JP2014213289A - Catalytic converter - Google Patents

Catalytic converter Download PDF

Info

Publication number
JP2014213289A
JP2014213289A JP2013094303A JP2013094303A JP2014213289A JP 2014213289 A JP2014213289 A JP 2014213289A JP 2013094303 A JP2013094303 A JP 2013094303A JP 2013094303 A JP2013094303 A JP 2013094303A JP 2014213289 A JP2014213289 A JP 2014213289A
Authority
JP
Japan
Prior art keywords
base material
catalytic converter
exhaust pipe
exhaust gas
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013094303A
Other languages
Japanese (ja)
Inventor
良介 萱沼
Ryosuke Kayanuma
良介 萱沼
藤原 孝彦
Takahiko Fujiwara
孝彦 藤原
悠生 青木
Hisao Aoki
悠生 青木
浩之 松原
Hiroyuki Matsubara
浩之 松原
真大 林
Masahiro Hayashi
真大 林
祐司 藪崎
Yuji Yabusaki
祐司 藪崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2013094303A priority Critical patent/JP2014213289A/en
Priority to PCT/IB2014/000596 priority patent/WO2014174357A1/en
Priority to DE112014002159.8T priority patent/DE112014002159T8/en
Priority to CN201480023243.5A priority patent/CN105143629A/en
Priority to US14/786,341 priority patent/US20160102591A1/en
Publication of JP2014213289A publication Critical patent/JP2014213289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses

Abstract

PROBLEM TO BE SOLVED: To provide a catalytic converter which is excellent in exhaust gas cleaning performance by specifying the relationship between a base material constituting the catalytic converter and an exhaust pipe at the downstream side of the catalytic converter.SOLUTION: A catalytic converter 10 comprises: an outer pipe 1; and a base material 2. The outer pipe 1 is constituted by a tube part 1a which has a constant cross section and by an upstream side cone part 1b and a downstream side cone part 1c which extend from both ends of the tube part 1a with diameter reduction in cross sections and connect to an exhaust pipe 3 at the upstream side of the exhaust gas stream and to an exhaust pipe 4 at the downstream side, respectively. The base material 2 is a cell structure arranged inside the tube part 1a of the outer pipe 1 and catalytic layers in each of which precious metal catalyst is carried by a carrier are formed at cell wall surfaces of the base material 2. The base material 2 is constituted by a central region 2a which has relatively high cell density in the cross section orthogonal to a longitudinal direction and a peripheral region 2b which has relatively low cell density. When the connection part 5 between the downstream cone part 1c and the exhaust pipe 4 is projected toward the base material 2, a projection part exists in the central region 2a.

Description

本発明は、排ガスの排気系統を構成する触媒コンバーターに関するものである。   The present invention relates to a catalytic converter constituting an exhaust system for exhaust gas.

各種産業界においては、環境影響負荷低減に向けた様々な取り組みが世界規模でおこなわれており、中でも、自動車産業においては、燃費性能に優れたガソリンエンジン車は勿論のこと、ハイブリッド車や電気自動車等のいわゆるエコカーの普及とそのさらなる性能向上に向けた開発が日々進められている。   Various industries are making various efforts to reduce environmental impact on a global scale. Among them, in the automobile industry, not only gasoline engine cars with excellent fuel efficiency, but also hybrid cars and electric cars. The development of the so-called eco-cars such as the above and the further improvement of its performance is being promoted every day.

ところで、車両エンジンとマフラーを繋ぐ排ガスの排気系統には、排ガスを浄化するための触媒コンバーターが一般に配設されている。   Incidentally, a catalytic converter for purifying exhaust gas is generally disposed in an exhaust system for exhaust gas that connects the vehicle engine and the muffler.

エンジンはCOやNOx、未燃焼のHCやVOCなど、環境に有害な物質を排出することがあり、こうした有害物質を許容可能な物質に変換するべく、パラジウムや白金のような貴金属触媒からなる触媒層が多数のセルを具備する基材のセル壁面に形成されている。より具体的には、多数のセルのセル壁面において、基材の長手方向であって排ガスが流通する方向に亘って触媒層が形成されており、このような構成の基材を具備する触媒コンバーターに排ガスを通すことにより、COはCO2に転化され、NOxはN2とO2に転化され、VOCは燃焼してCO2とH2Oが生成されることになる。 Engines may emit substances that are harmful to the environment, such as CO, NOx, unburned HC, and VOCs. Catalysts made of precious metal catalysts such as palladium and platinum to convert these harmful substances into acceptable substances The layer is formed on the cell wall surface of the substrate having a large number of cells. More specifically, on the cell wall surface of a large number of cells, a catalyst layer is formed in the longitudinal direction of the base material and in the direction in which the exhaust gas circulates. By passing the exhaust gas through the gas, CO is converted to CO 2 , NOx is converted to N 2 and O 2 , and VOC is burned to generate CO 2 and H 2 O.

ところで、たとえばハニカム構造のセルを具備する基材において、基材のセル密度が一様な触媒コンバーターが一般的であるが、基材の断面中央領域における排ガスの流速分布が周辺領域に比して高くなることから、基材全体の触媒層を十分に活用できていないという課題がある。   By the way, for example, in a base material having cells having a honeycomb structure, a catalytic converter in which the cell density of the base material is uniform is common, but the exhaust gas flow velocity distribution in the central region of the cross section of the base material is larger than that in the peripheral region. Since it becomes high, there exists a subject that the catalyst layer of the whole base material is not fully utilized.

そこで、このような排ガスの流速分布を勘案して、基材の周辺領域に比して中央領域のセル密度が高い触媒コンバーターとすることにより、基材断面内における流速分布差を可及的に低減することができ、触媒コンバーター全体の触媒層を有効に活用した排ガス浄化をおこなうことが可能となる。   Therefore, considering the flow velocity distribution of the exhaust gas, a difference in flow velocity distribution in the cross section of the substrate is made possible by using a catalytic converter having a cell density in the central region higher than that in the peripheral region of the substrate. It is possible to reduce the amount of exhaust gas, and it is possible to perform exhaust gas purification that effectively uses the catalyst layer of the entire catalytic converter.

また、このように基材の断面においてセル密度を変化させることにより、触媒コンバーターの圧力損失も低減することができ、このことも排ガス浄化性能の向上に寄与することになる。   Further, by changing the cell density in the cross section of the base material in this way, the pressure loss of the catalytic converter can be reduced, which also contributes to the improvement of the exhaust gas purification performance.

ところで、触媒コンバーター全体の排ガス浄化効率の向上や圧力損失の低減には、触媒コンバーターとこの触媒コンバーターから浄化された排ガスが流れ出す下流側の排気管との関係も極めて重要であることが分かっており、触媒コンバーターの下流側の排気管を含めて総合的に触媒コンバーターの設計をおこなう必要がある。   By the way, it has been found that the relationship between the catalytic converter and the downstream exhaust pipe from which the exhaust gas purified from this catalytic converter flows is extremely important for improving the exhaust gas purification efficiency of the entire catalytic converter and reducing the pressure loss. Therefore, it is necessary to comprehensively design the catalytic converter including the exhaust pipe downstream of the catalytic converter.

ここで、特許文献1には、触媒コンバーターと上流側の排気管との関係に注目し、上流側の排気管の基材に対する投影部分に相当する基材部位の開口率を、この投影部分よりも外側の部分に相当する基材部位の開口率に比して小さくしたセラミック触媒体が開示されている。   Here, in Patent Document 1, attention is paid to the relationship between the catalytic converter and the upstream exhaust pipe, and the aperture ratio of the base material portion corresponding to the projected portion of the upstream exhaust pipe with respect to the base material is determined from this projected portion. Also disclosed is a ceramic catalyst body that is made smaller than the opening ratio of the substrate portion corresponding to the outer portion.

特許文献1で開示されるセラミック触媒体は、触媒コンバーターの上流側の排気管と触媒コンバーターを構成する基材のセル密度の関係に注目したものであり、このセラミック触媒体によっても排ガス浄化性能を高めることができるが、本発明者等はこのように触媒コンバーターの上流側の排気管と触媒コンバーターを構成する基材の関係よりも、触媒コンバーターを構成する基材とその下流側の排気管との関係が排ガス浄化性能にとってより一層重要であるとの知見に至っている。   The ceramic catalyst body disclosed in Patent Document 1 pays attention to the relationship between the exhaust pipe upstream of the catalytic converter and the cell density of the base material constituting the catalytic converter, and this ceramic catalyst body also provides exhaust gas purification performance. Although the present inventors have thus improved the relationship between the exhaust pipe upstream of the catalytic converter and the base material constituting the catalytic converter, the base material constituting the catalytic converter and the exhaust pipe downstream thereof It has been found that this relationship is even more important for exhaust gas purification performance.

特開2008−18370号公報JP 2008-18370 A

本発明は上記する問題に鑑みてなされたものであり、触媒コンバーターを構成する基材と触媒コンバーターの下流側の排気管との関係を規定することにより、排ガス浄化性能に優れた触媒コンバーターを提供することを目的とする。   The present invention has been made in view of the above problems, and provides a catalytic converter with excellent exhaust gas purification performance by defining the relationship between the base material constituting the catalytic converter and the exhaust pipe on the downstream side of the catalytic converter. The purpose is to do.

前記目的を達成すべく、本発明による触媒コンバーターは、排ガスが流通する排気管と繋がれる外管であって、該外管は、筒部と、筒部の両端から断面が縮径するように伸びて排ガス流れの上流側の排気管と下流側の排気管にそれぞれ繋がる上流側コーン部および下流側コーン部と、から構成された外管と、外管の前記筒部の内部に配設されたセル構造の基材であって、該基材のセル壁面において貴金属触媒が担体に担持されてなる触媒層が形成されている基材と、からなる触媒コンバーターにおいて、前記基材は、前記長手方向に直交する断面においてセル密度が相対的に高い中央領域とセル密度が相対的に低い周辺領域とから構成されており、前記下流側コーン部と排気管の接続部を基材に投影させた際の投影部分が前記中央領域内に存在しているものである。   In order to achieve the above object, the catalytic converter according to the present invention is an outer pipe connected to an exhaust pipe through which exhaust gas flows, and the outer pipe has a cylindrical section and a diameter reduced from both ends of the cylindrical section. An outer tube composed of an upstream cone portion and a downstream cone portion that extend and connect to an upstream exhaust pipe and a downstream exhaust pipe of the exhaust gas flow, respectively, and disposed inside the cylindrical portion of the outer pipe And a base material having a catalyst layer formed by supporting a noble metal catalyst on a support on the cell wall surface of the base material. It is composed of a central region having a relatively high cell density and a peripheral region having a relatively low cell density in a cross section orthogonal to the direction, and the downstream cone portion and the exhaust pipe connection portion are projected onto a base material. The projected part is located in the central area. It is what you are.

本発明の触媒コンバーターは、両端が外側に縮径している上流側および下流側のコーン部とその間の筒部からなる金属製の外管の中空内にセル構造で触媒層を備えた基材が配設されてなる触媒コンバーターに関し、基材が、セル密度の相対的に高い中央領域と相対的に低い周辺領域を具備することで、セル密度一様の基材に比して中央領域と周辺領域の排ガスの流速分布の差を小さくすることができるものである。   The catalytic converter of the present invention comprises a base material provided with a catalyst layer in a cell structure in the hollow of a metal outer tube comprising upstream and downstream cone portions whose both ends are reduced in diameter and a cylindrical portion therebetween. The substrate has a central region with a relatively high cell density and a peripheral region with a relatively low cell density. The difference in the flow velocity distribution of the exhaust gas in the peripheral area can be reduced.

このことに加えて、基材よりも断面積が小さな外管の下流側コーン部と下流側の排気管の接続部を基材に投影させた際にできる投影部分が中央領域内に存在するように構成したことにより、排ガス浄化性能を高めることができるものである。   In addition to this, there is a projected portion in the central region that is formed when the connecting portion between the downstream cone portion of the outer pipe and the downstream exhaust pipe having a smaller cross-sectional area than the base material is projected onto the base material. By constituting in this way, the exhaust gas purification performance can be enhanced.

触媒コンバーターから下流側に流れ出す浄化された排ガスは、外管の下流側コーン部を通過し、下流側の排気管に流れ出ていくことから、基材内において中央領域と周辺領域でセル密度を相違させて断面全体における流速分布の均一化を図ろうとした場合でも、実際には排ガスが流れ出す下流側の排気管の断面を基材に投影した際の投影部分に相当する基材部位における排ガスの流速が他の基材部位に比して速くなる。   The purified exhaust gas that flows downstream from the catalytic converter passes through the downstream cone part of the outer pipe and flows to the downstream exhaust pipe, so the cell density differs between the central region and the peripheral region in the base material. Even if an attempt is made to make the flow velocity distribution uniform across the entire cross section, the exhaust gas flow velocity at the substrate portion corresponding to the projected portion when the cross section of the downstream exhaust pipe from which the exhaust gas actually flows is projected onto the substrate. Is faster than other substrate parts.

そこで、この投影部分を基材の中央領域(セル密度が高い領域)内に存在させることで、セル密度が高くて触媒量の多い中央領域に効果的に排ガスを流通させてその浄化を促進させることができ、触媒コンバーター全体の排ガス浄化性能の向上を図ることができる。   Therefore, by making this projection part exist in the central region (region where the cell density is high) of the base material, exhaust gas is effectively circulated through the central region where the cell density is high and the catalyst amount is large, thereby promoting the purification. And the exhaust gas purification performance of the entire catalytic converter can be improved.

ここで、セル構造の基材は、コージェライトや炭化ケイ素等のセラミックス素材のものを使用でき、その構成は、四角形や六角形、八角形等の多数の格子輪郭のセルを具備するいわゆるハニカム構造体が適用できる。   Here, the base material of the cell structure can be made of a ceramic material such as cordierite or silicon carbide, and the structure is a so-called honeycomb structure having a plurality of lattice contour cells such as a quadrangle, a hexagon, and an octagon. The body can be applied.

また、基材のセル壁面に形成される触媒層を構成する担体としては、多孔質酸化物を挙げることができ、この担体に対し、ロジウムやパラジウム、白金などの貴金属触媒のうちの一種、もしくは二種以上が担持されて触媒層が形成される。   Examples of the carrier constituting the catalyst layer formed on the cell wall surface of the base material include porous oxides. For this carrier, one of noble metal catalysts such as rhodium, palladium and platinum, or Two or more kinds are supported to form a catalyst layer.

本発明の触媒コンバーターは、好適には耐熱衝撃性に優れたコージェライトハニカム担体を有するものであるが、それ以外にも電気加熱式の触媒コンバーター(EHC:Electrically Heated Converter)であってもよい。この電気加熱式の触媒コンバーターは、たとえばハニカム触媒に一対の電極を取り付け、電極を通電することでハニカム触媒を加熱し、ハニカム触媒の活性を高めてこれを通過する排ガスを無害化するものであり、車両エンジンとマフラーを繋ぐ排ガスの排気系統に適用することで、常温時の排ガスを浄化することに加えて、冷間時には電気加熱によって触媒を活性化させて排ガスを浄化することができる。   The catalytic converter of the present invention preferably has a cordierite honeycomb carrier having excellent thermal shock resistance, but may be an electrically heated catalytic converter (EHC). This electric heating type catalytic converter, for example, attaches a pair of electrodes to a honeycomb catalyst and heats the honeycomb catalyst by energizing the electrodes, thereby increasing the activity of the honeycomb catalyst and detoxifying the exhaust gas passing therethrough. In addition to purifying the exhaust gas at normal temperature, the exhaust gas can be purified by activating the catalyst by electric heating when cold, in addition to purifying the exhaust gas at normal temperature, by applying it to an exhaust gas exhaust system that connects the vehicle engine and the muffler.

以上の説明から理解できるように、本発明の触媒コンバーターによれば、基材を相対的にセル密度の高い中央領域と相対的にセル密度の低い周辺領域から構成し、かつ基材の周囲にある外管の下流側コーン部と下流側の排気管の接続部を基材に投影させた際にできる投影部分が中央領域内に存在するように構成したことにより、基材の周辺領域における触媒を排ガス浄化に有効に活用しながら、さらに流速の速い排ガスをセル密度が高くて触媒量の多い中央領域に流通させることで排ガス浄化を促進させることができ、触媒コンバーター全体の排ガス浄化性能を向上させることができる。   As can be understood from the above description, according to the catalytic converter of the present invention, the base material is composed of a central region having a relatively high cell density and a peripheral region having a relatively low cell density, and around the base material. The projecting portion formed when the connecting portion of the downstream cone portion of the outer pipe and the downstream exhaust pipe is projected on the base material is configured to exist in the central region, so that the catalyst in the peripheral region of the base material The exhaust gas purification can be promoted by distributing the exhaust gas with a higher flow rate to the central region with a high cell density and a large amount of catalyst while effectively utilizing the exhaust gas for the exhaust gas purification, improving the exhaust gas purification performance of the catalytic converter as a whole. Can be made.

本発明の触媒コンバーターの実施の形態を上流側および下流側の排気管とともに説明した模式図である。It is the schematic diagram which demonstrated embodiment of the catalytic converter of this invention with the upstream and downstream exhaust pipe. 触媒コンバーターを構成する基材の斜視図である。It is a perspective view of the base material which comprises a catalytic converter. (a)は、図1のY方向で見た図であって、下流側コーン部と下流側の排気管の接続部を基材の断面に投影した図であり、(b)、(c)はいずれも図3aの投影図の他の実施の形態を示した図である。(A) is the figure seen in the Y direction of FIG. 1, Comprising: It is the figure which projected the connection part of a downstream cone part and a downstream exhaust pipe on the cross section of a base material, (b), (c) FIG. 3 is a diagram showing another embodiment of the projection of FIG. 3a. 基材セル数と下流側排気管径をそれぞれ変化させた際の圧力損失比に関する解析結果を示した図である。It is the figure which showed the analysis result regarding the pressure loss ratio at the time of changing each base material cell number and downstream exhaust pipe diameter. 基材の中央領域の直径d2と接続部の直径d3の差分と触媒コンバーターの圧力損失の関係を特定する実験結果を示した図である。FIG. 6 is a diagram showing experimental results for specifying the relationship between the difference between the diameter d2 of the central region of the substrate and the diameter d3 of the connecting portion and the pressure loss of the catalytic converter. 基材の中央領域の直径d2と接続部の直径d3の差分と触媒コンバーターのNOx浄化量の関係を特定する実験結果を示した図である。FIG. 6 is a diagram showing experimental results for specifying the relationship between the difference between the diameter d2 of the central region of the substrate and the diameter d3 of the connecting portion and the NOx purification amount of the catalytic converter. 基材の中央領域の直径d2と接続部の直径d3の差分と、NOx浄化量と圧力損失の比率(NOx浄化量/圧力損失)の関係を特定する実験結果を示した図である。It is the figure which showed the experimental result which specifies the difference of the diameter d2 of the center area | region of a base material, and the diameter d3 of a connection part, and the ratio of NOx purification amount and pressure loss (NOx purification amount / pressure loss).

以下、図面を参照して本発明の触媒コンバーターの実施の形態を説明する。   Hereinafter, embodiments of the catalytic converter of the present invention will be described with reference to the drawings.

(触媒コンバーターの実施の形態)
図1は本発明の触媒コンバーターの実施の形態を上流側および下流側の排気管とともに説明した模式図であり、図2は触媒コンバーターを構成する基材の斜視図である。また、図3aは図1のY方向で見た図であって、下流側のコーン部と下流側の排気管の接続部を基材の断面に投影した図である。
(Embodiment of catalytic converter)
FIG. 1 is a schematic view illustrating an embodiment of a catalytic converter of the present invention together with upstream and downstream exhaust pipes, and FIG. 2 is a perspective view of a base material constituting the catalytic converter. FIG. 3A is a view as seen in the Y direction of FIG. 1, and is a view in which a connecting portion between a downstream cone portion and a downstream exhaust pipe is projected onto a cross section of the substrate.

まず、本発明の触媒コンバーター10が介在する排ガスの排気系統を概説する。本発明の触媒コンバーターが適用される排ガスの排気系統は、エンジン、触媒コンバーター、三元触媒コンバーター、サブマフラーおよびメインマフラーが配されて相互に排気管で繋がれ、エンジンで生成された排ガスが排気管を介して各部を流通し、排気されるようになっている。図1では、触媒コンバーター10とその上流側の排気管3、および下流側の排気管4を示している。   First, an exhaust gas exhaust system in which the catalytic converter 10 of the present invention is interposed will be outlined. The exhaust system of the exhaust gas to which the catalytic converter of the present invention is applied includes an engine, a catalytic converter, a three-way catalytic converter, a sub muffler and a main muffler, which are connected to each other through an exhaust pipe, and the exhaust gas generated by the engine is exhausted. Each part is circulated through a pipe and exhausted. FIG. 1 shows a catalytic converter 10, an upstream exhaust pipe 3, and a downstream exhaust pipe 4.

触媒コンバーター10は、金属製の外管1と、外管1の内側に配設された基材2とから構成される。外管1は、たとえば断面が一様な筒部1aと、筒部1aの両端から断面が縮径するように伸びて排ガス流れの上流側の排気管3と下流側の排気管4にそれぞれ繋がる上流側コーン部1bおよび下流側コーン部1cとから構成される。   The catalytic converter 10 includes a metal outer tube 1 and a base material 2 disposed inside the outer tube 1. The outer pipe 1 extends, for example, so that the cross section is reduced in diameter from both ends of the cylindrical portion 1a and the exhaust pipe 3 on the upstream side of the exhaust gas flow and the exhaust pipe 4 on the downstream side. It is comprised from the upstream cone part 1b and the downstream cone part 1c.

外管1の内側に配設される基材2は多数のセルを有した筒材からなり、セル壁面には不図示の触媒層が形成されている。ここで、基材2の形成素材としては、酸化マグネシウム、酸化アルミニウムおよび二酸化珪素の複合酸化物からなるコージェライトや炭化ケイ素等のセラミックス素材、メタル素材等のセラミックス素材以外の素材を挙げることができる。   The base material 2 disposed inside the outer tube 1 is made of a cylindrical material having a large number of cells, and a catalyst layer (not shown) is formed on the cell wall surface. Here, examples of the material for forming the base material 2 include materials other than ceramic materials such as cordierite and silicon carbide made of a composite oxide of magnesium oxide, aluminum oxide and silicon dioxide, and metal materials. .

また、基材2のセル壁面に形成される触媒層を構成する担体としては、多孔質酸化物であるCeO2、ZrO2、Al2O3の少なくとも一つを主成分とする酸化物を挙げることができ、セリア(CeO2)、ジルコニア(ZrO2)およびアルミナ(Al2O3)のいずれか一種からなる酸化物や、二種以上からなる複合酸化物(いわゆるCZ材であるCeO2-ZrO2化合物、拡散障壁としてAl2O3が導入されたAl2O3-CeO2-ZrO2三元系複合酸化物(ACZ材)など)を挙げることができる。そして、触媒層は、これらの担体に対して貴金属触媒であるPd、Pt、Rhのいずれか一種もしくは二種以上が担持されてその全体が構成されている。 In addition, examples of the carrier constituting the catalyst layer formed on the cell wall surface of the substrate 2 include oxides mainly composed of at least one of porous oxides such as CeO 2 , ZrO 2 , and Al 2 O 3. It can be an oxide composed of any one of ceria (CeO 2 ), zirconia (ZrO 2 ) and alumina (Al 2 O 3 ), or a composite oxide composed of two or more (so-called CZ material CeO 2ZrO 2 compound, Al 2 O 3 -CeO 2 -ZrO 2 ternary composite oxide Al 2 O 3 was introduced as a diffusion barrier (ACZ material), etc.) can be mentioned. The catalyst layer is composed entirely of one or more of Pd, Pt, and Rh, which are noble metal catalysts, supported on these carriers.

基材2は、四角形や六角形、八角形等の多数の格子輪郭のセルを具備するハニカム構造体からなり、各セル内を排ガスが流通するようになっている(X1方向)。   The substrate 2 is made of a honeycomb structure having a large number of lattice contour cells such as a quadrangle, a hexagon, and an octagon, and an exhaust gas flows through each cell (X1 direction).

さらに基材2は、セル密度が相対的に高い中央領域2aと、セル密度が相対的に低い周辺領域2bの2つの領域から構成されている。   Furthermore, the base material 2 is composed of two regions, a central region 2a having a relatively high cell density and a peripheral region 2b having a relatively low cell density.

このようにセル密度の相違する中央領域2aと周辺領域2bを具備することで、上流側の排気管3から流通してきた排ガスは、流通し易いセル密度の相対的に低い周辺領域2bにも効果的に流れ込むこととなり、結果として中央領域2aと周辺領域2bにおける排ガスの流速分布の差が低減され、触媒コンバーター10の有する触媒層全体を有効に活用した排ガス浄化をおこなうことが可能となる。   By providing the central region 2a and the peripheral region 2b having different cell densities in this way, the exhaust gas flowing from the upstream exhaust pipe 3 is also effective in the peripheral region 2b having a relatively low cell density. As a result, the difference in the flow velocity distribution of the exhaust gas in the central region 2a and the peripheral region 2b is reduced, and it becomes possible to perform exhaust gas purification using the entire catalyst layer of the catalytic converter 10 effectively.

図示するように基材2の直径がd1であり、基材2を構成する中央領域の直径がd2であり、さらに、下流側コーン部1cと下流側の排気管4の接続部5の直径がd3であるときに、図示する触媒コンバーター10ではd1>d2≧d3の関係を有しており、かつ、図3aで示すように、接続部5を基材2の断面に投影してできる投影部分が接続部5が中央領域2a内に存在するように触媒コンバーター10と下流側の排気管4が構成されている。   As shown in the drawing, the diameter of the base material 2 is d1, the diameter of the central region constituting the base material 2 is d2, and the diameter of the connecting portion 5 between the downstream cone portion 1c and the downstream exhaust pipe 4 is as follows. When d3, the catalytic converter 10 shown in the figure has a relationship of d1> d2 ≧ d3, and as shown in FIG. 3a, a projected portion formed by projecting the connecting portion 5 onto the cross section of the substrate 2 However, the catalytic converter 10 and the exhaust pipe 4 on the downstream side are configured so that the connecting portion 5 exists in the central region 2a.

なお、接続部5を基材2の断面に投影してできる投影部分が中央領域2a内に存在する形態としては、図3aで示すように接続部5の真円断面と中央領域2aの真円断面が同一の円中心を有する形態以外にも、図3bで示すように双方の真円断面の円中心がずれている形態がある。さらに、図3cで示すように断面形状が楕円形の基材2Aを適用した場合には、断面形状が楕円形の中央領域2a’とその周囲の周辺領域2b’において、この楕円形状の中央領域2a’内に接続部5の真円断面が存在することになる。なお、基材およびその中央領域が多角形の場合や下流側の排気管も楕円形や多角形の場合(したがって接続部の投影部分も楕円形や多角形となる場合)においても、接続部の投影部分が基材の中央領域内に存在すれば本発明の構成を充足する。   In addition, as a form in which the projection part which projects the connection part 5 on the cross section of the base material 2 exists in the center area | region 2a, as shown in FIG. 3a, as shown in FIG. In addition to the form in which the cross-sections have the same circle center, there is a form in which the circle centers of both of the true-circle cross sections are shifted as shown in FIG. Further, when the base material 2A having an elliptical cross-sectional shape is applied as shown in FIG. 3c, the central region of the elliptical shape in the central region 2a ′ having the elliptical sectional shape and the peripheral region 2b ′ around the central region 2a ′. A perfect circular cross section of the connecting portion 5 exists in 2a ′. Even when the base material and its central region are polygonal, or when the downstream exhaust pipe is elliptical or polygonal (and thus the projected part of the connecting part is also elliptical or polygonal), If the projection part exists in the center area | region of a base material, the structure of this invention is satisfied.

[基材セル数と下流側排気管径をそれぞれ変化させた際の圧力損失比に関する解析とその結果]
本発明者等は、基材セル数と下流側排気管径をそれぞれパラメータとして3種ずつ触媒コンバーターをコンピュータ内で模擬し、それぞれの触媒コンバーターにおける圧力損失比を求める解析をおこなった。この解析では、熱流体解析(ソフト:STAR-CD、(株)IDAJ製)を用いた。
[Analysis of pressure loss ratio when the number of base cells and downstream exhaust pipe diameter are changed and the results]
The present inventors simulated three types of catalytic converters in a computer using the number of substrate cells and the downstream exhaust pipe diameter as parameters, respectively, and analyzed the pressure loss ratio in each catalytic converter. In this analysis, thermal fluid analysis (software: STAR-CD, manufactured by IDAJ) was used.

ここで、基材セル数と圧力損失比の関係を解析する際の条件として、下流側排気管径を55mmに固定している。一方、下流側排気管径と圧力損失比の関係を解析する際の条件として、基材セル数を600に固定している。解析結果を図4に示す。   Here, as a condition for analyzing the relationship between the number of base material cells and the pressure loss ratio, the downstream exhaust pipe diameter is fixed to 55 mm. On the other hand, the number of base material cells is fixed at 600 as a condition for analyzing the relationship between the downstream exhaust pipe diameter and the pressure loss ratio. The analysis results are shown in FIG.

本発明者等がこれら各要素の触媒コンバーターへの圧力損失への寄与度を検証したところ、図4からも明らかなように、下流側排気管径の増加が圧力損失の低減にとって格段に高い寄与度を有していることが分かる。   The present inventors verified the contribution of each of these elements to the pressure loss to the catalytic converter, and as is clear from FIG. 4, the increase in the downstream exhaust pipe diameter contributed significantly to the reduction of the pressure loss. It can be seen that it has a degree.

以上のことより、触媒コンバーターの圧力損失の低減に当たり、触媒コンバーターを直接構成する構成要素よりもむしろ、触媒コンバーターを構成する外管と接続される下流側の排気管の断面寸法が大きな影響を与えることが分かり、この検証結果を踏まえて、触媒コンバーターの構成要素と下流側の排気管の関係を規定することとしたものである。   From the above, in reducing the pressure loss of the catalytic converter, the cross-sectional dimension of the downstream exhaust pipe connected to the outer pipe constituting the catalytic converter has a great influence rather than the components directly constituting the catalytic converter. Based on these verification results, the relationship between the components of the catalytic converter and the downstream exhaust pipe is specified.

触媒コンバーター10から下流側に流れ出す浄化された排ガスは、外管1の下流側コーン部1cを通過し、下流側の排気管4に流れ出ていくことから、基材2内で中央領域2aと周辺領域2bでセル密度を相違させて断面全体における流速分布の均一化を図ろうとした場合でも、実際には排ガスが流れ出す下流側の排気管4の断面を基材2に投影した際の投影部分に相当する基材部位の排ガスの流速が他の基材部位に比して速くなる。そこで、図3で示すようにこの投影部分を基材2の中央領域2a内に存在させることで、セル密度が高くて触媒量の多い中央領域2aに効果的に排ガスを流通させて浄化を促進させることができ、触媒コンバーター10全体の排ガス浄化性能の向上を図ることが可能となる。   The purified exhaust gas flowing downstream from the catalytic converter 10 passes through the downstream cone portion 1c of the outer pipe 1 and flows out to the exhaust pipe 4 on the downstream side. Even in the case where the cell density is changed in the region 2b and the flow velocity distribution in the entire cross section is made uniform, the cross section of the exhaust pipe 4 on the downstream side from which the exhaust gas actually flows is actually projected onto the base material 2. The flow rate of the exhaust gas in the corresponding base material part becomes faster than that of other base material parts. Therefore, as shown in FIG. 3, by making this projection part exist in the central region 2a of the base material 2, the exhaust gas is effectively circulated through the central region 2a having a high cell density and a large amount of catalyst to promote purification. It is possible to improve the exhaust gas purification performance of the catalytic converter 10 as a whole.

[基材の中央領域の直径d2と接続部の直径d3の差分と、触媒コンバーターの圧力損失の関係、および触媒コンバーターのNOx浄化量の関係、およびNOx浄化量/圧力損失の関係をそれぞれ特定する実験とそれらの結果]
本発明者等は、基材の中央領域の直径d2と下流側コーン部および下流側の排気管の接続部の直径d3の差分と、触媒コンバーターの圧力損失の関係、および触媒コンバーターのNOx浄化量の関係、およびNOx浄化量/圧力損失の関係をそれぞれ特定する実験をおこなった。
[Identify the difference between the diameter d2 of the central region of the substrate and the diameter d3 of the connection, the pressure loss of the catalytic converter, the NOx purification amount of the catalytic converter, and the NOx purification amount / pressure loss relationship. Experiments and results]
The inventors have found that the difference between the diameter d2 of the central region of the base material and the diameter d3 of the connecting portion of the downstream cone portion and the downstream exhaust pipe, the pressure loss of the catalytic converter, and the NOx purification amount of the catalytic converter And the relationship between NOx purification and pressure loss were identified.

試験条件として、基材の直径d1(08断面直径=103mm)および中央領域の直径d2を固定し、下流側の排気管の直径d3を41,2mm、52.7mm、55mm、および60.5mmの4種に変化させた。なお、基材の全断面積に対する中央領域の面積の比率は25%とした。また、圧力損失の測定に際し、2.5リットルガソリンエンジンを使用し、吸入空気量Gaは100g/sとした。さらに、NOx浄化量の測定においても、2.5リットルガソリンエンジンを使用し、吸入空気量Gaは20g/sとした。   As test conditions, base material diameter d1 (08 cross section diameter = 103 mm) and central region diameter d2 are fixed, and downstream exhaust pipe diameter d3 is 41, 2 mm, 52.7 mm, 55 mm, and 60.5 mm. Was changed. Note that the ratio of the area of the central region to the total cross-sectional area of the substrate was 25%. In measuring the pressure loss, a 2.5 liter gasoline engine was used, and the intake air amount Ga was set to 100 g / s. Furthermore, in the measurement of the NOx purification amount, a 2.5 liter gasoline engine was used, and the intake air amount Ga was 20 g / s.

実験結果を図5〜7に示す。ここで、図5は圧力損失に関する実験結果を示した図であり、図6はNOx浄化量に関する実験結果を示した図であり、図7はNOx浄化量/圧力損失に関する実験結果を示した図である。なお、各図ともに、実験結果のプロットに基づいて近似曲線を作成している。   Experimental results are shown in FIGS. Here, FIG. 5 is a diagram showing experimental results regarding pressure loss, FIG. 6 is a diagram illustrating experimental results regarding NOx purification amount, and FIG. 7 is a diagram illustrating experimental results regarding NOx purification amount / pressure loss. It is. In each figure, an approximate curve is created based on a plot of experimental results.

図5より、下流側の排気管の径が小さくなるにつれて圧力損失が上昇することが分かる。   FIG. 5 shows that the pressure loss increases as the diameter of the downstream exhaust pipe decreases.

また、図6より、中央領域の直径よりも下流側の排気管の直径が小さくなるにつれて浄化率の変化量は少なくなることが分かる。   Further, FIG. 6 shows that the amount of change in the purification rate decreases as the diameter of the exhaust pipe on the downstream side becomes smaller than the diameter of the central region.

このように、下流側の排気管の径が小さくなるにつれて圧力損失が上昇する一方で、下流側の排気管の直径が小さくなるにつれて浄化率の変化量は少なくなる。これは、排気流速の速い部分がセル密度の高い中央領域に流れ、触媒量が多くて排ガス浄化能の高い中央領域において効果的に排ガス浄化がおこなわれたためであると考えられる。   Thus, the pressure loss increases as the diameter of the downstream exhaust pipe decreases, while the amount of change in the purification rate decreases as the diameter of the downstream exhaust pipe decreases. This is presumably because the portion where the exhaust gas flow rate is fast flows into the central region where the cell density is high, and the exhaust gas purification is effectively performed in the central region where the amount of catalyst is large and the exhaust gas purification capability is high.

図5,6の結果を踏まえ、図7に基づけば、差分がゼロ以上の範囲、すなわち下流側の排気管よりも中央領域の直径が大きな領域において、高い排ガス浄化率を維持できることが分かる。   Based on the results of FIGS. 5 and 6, based on FIG. 7, it can be seen that a high exhaust gas purification rate can be maintained in the range where the difference is zero or more, that is, in the region where the diameter of the central region is larger than the downstream exhaust pipe.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…外管、1a…筒部、1b…上流側コーン部、1c…下流側コーン部、2,2A…基材、2a…中央領域、2b…周辺領域、3…上流側の排気管、4…下流側の排気管、5…接続部(下流側のコーン部と下流側の排気管の接続部)、10…触媒コンバーター   DESCRIPTION OF SYMBOLS 1 ... Outer pipe, 1a ... Cylindrical part, 1b ... Upstream side cone part, 1c ... Downstream side cone part, 2, 2A ... Base material, 2a ... Central area, 2b ... Peripheral area, 3 ... Upstream exhaust pipe, 4 ... downstream exhaust pipe, 5 ... connection part (connection part between downstream cone part and downstream exhaust pipe), 10 ... catalytic converter

Claims (1)

排ガスが流通する排気管と繋がれる外管であって、該外管は、筒部と、筒部の両端から断面が縮径するように伸びて排ガス流れの上流側の排気管と下流側の排気管にそれぞれ繋がる上流側コーン部および下流側コーン部と、から構成された外管と、
外管の前記筒部の内部に配設されたセル構造の基材であって、該基材のセル壁面において貴金属触媒が担体に担持されてなる触媒層が形成されている基材と、からなる触媒コンバーターにおいて
前記基材は、前記長手方向に直交する断面においてセル密度が相対的に高い中央領域とセル密度が相対的に低い周辺領域とから構成されており、
前記下流側コーン部と排気管の接続部を基材に投影させた際の投影部分が前記中央領域内に存在している触媒コンバーター。
An outer pipe connected to an exhaust pipe through which exhaust gas circulates, and the outer pipe extends from the both ends of the cylinder portion so that the cross section is reduced in diameter, and the exhaust pipe on the upstream side and the downstream side of the exhaust gas flow An outer pipe composed of an upstream cone part and a downstream cone part respectively connected to the exhaust pipe,
A base material having a cell structure disposed inside the cylindrical portion of the outer tube, wherein the base material has a catalyst layer formed by supporting a noble metal catalyst on a support on the cell wall surface of the base material; In the catalytic converter, the base material is composed of a central region having a relatively high cell density and a peripheral region having a relatively low cell density in a cross section orthogonal to the longitudinal direction,
A catalytic converter in which a projection portion when the connection portion between the downstream cone portion and the exhaust pipe is projected onto a base material is present in the central region.
JP2013094303A 2013-04-26 2013-04-26 Catalytic converter Pending JP2014213289A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013094303A JP2014213289A (en) 2013-04-26 2013-04-26 Catalytic converter
PCT/IB2014/000596 WO2014174357A1 (en) 2013-04-26 2014-04-23 Catalytic converter
DE112014002159.8T DE112014002159T8 (en) 2013-04-26 2014-04-23 Catalytic converter
CN201480023243.5A CN105143629A (en) 2013-04-26 2014-04-23 Catalytic converter
US14/786,341 US20160102591A1 (en) 2013-04-26 2014-04-23 Catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094303A JP2014213289A (en) 2013-04-26 2013-04-26 Catalytic converter

Publications (1)

Publication Number Publication Date
JP2014213289A true JP2014213289A (en) 2014-11-17

Family

ID=50685967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094303A Pending JP2014213289A (en) 2013-04-26 2013-04-26 Catalytic converter

Country Status (5)

Country Link
US (1) US20160102591A1 (en)
JP (1) JP2014213289A (en)
CN (1) CN105143629A (en)
DE (1) DE112014002159T8 (en)
WO (1) WO2014174357A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176944A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Exhaust gas treatment device
US9950442B2 (en) 2013-11-15 2018-04-24 Denso Corporation Method of producing honeycomb structural body
JP2019195754A (en) * 2018-05-08 2019-11-14 トヨタ自動車株式会社 Catalyst structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5958567B2 (en) 2014-03-05 2016-08-02 株式会社デンソー Honeycomb structure
US10598068B2 (en) 2015-12-21 2020-03-24 Emissol, Llc Catalytic converters having non-linear flow channels
JP6755029B2 (en) * 2016-03-08 2020-09-16 学校法人早稲田大学 Fibrous carbon nanostructure manufacturing equipment and fibrous carbon nanostructure manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018370A (en) * 2006-07-14 2008-01-31 Denso Corp Ceramic catalyst body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177794A (en) * 2000-09-29 2002-06-25 Denso Corp Ceramic catalytic body and ceramic support
JP4969865B2 (en) * 2006-02-15 2012-07-04 新日本製鐵株式会社 Exhaust gas purification device
DE102007036254A1 (en) * 2007-08-02 2009-02-05 Robert Bosch Gmbh Exhaust system of an internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018370A (en) * 2006-07-14 2008-01-31 Denso Corp Ceramic catalyst body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950442B2 (en) 2013-11-15 2018-04-24 Denso Corporation Method of producing honeycomb structural body
JP2017176944A (en) * 2016-03-28 2017-10-05 日本碍子株式会社 Exhaust gas treatment device
JP2019195754A (en) * 2018-05-08 2019-11-14 トヨタ自動車株式会社 Catalyst structure
JP7035780B2 (en) 2018-05-08 2022-03-15 トヨタ自動車株式会社 Catalyst structure

Also Published As

Publication number Publication date
WO2014174357A8 (en) 2014-12-24
CN105143629A (en) 2015-12-09
DE112014002159T8 (en) 2016-05-12
DE112014002159T5 (en) 2016-01-07
WO2014174357A1 (en) 2014-10-30
US20160102591A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP5888259B2 (en) Catalytic converter
JP5821887B2 (en) Catalytic converter
JP2014213289A (en) Catalytic converter
JP2015039667A (en) Catalytic converter
JP5780247B2 (en) Catalytic converter
US9352310B2 (en) Catalytic converter
US20130315788A1 (en) Catalytic converter
JP2013244438A (en) Catalytic converter
JP5757297B2 (en) Catalytic converter
JP2017104823A (en) Catalytic converter
JP2017170401A (en) Catalytic converter
JP6557181B2 (en) Method for manufacturing holding material for exhaust gas treatment apparatus
JP6916624B2 (en) Exhaust gas purification device and catalyst for exhaust gas purification
WO2020071065A1 (en) Exhaust gas purification catalyst
JP5742774B2 (en) Catalytic converter
JP2004169601A (en) Exhaust emission control device
JP2005214180A (en) Exhaust emission control device for internal combustion engine
JP2015071140A (en) Catalyst converter
JP2019124163A (en) Exhaust emission control device
JP2018076854A (en) Exhaust system structure for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108