JP2014203905A - 照明方法及び装置、並びに露光方法及び装置 - Google Patents

照明方法及び装置、並びに露光方法及び装置 Download PDF

Info

Publication number
JP2014203905A
JP2014203905A JP2013077427A JP2013077427A JP2014203905A JP 2014203905 A JP2014203905 A JP 2014203905A JP 2013077427 A JP2013077427 A JP 2013077427A JP 2013077427 A JP2013077427 A JP 2013077427A JP 2014203905 A JP2014203905 A JP 2014203905A
Authority
JP
Japan
Prior art keywords
light
illumination
reflective
elements
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013077427A
Other languages
English (en)
Inventor
水野 恭志
Yasushi Mizuno
恭志 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013077427A priority Critical patent/JP2014203905A/ja
Publication of JP2014203905A publication Critical patent/JP2014203905A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】空間光変調器の反射要素の反射面の形状又は性状が変化した場合にも、被照射面において目標とする光強度分布に近い分布が得られるようにする。
【解決手段】空間光変調器14が備える複数のミラー要素16を介して、光源からの照明光を照明瞳面IPPに導く照明方法であって、ミラー要素16の配置領域のうちの第1アレイ領域52Aに配置されて、撓み量が基準量以下の反射面を有するミラー要素16Aからの光を、照明瞳面IPPに形成される部分瞳領域55A〜55Dの周縁領域55Aaに導くとともに、第1アレイ領域52Aと異なる第2アレイ領域52Bに配置されて、撓み量が基準量を超える反射面を有するミラー要素16B,16Cからの光を、部分瞳領域55A〜55Dの内側領域55Abに導く。
【選択図】図5

Description

本発明は、被照射面を照明する照明技術、その照明技術を用いる露光技術、及びこの露光技術を用いるデバイス製造技術に関する。
例えば半導体素子等の電子デバイス(マイクロデバイス)を製造するためのリソグラフィー工程で使用されるステッパー又はスキャニングステッパー等の露光装置は、レチクル(マスク)を様々な照明条件で照明するために照明装置を備えている。最近の照明装置としては、照明光学系の瞳面(射出瞳と共役な面)上での光強度分布をレチクルのパターンに応じて様々な分布に最適化できるように、傾斜角可変の多数の微小なミラー要素を有する可動マルチミラー方式の空間光変調器(spatial light modulator)を用いる強度分布設定光学系を備えたタイプも提案されている(例えば特許文献1参照)。
米国特許出願公開第2003/0038225号明細書
従来、空間光変調器のミラー要素の反射面の形状は平坦であると想定されていた。しかしながら、露光装置において露光を継続すると、露光光の照射エネルギーによる経時変化等によって、空間光変調器の多数のミラー要素のうちに、反射面の形状が凸状又は凹状等に変形するものが現れる恐れがある。このように反射面の形状が平坦でなくなったミラー要素からの反射光は、照明光学系の瞳面における照射領域が広がる恐れがある。このため、そのようなミラー要素をそのまま使用していると、その瞳面において目標とする光強度分布が得られなくなる恐れがある。
本発明の態様は、このような事情に鑑み、空間光変調器の反射要素の反射面の形状又は性状が変化した場合にも、被照射面において目標とする光強度分布に近い分布が得られるようにすることを目的とする。
本発明の第1の態様によれば、空間光変調器が備える複数の反射要素を介して、光源からの光を被照射面に導く照明方法において、その複数の反射要素が配置される配置領域のうちの第1領域に配置されて第1の反射面形状を有する反射要素からの光を、その被照射面に形成される第2領域に導くことと、その第1領域とは異なる第3領域に配置されてその第1の反射面形状とは異なる第2の反射面形状を有する反射要素からの光を、その被照射面に形成されるその第2領域とは異なる第4領域に導くことと、を含む照明方法が提供される。
第2の態様によれば、空間光変調器が備える複数の反射要素を介して、光源からの光を被照射面に導く照明方法において、その複数の反射要素の反射面の面形状に関連する物理量を検出することと、検出されたその反射面の面形状に関連する物理量に基づいて、その複数の反射要素からその被照射面に導かれる光を調整することと、を含む照明方法が提供される。
第3の態様によれば、露光光源からの光でパターンを照明し、その露光光源からの光でそのパターン及び投影光学系を介して基板を露光する露光方法において、本発明の態様の照明方法を用いてその露光光源からの光でそのパターンを照明する露光方法が提供される。
第4の態様によれば、複数の反射要素を有する空間光変調器を備え、光源からの光を被照射面に導く照明装置において、その複数の反射要素が配置される配置領域のうちの第1領域に配置されて第1の反射面形状を有する反射要素からの光を、その被照射面に形成される第2領域に導くとともに、その第1領域とは異なる第3領域に配置されてその第1の反射面形状とは異なる第2の反射面形状を有する反射要素からの光を、その被照射面に形成されるその第2領域とは異なる第4領域に導くように、その複数の反射要素を制御する制御装置を備える照明装置が提供される。
第5の態様によれば、露光光源からの光でパターンを照明し、その露光光源からの光でそのパターン及び投影光学系を介して基板を露光する露光装置において、本発明の態様の照明装置を備え、その照明装置を用いてその露光光源からの光でそのパターンを照明する露光装置が提供される。
第6の態様によれば、本発明の態様の露光方法又は露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。
本発明の態様によれば、空間光変調器の反射要素の反射面形状に応じてその反射要素から被照射面に導かれる光を調整することによって、ミラー要素の反射面の形状又は性状が変化した場合にも、被照射面において目標とする光強度分布に近い分布が得られる。
第1の実施形態に係る露光装置の概略構成を示す図である。 (A)は図1中の空間光変調器のミラー要素アレイの一部を示す拡大斜視図、(B)は図2(A)中の一つのミラー要素の駆動機構を示す図である。 (A)は図1中の照明光学系の一部を簡略化して示す図、(B)は図3(A)の撮像素子の受光面を示す図、(C)はビームスポットの他の例を示す図、(D)は空間光変調器のミラー要素のアレイを示す図である。 照明方法を含む露光方法の一例を示すフローチャートである。 空間光変調器の複数のミラー要素からの反射光が、フライアイレンズの入射面(照明瞳面)の部分瞳領域のどの位置に入射するのかを示す図である。 (A)は第2の実施形態に係る露光装置の要部を示す図、(B)は複数のミラー要素に発散光が入射する状態を示す図、(C)は複数のミラー要素に発散光及び収束光が入射する状態を示す図である。 (A)は図6(A)中の照明光学系の一部を簡略化して示す図、(B)は図7(A)の撮像素子の受光面を示す図、(C)は複数のミラー要素に収束光が入射する状態を示す図である。 電子デバイスの製造工程の一例を示すフローチャートである。
[第1の実施形態]
本発明の第1の実施形態につき図1〜図5を参照して説明する。
図1は本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは、一例としてスキャニングステッパー(スキャナー)よりなる走査露光型の露光装置(投影露光装置)である。図1において、露光装置EXは、露光用の照明光(露光光)ILでレチクルR(マスク)のパターン面であるレチクル面Raを照明する照明装置8を備えている。照明装置8は、照明光ILをパルス発生する光源10と、光源10からの照明光ILでレチクル面Raを照明する照明光学系ILSと、照明条件の制御等を行う照明制御部36と、照明制御部36に接続された記憶装置33と、後述の瞳モニタ系23及び判定部34とを備えている。さらに、露光装置EXは、レチクルRを移動するレチクルステージRSTと、レチクルRのパターンの像をウエハW(基板)の表面に投影する投影光学系PLと、ウエハWを移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータよりなる主制御系35と、各種制御系等とを備えている。
以下、投影光学系PLの光軸AXに平行にZ軸を設定し、Z軸に垂直な平面内において図1の紙面に平行な方向にX軸を、図1の紙面に垂直な方向にY軸を設定して説明する。本実施形態では、露光時のレチクルR及びウエハWの走査方向はY軸に平行な方向(Y方向)である。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向(傾斜方向)をθx方向、θy方向、及びθz方向として説明する。
光源10としては、一例として波長193nmの直線偏光のレーザ光をパルス発光するArFエキシマレーザ光源が使用されている。なお、光源10として、波長248nmのレーザ光を供給するKrFエキシマレーザ光源、又は固体レーザ光源(YAGレーザ、半導体レーザ等)から出力されるレーザ光の高調波をパルス発生する高調波発生装置等も使用できる。
図1において、光源10から射出された照明光ILは、ビームエキスパンダ11を含む伝達光学系、照明光ILの偏光方向及び偏光状態を調整するための偏光光学系12、及び光路折り曲げ用のミラー13を経て、空間光変調器(spatial light modulator:SLM)14のそれぞれ直交する2軸の回りの傾斜角が可変の多数の微小なミラー要素16の反射面に所定の小さい入射角で斜めに入射する。照明光ILは、ビームエキスパンダ11によってほぼ平行光束となって、ミラー要素16のアレイ上の例えばX方向に細長い長方形の照射領域50(図3(D)参照)に入射する。空間光変調器14(以下、SLM14という。)は、多数のミラー要素16のアレイと、各ミラー要素16を支持して駆動する駆動基板部15とを有する。以下では、ミラー要素16の2軸の回りの傾斜角(いわゆる、チルト角)を単にミラー要素16の角度とも呼ぶ。各ミラー要素16の角度はSLM制御系17によって制御される。
SLM14の全部のミラー要素16の反射面は、ミラー要素16の傾斜角が0の状態(又は電源オフの状態)で、ZY面に対して小さい角度で傾斜した平面(以下、配置面という。)RPに設置されている。SLM14を装着した露光装置EXの製造直後又は稼働開始時の状態では、各ミラー要素16の反射面は平面(平坦)である。
図2(A)は、SLM14の一部を示す拡大斜視図である。図2(A)において、SLM14の駆動基板部15の表面には、ほぼY方向及びZ方向に一定ピッチで近接して配列された多数のミラー要素16のアレイが支持されている。
図2(B)に示すように、ミラー要素16の駆動機構は、一例としてミラー要素16を支柱41を介して支持するヒンジ部材43と、支持基板44と、支持基板44上にヒンジ部材43を支持する4つの絶縁性の支柱部材42と、支持基板44上に形成された4つの電極45A,45B,45C,45Dとを備えている。ミラー要素16の個数は例えば数千〜数10万である。この構成例では、ミラー要素16はアルミニウム等の金属から形成され、全部のミラー要素16は共通の信号ライン(不図示)を介して接地されている。また、ミラー要素16の4つの電極45A〜45Dには個別の信号ライン(不図示)を介してSLM制御系17によって、所定範囲内で連続的に可変の駆動電圧が印加される。
各ミラー要素16に対向する電極45A〜45Dの駆動電圧を個別に制御して、各ミラー要素16とこれに対向する電極45A〜45Dとの間の電位差を制御することで、ヒンジ部材43を介して可撓的に支持される支柱41を揺動及び傾斜させることができる。これによって、支柱41に固設された各ミラー要素16の反射面の直交する2軸の回りの傾斜角を所定の可変範囲内で連続的に制御することができる。
駆動基板部15に設けられたミラー要素16のアレイ及びこれらの駆動機構は、例えばMEMS(Microelectromechanical Systems:微小電気機械システム)技術を用いて製造することが可能である。また、ミラー要素16のアレイを有する空間光変調器としては、例えば欧州特許公開第779530号明細書、又は米国特許第6,900,915号明細書等に開示されているものを使用可能である。なお、ミラー要素16はほぼ正方形の平面ミラーであるが、その形状は矩形又は円形等の任意の形状であってもよい。
図1において、SLM14は、照明条件に応じて、多数のミラー要素16を介して後述のフライアイレンズ25の入射面25Iに所定の光強度分布(光量分布)を形成する。各ミラー要素16の直交する2軸の回りの角度によって、このミラー要素16で反射された光の入射面25Iにおける照射領域の中心のY方向及びZ方向の位置(入射位置)が規定される。各ミラー要素16の角度と、その反射光の入射面25Iにおける入射位置との関係は記憶装置33に記憶され、照明制御部36に入力されている。主制御系35が、レチクルRに対する照明条件の情報を照明制御部36に供給し、これに応じて照明制御部36がSLM制御系17を介してSLM14の各ミラー要素16の角度を制御する。
SLM14の多数のミラー要素16で反射された照明光ILは、照明光学系ILSの光軸AXIに沿って照明光ILをほぼ平行な光に変換する入射光学系18に入射する。入射光学系18は、入射面25Iに形成される光強度分布と相似な分布を入射面25Iと入射光学系18との間の面に形成する働きをも有する。入射光学系18を通過した照明光ILは、第1レンズ系24a及び第2レンズ系24bよりなるリレー光学系24を介してフライアイレンズ25の入射面25Iに入射する。フライアイレンズ25は、多数のレンズエレメントをZ方向及びY方向にほぼ密着するように配置したものであり、フライアイレンズ25の射出面が照明光学系ILSの瞳面(以下、照明瞳面という)IPPとなる。照明瞳面IPPは、照明光学系ILSの射出瞳が形成される面と光学的に共役である。フライアイレンズ25の射出面(照明瞳面IPP)には、波面分割によって多数の二次光源(光源像)よりなる面光源が形成される。
フライアイレンズ25は、多数の光学系を並列に配置したものであるため、入射面25Iにおける大局的な光強度分布がそのまま射出面である照明瞳面IPPに伝達される。言い換えると、入射面25Iに形成される大局的な光強度分布と、二次光源全体の大局的な光強度分布とが高い相関を示す。このため、入射面25Iに形成される照明光ILの任意の光強度分布がほぼそのまま照明瞳面IPPにおける光強度分布となり、入射面25Iは照明瞳面IPPと等価な面である。また、入射光学系18及びリレー光学系24よりなる光学系(光学的又は空間的なフーリエ変換光学系)によって、入射面25Iは、ミラー要素16の配置面RPに対してほぼ空間的にフーリエ変換の関係にある。
なお、フライアイレンズ25の代わりにマイクロフライアイレンズを使用してもよい。また、フライアイレンズとして、例えば米国特許第6,913,373号明細書に開示されているシリンドリカルマイクロフライアイレンズを用いてもよい。
さらに、第1レンズ系24aと第2レンズ系24bとの間にビームスプリッター19が設置され、照明光ILからビームスプリッター19で分岐された光束が集光レンズ20を介してCCD又はCMOS型の2次元の撮像素子22の受光面に入射する。撮像素子22の受光面が配置されている検出面HPは、集光レンズ20によって、フライアイレンズ25の入射面25Iと光学的に共役又はほぼ共役に設定されている。言い換えると、検出面HPは照明瞳面IPPと等価な面でもある。ビームスプリッター19、集光レンズ20、及び撮像素子22を含んで瞳モニタ系23が構成されている。撮像素子22の撮像信号を処理回路(不図示)で処理することによって、入射面25Iの光強度分布、ひいては照明瞳面IPPにおける光強度分布を計測できる。計測結果は判定部34に供給される。SLM14のミラー要素16の撓み量の計測時には(詳細後述)、判定部34は、供給された光強度分布からSLM14の各ミラー要素16の撓み量の状態を判定し、判定結果を照明制御部36に供給する。それ以外の場合には、判定部34は、供給される光強度分布をそのまま照明制御部36に供給する。なお、判定部34及び照明制御部36は、コンピュータのソフトウェア上の機能であってもよい。
また、照明瞳面IPPに形成された面光源からの照明光ILは、第1リレーレンズ28、レチクルブラインド(視野絞り)29、第2リレーレンズ30、光路折り曲げ用のミラー31、及びコンデンサー光学系32を介して、レチクル面Raの照明領域を均一な照度分布で照明する。レチクルブラインド29は、固定ブラインド及び走査露光時に開閉する可動ブラインドを有する。ビームエキスパンダ11からSLM14までの光学部材、入射光学系18、リレー光学系24、瞳モニタ系23、及びフライアイレンズ25からコンデンサー光学系32までの光学系を含んで照明光学系ILSが構成されている。照明光学系ILSの各光学部材は、不図示のフレームに支持されている。
照明光学系ILSからの照明光ILのもとで、レチクルRの照明領域内のパターンは、両側(又はウエハ側に片側)テレセントリックの投影光学系PLを介して、ウエハWの一つのショット領域の露光領域に所定の投影倍率(例えば1/4、1/5等)で投影される。投影光学系PLの瞳面(以下、投影瞳面という)PLP又はその近傍には開口絞りASが設置されている。投影瞳面PLPは、照明瞳面IPPと光学的に共役である。ウエハW(基板)は、リシコン等の基材の表面にフォトレジスト(感光材料)を所定の厚さで塗布したものを含む。
また、レチクルRはレチクルステージRSTの上面に吸着保持され、レチクルステージRSTは、不図示のレチクルベースの上面(XY平面に平行な面)に、Y方向に一定速度で移動可能に、かつ少なくともX方向、Y方向、及びθz方向に移動可能に載置されている。レチクルステージRSTの2次元的な位置は不図示のレーザ干渉計によって計測され、この計測情報に基づいて主制御系35が、リニアモータ等を含む駆動系37を介してレチクルステージRSTの位置及び速度を制御する。
一方、ウエハWはウエハホルダ(不図示)を介してウエハステージWSTの上面に吸着保持され、ウエハステージWSTは、不図示のウエハベースの上面(XY平面に平行な面)でX方向、Y方向、及びθz方向に移動可能であるとともに、Y方向に一定速度で移動可能である。ウエハステージWSTの2次元的な位置は不図示のレーザ干渉計及び/又は回折格子を用いるエンコーダ装置によって計測され、この計測情報に基づいて、主制御系35がリニアモータ等を含む駆動系38を介してウエハステージWSTの位置及び速度を制御する。なお、レチクルR及びウエハWのアライメントを行うためのアライメント系(不図示)も備えられている。
また、本実施形態では、ウエハステージWSTに、投影瞳面PLPの光強度分布をモニタするための開口計測系39が設けられている。開口計測系39の構成は、瞳モニタ系23の集光レンズ20及び撮像素子22と同様である。レチクルステージRSTにレチクルRが載置されていない状態で、開口計測系39を投影光学系PLの露光領域に移動して、照明光学系ILSから照明光ILを照射することで、開口計測系39によって投影瞳面PLPの光強度分布、ひいては照明瞳面IPPの光強度分布を計測できる。計測結果は照明制御部36に供給される。なお、ウエハステージWSTに固定される開口計測系39の代わりに、ウエハステージWST又はレチクルステージRSTに設けられる着脱式の開口計測系を使用することも可能である。
露光装置EXによるウエハWの露光時に、主制御系35は、内部の記憶装置中の露光データファイルからレチクルRのパターンに応じて定められている照明条件(ここでは照明瞳面IPPにおける光強度分布の情報)を読み出し、読み出した照明条件を照明制御部36に設定する。照明制御部36は、SLM制御系17を介してSLM14の各ミラー要素16の角度を個別に制御する。なお、実際には照明条件には照明光ILの偏光状態も含まれており、主制御系35は偏光光学系12を介して照明光ILの偏光状態を設定する。続いて、ウエハステージWSTの移動(ステップ移動)によってウエハWが走査開始位置に移動する。その後、光源10の発光を開始して、照明光学系ILSからの照明光ILでレチクルRを照明し、レチクルRのパターンの投影光学系PLによる像でウエハWを露光しつつ、レチクルステージRST及びウエハステージWSTを介してレチクルR及びウエハWを投影倍率を速度比としてY方向に同期して移動することで、ウエハWの一つのショット領域にレチクルRのパターンの像が走査露光される。このようにウエハWのステップ移動と走査露光とを繰り返すステップ・アンド・スキャン動作によって、ウエハWの全部のショット領域にレチクルRのパターンの像が露光される。なお、レチクルR及びウエハWの走査方向を図1におけるX方向とすることもできる。
さて、このような露光を継続していくと、例えば照明光ILの積算照射エネルギーによる経時変化等によって、SLM14の多数のミラー要素16中には、反射面の形状が凸状又は凹状等に撓んで変形するものが現れる恐れがある。また、図3(D)はSLM14のミラー要素16のアレイ上に設定された照明光の照射領域50を示す。照射領域50内で特に中央の楕円形の領域52において、照明光の光強度が平均的に高くなる場合がある。このような場合には、領域52及びその近傍の領域にあるミラー要素16は、その他の領域にあるミラー要素16に比べて撓み易くなる恐れがある。なお、以下では、ミラー要素16の反射面の形状が凸(又は凹)とは、反射光の方向から見たときに凸(又は凹)であることを意味するものとする。
図3(A)は、図1の照明光学系ILSの要部を簡略化して示し、図3(B)は、図3(A)中の瞳モニタ系23の撮像素子22の受光部22aを示す。図3(A)において、図1の入射光学系18、リレー光学系24、及び集光光学系20が一つの入射光学系26で表されている。図3(B)において、受光部22aにはX方向、Y方向に所定ピッチで多数の画素22bが配列されている。受光部22a上の点線の円周で囲まれた領域(以下、有効領域という)EAは、フライアイレンズ25を通過可能な光束から分岐された光が入射する領域である。図3(A)において、SLM14のミラー要素16A,16B,16の反射面がそれぞれ平面、凹面、及び凸面となっている。このとき、ミラー要素16A〜16Cに入射する照明光ILはほぼ平行光束であるため、ミラー要素16Aからの反射光ILAは、フライアイレンズ25の入射面25I、ひいては照明瞳面IPP上の最も小さいビームスポット(入射領域)に集光される。このとき、反射光ILAからビームスプリッター19によって分岐された光ILA1によって、受光部22aに最も小さい例えばほぼ円形のビームスポットBSA1(図3(B)参照)が形成される。
これに対して、凹状に撓んだミラー要素16Bからの反射光ILBは、入射光学系26によって一度集光した後、入射面25I(照明瞳面IPP)上のある程度広がったビームスポット(入射領域)に入射する。また、凸状に撓んだミラー要素16Cからの反射光ILCは、入射光学系26を介して入射面25I(照明瞳面IPP)上のある程度広がったビームスポットに入射する。このとき、反射光ILB,ILCから分岐された光ILB1,ILC1によって、撮像素子22の受光部22aにそれぞれある程度広がったビームスポットBSB1,BSC1(図3(B)参照)が形成される。従って、ビームスポットBSA1等が円形である場合に、その直径をその大きさであるとすると、ビームスポットBSA1〜BSC1の大きさ(サイズ)dの最小値dm(例えば露光装置EXの稼働開始時の計測値)からの偏差δdと、対応するミラー要素16A〜16Cの撓み量とはほぼ比例しているとみなすことができる。言い換えると、その偏差δdは対応するミラー要素16の面形状に関する物理量である。
本実施形態の判定部34は、撮像素子22で検出される光強度分布より、ビームスポットBSA1〜BSC1の大きさdを求め、求めた大きさdと予め計測されている最小値dmとの偏差δdを求め、一例として、この偏差δdが予め定められている基準値dsを超えるときに、そのビームスポットに対応するミラー要素16の撓み量が基準量を超えて大きいと判定する。例えばビームスポットBSB1,BSC1の大きさdが最小値dmの2倍を超える場合に、対応するミラー要素16B,16Cの撓み量が大きいと判定することができる。この場合、その基準値dsは最小値dmと同じになる。
なお、ビームスポットBSA1〜BSC1は、実際には強度が半径方向に次第に減少する光強度分布となっている。このため、撮像素子22の画素22bのX方向、Y方向の幅(又はピッチ)px,pyがビームスポットBSA1の大きさd(例えば半値幅)の最小値より大きい場合でも、複数の画素22bで検出される光強度の補間によって、ビームスポットBSA1〜BSC1の光強度分布、ひいてはその大きさdを求めることができる。さらに、ビームスポットBSA1〜BSC1の中心にある画素22bで検出される光強度の逆数に所定の係数を掛けて得られる値を、ほぼ対応するビームスポットBSA1〜BSC1の大きさとみなすことができる場合もある。また、図3(B)のビームスポットBSA1等は円形であるが、ミラー要素16の大きさによっては、ビームスポットBSA1等は、図3(C)に示すようにほぼ正方形状とみなすことができる場合もある。この場合、ビームスポットBSA1の大きさdはその正方形状の領域の幅とすることができる。
次に、本実施形態の露光装置EXにおいて、SLM14の各ミラー要素16の撓み量を計測し、この計測結果に基づいてSLM14を駆動しながらレチクルを照明して、ウエハを露光する動作の一例につき図4のフローチャートを参照して説明する。この動作は主制御系35によって制御される。まず、図4のステップ102において、図1のSLM14の全部のミラー要素16の反射面の撓み量を、各ミラー要素16からの反射光の瞳モニタ系23の撮像素子22上での各ミラー要素16からの反射光のビームスポットの大きさdから計測する。このため、一例として、照明制御部36は、SLM14のミラー要素16のアレイをN個(Nは2以上の整数)の計測領域に分割し、1番目の計測領域内の複数のミラー要素16の角度を、それらの反射光が瞳モニタ系23の撮像素子22の有効領域EA(図3(B)参照)内に格子状に設定された複数の計測点を中心とするビームスポットに入射するように設定する。この際に、計測対象でないミラー要素16の角度は、例えばそれらの反射光が有効領域EA外の領域に入射して捨て光となるように設定する。計測対象のミラー要素16の位置の情報は判定部34にも供給される。
そして、光源10を発光させて、撮像素子22で検出される光強度分布を用いて、判定部34は、各計測点を中心とするビームスポットの大きさd及び偏差δd(既知の最小値dmとの差分)を求める。そして、判定部34は、その偏差δdが予め定められている基準値dsを超える計測点に対応するミラー要素16の位置の情報を照明制御部36に供給する。照明制御部36では、供給された位置にあるミラー要素16の反射面の撓み量が基準量を超えていると認識できる。同様に、SLM14の2番目からN番目までの計測領域内にある複数のミラー要素16に関しても、順次その反射面の撓み量が基準量を超えているかどうかを計測する。
次のステップ104において、照明制御部36は、SLM14のミラー要素16のアレイを、図5に示すように、反射面の撓み量が基準量以下のミラー要素16が配列された第1アレイ領域52Aと、反射面の撓み量が基準量を超えるミラー要素16が配列された第2アレイ領域52Aとに分類する。図5では、一例として、撓み量が基準量を超えるミラー要素16が配列された第2アレイ領域52Aは、図3(D)の照明光ILの照射領域50内で光強度が大きい領域52に対応した中央部の領域である。なお、第1アレイ領域52Aと第2アレイ領域52Bとは、それぞれ複数の部分領域よりなる複雑な区分である場合もある。
次のステップ106において、主制御系35は、レチクルRの照明条件(ここでは照明瞳面IPPにおける光強度分布の情報)を読み出し、読み出した照明条件を照明制御部36に設定する。一例として、レチクルRの照明条件は、図5に示すように、照明瞳面IPP(又はフライアイレンズ25の入射面25I)において、光軸AXIを中心としてZ方向及びY方向に配列された4つの領域(以下、部分瞳領域という)55A,55B,55C,55Dの光強度が大きくなる光強度分布54を持つ4極照明であるとする。図5において、点線の円周56はコヒーレンスファクタ(σ値)が1の部分を示し、点線の円周57の内部が、光束がフライアイレンズ25を通過可能な領域を示す。その後、レチクルステージRSTにレチクルRがロードされ、レチクルRのアライメントが行われる。
次のステップ108において、照明制御部36は、SLM14の第1アレイ領域52A内の複数のミラー要素16(撓み量が基準量以下のミラー要素)からの反射光が、照明瞳面IPPの部分瞳領域55A〜55Dの周縁部の領域55Aa等に入射し、SLM14の第2アレイ領域52B内の複数のミラー要素16(撓み量が基準量を超えるミラー要素)からの反射光が、部分瞳領域55A〜55Dの周縁部の領域55Aaの内側の領域(内部又は中央の領域)55Ab等に入射するように、各ミラー要素16の角度を設定する。
本実施形態では、第1アレイ領域52Aのミラー要素16Aからの反射光が照明瞳面IPPの領域55Aaに形成するビームスポットBSAの大きさは、第2アレイ領域52Bのミラー要素16B(又は16C)からの反射光が照明瞳面IPPの領域55Abに形成するビームスポットBSB(又はBSC)の大きさよりも小さい。このため、SLM14の複数のミラー要素16中に撓み量が基準量を超えるミラー要素が現れた場合にも、部分瞳領域55A〜55D(被照射領域)の輪郭又はエッジを明確に規定でき(エッジを目標とする位置に正確に設定でき)、照明条件(照明瞳面IPPの光強度分布)を目標とする状態に高精度に設定できる。
次のステップ110において、フォトレジストが塗布された未露光のウエハWをウエハステージWSTにロードして、アライメントを行う。そして、光源10からの照明光ILの発光を開始し、SLM14の第1及び第2のアレイ領域52A及び52Bのミラー要素16A及び16B(16C)からの反射光によって照明瞳面IPPに図5の光強度分布54を形成する。その後、ステップ112において、その照明光ILによってレチクルR及び投影光学系PLを介してウエハWを走査露光する。その後、光源10の照明光ILの発光を停止する。次のウエハを露光する場合には、ステップ110,112が繰り返される。
ステップ102のミラー要素16の撓み量の計測、及びこの計測結果に基づくステップ104のミラー要素16のアレイの分類は、例えば定期的に実行される。この照明方法を含む露光方法によれば、SLM14の複数のミラー要素16中に撓み量が基準量を超えるミラー要素が現れた場合には、その撓み量が基準量を超えるミラー要素の位置を特定し、その撓み量が基準量を超えるミラー要素からの反射光を照明瞳面IPPの部分瞳領域55A〜55Dの内部の領域55Ab等に導いている。このため、常に目標とする照明条件に近い状態でレチクルRを照明でき、レチクルRのパターンの像を高精度にウエハWに露光できる。
上述のように、本実施形態の露光装置EXは、複数のミラー要素16(反射要素)を有するSLM(空間光変調器)14を備え、光源10からの照明光ILを入射面25及び照明瞳面IPP(被照射面)に導く照明装置8を備えている。また、照明装置8は、複数のミラー要素16の直交する2軸の回りの角度を制御する照明制御部36(制御装置)を備えている。そして、照明制御部36は、ミラー要素16のアレイ(配置領域)のうちの第1アレイ領域52A(第1領域)に配置されて、撓み量が基準量以下の反射面(平坦に近い第1の反射面形状)を有するミラー要素16Aからの光を、照明瞳面IPPに形成される周縁の領域55Aa(第2領域)に導くとともに、第2アレイ領域52B(第3領域)に配置されて、撓み量が基準量を超える反射面(凹状又は凸状等の第2の反射面形状)を有するミラー要素16B,16Cからの光を、照明瞳面IPPに形成される内側(中央)の領域55Ab(第4領域)に導くように、各ミラー要素16の角度を制御する。
また、照明装置8を用いる照明方法は、第1アレイ領域52Aに配置されるミラー要素16Aからの光を、照明瞳面IPPに形成される周縁の領域55Aaに導くとともに、第2アレイ領域52Bに配置されるミラー要素16B,16Cからの光を、照明瞳面IPPに形成される内側の領域55Ab(第4領域)に導くステップ108,110を有する。
本実施形態によれば、SLM14の複数のミラー要素16の反射面の形状(反射面形状)に応じて、複数のミラー要素16から照明瞳面IPPに導かれる光の照射位置を周縁の領域55Aa又は内側の領域55Abに調整することによって、ミラー要素16の反射面の形状(面形状又は撓み等の性状)が変化した場合にも、照明瞳面IPPにおいて目標とする光強度分布に近い分布が得られる。
また、ミラー要素16の反射面の形状が変化した場合にも、その反射面の形状が変化したミラー要素16からの反射光を捨て光(フライアイレンズ25に入射しない光)にすることなく、有効に利用できるため、照明条件を高精度に設定しながら、照明光ILの利用効率を高く維持できる。
また、ミラー要素16の反射面の形状が変化した場合にも、照明瞳面IPPに所望の光強度分布(瞳分布)を形成できる。
また、本実施形態の露光装置EXは、露光用の光源10からの照明光ILでレチクルRのパターンを照明し、照明光ILでそのパターン及び投影光学系PLを介してウエハW(基板)を露光する露光装置において、本実施形態の照明装置8を用いて光源10からの照明光ILでそのパターンを照明している。従って、露光装置EX又は露光装置EXを用いる露光方法によれば、常にレチクルRを目標とする照明条件に近い条件で照明できるため、レチクルRのパターンの像を高精度にウエハWに露光できる。
なお、本実施形態では以下のような変形が可能である。
まず、本実施形態では、反射面の撓み量が基準量を超えるミラー要素16B,16Cからの反射光を、照明瞳面IPPの部分瞳領域55A〜55Dの内部の領域55Ab等に導いている。その反射面の撓み量が基準量を超えるミラー要素16B,16Cの割合が少ない場合には、これらのミラー要素16B,16Cからの反射光を、フライアイレンズ25に入射しない方向(例えば図5の領域57の外側の領域58A,58Bに入射する方向)に進む捨て光としてもよい。これによって、照明条件を高精度に設定できる。
また、本実施形態では、ミラー要素16の反射面の撓み量を2段階に分けて評価しているが、その撓み量を3段階以上に分けて評価してもよい。一例として、その撓み量を3段階に分けて評価した場合、撓み量が最も大きいミラー要素16からの反射光を捨て光としてもよい。
また、本実施形態では、ステップ102でSLM14の各ミラー要素16の撓み量を計測しているため、撓み量に応じてミラー要素16からの反射光を正確に使い分けることができる。ただし、図3(D)を参照して説明したように、SLM14のミラー要素16のアレイに対する照明光ILの照射領域50の中央の領域52の光強度が高い場合には、その領域52又はその近傍のミラー要素16は撓み易いことがある。この場合には、ステップ102の計測工程を省略して、一例として、露光装置EXの稼働開始後にある期間が経過した後には、ステップ104において、中央の領域52及びこの近傍の領域を第2アレイ領域とみなし、この第2アレイ領域内の複数のミラー要素16の反射面は基準量を超える程度に撓んでいるとみなしてもよい。そして、その第2アレイ領域内の複数のミラー要素16からの反射光を照明瞳面IPPの部分瞳領域55A〜55Dの内部の領域55Ab等に導くことによって、実際にその領域52又はその近傍の領域のミラー要素16で撓みが生じた場合にも、照明条件を高精度に維持できる。
また、本実施形態では、4極照明が使用されているが、照明条件として、照明瞳面IPPにおいて、円形領域、輪帯状の領域、又は2極の領域等で光強度が大きくなる光強度分布を使用する任意の照明条件を使用する場合にも、本実施形態の照明方法が適用できる。
また、本実施形態では瞳モニタ系23を用いてミラー要素16からの反射光のビームスポットを計測しているが、瞳モニタ系23の代わりに開口計測系39を用いてもよい。
[第2の実施形態]
本発明の第2の実施形態につき図6(A)〜図7(C)を参照して説明する。なお、図6(A)、図7(A)、及び図7(B)においてそれぞれ図1、図3(A)、及び図3(B)に対応する部分には同一の符号を付してその詳細な説明を省略する。
図6(A)は本実施形態に係る露光装置EXAの照明装置8Aを含む要部を示す。図6(A)において、照明装置8Aは照明光学系ILSAを備え、照明光学系ILSAは、図1のフライアイレンズ25の代わりにマイクロフライアイレンズ25Aを有する。マイクロフライアイレンズ25Aは、たとえば縦横に且つ稠密に配列された多数の正屈折力を有する微小レンズからなる光学素子であり、平行平面板にエッチング処理を施して微小レンズ群を形成することによって構成されている。マイクロフライアイレンズでは、互いに隔絶されたレンズエレメントからなるフライアイレンズとは異なり、多数の微小レンズ(微小屈折面)が互いに隔絶されることなく一体的に形成されている。しかしながら、レンズ要素が縦横に配置されている点でマイクロフライアイレンズはフライアイレンズと同じ波面分割型のオプティカルインテグレータである。
マイクロフライアイレンズ25Aにおける単位波面分割面としての矩形状の微小屈折面は、レチクルR(マスク)上において形成すべき照野の形状(ひいてはウエハW上において形成すべき露光領域の形状)と相似な矩形状である。なお、マイクロフライアイレンズ25Aとして、例えばシリンドリカルマイクロフライアイレンズを用いることもできる。シリンドリカルマイクロフライアイレンズの構成及び作用は、例えば上記の米国特許第6,913,373号明細書に開示されている。
本実施形態においても、マイクロフライアイレンズ25Aの入射面25AIは照明瞳面IPPと等価である。また、照明光学系ILSA中のビームエキスパンダ11は、第1レンズ11a及び第2レンズ11bを有し、一例として、第2レンズ11bが光軸に沿って駆動部DRV1によって移動可能である。照明制御部36が駆動部DRV1を介して第2レンズ11bを光軸に沿って移動することで、ビームエキスパンダ11、偏光光学系12、及びミラー13を介してSLM14のミラー要素16のアレイに入射する照明光ILを平行光束、点線の光路A2で示す発散光、又は収束光(収斂光)のいずれかの状態に設定できる。この他の構成は第1の実施形態の露光装置EXと同様である。
図7(A)は、図6(A)の照明光学系ILSAの要部を簡略化して示し、図7(B)は、図6(A)中の瞳モニタ系23の撮像素子22の受光部22aを示す。図7(A)において、SLM14のミラー要素16A,16B,16の反射面がそれぞれ平面、凹面、及び凸面となっている。本実施形態において、SLM14の各ミラー要素16の反射面の撓み量を計測する場合、まず、図6(A)の照明制御部36は、ビームエキスパンダ11を制御してSLM14のミラー要素16のアレイに平行光束よりなる照明光ILを照射して、判定部34は、撮像素子22の受光部22aに形成されるビームスポットの大きさdを求める。この状態では、図3(B)に示すように、平坦なミラー要素16Aからの反射光のビームスポットBSA1が最小となり、凹及び凸のミラー要素16B,16Cからの反射光のビームスポットBSB1,BSC1が大きくなる。
その後、図6(A)の照明制御部36は、ビームエキスパンダ11の第2レンズ11bを位置A1にシフトさせて、SLM14のミラー要素16のアレイに発散光62(図7(A)参照)よりなる照明光ILを照射する。そして、判定部34は、図7(A)のミラー要素16A,16B,16Cからの反射光ILA,ILB,ILCからビームスプリッター19によって分岐された光ILA1,ILB1,ILC1によって、図7(B)の受光部22aに形成されるビームスポットBSA2,BSB2,BSC2の大きさdを求める。この状態では、凹のミラー要素16Bからの反射光ILBはほぼ平行光束となり、平坦なミラー要素16Aからの反射光ILAは発散気味の光束となり、凸のミラー要素16Cからの反射光ILCはより発散した光束となるため、ビームスポットBSB2が最も小さくなり、ビームスポットBSB2がわずかに大きくなり、ビームスポットBSC2は最も大きくなる。そして、判定部34では、最も小さいビームスポットBSB2に対応するミラー要素16Bの反射面は凹状であり、最も大きいビームスポットBSC2に対応するミラー要素16Cの反射面は凸状であることを検出できる。このようにSLM14の各ミラー要素16の反射面の撓み量、及びその撓みが凹又は凸であるかを示す検出結果は照明制御部36に供給される。
一例として、SLM14の全部のミラー要素16が凹状に撓んでいる場合で、かつそれらのミラー要素16の撓み量が第1の実施形態と同様に基準量を超えている場合(平行光束を入射した状態で、ビームスポットの大きさdが基準値dsを超える場合)を想定する。このとき、照明制御部36は、ビームエキスパンダ11を介してSLM14のミラー要素16のアレイの全面に、全部のミラー要素16の平均的な撓み量を相殺するように発散光62よりなる照明光ILを照射する。これによって、各ミラー要素16からの反射光はほぼ平行光束となり、その反射光は照明瞳面IPP(入射面25AI)でほぼ最も小さいビームスポットを形成するため、照明条件を高精度に設定できる。
同様に、図7(C)に示すように、SLM14の全部のミラー要素16が基準量を超えて凸状に撓んだミラー要素16Cとなっている場合、照明制御部36は、ビームエキスパンダ11を介してSLM14のミラー要素16のアレイの全面に収束光63よりなる照明光ILを照射する。これによって、各ミラー要素16Cからの反射光はほぼ平行光束となり、照明条件を高精度に設定できる。
このように本実施形態の露光装置EXAは、SLM(空間光変調器)14を備える照明装置8Aを備え、照明装置8Aは照明光学系ILSAと、照明制御部36と、瞳モニタ系23及び判定部34からなる検出部と、を備えている。そして、その検出部は、撮像素子22の受光部22aに形成される反射光のビームスポットの大きさ(反射面の面形状に関連する物理量)を検出し、この検出結果からSLM14の各ミラー要素16の反射面の撓みが凸又は凹であるか、及びその撓み量が基準量より大きいかどうかを求めている(検出工程)。そして、照明制御部36は、その検出部によって検出されたミラー要素16の面形状に関連する物理量から求められるミラー要素16の撓みの状態(凸又は凹)及び撓み量に基づいて、ミラー要素16にアレイに入射する照明光ILの平行度を調整して、複数のミラー要素16から照明瞳面IPP(被照射面)に導かれる反射光が小さいビームスポットを形成するように調整している(調整工程)。
本実施形態によれば、SLM14の複数のミラー要素16の反射面の形状(反射面形状)に応じて、複数のミラー要素16に入射する照明光ILの平行度を調整することによって、ミラー要素16の反射面の形状(面形状又は撓み等の性状)が変化した場合にも、照明瞳面IPPにおいて目標とする光強度分布に近い分布が得られる。
また、本実施形態においては、ミラー要素16の撓みが凸状又は凹状のいずれの状態であるかを判別でき、その状態に応じて複数のミラー要素16に入射する照明光ILの平行度を調整できるため、撓みが生じたミラー要素16からの反射光を継続して使用できる。
なお、本実施形態においては以下のような変形が可能である。
まず、本実施形態においても、撓みが生じたミラー要素16からの反射光を照明瞳面IPPの部分瞳領域の内部の領域に導いてもよい。
また、例えば図6(B)に示すように、SLM14のミラー要素16のアレイに発散光62よりなる照明光ILを入射させる場合、SLM14の異なる位置P1,P2,…,PI(Iは2以上の整数)にあるミラー要素16の反射面を配置面RPに平行な状態に設定しておくと、位置P1〜PIのミラー要素16中には、反射光が光軸AXIに平行でなくなるものが生じる。この場合、各ミラー要素16からの反射光が光軸AXIに平行になる状態を各ミラー要素16の中立位置とすると、発散光62に対して各ミラー要素16からの反射光が光軸AXIに平行になるように、各ミラー要素16の角度を調整して、調整後の角度に設定された状態を中立位置としてもよい。この後は、その中立位置を基準として各ミラー要素16の角度を制御することによって、SLM14に平行光束が入射する場合と同様に照明瞳面IPPの光強度分布を制御できる。SLM14に収束光を入射させる場合も同様である。
また、図6(A)に2点鎖線で示すように、ミラー13とSLM14との間の照明光ILの光路に、駆動部DRV2によって、複数の回折光学素子(Diffractive Optical Element) よりなる回折光学部材60を挿脱可能としてもよい。回折光学部材60は、図6(C)に示すように、入射する平行光を複数の発散光62A〜62Bとする第1回折光学素子60Bと、入射する平行光を複数の収束光63A〜63Bとする第2回折光学素子60Cと、を連結したものである。この変形例では、SLM14のミラー要素16のアレイを例えば2つのグループに分割し、グループ毎にその中のミラー要素16の平均的な撓み量が凹か凸かを判定する。
この変形例では、第1のグループ(第2アレイ領域52B)のミラー要素16が凹状に撓んだミラー要素16Bであり、第2のグループ(第3アレイ領域52C)のミラー要素16が凸状に撓んだミラー要素16Cである場合、第2アレイ領域52Bのミラー要素16Bには第1回折光学素子60Bを介して発散光62B等を入射し、第3アレイ領域52Cのミラー要素16Cには第2回折光学素子60Cを介して収束光62B等を入射する。これによって、SLM14のアレイに凸状のミラー要素16Cと凹状のミラー要素16Bとが混在している場合にも、全体として各ミラー要素16からの反射光をほぼ平行光束にして、照明条件を高精度に設定できる。
また、上記の実施形態では、SLM14のミラー要素16の反射面の面形状に関連する物理量として、その反射面の面形状(凸状又は凹状)を検出しているが、その物理量として、その反射面の曲率(凸状又は凹状の程度)、その反射面の配置面に対する法線方向の位置、その反射面の傾斜角度、及び反射率のうち少なくとも一つを検出してもよい。
なお、回折光学部材60の代わりに、凸レンズよりなるマイクロレンズアレイと、凹レンズよりなるマイクロレンズアレイとを組みあわせたマイクロレンズアレイ部材を使用することも可能である。
なお、上記実施形態において、駆動特性のばらつきが発生しているミラー要素16からの光を、照明瞳面IPPに形成される内側の領域55Abに導き、駆動特性のばらつきが発生していないミラー要素16からの光を、照明瞳面IPPに形成される周縁の領域55Aaに導いてもよい。このとき、駆動特性のばらつきが発生しているミラー要素が配置される領域を第2アレイ領域とみなすことができ、駆動特性のばらつきが発生していないミラー要素が配置される領域を第1アレイ領域と見なすことができる。ここで、ミラー要素16の駆動特性とは、SLM14のミラー要素16の電極に印加される制御用電圧(制御量)と、これに応じて設定されるミラー要素16の角度(駆動量)との関係を指している。
また、上述の実施形態において、第1アレイ領域に配置されるミラー要素16の駆動特性(例えば傾斜角(チルト角)/制御用電圧)のばらつきは、第2アレイ領域に配置されるミラー要素16の駆動特性のばらつきよりも小さければ良く、駆動特性(例えば傾斜角(チルト角)/制御用電圧)のばらつきが全くない状態には限定されない。
なお、上記の各実施形態では、入射面25I,26AI又は照明瞳面IPPにおける光強度分布(光量分布)を設定するために複数のミラー要素16の直交する2軸の回りの傾斜角を制御可能なSLM14が使用されている。しかしながら、SLM14の代わりに、それぞれ反射面の法線方向の位置が制御可能な複数のミラー要素のアレイを有する空間光変調器を使用する場合にも、上記の実施形態の照明方法が適用可能である。このような空間光変調器としては、たとえば米国特許第5,312,513号明細書、並びに米国特許第6,885,493号明細書の図1dに開示される空間光変調器を用いることができる。これらの空間光変調器では、二次元的な高さ分布を形成することで回折面と同様の作用を入射光に与えることができる。なお、上述した二次元的に配列された複数の反射面を持つ空間光変調器を、たとえば米国特許第6,891,655号明細書や、米国特許公開第2005/0095749号明細書の開示に従って変形しても良い。さらに、SLM14の代わりに、例えばそれぞれ入射する光の状態(反射角、屈折角、透過率等)を制御可能な複数の光学要素を備える任意の光変調器を使用する場合にも、本発明が適用可能である。
また、上記の実施形態ではオプティカルインテグレータとして図1の波面分割型のインテグレータであるフライアイレンズ25等が使用されている。しかしながら、オプティカルインテグレータとしては、内面反射型のオプティカルインテグレータとしてのロッド型インテグレータを用いることもできる。
また、上記の実施形態の照明装置8,8A及び照明方法は例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)に適用することができる。
また、上述の実施形態では、露光装置においてマスク(又はウェハ)を照明する照明光学系に対して本発明を適用しているが、これに限定されることなく、マスク(又はウェハ)以外の被照明物体を照明する一般的な照明光学系に対して本発明を適用することもできる。
また、上記の実施形態の露光装置EX,EXA又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図8に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置又は露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。
言い換えると、上記のデバイスの製造方法は、上記の実施形態の露光装置又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。
このデバイス製造方法によれば、レチクルのパターンの像を常に高精度にウエハに露光できるため、電子デバイスを高精度に製造できる。
なお、本発明は、例えば米国特許出願公開第2007/242247号明細書、又は欧州特許出願公開第1420298号明細書等に開示されている液浸型露光装置にも適用できる。さらに、本発明は、コンデンサー光学系を使用しない照明光学装置にも適用可能である。さらに、本発明は、投影光学系を用いないプロキシミティ方式等の露光装置にも適用することができる。
また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなく、例えば、液晶表示素子、プラズマディスプレイ等の製造プロセスや、撮像素子(CMOS型、CCD等)、マイクロマシーン、MEMS(Microelectromechanical Systems:微小電気機械システム)、薄膜磁気ヘッド、及びDNAチップ等の各種デバイス(電子デバイス)の製造プロセスにも広く適用できる。
このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
EX…露光装置、ILS…照明光学系、R…レチクル、PL…投影光学系、W…ウエハ、IPP…照明瞳面、8…照明装置、10…光源、14…空間光変調器(SLM)、16…ミラー要素、17…SLM制御系、23…瞳モニタ系、25…フライアイレンズ、35…主制御系、36…照明制御部、39…開口計測系

Claims (35)

  1. 空間光変調器が備える複数の反射要素を介して、光源からの光を被照射面に導く照明方法において、
    前記複数の反射要素が配置される配置領域のうちの第1領域に配置されて第1の反射面形状を有する反射要素からの光を、前記被照射面に形成される第2領域に導くことと、
    前記第1領域とは異なる第3領域に配置されて前記第1の反射面形状とは異なる第2の反射面形状を有する反射要素からの光を、前記被照射面に形成される前記第2領域とは異なる第4領域に導くことと、
    を含むことを特徴とする照明方法。
  2. 前記第1の反射面形状を有する反射要素からの光が導かれる前記第2領域は、前記被照射面に形成される被照射領域の周縁部に設定され、
    前記第2の反射面形状を有する反射要素からの光が導かれる前記第4領域は、前記被照射面に形成される被照射領域の中心部に設定されることを特徴とする請求項1に記載の照明方法。
  3. 前記第1の反射面形状を有する反射要素からの光が前記第2領域に形成する第1入射領域の大きさよりも、前記第2の反射面形状を有する反射要素からの光が前記第4領域に形成する第2入射領域の大きさの方が大きいことを特徴とする請求項1又は2に記載の照明方法。
  4. 前記複数の反射要素からの光は、前記被照射面の複数の被照射領域に導かれることを特徴とする請求項1乃至3のいずれか一項に記載の照明方法。
  5. 前記光源からの光は、照明光学系を介して被照明物体に導かれ、
    前記被照射面は、前記照明光学系の瞳面又は該瞳面と等価な面であることを特徴とする請求項1乃至4のいずれか一項に記載の照明方法。
  6. 前記複数の反射要素からの光を、光学的フーリエ変換光学系を介して前記被照射面に導くことを含むことを特徴とする請求項1乃至5のいずれか一項に記載の照明方法。
  7. 前記複数の反射要素の反射面の面形状に関連する物理量を検出することと、
    検出された前記反射面の面形状に関連する物理量に基づいて、前記複数の反射要素から前記被照射面に導かれる光を調整することと、
    を含むことを特徴とする請求項1乃至6のいずれか一項に記載の照明方法。
  8. 空間光変調器が備える複数の反射要素を介して、光源からの光を被照射面に導く照明方法において、
    前記複数の反射要素の反射面の面形状に関連する物理量を検出することと、
    検出された前記反射面の面形状に関連する物理量に基づいて、前記複数の反射要素から前記被照射面に導かれる光を調整することと、
    を含むことを特徴とする照明方法。
  9. 前記被照射面に導かれる光を調整することは、
    前記複数の反射要素からの光の前記被照射面における照射位置を変えることを含むことを特徴とする請求項7又は8に記載の照明方法。
  10. 前記被照射面に導かれる光を調整することは、
    前記空間光変調器が備える前記複数の反射要素の位置及び姿勢の少なくとも一方を調整することを含むことを特徴とする請求項7乃至9のいずれか一項に記載の照明方法。
  11. 前記複数の反射要素の反射面の面形状に関連する物理量を検出することは、
    前記複数の反射要素からの光が導かれる前記被照射面の被照射領域の光強度分布を検出することを含むことを特徴とする請求項7乃至10のいずれか一項に記載の照明方法。
  12. 前記複数の反射要素の反射面の面形状に関連する物理量を検出することは、
    前記複数の反射要素の反射面の面形状、曲率、位置、傾斜角度、及び反射率のうち少なくとも一つを検出することを含むことを特徴とする請求項7乃至11のいずれか一項に記載の照明方法。
  13. 前記複数の反射要素の反射面の面形状に関連する物理量を検出することは、
    前記複数の反射要素を含む複数のグループ毎に各グループに属する前記反射要素の平均的な反射面の撓みの状態を検出することを含むことを特徴とする請求項7乃至12のいずれか一項に記載の照明方法。
  14. 前記被照射面に導かれる光を調整することは、
    前記複数の反射要素のうち前記第2の面形状を有する反射要素に入射する前記光源からの光の平行度を制御することを特徴とする請求項7乃至13のいずれか一項に記載の照明方法。
  15. 前記複数の反射要素のうち、前記反射面に凹の撓みが生じている反射要素に入射する前記光源からの光を発散させ、前記反射面に凸の撓みが生じている反射要素に入射する前記光源からの光を収斂させるように、前記光源からの光の平行度を制御することをさらに含むことを特徴とする請求項1乃至14のいずれか一項に記載の照明方法。
  16. 前記複数の反射要素は、入射する光を反射する反射面を有し、前記反射面の法線方向の位置及び傾斜角の少なくとも一方が可変であることを特徴とする請求項1乃至15のいずれか一項に記載の照明方法。
  17. 露光光源からの光でパターンを照明し、前記露光光源からの光で前記パターン及び投影光学系を介して基板を露光する露光方法において、
    請求項1乃至16のいずれか一項に記載の照明方法を用いて前記露光光源からの光で前記パターンを照明する露光方法。
  18. 複数の反射要素を有する空間光変調器を備え、光源からの光を被照射面に導く照明装置において、
    前記複数の反射要素が配置される配置領域のうちの第1領域に配置されて第1の反射面形状を有する反射要素からの光を、前記被照射面に形成される第2領域に導くとともに、
    前記第1領域とは異なる第3領域に配置されて前記第1の反射面形状とは異なる第2の反射面形状を有する反射要素からの光を、前記被照射面に形成される前記第2領域とは異なる第4領域に導くように、前記複数の反射要素を制御する制御装置
    を備えることを特徴とする照明装置。
  19. 前記制御装置は、
    前記第1の反射面形状を有する反射要素からの光が導かれる前記第2領域を、前記被照射面に形成される被照射領域の周縁部に設定し、
    前記第2の反射面形状を有する反射要素からの光が導かれる前記第4領域を、前記被照射面に形成される被照射領域の中心部に設定することを特徴とする請求項18に記載の照明装置。
  20. 前記第1の反射面形状を有する反射要素からの光が前記第2領域に形成する第1入射領域の大きさよりも、前記第2の反射面形状を有する反射要素からの光が前記第4領域に形成する第2入射領域の大きさの方が大きいことを特徴とする請求項18又は19に記載の照明装置。
  21. 前記制御装置は、
    前記複数の反射要素からの光を、前記被照射面の複数の被照射領域に導くことを特徴とする請求項18乃至20のいずれか一項に記載の照明装置。
  22. 前記光源からの光を、被照明物体に導く照明光学系を備え、
    前記被照射面は、前記照明光学系の瞳面又は該瞳面と等価な面であることを特徴とする請求項18乃至21のいずれか一項に記載の照明装置。
  23. 前記複数の反射要素からの光を前記被照射面に導く光学的フーリエ変換光学系を備えることを特徴とする請求項18乃至22のいずれか一項に記載の照明装置。
  24. 前記複数の反射要素の反射面の面形状に関連する物理量を検出する検出装置を備え、
    前記制御装置は、前記検出装置の検出結果に基づいて、前記複数の反射要素から前記被照射面に導かれる光を調整することを特徴とする請求項18乃至23のいずれか一項に記載の照明装置。
  25. 前記制御装置は、前記被照射面に導かれる光を調整するために、前記複数の反射要素からの光の前記被照射面における照射位置を変えることを特徴とする請求項24に記載の照明装置。
  26. 前記制御装置は、前記被照射面に導かれる光を調整するために、前記空間光変調器が備える前記複数の反射要素の位置及び姿勢の少なくとも一方を調整することを特徴とする請求項24又は25に記載の照明装置。
  27. 前記検出装置は、前記複数の反射要素からの光が導かれる前記被照射面の被照射領域の光強度分布を検出する撮像素子を含むことを特徴とする請求項24乃至26のいずれか一項に記載の照明装置。
  28. 前記検出装置は、前記複数の反射要素の反射面の面形状、曲率、位置、傾斜角度、及び反射率のうち少なくとも一つを検出することを特徴とする請求項24乃至27のいずれか一項に記載の照明装置。
  29. 前記検出装置は、前記複数の反射要素を含む複数のグループ毎に各グループに属する前記反射要素の平均的な反射面の撓みの状態を検出することを特徴とする請求項24乃至28のいずれか一項に記載の照明装置。
  30. 前記被照射面に導かれる光を調整するために、前記複数の反射要素のうち前記第2の面形状を有する反射要素に入射する前記光源からの光の平行度を制御する第1光学部材を備えることを特徴とする請求項18乃至29のいずれか一項に記載の照明装置。
  31. 前記複数の反射要素のうち、前記反射面に凹の撓みが生じている反射要素に入射する前記光源からの光を発散させ、前記反射面に凸の撓みが生じている反射要素に入射する前記光源からの光を収斂させるように、前記光源からの光の平行度を制御する第2光学部材をさらに備えることを特徴とする請求項18乃至30のいずれか一項に記載の照明装置。
  32. 前記反射要素は入射する光を反射する反射面を有し、前記反射面の法線方向の位置及び傾斜角の少なくとも一方が可変であることを特徴とする請求項18乃至31のいずれか一項に記載の照明装置。
  33. 露光光源からの光でパターンを照明し、前記露光光源からの光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
    請求項18乃至32のいずれか一項に記載の照明装置を備え、
    前記照明装置を用いて前記露光光源からの光で前記パターンを照明する露光装置。
  34. 請求項17に記載の露光方法を用いて基板上に感光層のパターンを形成することと、
    前記パターンが形成された前記基板を処理することと、
    を含むデバイス製造方法。
  35. 請求項33に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
    前記パターンが形成された前記基板を処理することと、
    を含むデバイス製造方法。
JP2013077427A 2013-04-03 2013-04-03 照明方法及び装置、並びに露光方法及び装置 Pending JP2014203905A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077427A JP2014203905A (ja) 2013-04-03 2013-04-03 照明方法及び装置、並びに露光方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077427A JP2014203905A (ja) 2013-04-03 2013-04-03 照明方法及び装置、並びに露光方法及び装置

Publications (1)

Publication Number Publication Date
JP2014203905A true JP2014203905A (ja) 2014-10-27

Family

ID=52354099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077427A Pending JP2014203905A (ja) 2013-04-03 2013-04-03 照明方法及び装置、並びに露光方法及び装置

Country Status (1)

Country Link
JP (1) JP2014203905A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099611A (ja) * 2014-11-26 2016-05-30 株式会社ブイ・テクノロジー 露光装置及び露光方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016099611A (ja) * 2014-11-26 2016-05-30 株式会社ブイ・テクノロジー 露光装置及び露光方法

Similar Documents

Publication Publication Date Title
US10598606B2 (en) Method and device for inspecting spatial light modulator, and exposure method and device
JP5582287B2 (ja) 照明光学装置及び露光装置
JP5337304B2 (ja) マイクロリソグラフィ投影露光装置及びそこに収容される光学面に関連するパラメータを測定する方法
JP5250121B2 (ja) 高速可変減衰器としての干渉計の使用
TW200537256A (en) Illumination apparatus, exposure apparatus and device manufacturing method
JP2007305979A (ja) 干渉パターンを低減するための屈折光学器に対するビームの移動
JP5059916B2 (ja) リソグラフィ装置および監視方法
KR101938723B1 (ko) 조명 시스템
JP6643466B2 (ja) マイクロリソグラフィ投影装置を動作させる方法およびそのような装置の照明システム
JP5060464B2 (ja) デバイス製造方法
JP2018531412A6 (ja) マイクロリソグラフィ投影装置を動作させる方法およびそのような装置の照明システム
JP2014239088A (ja) 照明光学系、照明方法、並びに露光方法及び装置
WO2013094733A1 (ja) 計測方法、メンテナンス方法及びその装置
JP2014203905A (ja) 照明方法及び装置、並びに露光方法及び装置
JP2012004561A (ja) 照明方法、照明光学装置、及び露光装置
JP2009267403A (ja) 照明システムおよびリソグラフィ方法
JP2012099686A (ja) 光源形成方法、露光方法、及びデバイス製造方法
JP2013207294A (ja) 空間光変調器の監視方法及び装置、照明方法及び装置、並びに露光方法及び装置
JP5742385B2 (ja) 光学性能のシミュレーション方法、露光方法、及び記録媒体
JP2014096471A (ja) 計測方法及び装置、照明方法及び装置、並びに露光方法及び装置
JP2014203974A (ja) 照明方法及び装置、並びに露光方法及び装置
JP2012099687A (ja) 光源調整方法、露光方法、及びデバイス製造方法
JP2014216506A (ja) 照明方法及び装置、並びに露光方法及び装置
JP2011040618A (ja) 回折光学素子、照明光学系、露光装置、デバイスの製造方法、及び回折光学素子の設計方法
WO2010073801A1 (ja) 照明光学系、露光装置及びデバイスの製造方法