifying underground objects
US10078069B2 (en) Device for detecting change in underground medium
CN108037374A (en) A kind of array antenna near field scaling method
CN108196224B (en) Method for realizing double-station passive positioning by using external radiation source with unknown position
CN109696234A (en) The determination method and system of horizontal distance between a kind of launch point and receiving point
CN108844466A (en) A kind of ultraprecise displacement lasers method for sensing
Tan et al. On localization for magnetic induction-based wireless sensor networks in pipeline environments
EP3874236B1 (en) Method and device to measure the velocity of a fluid flowing in a confined space
JP2014215166A (en) Distance measuring device
RU2711341C1 (en) Two-dimensional direction finding method
JP2010276523A (en) Ultrasonic flowmeter
KR102055062B1 (en) Apparatus and method for measuring inner diameter and curvature of underground conduit
CN110691987B (en) Method and device for monitoring surface deformations of a scene
JP2004354362A (en) Method for measuring far-field radiation pattern of antenna
TWI599787B (en) Mobile navigation method and system
TWI778091B (en) Systems and methods for determining directions of arrival of electromagnetic waves
CN112162234B (en) Wide-angle high-precision angle measurement method based on eight-port four-baseline radio frequency equipment
KR101241926B1 (en) Conformity evaluation method of radome for 3 dimensional interferometric array by phase difference error estimation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620