JP2014196786A - Damper - Google Patents

Damper Download PDF

Info

Publication number
JP2014196786A
JP2014196786A JP2013072608A JP2013072608A JP2014196786A JP 2014196786 A JP2014196786 A JP 2014196786A JP 2013072608 A JP2013072608 A JP 2013072608A JP 2013072608 A JP2013072608 A JP 2013072608A JP 2014196786 A JP2014196786 A JP 2014196786A
Authority
JP
Japan
Prior art keywords
chamber
valve body
flow path
intermediate flow
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013072608A
Other languages
Japanese (ja)
Other versions
JP5981869B2 (en
Inventor
北村 康弘
Yasuhiro Kitamura
康弘 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2013072608A priority Critical patent/JP5981869B2/en
Publication of JP2014196786A publication Critical patent/JP2014196786A/en
Application granted granted Critical
Publication of JP5981869B2 publication Critical patent/JP5981869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict a complex formation of a damper structure and its increasing in weight even if both attenuation forces at the time of outward motion and inward motion can be adjusted.SOLUTION: This invention relates to a damper comprising a flow passage 2 communicating the first chamber r1 and the second chamber r2 defined by a partition member 1, a bypass passage 3 communicating with either the first chamber r1 or the second chamber r2 and the flow passage 2 in response to a position of the partition member 1 and an attenuation force generating means. The flow passage 2 comprises an intermediate flow passage 20 where work fluid moves only in one direction and the bypass passage 3 merges with it, the first and second forward passages 21, 22 connecting the first chamber r1 and the second chamber r2 with an inlet (i) of the intermediate flow passage 20, and the first and second return passages 23, 24 connecting an outlet (o) of the intermediate flow passage 20 with the first chamber r1 and the second chamber r2. The attenuation force generating means V comprises the first valve body 4 arranged at an upstream side of a flow merging part m1 of the intermediate flow passage 20, the second valve body 5 arranged at a downstream side of the flow merging part m1 of the intermediate flow passage 20, and a proportional solenoid 6 for biasing the first valve body 4 and the second valve body 5 in a closing direction and constituted to enable this biasing force to be adjusted.

Description

この発明は、ダンパの改良に関する。   The present invention relates to an improvement of a damper.

一般的に、ダンパは、容室に作動流体が充填される二つの部屋を区画するとともに外力の入力を受けて容室内を移動する隔壁部材と、二つの部屋を連通する流路と、この流路を通過する作動流体に抵抗を与える減衰力発生手段とを備えている。そして、外力の入力により隔壁部材が移動して一方の部屋を圧縮すると、この部屋の作動流体が上記流路を通過して他方の部屋に移動するため、ダンパは、減衰力発生手段の抵抗に起因する上記外力に抗する力、即ち、減衰力を発生する。   In general, the damper partitions two chambers in which the working chamber is filled with the working fluid and receives a force input from the external chamber to move through the chamber, a flow path communicating the two chambers, and this flow. And a damping force generating means for imparting resistance to the working fluid passing through the path. When the partition member moves due to the input of external force and compresses one chamber, the working fluid in this chamber passes through the flow path and moves to the other chamber. A force against the external force, that is, a damping force is generated.

例えば、特許文献1に開示のダンパは、上記減衰力を利用して、外乱時のキックバック等による操舵ハンドルの振れを抑制するステアリングダンパであり、操舵ハンドルの操舵軸の回転に隔壁部材が連動している。また、上記ダンパは、上記構成に加えて、容室における隔壁部材の可動領域部分に開口し上記容室と上記流路とを連通するバイパス路を設け、隔壁部材の位置に応じてバイパス路と連通する部屋が切り替わるように設定されている。そして、バイパス路と連通する連通側の部屋が隔壁部材で圧縮された場合に、この部屋の作動流体が減衰力発生手段を迂回して非連通側の部屋に移動できるようになっているが、反対に、非連通側の部屋が隔壁部材で圧縮された場合には、作動流体は減衰力発生手段を通過しないと連通側の部屋に移動することができない。   For example, the damper disclosed in Patent Document 1 is a steering damper that uses the above-described damping force to suppress the steering handle from being shaken due to kickback or the like during a disturbance, and the partition member is interlocked with the rotation of the steering shaft of the steering handle. doing. Further, in addition to the above configuration, the damper is provided with a bypass path that opens in a movable region of the partition wall member in the chamber and communicates the chamber and the flow path. It is set so that the rooms that communicate with each other are switched. And when the room on the communication side communicating with the bypass passage is compressed by the partition member, the working fluid in this room can bypass the damping force generating means and move to the non-communication side room. On the other hand, when the non-communication side chamber is compressed by the partition member, the working fluid cannot move to the communication side room unless it passes through the damping force generating means.

したがって、上記ダンパにおいては、容室におけるバイパス路側開口を隔壁部材の中立位置に設けると、隔壁部材が中立位置から離れる方向に操舵ハンドルが振られた場合、減衰力発生手段を迂回できないので、減衰力発生手段の抵抗に起因する減衰力を発生して操舵ハンドルの振れを抑制するが、隔壁部材が中立位置に向かう方向に操舵ハンドルを戻す操作をした場合、減衰力発生手段を迂回できるので、この操作を軽く行うことができる。また、作動流体に与える抵抗が流路に設けた減衰力発生手段と異なる減衰力発生手段をバイパス路に設けることで、隔壁部材が中立位置からずれたとき、隔壁部材が中立位置からさらにずれる方向に移動するときに発生する減衰力と、隔壁部材が中立位置に戻る方向に移動するときに発生する減衰力とを異なるものにすることができる。   Therefore, in the above damper, when the bypass passage side opening in the chamber is provided at the neutral position of the partition wall member, when the steering handle is swung in the direction away from the neutral position, the damping force generating means cannot be bypassed. Although the damping force due to the resistance of the force generating means is generated to suppress the steering handle shake, when the partition member is operated to return the steering handle in the direction toward the neutral position, the damping force generating means can be bypassed, This operation can be performed lightly. Further, by providing the bypass passage with a damping force generating means different in resistance to the working fluid from the damping force generating means provided in the flow path, when the partition member deviates from the neutral position, the partition member further deviates from the neutral position. The damping force generated when the partition member moves to the neutral position and the damping force generated when the partition member moves in the direction returning to the neutral position can be made different.

特開2008−207594号公報JP 2008-207594 A

隔壁部材が所定の位置からずれたとき、隔壁部材がこの位置からさらにずれる方向に移動するときに発生するときを外方移動時、隔壁部材が所定の位置に戻る方向に移動するときを内方移動時とすると、外方移動時と内方移動時とで異なる減衰力を発生可能なダンパは、上記ステアリングダンパの他にも、車両の姿勢制御に係るロールコントロールダンパ等、広く利用することができる。   When the partition member is displaced from a predetermined position, when the partition member moves in a direction further deviating from this position, when the partition member moves outward, when the partition member moves in a direction to return to the predetermined position, inward When moving, dampers that can generate different damping forces during outward movement and inward movement can be widely used in addition to the steering damper described above, such as roll control dampers for vehicle attitude control. it can.

このため、ダンパの種類によっては、また、ステアリングダンパにおいても、外方移動時の減衰力と内方移動時の減衰力を両方調節できるようにすることが求められる場合がある。この場合、流路に設けた減衰力調整手段と、バイパス路に設けた減衰力調整手段に、それぞれアジャスタやソレノイド等の減衰力を調節可能にするための構成を追加すると、ダンパの構造が複雑化するとともに、重量増となる。   For this reason, depending on the type of damper, it is sometimes required for the steering damper to be able to adjust both the damping force during outward movement and the damping force during inward movement. In this case, if the damping force adjusting means provided in the flow path and the damping force adjusting means provided in the bypass path are each added with a configuration for adjusting the damping force such as an adjuster or a solenoid, the structure of the damper is complicated. And the weight increases.

そこで、本発明の目的は、外方移動時の減衰力と内方移動時の減衰力を両方調節できるようにしたとしても、構造の複雑化や重量増を抑制することが可能なダンパを提供することである。   Therefore, an object of the present invention is to provide a damper capable of suppressing the complexity of the structure and the increase in weight even if both the damping force during outward movement and the damping force during inward movement can be adjusted. It is to be.

上記課題を解決するための手段は、容室と、この容室内に移動可能に挿入されて上記容室を作動流体が充填される第一室と第二室とに区画する隔壁部材と、上記第一室と上記第二室とを連通する流路と、上記容室における上記隔壁部材の可動領域部分に開口し上記容室と上記流路とを連通するバイパス路と、上記流路及び上記バイパス路を通過して上記第一室と上記第二室との間を移動する作動流体に抵抗を与える減衰力発生手段とを備えるダンパにおいて、上記流路は、作動流体が一方方向にのみ移動し上記バイパス路が合流する中間流路と、上記第一室を上記中間流路の入口に接続する第一往路と、上記第二室を上記中間流路の上記入口に接続する第二往路と、上記中間流路の出口を上記第一室に接続する第一復路と、上記中間流路の上記出口を上記第二室に接続する第二復路とを備えており、上記減衰力発生手段は、上記中間流路の途中に設けられ上記中間流路と上記バイパス路との合流部の上流側に配置される第一弁体と、上記中間流路の途中に設けられ上記合流部の下流側に配置される第二弁体と、上記中間流路を遮断するように上記第一弁体及び上記第二弁体を附勢するとともにこの附勢力を調節可能に構成される附勢手段とを備えていることである。   Means for solving the above-described problems include a chamber, a partition member that is movably inserted into the chamber, and divides the chamber into a first chamber and a second chamber filled with a working fluid, and A flow path that communicates between the first chamber and the second chamber, a bypass path that opens to a movable region of the partition member in the volume chamber and communicates the volume chamber and the flow path, the flow path, and the flow path In the damper having a damping force generating means for imparting resistance to the working fluid that moves between the first chamber and the second chamber through the bypass passage, the working fluid moves only in one direction. An intermediate flow path that joins the bypass path, a first forward path that connects the first chamber to the inlet of the intermediate flow path, and a second forward path that connects the second chamber to the inlet of the intermediate flow path. A first return path connecting the outlet of the intermediate flow path to the first chamber, and a top of the intermediate flow path. A second return path connecting the outlet to the second chamber, and the damping force generating means is provided in the middle of the intermediate flow path and upstream of the junction of the intermediate flow path and the bypass path. A first valve body that is disposed; a second valve body that is provided in the middle of the intermediate flow path and that is disposed on the downstream side of the merging portion; and the first valve body and the above-mentioned so as to block the intermediate flow path And a biasing means configured to bias the second valve body and adjust the biasing force.

本発明によれば、外方移動時の減衰力と内方移動時の減衰力を両方調節できるようにしたとしても、ダンパの構造の複雑化や重量増を抑制することが可能となる。   According to the present invention, even if both the damping force during outward movement and the damping force during inward movement can be adjusted, it is possible to suppress the complexity and weight increase of the damper.

本発明の一実施の形態に係るダンパの概略図である。It is the schematic of the damper which concerns on one embodiment of this invention. 図1の主要部を拡大して示した図である。It is the figure which expanded and showed the principal part of FIG. 第一室が圧縮された外方移動時における図1のダンパの作動流体の流れを示した説明図である。It is explanatory drawing which showed the flow of the working fluid of the damper of FIG. 1 at the time of the outward movement in which the 1st chamber was compressed. 第一室が圧縮された内方移動時における図1のダンパの作動流体の流れを示した説明図である。It is explanatory drawing which showed the flow of the working fluid of the damper of FIG. 1 at the time of the inward movement in which the 1st chamber was compressed. 第二室が圧縮された外方移動時における図1のダンパの作動流体の流れを示した説明図である。It is explanatory drawing which showed the flow of the working fluid of the damper of FIG. 1 at the time of the outward movement in which the 2nd chamber was compressed. 第二室が圧縮された内方移動時における図1のダンパの作動流体の流れを示した説明図である。It is explanatory drawing which showed the flow of the working fluid of the damper of FIG. 1 at the time of the inward movement in which the 2nd chamber was compressed.

以下に本発明の一実施の形態に係るダンパについて、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。   A damper according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals used throughout the several drawings indicate the same parts.

図1に示すように、本発明の一実施の形態に係るダンパは、容室Rと、この容室R内に移動可能に挿入されて上記容室Rを作動流体が充填される第一室r1と第二室r2とに区画する隔壁部材1と、上記第一室r1と上記第二室r2とを連通する流路2と、上記容室Rにおける上記隔壁部材1の可動領域部分に開口し上記容室Rと上記流路2とを連通するバイパス路3と、上記流路2及び上記バイパス路3を通過して上記第一室r1と上記第二室r2との間を移動する作動流体に抵抗を与える減衰力発生手段Vとを備えている。   As shown in FIG. 1, a damper according to an embodiment of the present invention includes a container chamber R and a first chamber that is movably inserted into the container chamber R and is filled with a working fluid. a partition member 1 partitioned into r1 and a second chamber r2, a flow path 2 communicating the first chamber r1 and the second chamber r2, and an opening in a movable region of the partition member 1 in the chamber R And a bypass passage 3 that communicates between the chamber R and the flow path 2, and an operation that moves between the first chamber r1 and the second chamber r2 through the flow path 2 and the bypass path 3. And a damping force generating means V for imparting resistance to the fluid.

そして、上記流路2は、作動流体が一方方向にのみ移動し上記バイパス路3が合流する中間流路20と、上記第一室r1を上記中間流路20の入口iに接続する第一往路21と、上記第二室r2を上記中間流路20の入口iに接続する第二往路22と、上記中間流路20の出口oを上記第一室r1に接続する第一復路23と、上記中間流路20の出口oを上記第二室r2に接続する第二復路24とを備えている。   The flow path 2 includes an intermediate flow path 20 in which the working fluid moves only in one direction and the bypass path 3 joins, and a first forward path that connects the first chamber r1 to the inlet i of the intermediate flow path 20. 21, a second forward path 22 that connects the second chamber r2 to the inlet i of the intermediate flow path 20, a first return path 23 that connects the outlet o of the intermediate flow path 20 to the first chamber r1, and the And a second return path 24 connecting the outlet o of the intermediate flow path 20 to the second chamber r2.

また、上記減衰力発生手段Vは、上記中間流路20の途中に設けられ上記中間流路20と上記バイパス路3との合流部m1の上流側に配置される第一弁体4と、上記中間流路20の途中に設けられ上記合流部m1の下流側に配置される第二弁体5と、上記中間流路20を遮断するように上記第一弁体4及び上記第二弁体5を附勢するとともにこの附勢力を調節可能に構成される比例ソレノイド(附勢手段)6とを備えている。   Further, the damping force generating means V is provided in the middle of the intermediate flow path 20 and is disposed on the upstream side of the junction m1 between the intermediate flow path 20 and the bypass path 3; The second valve body 5 provided in the middle of the intermediate flow path 20 and disposed on the downstream side of the merge portion m1, and the first valve body 4 and the second valve body 5 so as to block the intermediate flow path 20. And a proportional solenoid (biasing means) 6 configured to be capable of adjusting the urging force.

以下、詳細に説明すると、本実施の形態において、ダンパは、内部に容室Rが形成される図示しないハウジングと、このハウジングに回転自在に軸支され外力の入力を受けて容室R内で回転する回転軸10と、この回転軸10の軸方向に沿って起立し先端がハウジングの内周面に摺接するベーンからなる隔壁部材1とを備えており、ハウジングと回転軸10との間に容室Rが形成されるとともに、この容室Rが上記隔壁部材1で第一室r1と第二室r2に区画されているロータリ型のダンパであり、作動流体が第一室r1と第二室r2との間を移動するときの抵抗を利用して、ハウジングと回転軸10との相対回転を抑制する減衰力を発生する。第一室r1と第二室r2に充填される作動流体は作動油からなるが、水、水溶液等、他の液体からなるとしてもよい。また、ダンパの形態は上記の限りではなく、例えば、図示しないが、ダンパが筒状のシリンダと、このシリンダ内に挿通され外力の入力を受けて軸方向に移動するロッドと、このロッドに保持されてシリンダの内周面に摺接するピストンからなる隔壁部材とを備え、シリンダとロッドとの間に容室が形成されるとともに、この容室が隔壁部材で第一室と第二室とに区画されている往復直動型のダンパであるとしてもよい。   In the following, in detail, in the present embodiment, the damper includes a housing (not shown) in which a chamber R is formed, and a shaft that is rotatably supported by the housing and receives an external force, and receives an external force. A rotating shaft 10 that rotates, and a partition member 1 that includes a vane that stands up along the axial direction of the rotating shaft 10 and that has a tip slidingly contacting the inner peripheral surface of the housing are provided between the housing and the rotating shaft 10. A chamber R is formed, and the chamber R is a rotary damper which is partitioned by the partition member 1 into a first chamber r1 and a second chamber r2, and the working fluid is in the first chamber r1 and the second chamber r2. A damping force that suppresses relative rotation between the housing and the rotary shaft 10 is generated by utilizing resistance when moving between the chambers r2. The working fluid filled in the first chamber r1 and the second chamber r2 is made of hydraulic oil, but may be made of other liquids such as water and an aqueous solution. The form of the damper is not limited to the above. For example, although not shown, the damper is a cylindrical cylinder, a rod that is inserted into the cylinder and receives an external force and moves in the axial direction, and held by the rod And a partition member made of a piston that is in sliding contact with the inner peripheral surface of the cylinder, and a chamber is formed between the cylinder and the rod, and the chamber is divided into a first chamber and a second chamber by the partition member. It may be a reciprocating direct acting type damper that is partitioned.

容室Rには、第一室r1と第二室r2とを連通する流路2と、隔壁部材1の位置により第一室r1或いは第二室r2に連通するバイパス路3が接続されている。本実施の形態において、バイパス路3は、容室Rにおける隔壁部材1の中立位置部分に開口しており、隔壁部材1が中立位置よりも図1中右側に配置されるとき、第一室r1と流路2とを連通し、隔壁部材1が中立位置よりも図1中左側に配置されているとき、第二室r2と流路2とを連通する。なお、バイパス路3の容室側開口の位置は、上記の限りではなく、隔壁部材1の可動領域部分であれば任意に設定することができ、隔壁部材1の位置に応じて流路2と連通する室を切り替えられればよい。   The chamber R is connected to a flow path 2 that communicates the first chamber r1 and the second chamber r2, and a bypass path 3 that communicates with the first chamber r1 or the second chamber r2 depending on the position of the partition wall member 1. . In the present embodiment, the bypass passage 3 opens to a neutral position portion of the partition wall member 1 in the chamber R, and when the partition wall member 1 is disposed on the right side in FIG. 1 from the neutral position, the first chamber r1. When the partition wall member 1 is disposed on the left side in FIG. 1 with respect to the neutral position, the second chamber r2 and the flow path 2 are communicated. The position of the opening on the chamber side of the bypass passage 3 is not limited to the above, and can be arbitrarily set as long as it is a movable region portion of the partition wall member 1. What is necessary is just to switch the room which communicates.

流路2は、上記したように、バイパス路3が合流する中間流路20と、第一室r1を中間流路20の入口iに接続する第一往路21と、第二室r2を中間流路の入口iに接続する第二往路22と、中間流路20の出口oを第一室r1に接続する第一復路23と、中間流路20の出口oを第二室r2に接続する第二復路24とを備えている。第一往路21、第二往路22、第一復路23及び第二復路24の途中には、それぞれ逆止弁C1,C2,C3,C4が設けられており、第一、第二往路21,22に設けられる逆止弁C1,C2は、容室Rから中間流路20への向かう作動流体の流れのみを許容し、その反対方向への流れを阻止する。他方、第一、第二復路23,24に設けられる逆止弁C3,C4は、中間流路20から容室Rへ向かう作動流体の流れのみを許容し、その反対方向への流れを阻止する。   As described above, the flow path 2 includes the intermediate flow path 20 where the bypass path 3 merges, the first forward path 21 connecting the first chamber r1 to the inlet i of the intermediate flow path 20, and the second chamber r2 as an intermediate flow. A second forward path 22 connected to the inlet i of the path, a first return path 23 connecting the outlet o of the intermediate flow path 20 to the first chamber r1, and a second connecting the outlet o of the intermediate flow path 20 to the second chamber r2. And two return paths 24. Check valves C1, C2, C3, and C4 are provided in the middle of the first outbound path 21, the second outbound path 22, the first inbound path 23, and the second inbound path 24, respectively. The check valves C1 and C2 provided on the side allow only the flow of the working fluid from the chamber R toward the intermediate flow path 20, and prevent the flow in the opposite direction. On the other hand, the check valves C3 and C4 provided in the first and second return paths 23 and 24 allow only the flow of the working fluid from the intermediate flow path 20 toward the chamber R, and block the flow in the opposite direction. .

本実施の形態において、第一、第二往路21,22は、その中間流路側となる下流側で合流した後、中間流路20の入口iに接続されており、分岐している部分に逆止弁C1,C2が配置されている。また、第一、第二復路23,24は、その中間流路側となる上流側では合流し、途中で第一室側と第二室側に分岐しており、同じく分岐している部分に逆止弁C3,C4が配置されている。また、第一往路、復路21,23は、第一室側で合流し、第二往路、復路22,24は、第二室側で合流しており、同じく分岐している部分に逆止弁C1,C2,C3,C4が配置されている。このように構成することで、第一往路21、第二往路22、第一復路23及び第二復路24に一部の流路を共有させて、流路2の構成を簡易にするとともに、一部の流路を共有させても、第一室r1若しくは第二室r2の一方から流出した作動流体が、必ず中間流路20を通過して第一室r1若しくは第二室r2の他方に戻る。   In the present embodiment, the first and second forward paths 21 and 22 are connected to the inlet i of the intermediate flow path 20 after joining on the downstream side which is the intermediate flow path side, and are opposite to the branched portion. Stop valves C1, C2 are arranged. Further, the first and second return paths 23 and 24 merge on the upstream side, which is the intermediate flow path side, and are branched in the middle to the first chamber side and the second chamber side, and reverse to the same branched portion. Stop valves C3 and C4 are arranged. In addition, the first forward path and the return paths 21 and 23 are merged on the first chamber side, and the second forward path and the return paths 22 and 24 are merged on the second chamber side. C1, C2, C3 and C4 are arranged. By configuring in this way, the first outbound path 21, the second outbound path 22, the first inbound path 23, and the second inbound path 24 share a part of the channel, simplifying the configuration of the channel 2, and Even if the flow path of the part is shared, the working fluid flowing out from one of the first chamber r1 or the second chamber r2 always passes through the intermediate flow path 20 and returns to the other of the first chamber r1 or the second chamber r2. .

また、第一、第二復路23,24の合流している部分m2には、気体と作動流体を収容するタンクTが接続されており、このタンクTで温度変化による作動流体の体積変化を補償できるようになっている。本実施の形態において、タンクTは、常に低圧側に接続されているので、気体を圧縮しながら充填して加圧状態にしなくてもよいが、作動流体中に溶けていた気体が気泡となり、作動流体が泡立つエアレーションの発生を抑制するため、多少加圧することが好ましい。また、図示しないが、第一、第二往路21,22の合流している部分と、第一、第二復路23,24の合流している部分m2とを接続する通路を設けるとともに、この通路の途中に第一、第二往路21,22から第一、第二復路23,24へ向かう作動流体の流れを許容するが反対方向の流れを阻止するとともに、第一、第二往路21,22の圧力が所定以上になったときに開弁し上記通路を開放するリリーフ弁を設け、このリリーフ弁で第一、第二往路21,22の圧力が過剰となることを抑制できるようにしてもよい。   In addition, a tank T that accommodates gas and working fluid is connected to a portion m2 where the first and second return paths 23 and 24 meet, and this tank T compensates for volume changes of the working fluid due to temperature changes. It can be done. In the present embodiment, since the tank T is always connected to the low pressure side, it is not necessary to fill the gas while compressing the gas and pressurize it, but the gas dissolved in the working fluid becomes bubbles, In order to suppress the generation of aeration in which the working fluid is bubbled, it is preferable that the pressure is slightly increased. In addition, although not shown, a passage is provided to connect the joining portion of the first and second outward passages 21 and 22 and the joining portion m2 of the first and second return passages 23 and 24. The flow of the working fluid from the first and second forward paths 21 and 22 to the first and second return paths 23 and 24 is allowed in the middle of the flow, but the flow in the opposite direction is prevented, and the first and second forward paths 21 and 22 are allowed. A relief valve is provided that opens when the pressure exceeds a predetermined value and opens the passage, so that the pressure of the first and second forward passages 21 and 22 can be suppressed by this relief valve. Good.

中間流路20は、上流側の入口iから下流側の出口oにかけて二段階に拡径されており、図2に示すように、入口iに連なる小径な小径部20aと、この小径部20aの下流側に連なり小径部20aよりも大径な中径部20bと、この中径部20bの下流側に連なるとともに出口oに連なる中径部20bよりも大径な大径部20cとを備えている。   The intermediate flow path 20 is enlarged in two stages from the upstream inlet i to the downstream outlet o. As shown in FIG. 2, the intermediate flow path 20 has a small-diameter small-diameter portion 20a connected to the inlet i and the small-diameter portion 20a. A medium-diameter portion 20b connected to the downstream side and larger than the small-diameter portion 20a, and a large-diameter portion 20c connected to the downstream side of the medium-diameter portion 20b and larger than the medium-diameter portion 20b connected to the outlet o are provided. Yes.

そして、中間流路20内には、中間流路20に沿って筒状のケース7が挿入されており、このケース7は、小径部20aに螺合する螺子部70と、この螺子部70に同軸に連なり小径部20aから中径部20bにかけて延びる小外径部71と、この小外径部71の反螺子部側に同軸に連なり小外径部71よりも外径が大きい大外径部72とを備えている。また、ケース7の小外径部71外周と中間流路20の小径部20aとの間、及び、ケース7の大外径部72と中間流路20の中径部20bとの間は、シールs1,s2で塞がれている。さらに、ケース7の小外径部71において、中間流路20の中径部20b内に配置される部分には、外周に環状の隙間20dができるとともに、この環状の隙間20dとケース7の内側とを連通する連通孔71aが形成されている。そして、環状の隙間20dに、バイパス路3が連なっている。   A cylindrical case 7 is inserted in the intermediate flow path 20 along the intermediate flow path 20, and the case 7 is screwed into the small diameter portion 20 a and the screw portion 70 is engaged with the screw portion 70. A small outer diameter portion 71 extending coaxially and extending from the small diameter portion 20a to the medium diameter portion 20b, and a large outer diameter portion having a larger outer diameter than the small outer diameter portion 71 are coaxially connected to the anti-screw portion side of the small outer diameter portion 71. 72. Further, the space between the outer periphery of the small outer diameter portion 71 of the case 7 and the small diameter portion 20 a of the intermediate flow path 20 and the space between the large outer diameter portion 72 of the case 7 and the intermediate diameter portion 20 b of the intermediate flow path 20 are sealed. It is blocked by s1 and s2. Further, in the small outer diameter portion 71 of the case 7, an annular gap 20 d is formed on the outer periphery at a portion disposed in the intermediate diameter portion 20 b of the intermediate flow path 20, and the annular gap 20 d and the inner side of the case 7 are formed. A communication hole 71a is formed. The bypass 3 is connected to the annular gap 20d.

ケース7における螺子部70の内径は、小外径部71の内径よりも大きく形成されており、これらの境界に環状の段差面73が形成されている。また、小外径部71の内径は、大外径部72の内径と等しく形成されているが、小外径部71と大外径部72の境界部分の内周が内側に張り出し、環状のシート部74を形成している。また、上記螺子部70の先端部には、環状のキャップ8が取り付けられており、このキャップ部材8と段差面73との間にシート部材9が軸方向に移動可能に挿入されている。シート部材9は、環状の底部(符示せず)を備えて有底筒状に形成されており、この底部とキャップ8との間に介装される附勢ばね90により、段差面側に附勢されている。   The inner diameter of the screw portion 70 in the case 7 is formed larger than the inner diameter of the small outer diameter portion 71, and an annular step surface 73 is formed at the boundary between them. Further, the inner diameter of the small outer diameter portion 71 is formed to be equal to the inner diameter of the large outer diameter portion 72, but the inner periphery of the boundary portion between the small outer diameter portion 71 and the large outer diameter portion 72 projects inwardly, A sheet portion 74 is formed. An annular cap 8 is attached to the tip of the screw portion 70, and the sheet member 9 is inserted between the cap member 8 and the stepped surface 73 so as to be movable in the axial direction. The sheet member 9 has an annular bottom portion (not shown) and is formed in a bottomed cylindrical shape, and is attached to the step surface side by a biasing spring 90 interposed between the bottom portion and the cap 8. It is energized.

つづいて、小外径部71内には、減衰力発生手段Vを構成する第一弁体4が軸方向に移動可能に挿入されており、ケース7の内側を、入口iに連なる入口室7aと、連通孔71a及び隙間20dを介してバイパス路3に連なる中間室7bとに区画している。第一弁体4は、円錐状の頭部40と、小外径部71の内周面に摺接する本体部41と、本体部41から反頭部側に延びる脚部42とを備えており、頭部40がシート部材9の底部内側に下流側から出没可能に挿入されるとともに、本体部41の外周に軸方向に沿って溝(符示せず)が形成されている。そして、第一弁体4の頭部40がシート部材9に当接しているとき、中間流路20の合流部m1よりも上流側が第一弁体4で閉じられた状態となるが、入口室7aに流入した作動流体が第一弁体4を後退させると、シート部材9と第一弁体4との間に環状隙間ができるため、作動流体がこの環状隙間を通過するとともに、本体部41の外周の溝と小外径部71との間に形成される軸方向の隙間を通過して中間室7bに流入する。しかし、この反対方向の作動流体の流れに対しては、第一弁体4が開かず、中間流路20の合流部m1よりも上流側が第一弁体4で閉じられた状態に維持される。   Subsequently, the first valve body 4 constituting the damping force generating means V is inserted into the small outer diameter portion 71 so as to be movable in the axial direction, and the inside of the case 7 is connected to the inlet chamber 7a connected to the inlet i. And the intermediate chamber 7b connected to the bypass passage 3 through the communication hole 71a and the gap 20d. The first valve body 4 includes a conical head portion 40, a main body portion 41 that is in sliding contact with the inner peripheral surface of the small outer diameter portion 71, and a leg portion 42 that extends from the main body portion 41 to the opposite head side. The head 40 is inserted into the bottom side of the sheet member 9 so as to protrude from the downstream side, and a groove (not shown) is formed in the outer periphery of the main body 41 along the axial direction. When the head portion 40 of the first valve body 4 is in contact with the seat member 9, the upstream side of the junction portion m <b> 1 of the intermediate flow path 20 is closed by the first valve body 4. When the working fluid that has flowed into 7 a moves the first valve body 4 backward, an annular gap is formed between the seat member 9 and the first valve body 4, so that the working fluid passes through the annular gap and the main body 41. Passes through an axial gap formed between the outer circumferential groove and the small outer diameter portion 71 and flows into the intermediate chamber 7b. However, with respect to the flow of the working fluid in the opposite direction, the first valve body 4 is not opened, and the upstream side of the junction portion m1 of the intermediate flow path 20 is maintained in the closed state by the first valve body 4. .

大外径部72内には、第一弁体4と同じく減衰力発生手段Vを構成する第二弁体5が、軸方向に移動可能に挿入されており、ケース7の内側に形成される上記中間室7bと、ケース7の背面側の大径部20c内に形成されて出口oに連なる出口室7cとを区画している。第二弁体5は、先端に第一弁体4の脚部42が当接可能な円錐状の頭部50と、大外径部72の内周面に摺接する本体部51とを備えており、頭部50がシート部74の内側に下流側から出没可能に挿入されるとともに、本体部51の外周に軸方向に沿って溝(符示せず)が形成されている。そして、第二弁体5の頭部50がシート部74に当接しているとき、中間流路20の合流部m1よりも下流側が第二弁体5で閉じられた状態となるが、中間室7bに流入した作動流体が第二弁体5を後退させると、シート部74と第二弁体5との間に環状隙間ができるため、作動流体がこの環状隙間を通過するとともに、本体部51の外周の溝と大外径部72との間に形成される軸方向の隙間を通過して出口室7cに流入する。しかし、この反対方向の作動流体の流れに対しては、第二弁体5が開かず、中間流路20の合流部m1よりも下流側が第二弁体5で閉じられた状態に維持される。   In the large outer diameter portion 72, the second valve body 5 constituting the damping force generating means V is inserted so as to be movable in the axial direction like the first valve body 4, and is formed inside the case 7. The intermediate chamber 7b and an outlet chamber 7c formed in the large-diameter portion 20c on the back side of the case 7 and connected to the outlet o are partitioned. The second valve body 5 includes a conical head portion 50 that can contact the leg portion 42 of the first valve body 4 at the tip, and a main body portion 51 that is in sliding contact with the inner peripheral surface of the large outer diameter portion 72. The head portion 50 is inserted into the seat portion 74 so as to be able to protrude from the downstream side, and a groove (not shown) is formed along the axial direction on the outer periphery of the main body portion 51. When the head portion 50 of the second valve body 5 is in contact with the seat portion 74, the downstream side of the junction portion m1 of the intermediate flow path 20 is closed by the second valve body 5, but the intermediate chamber When the working fluid that has flowed into 7 b moves the second valve body 5 backward, an annular gap is formed between the seat portion 74 and the second valve body 5, so that the working fluid passes through the annular gap and the body portion 51. Passes through an axial gap formed between the outer peripheral groove and the large outer diameter portion 72 and flows into the outlet chamber 7c. However, with respect to the flow of the working fluid in the opposite direction, the second valve body 5 is not opened, and the downstream side of the junction portion m1 of the intermediate flow path 20 is maintained in the closed state by the second valve body 5. .

本実施の形態において、第一弁体4と第二弁体5は、同軸上に配置されており、これらは、第二弁体5の背面側に設けられる比例ソレノイド6のソレノイドケース60内に収容されるコイルに通電した際に発生する磁力の作用により閉じ方向に附勢される。そして、この閉じ方向の力を上記コイルに流れる電流量を調節することで第一弁体4及び第二弁体5の開弁圧を同時に調節することができるようになっている。つまり、本実施の形態において、比例ソレノイド6が中間流路20を遮断するように第一弁体4及び第二弁体5を附勢するとともにこの附勢力を調節可能に構成される附勢手段を構成しているが、適宜変更することが可能である。例えば、附勢手段が中間流路20を遮断するように第一弁体4及び第二弁体5を附勢するコイルばねを備え、このコイルばねの附勢力を手動操作用のアジャスタで調節できるようにしてもよい。   In the present embodiment, the first valve body 4 and the second valve body 5 are arranged on the same axis, and these are disposed in the solenoid case 60 of the proportional solenoid 6 provided on the back side of the second valve body 5. It is energized in the closing direction by the action of a magnetic force generated when the energized coil is energized. And the valve opening pressure of the 1st valve body 4 and the 2nd valve body 5 can be adjusted simultaneously by adjusting the electric current amount which flows into the said coil by this force of a closing direction. In other words, in the present embodiment, the biasing means configured to bias the first valve body 4 and the second valve body 5 so that the proportional solenoid 6 blocks the intermediate flow path 20 and to adjust the biasing force. However, it can be changed as appropriate. For example, the urging means includes a coil spring for urging the first valve body 4 and the second valve body 5 so as to block the intermediate flow path 20, and the urging force of the coil spring can be adjusted with an adjuster for manual operation. You may do it.

ところで、第二弁体5がシート部74に当接している場合、比例ソレノイド6による附勢力が第一弁体4に伝わらなくなるが、シート部材9が附勢ばね90で附勢されて第一弁体4に当接し、第一弁体4を第二弁体5に当接させるので、第一弁体4及び第二弁体5の両方を閉状態にすることができ、第一弁体4に入口室7aの圧力が作用したとき、この圧力を、第二弁体5を介して比例ソレノイド6に伝えることが可能となる。つまり、本実施の形態において、減衰力発生手段Vは、第一弁体4、第二弁体5及び比例ソレノイド6を備えて構成される可変リリーフ弁である。この減衰力発生手段Vにあっては、比例ソレノイド6に供給する電流量を増大させると、比例ソレノイド6が発生する推力を増大させることができるようになっており、比例ソレノイド6に供給量を最大にすると第一弁体4及び第二弁体5の開弁圧が最大になり、反対に、比例ソレノイド6に全く電流を供給しないと開弁圧が最小となる。   By the way, when the second valve body 5 is in contact with the seat portion 74, the urging force by the proportional solenoid 6 is not transmitted to the first valve body 4, but the seat member 9 is urged by the urging spring 90. Since the first valve body 4 is brought into contact with the second valve body 5 in contact with the valve body 4, both the first valve body 4 and the second valve body 5 can be brought into a closed state. 4, when the pressure of the inlet chamber 7 a acts, this pressure can be transmitted to the proportional solenoid 6 via the second valve body 5. That is, in the present embodiment, the damping force generating means V is a variable relief valve that includes the first valve body 4, the second valve body 5, and the proportional solenoid 6. In this damping force generating means V, when the amount of current supplied to the proportional solenoid 6 is increased, the thrust generated by the proportional solenoid 6 can be increased. When the maximum value is reached, the valve opening pressures of the first valve body 4 and the second valve body 5 are maximized. Conversely, if no current is supplied to the proportional solenoid 6, the valve opening pressure is minimized.

そして、第一弁体4の上流側となる入口室7aの圧力が中間室7bの圧力を所定量上回り、この圧力に起因する推力が比例ソレノイド6による附勢力に打ち勝つようになると、第一弁体4とともに第二弁体5が後退し、第一弁体4がシート部材9から離れるとともに、第二弁体5がシート部74から離れ、中間流路20が開放される。また、第二弁体5の上流側となる中間室7bの圧力が出口室7cの圧力を所定量上回り、この圧力に起因する推力が比例ソレノイド6による附勢力に打ち勝つようになると、第二弁体5のみが後退し、第二弁体5がシート部74から離れ、中間流路20の合流部m1よりも下流側が開放される。   When the pressure in the inlet chamber 7a on the upstream side of the first valve body 4 exceeds the pressure in the intermediate chamber 7b by a predetermined amount and the thrust resulting from this pressure overcomes the urging force by the proportional solenoid 6, the first valve The second valve body 5 is retracted together with the body 4, the first valve body 4 is separated from the seat member 9, the second valve body 5 is separated from the seat portion 74, and the intermediate flow path 20 is opened. When the pressure in the intermediate chamber 7b on the upstream side of the second valve body 5 exceeds the pressure in the outlet chamber 7c by a predetermined amount and the thrust resulting from this pressure overcomes the urging force by the proportional solenoid 6, the second valve Only the body 5 is retracted, the second valve body 5 is separated from the seat portion 74, and the downstream side of the joining portion m <b> 1 of the intermediate flow path 20 is opened.

また、本実施の形態において、第一弁体4の受圧面積が第二弁体5の受圧面積よりも小さくなるように設定されているので、第一弁体4及び第二弁体5を閉じ方向に附勢する力が同じであっても、第一弁体4は、第二弁体5と比較して、上流側の圧力が高くならないと開弁せず、中間流路20を通過する作動流体に与える抵抗が大きい。このため、本実施の形態のダンパでは、作動流体が第一室r1と第二室r2との間を移動する際に、第一弁体4を開かなければ移動できないときの減衰力の方が、第二弁体5のみを開いで移動するときの減衰力よりも高くなる。   In this embodiment, since the pressure receiving area of the first valve body 4 is set to be smaller than the pressure receiving area of the second valve body 5, the first valve body 4 and the second valve body 5 are closed. Even if the force energized in the direction is the same, the first valve body 4 does not open unless the pressure on the upstream side becomes higher than the second valve body 5, and passes through the intermediate flow path 20. High resistance to working fluid. For this reason, in the damper of the present embodiment, when the working fluid moves between the first chamber r1 and the second chamber r2, the damping force when the first fluid cannot be moved without opening the first valve body 4 is greater. It becomes higher than the damping force when moving only the second valve body 5 open.

次に、本発明の一実施の形態に係るダンパの作動について説明する。   Next, the operation of the damper according to the embodiment of the present invention will be described.

図3に示すように、バイパス路3が第二室r2に開口しているとき、隔壁部材1で第一室r1が圧縮されると、逆止弁C1が開いて第一往路21が開放され、第一室r1と入口室7aの圧力が等しくなり、逆止弁C4が開いて第二復路24が開放され、第二室r2、中間室7b及び出口室7cがタンク圧になる。そして、第一弁体4の上流側となる入口室7aの圧力が開弁圧を超えると、第一弁体4及び第二弁体5が後退して中間流路20を開放するので、第一往路21を通過して第一室r1から中間流路20の入口室7aに流入した作動流体が第一弁体4の頭部40とシート部材9との間の隙間を通って中間室7bに移動し、中間室7bからバイパス路3を通って第二室r2に移動するとともに、中間室7bから第二弁体5の頭部50とシート部74との間の隙間を通って出口室7cに移動し、出口室7cから第二復路24を通って第二室r2に移動する。   As shown in FIG. 3, when the first chamber r1 is compressed by the partition member 1 when the bypass passage 3 is open to the second chamber r2, the check valve C1 is opened and the first forward passage 21 is opened. The pressure in the first chamber r1 and the inlet chamber 7a becomes equal, the check valve C4 is opened, the second return path 24 is opened, and the second chamber r2, the intermediate chamber 7b, and the outlet chamber 7c become tank pressure. When the pressure in the inlet chamber 7a on the upstream side of the first valve body 4 exceeds the valve opening pressure, the first valve body 4 and the second valve body 5 retreat and the intermediate flow path 20 is opened. The working fluid that has passed through the forward path 21 and has flowed from the first chamber r1 into the inlet chamber 7a of the intermediate flow path 20 passes through the gap between the head 40 of the first valve body 4 and the seat member 9, and the intermediate chamber 7b. To the second chamber r2 from the intermediate chamber 7b through the bypass path 3, and through the gap between the head 50 and the seat portion 74 of the second valve body 5 from the intermediate chamber 7b. 7c, and moves from the outlet chamber 7c through the second return path 24 to the second chamber r2.

また、図4に示すように、バイパス路3が第一室r1に開口しているとき、隔壁部材1で第一室r1が圧縮されると、逆止弁C1が開いて第一往路21が開放され、第一室r1、入口室7a及び中間室7bの圧力が等しくなり、逆止弁C4が開いて第二復路24が開放され、第二室r2及び出口室7cがタンク圧になる。そして、第二弁体5の上流側となる中間室7bの圧力が開弁圧を超えると、第二弁体5が後退して中間流路20の合流部m1よりも下流側を開放するので、バイパス路3を通って中間流路20の中間室7bに流入した作動流体が第二弁体5の頭部50とシート部74との間の隙間を通って出口室7cに移動し、出口室7cから第二復路24を通って第二室r2に移動する。   As shown in FIG. 4, when the bypass passage 3 is open to the first chamber r1, when the first chamber r1 is compressed by the partition member 1, the check valve C1 is opened and the first forward passage 21 is opened. Opened, the pressures in the first chamber r1, the inlet chamber 7a and the intermediate chamber 7b become equal, the check valve C4 is opened, the second return path 24 is opened, and the second chamber r2 and the outlet chamber 7c become tank pressure. When the pressure in the intermediate chamber 7b on the upstream side of the second valve body 5 exceeds the valve opening pressure, the second valve body 5 moves backward and opens downstream from the junction m1 of the intermediate flow path 20. The working fluid that has flowed into the intermediate chamber 7b of the intermediate flow path 20 through the bypass passage 3 moves to the outlet chamber 7c through the gap between the head portion 50 and the seat portion 74 of the second valve body 5, and exits. The chamber 7c moves to the second chamber r2 through the second return path 24.

つづいて、図5に示すように、バイパス路3が第一室r1に開口しているとき、隔壁部材1で第二室r2が圧縮されると、逆止弁C2が開いて第二往路22が開放され、第二室r2と入口室7aの圧力が等しくなり、逆止弁C3が開いて第一復路23が開放され、第一室r1、中間室7b及び出口室7cがタンク圧になる。そして、第一弁体4の上流側となる入口室7aの圧力が開弁圧を超えると、第一弁体4及び第二弁体5が後退して中間流路20を開放するので、第二往路22を通過して第二室r2から中間流路20の入口室7aに流入した作動流体が第一弁体4の頭部40とシート部材9との間の隙間を通って中間室7bに移動し、中間室7bからバイパス路3を通って第一室r1に移動するとともに、中間室7bから第二弁体5の頭部50とシート部74との間の隙間を通って出口室7cに移動し、出口室7cから第一復路23を通って第一室r1に移動する。   Subsequently, as shown in FIG. 5, when the bypass chamber 3 is open to the first chamber r <b> 1 and the second chamber r <b> 2 is compressed by the partition wall member 1, the check valve C <b> 2 is opened and the second forward channel 22 is opened. Is opened, the pressures in the second chamber r2 and the inlet chamber 7a are equalized, the check valve C3 is opened, the first return path 23 is opened, and the first chamber r1, the intermediate chamber 7b and the outlet chamber 7c become tank pressure. . When the pressure in the inlet chamber 7a on the upstream side of the first valve body 4 exceeds the valve opening pressure, the first valve body 4 and the second valve body 5 retreat and the intermediate flow path 20 is opened. The working fluid that has passed through the two-way path 22 and has flowed into the inlet chamber 7a of the intermediate flow path 20 from the second chamber r2 passes through the gap between the head 40 of the first valve body 4 and the seat member 9, and the intermediate chamber 7b. To the first chamber r1 from the intermediate chamber 7b through the bypass path 3, and through the gap between the head 50 and the seat portion 74 of the second valve body 5 from the intermediate chamber 7b. 7c, and moves from the outlet chamber 7c through the first return path 23 to the first chamber r1.

また、図6に示すように、バイパス路3が第二室r2に開口しているとき、隔壁部材1で第二室r2が圧縮されると、逆止弁C2が開いて第二往路22が開放され、第二室r2、入口室7a及び中間室7bの圧力が等しくなり、逆止弁C3が開いて第一復路23が開放され、第一室r1及び出口室7cがタンク圧になる。そして、第二弁体5の上流側となる中間室7bの圧力が開弁圧を超えると、第二弁体5が後退して中間流路20の合流部m1よりも下流側を開放するので、バイパス路3を通って中間流路20の中間室7bに流入した作動流体が第二弁体5の頭部50とシート部74との間の隙間を通って出口室7cに移動し、出口室7cから第一復路23を通って第一室r1に移動する。   As shown in FIG. 6, when the bypass passage 3 is open to the second chamber r2, when the second chamber r2 is compressed by the partition member 1, the check valve C2 is opened and the second forward passage 22 is opened. Opened, the pressures in the second chamber r2, the inlet chamber 7a and the intermediate chamber 7b become equal, the check valve C3 is opened, the first return path 23 is opened, and the first chamber r1 and the outlet chamber 7c become tank pressure. When the pressure in the intermediate chamber 7b on the upstream side of the second valve body 5 exceeds the valve opening pressure, the second valve body 5 moves backward and opens downstream from the junction m1 of the intermediate flow path 20. The working fluid that has flowed into the intermediate chamber 7b of the intermediate flow path 20 through the bypass passage 3 moves to the outlet chamber 7c through the gap between the head portion 50 and the seat portion 74 of the second valve body 5, and exits. It moves from the chamber 7c through the first return path 23 to the first chamber r1.

つまり、バイパス路3と連通していない方の室が隔壁部材1で圧縮される外方移動時には、圧縮された室から流出した作動流体が全て入口室7aに流入し、開弁圧が高く設定される第一弁体4を開かなければならないため、ダンパが発揮する外方移動時の減衰力が高くなる。反対に、バイパス路3と連通している方の室が隔壁部材1で圧縮される内方移動時には、圧縮された室から流出した作動流体が入口室7aと中間室7bの両方に流入し、開弁圧が低く設定される第二弁体5を開けばよいため、ダンパが発揮する内方移動時の減衰力が低くなる。   In other words, when the chamber that is not in communication with the bypass passage 3 is moved outward by being compressed by the partition member 1, all the working fluid flowing out from the compressed chamber flows into the inlet chamber 7a, and the valve opening pressure is set high. Since the first valve body 4 that is to be opened must be opened, the damping force exerted by the damper during outward movement increases. On the contrary, when the chamber communicating with the bypass passage 3 is inwardly compressed by the partition member 1, the working fluid flowing out from the compressed chamber flows into both the inlet chamber 7a and the intermediate chamber 7b. Since it is only necessary to open the second valve body 5 set to have a low valve opening pressure, the damping force exerted by the damper during inward movement is reduced.

次に、本実施の形態におけるダンパの作用効果について説明する。上記ダンパは、容室Rと、この容室R内に移動可能に挿入されて上記容室Rを作動流体が充填される第一室r1と第二室r2とに区画する隔壁部材1と、上記第一室r1と上記第二室r2とを連通する流路2と、上記容室Rにおける上記隔壁部材1の可動領域部分に開口し上記容室Rと上記流路2とを連通するバイパス路3と、上記流路2及び上記バイパス路3を通過して上記第一室r1と上記第二室r2との間を移動する作動流体に抵抗を与える減衰力発生手段Vとを備えている。   Next, the function and effect of the damper in the present embodiment will be described. The damper includes a volume chamber R, and a partition member 1 that is movably inserted into the volume chamber R and partitions the volume chamber R into a first chamber r1 and a second chamber r2 filled with a working fluid, A flow path 2 that communicates the first chamber r1 and the second chamber r2, and a bypass that opens in the movable region portion of the partition wall member 1 in the volume chamber R and communicates the volume chamber R and the flow path 2 And a damping force generating means V that provides resistance to the working fluid that passes through the path 3 and the bypass path 3 and moves between the first chamber r1 and the second chamber r2. .

そして、上記流路2は、作動流体が一方方向にのみ移動し上記バイパス路3が合流する中間流路20と、上記第一室r1を上記中間流路20の入口iに接続する第一往路21と、上記第二室r2を上記中間流路20の入口iに接続する第二往路22と、上記中間流路20の出口oを上記第一室r1に接続する第一復路23と、上記中間流路20の出口oを上記第二室r2に接続する第二復路24とを備えている。   The flow path 2 includes an intermediate flow path 20 in which the working fluid moves only in one direction and the bypass path 3 joins, and a first forward path that connects the first chamber r1 to the inlet i of the intermediate flow path 20. 21, a second forward path 22 that connects the second chamber r2 to the inlet i of the intermediate flow path 20, a first return path 23 that connects the outlet o of the intermediate flow path 20 to the first chamber r1, and the And a second return path 24 connecting the outlet o of the intermediate flow path 20 to the second chamber r2.

また、上記減衰力発生手段Vは、上記中間流路20の途中に設けられ上記中間流路20と上記バイパス路3との合流部m1の上流側に配置される第一弁体4と、上記中間流路20の途中に設けられ上記合流部m1の下流側に配置される第二弁体5と、上記中間流路20を遮断するように上記第一弁体4及び上記第二弁体5を附勢するとともにこの附勢力を調節可能に構成される比例ソレノイド(附勢手段)6とを備えている。   Further, the damping force generating means V is provided in the middle of the intermediate flow path 20 and is disposed on the upstream side of the junction m1 between the intermediate flow path 20 and the bypass path 3; The second valve body 5 provided in the middle of the intermediate flow path 20 and disposed on the downstream side of the merge portion m1, and the first valve body 4 and the second valve body 5 so as to block the intermediate flow path 20. And a proportional solenoid (biasing means) 6 configured to be capable of adjusting the urging force.

上記構成を備えることにより、外方移動時に隔壁部材1で圧縮された室の圧力を第一弁体4に作用させ、内方移動時に隔壁部材1で圧縮された室の圧力を第二弁体5に作用させることができるので、例えば、上記実施の形態のように、第一弁体4と第二弁体5の受圧面積を異なるものにすることで、ダンパは、外方移動時と内方移動時で異なる減衰力を発揮することができる。   By providing the above configuration, the pressure of the chamber compressed by the partition wall member 1 during the outward movement is applied to the first valve body 4, and the pressure of the chamber compressed by the partition wall member 1 during the inward movement is applied to the second valve body. 5, for example, by making the pressure receiving areas of the first valve body 4 and the second valve body 5 different as in the above-described embodiment, the damper can move inward and outward. Different damping force can be exhibited when moving in one direction.

さらに、上記構成によれば、第一弁体4と第二弁体5が直列に配置されているので、一つの比例ソレノイド(附勢手段)6を調節して第一弁体4と第二弁体5の開弁圧を同時に調整することが容易であり、第一弁体4用と、第二弁体5用に個別に比例ソレノイド(附勢手段)を設ける場合と比較して、ダンパの構造の複雑化や重量増を抑制することが可能となる。   Furthermore, according to the said structure, since the 1st valve body 4 and the 2nd valve body 5 are arrange | positioned in series, one proportional solenoid (biasing means) 6 is adjusted and the 1st valve body 4 and the 2nd valve body 5 are adjusted. It is easy to adjust the valve opening pressure of the valve body 5 at the same time. Compared with the case where proportional solenoids (biasing means) are separately provided for the first valve body 4 and the second valve body 5, the damper It becomes possible to suppress the complexity and weight increase of the structure.

また、本実施の形態において、上記第一弁体4の受圧面積が上記第二弁体5の受圧面積よりも小さく設定されている。   In the present embodiment, the pressure receiving area of the first valve body 4 is set smaller than the pressure receiving area of the second valve body 5.

このため、第一弁体4と第二弁体5を閉じ方向に附勢する力が同じであっても、第一弁体4の開弁圧を第二弁体5の開弁圧と比較して高くすることが容易に可能となる。   Therefore, even if the force for energizing the first valve body 4 and the second valve body 5 in the closing direction is the same, the valve opening pressure of the first valve body 4 is compared with the valve opening pressure of the second valve body 5. It can be easily increased.

また、本実施の形態において、上記第一弁体4及び上記第二弁体5が同軸上に配置されている。   Moreover, in this Embodiment, the said 1st valve body 4 and the said 2nd valve body 5 are arrange | positioned coaxially.

このため、本実施の形態のように、第一弁体4と第二弁体5とを連動させる場合において、第一弁体4と第二弁体5とのガタツキを抑制し、第一弁体4と比例ソレノイド(附勢手段)6との間に第二弁体5が介装されていても、第一弁体4が受けた力を比例ソレノイド側に無駄なく伝え、比例ソレノイド側からの力を第一弁体4に無駄なく伝えることが可能となる。   For this reason, when the 1st valve body 4 and the 2nd valve body 5 are made to interlock | cooperate like this Embodiment, the rattling of the 1st valve body 4 and the 2nd valve body 5 is suppressed, Even if the second valve body 5 is interposed between the body 4 and the proportional solenoid (biasing means) 6, the force received by the first valve body 4 is transmitted to the proportional solenoid side without waste. Can be transmitted to the first valve body 4 without waste.

また、本実施の形態において、附勢手段は、比例ソレノイド6からなる。   In the present embodiment, the urging means is composed of a proportional solenoid 6.

上記構成によれば、附勢手段が手動操作用のアジャスタで附勢力を調節できるようにしたコイルばね等を利用する場合と比較して、第一弁体4用と第二弁体5用に個別に附勢手段(比例ソレノイド)を設けたときの重量増加やコスト増加が著しい。したがって、一つの比例ソレノイド6で外方移動時と内方移動時の両方の減衰力を調整可能にすることが特に有効である。   According to the above configuration, compared with the case where the urging means uses a coil spring or the like that can adjust the urging force with an adjuster for manual operation, the first valving element 4 and the second valving element 5 are used. The weight increase and the cost increase when the urging means (proportional solenoid) are individually provided are remarkable. Therefore, it is particularly effective to make it possible to adjust the damping force during both outward movement and inward movement with one proportional solenoid 6.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   Although preferred embodiments of the present invention have been described in detail above, it should be understood that modifications, variations and changes may be made without departing from the scope of the claims.

例えば、上記実施の形態において、上記第一弁体4の受圧面積が上記第二弁体5の受圧面積よりも小さく形成されており、これにより、外方移動時の減衰力を内容移動時の減衰力よりも大きくしているが、求められるダンパ性能によっては、第一弁体4の受圧面積を第二弁体5の受圧面積よりも大きく形成し、外方移動時の減衰力よりも内容移動時の減衰力を大きくしてもよい。   For example, in the above embodiment, the pressure receiving area of the first valve body 4 is formed to be smaller than the pressure receiving area of the second valve body 5, so that the damping force during outward movement is reduced during content movement. Although it is larger than the damping force, depending on the required damper performance, the pressure receiving area of the first valve body 4 is formed larger than the pressure receiving area of the second valve body 5, and the content is more than the damping force during outward movement. The damping force during movement may be increased.

また、第一弁体4をなくした場合には、外方移動時の減衰力を略零にすることができ、第二弁体5をなくした場合には、内方移動時の減衰力を略零にすることができる。   Further, when the first valve body 4 is eliminated, the damping force during outward movement can be made substantially zero, and when the second valve body 5 is eliminated, the damping force during inward movement is reduced. It can be made almost zero.

また、上記実施の形態において、上記第一弁体4及び上記第二弁体5が同軸上に配置されているが、第一弁体4と第二弁体5が必ずしも同軸上に配置されていなくてもよい。   Moreover, in the said embodiment, although the said 1st valve body 4 and the said 2nd valve body 5 are arrange | positioned coaxially, the 1st valve body 4 and the 2nd valve body 5 are not necessarily arrange | positioned coaxially. It does not have to be.

また、上記実施の形態において、附勢手段が比例ソレノイド6からなるが、附勢手段がコイルばねを備え、このコイルばね附勢力を手動操作用のアジャスタ調節できるようにしてもよい。   In the above embodiment, the urging means comprises the proportional solenoid 6. However, the urging means may be provided with a coil spring, and this coil spring urging force may be adjusted by an adjuster for manual operation.

i 中間流路の入口
m1 中間流路とバイパス路との合流部
o 中間流路の出口
R 容室
r1 第一室
r2 第二室
V 減衰力発生手段
1 隔壁部材
2 流路
3 バイパス路
4 第一弁体
5 第二弁体
6 比例ソレノイド(附勢手段)
20 中間流路
21 第一往路
22 第二往路
23 第一復路
24 第二復路
i Middle channel inlet m1 Junction part between middle channel and bypass channel Middle channel outlet R Volume chamber r1 First chamber r2 Second chamber V Damping force generating means 1 Partition member 2 Channel 3 Bypass channel 4 One valve body 5 Second valve body 6 Proportional solenoid (energizing means)
20 Intermediate flow path 21 First outbound path 22 Second outbound path 23 First inbound path 24 Second inbound path

Claims (5)

容室と、この容室内に移動可能に挿入されて上記容室を作動流体が充填される第一室と第二室とに区画する隔壁部材と、上記第一室と上記第二室とを連通する流路と、上記容室における上記隔壁部材の可動領域部分に開口し上記容室と上記流路とを連通するバイパス路と、上記流路及び上記バイパス路を通過して上記第一室と上記第二室との間を移動する作動流体に抵抗を与える減衰力発生手段とを備えるダンパにおいて、
上記流路は、作動流体が一方方向にのみ移動し上記バイパス路が合流する中間流路と、上記第一室を上記中間流路の入口に接続する第一往路と、上記第二室を上記中間流路の上記入口に接続する第二往路と、上記中間流路の出口を上記第一室に接続する第一復路と、上記中間流路の上記出口を上記第二室に接続する第二復路とを備えており、
上記減衰力発生手段は、上記中間流路の途中に設けられ上記中間流路と上記バイパス路との合流部の上流側に配置される第一弁体と、上記中間流路の途中に設けられ上記合流部の下流側に配置される第二弁体と、上記中間流路を遮断するように上記第一弁体及び上記第二弁体を附勢するとともにこの附勢力を調節可能に構成される附勢手段とを備えていることを特徴とするダンパ。
A chamber member, a partition member that is movably inserted into the chamber and partitions the chamber into a first chamber and a second chamber filled with a working fluid, and the first chamber and the second chamber. A communication channel, a bypass channel that opens in a movable region of the partition wall member in the chamber and communicates the chamber and the channel, and the first chamber that passes through the channel and the bypass channel. And a damping force generating means for imparting resistance to the working fluid moving between the second chamber and the second chamber,
The flow path includes an intermediate flow path in which the working fluid moves only in one direction and the bypass path merges, a first forward path that connects the first chamber to the inlet of the intermediate flow path, and the second chamber that A second forward path connecting the inlet of the intermediate flow path, a first return path connecting the outlet of the intermediate flow path to the first chamber, and a second connecting the outlet of the intermediate flow path to the second chamber. With a return path,
The damping force generating means is provided in the middle of the intermediate flow path, and is provided in the middle of the intermediate flow path, a first valve body that is disposed on the upstream side of the junction between the intermediate flow path and the bypass path. The second valve element disposed on the downstream side of the merging portion, and the first valve element and the second valve element are energized so as to block the intermediate flow path and the energizing force is adjustable. And a biasing means.
上記中間通路における上記第一弁体の上流側の圧力に起因する推力が上記附勢手段の上記附勢力に打ち勝つようになると上記第一弁体及び上記第二弁体が上記中間通路を開放し、上記中間通路における上記第二弁体の上流側の圧力に起因する推力が上記附勢手段の上記附勢力に打ち勝つようになると上記第二弁体が上記中間通路の上記合流部よりも下流側を開放することを特徴とする請求項1に記載のダンパ。   When the thrust due to the upstream pressure of the first valve body in the intermediate passage overcomes the biasing force of the biasing means, the first valve body and the second valve body open the intermediate passage. When the thrust due to the upstream pressure of the second valve body in the intermediate passage overcomes the urging force of the urging means, the second valve body is downstream of the merging portion of the intermediate passage. The damper according to claim 1, wherein the damper is opened. 上記第一弁体の受圧面積が上記第二弁体の受圧面積よりも小さく設定されていることを特徴とする請求項2に記載の緩衝器。   The shock absorber according to claim 2, wherein a pressure receiving area of the first valve body is set smaller than a pressure receiving area of the second valve body. 上記第一弁体及び上記第二弁体が同軸上に配置されていることを特徴とする請求項1から請求項3の何れか一項に記載の緩衝器。   The shock absorber according to any one of claims 1 to 3, wherein the first valve body and the second valve body are arranged coaxially. 上記附勢手段は、比例ソレノイドからなることを特徴とする請求項1から請求項4の何れか一項に記載の緩衝器。   The shock absorber according to any one of claims 1 to 4, wherein the biasing means comprises a proportional solenoid.
JP2013072608A 2013-03-29 2013-03-29 damper Active JP5981869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072608A JP5981869B2 (en) 2013-03-29 2013-03-29 damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072608A JP5981869B2 (en) 2013-03-29 2013-03-29 damper

Publications (2)

Publication Number Publication Date
JP2014196786A true JP2014196786A (en) 2014-10-16
JP5981869B2 JP5981869B2 (en) 2016-08-31

Family

ID=52357708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072608A Active JP5981869B2 (en) 2013-03-29 2013-03-29 damper

Country Status (1)

Country Link
JP (1) JP5981869B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284491A (en) * 2003-03-20 2004-10-14 Honda Motor Co Ltd Steering damper for vehicle
JP2004346950A (en) * 2003-05-20 2004-12-09 Koyo Seiki Kk Vibration damping oil damper
JP2009103285A (en) * 2007-10-25 2009-05-14 Kayaba Ind Co Ltd Damping valve
JP2010528938A (en) * 2007-06-14 2010-08-26 オーリンス・レイシング・エービー Hydraulic rotary damper for vehicles
US20130032979A1 (en) * 2011-04-29 2013-02-07 Thomas Ripa Damping strut for a bicycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284491A (en) * 2003-03-20 2004-10-14 Honda Motor Co Ltd Steering damper for vehicle
JP2004346950A (en) * 2003-05-20 2004-12-09 Koyo Seiki Kk Vibration damping oil damper
JP2010528938A (en) * 2007-06-14 2010-08-26 オーリンス・レイシング・エービー Hydraulic rotary damper for vehicles
JP2009103285A (en) * 2007-10-25 2009-05-14 Kayaba Ind Co Ltd Damping valve
US20130032979A1 (en) * 2011-04-29 2013-02-07 Thomas Ripa Damping strut for a bicycle

Also Published As

Publication number Publication date
JP5981869B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4985984B2 (en) Damping force adjustable shock absorber
JP4630760B2 (en) Valves and shock absorbers
JP6101179B2 (en) Damping valve
JP4967091B2 (en) Fluid pressure buffer
US10184540B2 (en) Liquid pressure device
KR101822764B1 (en) Hydraulic shock absorber
JP2008267487A (en) Damping force adjustable hydraulic shock absorber
JP2000193013A (en) Damping force regulation type hydraulic buffer
JP5483976B2 (en) Rotary vane steering machine
CA2940831A1 (en) Cylinder device comprising a common passage through which working oil that is supplied to and discharged from a rod-side chamber passes
JP5981869B2 (en) damper
JP6442247B2 (en) valve
WO2016024538A1 (en) Front fork
KR20010062123A (en) Hydraulic shock absorber
JP6464036B2 (en) Damping valve and shock absorber
JP7011526B2 (en) Electromagnetic flow control valve
JP2019183979A (en) Damper for railroad vehicle
JP4815454B2 (en) Shock absorber
JP7297693B2 (en) Valve mechanism and pressure buffer
JP5057394B2 (en) Rotary valve
JP2017110752A (en) Attenuation force adjusting mechanism
WO2018180434A1 (en) Damping force adjusting shock absorber
JP2561266Y2 (en) Rotary valve device
JP2019183978A (en) Damper for railroad car
JP2015206426A (en) slow return check valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R151 Written notification of patent or utility model registration

Ref document number: 5981869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350