JP2014182010A - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP2014182010A
JP2014182010A JP2013056796A JP2013056796A JP2014182010A JP 2014182010 A JP2014182010 A JP 2014182010A JP 2013056796 A JP2013056796 A JP 2013056796A JP 2013056796 A JP2013056796 A JP 2013056796A JP 2014182010 A JP2014182010 A JP 2014182010A
Authority
JP
Japan
Prior art keywords
speed
reference signal
signal
pulse train
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013056796A
Other languages
English (en)
Inventor
Shinichi Takeya
晋一 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013056796A priority Critical patent/JP2014182010A/ja
Publication of JP2014182010A publication Critical patent/JP2014182010A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】検知率を向上させ、誤検知率を低下させることのできるレーダ装置を提供する。
【解決手段】レーダ装置では、レンジ及び速度の測定の際に、パルス列に対して符号化した信号により変調した信号を送信し、受信した信号に対して、複数の速度毎の参照信号により相関処理し、相関出力が所定のスレショルドを超える参照信号の速度と、相関結果による位置を距離出力とする。
【選択図】図1

Description

本実施形態は、目標の距離、速度を算出するレーダ装置に関する。
周知のように、クラッタを抑圧し、かつ距離及び速度を観測する場合には、簡易なレーダ方式としてFMCW(Frequency Modulated continuous wave)がよく用いられる。FMCW方式としては、一般に連続波が用いられるが、原理的に同等であるパルス列を用いて同様の処理を行う方式がある。
パルス列を用いる場合には、HPRF(High Pulse Repetition Frequency)により周波数軸でクラッタ速度成分を抑圧しつつ、距離及び速度を算出する。この場合、距離と速度が未知数となるため、送受信波形としては、アップチャープ信号とダウンチャープ信号を組み合わせて、2個のパラメータを同時に算出するのが一般的である。このため、少なくとも2種以上のCPI(Coherent Pulse Repetition Interval)において検出をあげる必要があり、検知率が低下する場合があった。また、誤検知が多い場合には、2種以上のPRI(Pulse Repetition Interval)の誤ペアリングにより、距離及び速度精度が劣化する場合があった。また、2種以上のCPIが必要であるため、サイクルタイムが長くなる問題があった。
距離を観測するには、距離アンビギュイティのないLPRF(低PRF)を用いる手法もあるが、速度アンビギュティが生じるため、速度を算出することができない。また、遠距離の目標やRCS(レーダ反射断面積)の小さい目標を検出するためには、パルス圧縮用レーダではパルス幅が長くなる。その結果、瞬間的に発熱する量を抑えるため冷却規模が大きくなり、また送信パルスによる近距離ブラインド距離が増える問題があった。
一方、速度を算出するために速度アンビギュイティの無いHPRF(高PRF)を用いる手法もあるが、距離に対してはアンビギュイティが生じるため、距離を確定することができない。
FMCW方式(アップチャープとダウンチャープ):吉田、‘改定レーダ技術’、電子情報通信学会、pp.274-275(1996) CFAR処理:吉田、改定レーダ技術、電子情報通信学会、pp.87-89(1996) テーラー分布:吉田、‘改定レーダ技術’、電子情報通信学会、pp.134-135(1996) 位相モノパルス(位相比較モノパルス)方式:電子情報通信学会、改訂レーダ技術、pp.262-264(1996) 符号コード(M系列)発生方式:M.I.Skolnik, Introduction to radar systems,pp.429-430,McGRAW-HILL(1980) 相関処理:M.I.Skolnik, Radar Handbook Third Edition, pp.8.28-8.30, McGRAW-HILL(2008)
以上述べたように、従来のレーダ方式には次の課題がある。
(1)距離及び速度を観測するためのFMCW方式では少なくとも2種以上のCPIにおいて検出をあげる必要があり、検知率が低下する。
(2)誤検知が多い場合には、誤ペアリングにより距離及び速度精度が劣化する。
(3)2種以上のCPIが必要であるため、サイクルタイムが長くなる。
(4)距離を観測するには、距離アンビギュイティのないLPRFを用いる手法もあるが、速度アンビギュティが生じるため速度を算出できず、また遠距離の目標やRCS(レーダ反射断面積)の小さい目標を検出するためにはパルス圧縮用レーダではパルス幅が長くなり瞬間的に発熱する量を抑えるため冷却規模が大きくなり、また送信パルスによる近距離ブラインド距離が増える。
(5)速度を算出するために速度アンビギュイティの無いHPRFを用いる手法もあるが、距離に対してはアンビギュイティが生じるため距離を確定できない。
本実施形態は上記課題に鑑みなされたもので、比較的短いパルス列を用いて、距離及び速度を高い検知率及び低い誤検知率で観測することのできるレーダ装置を提供することを目的とする。
上記の課題を解決するために、本実施形態に係るパルスレーダ装置は、パルス列を符号化変調して送信信号を生成し、前記送信信号を送信し、その反射信号を受信して符号化パルス列を得る送受信手段と、観測速度範囲内の複数の速度毎に前記変調に用いた符号に基づく相関用の参照信号を生成する参照信号生成手段と、前記送受信手段で得られた符号化パルス列について前記参照信号生成手段で生成される速度毎の参照信号と相関をとる相関処理手段と、前記相関処理手段の相関出力が示す位置を距離情報として、前記相関出力が所定のスレショルドを超える参照信号の速度を速度情報として出力する距離・速度処理手段とを具備する態様とする。
第1の実施形態に係るレーダ装置の構成を示すブロック図。 図1に示すレーダ装置の処理の流れを示すフローチャート。 図1に示すレーダ装置のパルス列を説明するための波形図。 図1に示すレーダ装置の処理を説明するための波形図。 第1の実施形態に係るレーダ装置の追加構成を示すブロック図。 図5に示すレーダ装置の処理の流れを示すフローチャート。 図6に示すレーダ装置の搭載用レーダの場合の処理を説明するための概念図。 図1に示すレーダ装置の相関処理を説明するためのブロック図。 第2の実施形態に係るレーダ装置の構成を示すブロック図。 図9に示すレーダ装置の処理の流れを示すフローチャート。 図9に示すレーダ装置のパルス列を説明するための波形図。 従来方式のレーダ装置の構成を示すブロック図。 図12に示すレーダ装置の信号処理を説明するための波形図。 図12に示すレーダ装置の目標検出処理を説明するための波形図。
まず、実施形態を説明するに先立ち、従来方式のレーダ装置(非特許文献1)について、図12乃至図14を参照して説明する。図12は構成を示すブロック図、図13及び図14は処理を説明するための波形図である。
図12に示すレーダ装置では、送受信器20の送信器21でスイープした信号をアンテナ送信素子11から送信し、その反射波をアンテナ受信素子12で受信する。このアンテナ受信素子12で得られた複数の受信信号をそれぞれミキサ22により周波数変換し、これによって生成されるビート周波数信号を信号処理器30に送る。信号処理器30では、入力された各受信素子出力のビート周波数信号をAD変換部31でディジタル信号に変換し、アップ系列ダウン系列抽出部37で各素子信号(ディジタル信号)からアップチャープ信号とダウンチャープ信号を抽出した後、FFT処理部33で各々FFT処理して周波数軸上の信号に変換する。そして、この周波数軸の信号を用いて、DBF(Digital Beam Forming)34により、周波数毎にΣビームとΔビームを形成して、Σ信号のアップ系列とダウン系列の信号をFFTした結果からそれぞれの振幅が極値をもつ周波数ピークを抽出する。続いて、ペアリング処理部38でアップ系列とダウン系列のペアリングを実行し、測距・測速算出部35でペアリングされたアップ系列及びダウン系列の信号から検出目標の距離/速度を算出し、測角部36で検出目標の角度を算出する。送受信のスイープ信号を図13(a),(b)に示し、アップ系列とダウン系列が得られる様子を図13(c)に示し、アップ系列とダウン系列のペアリングが不明な場合の目標検出処理を図14に示す。
上記送受信のスイープ信号の関係式を次に示す。
Figure 2014182010
Figure 2014182010
一方、距離によるビート周波数frと目標速度によるドップラー周波数fdは、次式となる。
Figure 2014182010
(3)式をRとVで展開し、(2)式を代入すると、次式となる。
Figure 2014182010
この方式により、距離Rと速度Vが算出できるが、ダウンチャープ系列とアップチャープ系列のピーク周波数が異なるために、周波数ペアを対応させる必要がある。単一目標や少数目標の場合には、ペアリングも比較的容易であるが、目標数や、背景の反射点が増えると、図14(a)〜(c)に示すように、周波数軸のピーク値が多数となり、ペアリングが困難になる問題がある。
以下、上記の問題を解決する実施形態を説明する。
[第1の実施形態]
第1の実施形態について図1乃至図8を用いて説明する。
まず、図1は第1の実施形態に係るレーダ装置の構成を示すブロック図、図2は図1に示すレーダ装置の処理の流れを示すフローチャート、図3は第1の実施形態において、符号化した送信パルス列を示している。符号化の方式としては、例えばM系列コード(非特許文献5)があり、他のコードでもよい。符号列を用いて、例えば次式に示すように、信号位相を変化させて送信用信号を生成する。
Figure 2014182010
図1に示す第1の実施形態のレーダ装置は、複数のアンテナ素子を備える送受信アンテナ1と、送受信部21及び符号化制御部22を備える送受信器2と、AD(Analog Digital)変換部31、FFT(Fast Fourier Transformer)処理部32、相関処理部33、CFAR(Constant False Alarm Rate:一定誤警報率)処理部34、距離/速度抽出処理部35、参照信号生成部36、測角部37を備える信号処理器3とを具備する。
送受信器2において、送受信部21は、送信パルス列を符号化制御部22にて発生される符号列により変調し、この変調された送信パルス列を送信信号として送受信アンテナ1から送出し、その反射信号を当該送受信アンテナ1で受信して信号処理器3に送る。
信号処理器3は、入力した受信信号をAD変換部31によりディジタル信号に変換してDBF処理を行い、送信パルス列の周期PRIで受信パルス列(Σビーム信号、ΔAZ及びΔEL信号)を得る。この受信パルス列をFFT処理部32で高速フーリエ変換して周波数領域の検出処理を行う。
次に、参照信号生成部36において、相関処理の基準となる参照信号を生成する。この参照信号は、クラッタ速度範囲を除く所定の観測速度範囲を設定し、受信パルス列との相関をとるためにFFT処理することで生成される。相関処理部33は、受信パルス列Σ信号のFFT処理結果と参照信号のFFT処理結果とを乗算し、更にサイドローブを低減するためのウェイトを乗算して逆FFTすることにより相関結果を得る。
上記相関処理部33で得られたΣビーム信号はCFAR処理部34に送られる。CFAR処理部34は、時間軸に対して、対象とするテストセルの周囲の±Qセルのリファレンスセルの平均値等でテストセルの値を除算した結果によりスレショルドを検出し、Σビーム信号から所定のスレショルドを超えるレンジセル番号を抽出する。ここで抽出されたレンジセル番号は距離/速度抽出処理部35及び測角部37に送られる。距離/速度抽出処理部35は、入力されるレンジセル番号のデータから目標検出を行ってその距離と速度を抽出する演算を行う。また、測角部37は、FFT処理部32で得られたΣビーム信号、ΔAZ及びΔEL信号を入力し、CFAR処理によって得られたレンジセル番号に対応するΔAZ及びΔEL信号を抽出して角度に換算する。
上記構成において、以下に図2に示すフローチャートを参照して信号処理の流れについて説明する。
まず、送受信器2により、送信パルス列のPRF送受信が開始される(ステップS1)。信号処理器3に入力された受信信号はAD変換部31によりディジタル信号に変換され、送信パルスの周期PRIで受信パルス信号列が得られる。この信号の様子を図4に示す。図4において、(a)は送信パルス列、(b)は探知距離が0の場合の受信パルス列、(c)は探知距離が最大の場合の受信パルス列を示している。すなわち、探知距離が0の場合は、送信パルスと同じ時間にパルス列が受信され、最大距離Rmaxでは、α=2Rmax/c(c;光速)の時間遅延でパルス列が受信される。
この受信パルス列をFFT処理部32でフーリエ変換して目標検出処理を行う。検出処理では、モノパルスビーム(Σ、ΔAZ,ΔEL、非特許文献4参照)のうちΣビームを用いる。PRI内ではM個のレンジセルΔR(時間セル×光速/2)があり、最大探知距離まで考慮してFFTのポイント数を決める。最大探知距離に相当する時間遅延αをレンジセルに換算すると、次式となる。
Figure 2014182010
したがって、全レンジセルは、
Figure 2014182010
このNallのセルの信号fcに対して、参照信号との相関処理により検出レンジを抽出する。そのため、まずfcをFFT処理により高速フーリエ変換する。
Figure 2014182010
次に、相関処理をするための基準参照信号を生成する(ステップS2)。基準参照信号としては、所定の速度範囲の速度毎に次式に示す演算により算出する。
Figure 2014182010
ところで、所定の速度範囲としては、例えば航空機搭載用レーダの場合は、自速度をVとすると、クラッタの速度範囲は次式で算出できるため、その範囲以外を選定すれば、クラッタを抑圧できる。この場合は、図5に示す構成図及び図6に示すフローチャートのように、参照信号生成部36の前段にクラッタ速度算出部38を追加し、PRF送受信開始後、自機速度及び目標観測速度の情報からクラッタ速度範囲を算出し(ステップS11の追加)、このクラッタ速度範囲を除いて参照信号速度範囲を設定する(ステップS2)。
ここで、図7に示す座標系をもとに、クラッタ速度を算出する。
まず、レーダ搭載機(以下、自機)の位置を原点Oとすると、角度θAZ、θEL方向のクラッタ反射点のべクトルは、(X,Y,Z)座標で表現すると、次式となる。
Figure 2014182010
次に、自機がY軸に沿ってフライトする場合のクラッタの速度ベクトルは次式となる。
Figure 2014182010
クラッタの自機に向かうラジアル速度ベクトルVcは、次式のように、PosのRを除く方向余弦とVcの内積となる。
Figure 2014182010
アンテナビームが照射する範囲をθAZ1〜θAZ2、θEL1〜θEL2として、(10)式に代入すれば、クラッタの速度範囲を算出することができる。そこで、このクラッタ速度範囲を除いて、基準参照信号の速度範囲を設定すれば、クラッタを抑圧できることになる。
設定した基準参照信号長はNであり、相関処理のために符号長をNallにするために、ゼロ埋めしたものを参照信号とする。
Figure 2014182010
この参照信号と入力信号との相関を算出するために、参照信号をFFT処理する。
Figure 2014182010
そこで、図8に示すように、入力PRF列信号のFFT結果と参照信号(Nコード+ゼロα)のFFT結果を乗算し、更にサイドローブを低減するためのウェイト(W)を乗算し、逆FFTする。これにより、相関出力結果gが得られる。
Figure 2014182010
ウェイトWとしては、例えばテーラーウェイト(非特許文献3)があるが、他のウェイトでもよい。
上記相関出力gに対して、CFAR検出部33(非特許文献2)により、所定のスレショルドを超えるレンジセル番号Rdcellを抽出する(ステップS4)。以上の処理を参照信号の設定範囲が終了するまで、参照信号速度を変更(スイープ)しながら、ステップS3,S4の処理を繰り返し実行する(ステップS5,S6)。
ここで、CFARは、時間軸に対して、対象とするテストセルの周囲の±Qセルのリファレンスセルの平均値等により、テストセルの値を除算した結果によりスレショルド検出する処理である。このレンジセル番号より、次式によりレンジが求まる(ステップS7)。
Figure 2014182010
また、抽出した信号の参照信号の速度により、参照信号の速度に近いHPRFの検出速度を抽出することができる(ステップS8)。ここで求めた目標の距離/速度は観測結果として出力される(ステップS9)。
以上は、Σビームの処理について述べたが、次に測角について述べる。Σビームにより検出したレンジセル番号のデータにより、ΔAZ及びΔEL信号を抽出し、位相モノパルス測角処理36により測角値(AZ角、EL角)を得る(ステップS10)。
測角方式として、位相モノパルス(非特許文献4)の場合について述べる。位相モノパルスビームに用いるΣビームは次式で表現できる。
Figure 2014182010
また、位相モノパルスビームに用いるΔビームは次式の通りである。方位面のΔAZと仰角面のΔELがあるが、ここでは、各々の面の信号をΔとして記述する。
Figure 2014182010
ΣとΔを用いて、位相モノパルスの測角に用いる誤差電圧εは、次式で表すことができる。
Figure 2014182010
このεと予め保存してあるεとθの対応テーブル(または、多項式近似値)を用いて、測角値θを算出できる。このようにして求められた測角値は、観測結果として出力される。
以上をまとめると、所定の速度範囲の参照信号の設定を行う図1(構成)及び図2(処理フロー)の方式と自速度とクラッタの角度からクラッタ速度を算出し、クラッタを抑圧するために、その速度範囲を除いた速度範囲を設定する図5(構成)及び図6(処理フロー)の方式となる。
本方式の効果としては、目標からの反射である符号化したパルス列のみを抽出し、無相関の信号を抑圧できるため、妨害波等の無相関な不要波を抑圧できるのは言うまでもない。
[第2の実施形態]
他の実施例として、図9〜図11を用いて説明する。図9は第2の実施形態に係るレーダ装置の構成を示すブロック図、図10は図9に示すレーダ装置の処理の流れを示すフローチャート、図11は図9に示すレーダ装置のパルス列を説明するための波形図である。尚、図9及び図10において、それぞれ図1及び図2と同一部分には同一符号を付して示し、ここでは主に異なる部分について説明する。
第1の実施形態では、所定の範囲(目標が存在すると予想する速度範囲)の参照信号を生成したが、速度範囲が広い場合には、処理時間を要する。この対策のために、第2の実施形態では、参照信号の速度範囲を絞り込むことを行う。
本実施形態では、参照信号の速度範囲を限定するために、送受信器2にPRF制御部23を追加し、図11に示すように、非コード化とする無変調送受信期間(PRF1)と、コード化処理する変調送受信期間(PRF2)を生成し、PRF1において、非コード化パルス列による検出と測速を行い、PRF2において、コード化パルス列による検出と測距を行うことで、速度と距離を取得し出力する。
具体的には、無変調送受信期間(PRF1)において、符号化しない無変調のパルス列の信号(CW信号)を送受信する(図10のステップS21)。このPRF(パルス繰り返し周波数)は、PRF制御部23で制御し、速度アンビギュイティが生じないように、次式の範囲の周波数を選定する。
Figure 2014182010
このPRFにより送受信した信号をFFT処理し、CFAR等のスレショルド処理をする(図10のステップS22)ことにより、検出ドップラー周波数fdが決まり、次式により速度を算出できる(図10のステップS23)。
Figure 2014182010
そこで、参照信号生成部36において、上記検出速度Vdを速度参照信号とする(参照速度プリセット値として抽出:図10のステップS24)か、もしくは速度誤差のある場合に備えて、Vdを中心にΔVの幅を持つ速度範囲を参照信号とする(図10のステップS25)ことにより、第1の実施形態の場合の参照信号の範囲を限定することができ、相関演算の処理回数を削減することができる。
変調送受信期間(PRF2)における参照信号の生成後の処理は、第1の実施形態の場合と同様であり、目標の距離と速度を算出し、測角により角度を算出することができる。
尚、第2の実施形態において、航空機搭載の場合には、第1の実施形態と同様に、図5及び図6で説明したクラッタ速度範囲を除いて参照信号を生成する構成とすることで、クラッタ成分を抑圧して処理することができる。
以上まとめると、上記実施形態のレーダ装置では、第1の手段として、レンジ(距離)及び速度の測定の際に、パルス列に対して符号化した信号により変調した信号を送信し、受信した信号に対して、複数の速度毎の参照信号により相関処理し、相関出力が所定のスレショルドを超える参照信号の速度と、相関結果による位置を距離出力とする。
また、第2の手段として、レンジ及び速度の測定の際に、パルス列に対して符号化した信号により変調した信号を送信し、その反射波を受信した信号に対して、当該レーダ装置搭載機の速度からクラッタの速度範囲を算出し、その範囲外に設定した複数の速度毎の参照信号により相関処理し、相関出力が所定のスレショルドを超える参照信号の速度と、相関結果による位置を距離出力とする。
また、第3の手段として、第1の手段において、CW信号と符号化された信号の少なくとも2系列の信号をHPRF(High Repetition Radio Frequency)により送信し、その反射波を受信したCW信号よりドップラー周波数を抽出して速度を算出し、その速度を中心に所定の速度幅を持つ参照信号を用いて、符号化パルス列の受信信号を相関処理し、相関出力が所定のスレショルドを超える参照信号の速度と、相関結果による位置を距離出力とする。
上記第1の手段によれば、符号化した変調信号と速度毎の参照信号により、レンジと速度を算出するため、FMCWのように2種以上のCPI信号が不要になるため検知率を向上し、またペアリングも不要であるため誤検知率を低下できる。また1種のCPIでレンジ及び速度を算出できるため、サイクルタイムも短くすることができる。
また、第2の手段によれば、搭載用レーダで自機速度からクラッタ速度範囲を算出し、そのクラッタ速度範囲を参照信号から除くことで、クラッタを抑圧することができる。
また、第3の手段によれば、HPRF処理により算出した速度を用いて参照信号を絞り込むことで、処理規模を小さくして、レンジ及び速度を算出することができる。
上述したように本実施形態のレーダ装置は、比較的短いパルス列の送受信信号により得られた信号により、クラッタ環境下等の誤検出や複数目標が存在する場合でも、レンジ及び速度を高い検知率及び低い誤検知率で観測することができる。
尚、本実施形態は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1…送受信アンテナ
2…送受信器
21…送受信部
22…符号化制御部
23…PRF制御部
3…信号処理器
31…AD変換部
32…FFT処理部
33…相関処理部
34…CFAR処理部
35…距離/速度抽出処理部
36…参照信号生成部
37…測角処理部
38…クラッタ速度算出部

Claims (6)

  1. パルス列を符号化変調して送信信号を生成し、前記送信信号を送信し、その反射信号を受信して符号化パルス列を得る送受信手段と、
    観測速度範囲内の複数の速度毎に前記変調に用いた符号に基づく相関用の参照信号を生成する参照信号生成手段と、
    前記送受信手段で得られた符号化パルス列について前記参照信号生成手段で生成される速度毎の参照信号と相関をとる相関処理手段と、
    前記相関処理手段の相関出力が示す位置を距離情報として、前記相関出力が所定のスレショルドを超える参照信号の速度を速度情報として出力する距離・速度処理手段と
    を具備するレーダ装置。
  2. さらに、前記相関出力が前記所定のスレショルドを超えるときの符号化パルス列から検出目標の角度を算出する測角手段を備える請求項1記載のレーダ装置。
  3. 移動体搭載のレーダ装置であって、
    さらに、前記移動体に対するクラッタの速度範囲を算出するクラッタ速度範囲算出手段を備え、
    前記参照信号生成手段は、前記クラッタの速度範囲を除く観測速度範囲内の複数の速度毎に前記変調に用いた符号に基づく相関用の参照信号を生成する請求項1記載のレーダ装置。
  4. パルス列を符号化変調して送信信号を生成し、前記送信信号を送信し、その反射信号を受信して符号化パルス列を得る変調送受信期間と、前記パルス列を無変調で送信信号として送信し、その反射信号を受信して符号化パルス列を得る無変調送受信期間とを備える送受信手段と、
    前記無変調送受信期間での受信パルス列についてドップラー周波数を抽出して速度を算出する速度算出手段と、
    前記変調送受信期間で、前記速度算出手段で算出される速度を中心に所定の速度幅を持つ範囲内の複数の速度毎に前記変調に用いた符号に基づく相関用の参照信号を生成する参照信号生成手段と、
    前記送受信手段で得られた符号化パルス列について前記参照信号生成手段で生成される速度毎の参照信号と相関をとる相関処理手段と、
    前記相関処理手段の相関出力が示す位置を距離情報として、前記相関出力が所定のスレショルドを超える参照信号の速度を速度情報として出力する距離・速度処理手段と
    を具備するレーダ装置。
  5. さらに、前記相関出力が前記所定のスレショルドを超えるときの符号化パルス列から検出目標の角度を算出する測角手段を備える請求項4記載のレーダ装置。
  6. 移動体搭載のレーダ装置であって、
    さらに、前記移動体に対するクラッタの速度範囲を算出するクラッタ速度範囲算出手段を備え、
    前記参照信号生成手段は、前記クラッタの速度範囲を除く観測速度範囲内の複数の速度毎に前記変調に用いた符号に基づく相関用の参照信号を生成する請求項4記載のレーダ装置。
JP2013056796A 2013-03-19 2013-03-19 レーダ装置 Pending JP2014182010A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056796A JP2014182010A (ja) 2013-03-19 2013-03-19 レーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056796A JP2014182010A (ja) 2013-03-19 2013-03-19 レーダ装置

Publications (1)

Publication Number Publication Date
JP2014182010A true JP2014182010A (ja) 2014-09-29

Family

ID=51700860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056796A Pending JP2014182010A (ja) 2013-03-19 2013-03-19 レーダ装置

Country Status (1)

Country Link
JP (1) JP2014182010A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024452A (ko) * 2015-08-25 2017-03-07 광운대학교 산학협력단 레이더를 이용한 고정물체 탐지 방법 및 장치
WO2017115459A1 (ja) 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 センサ、およびセンサを用いた水栓装置
JP2017161358A (ja) * 2016-03-09 2017-09-14 株式会社東芝 レーダ装置
JP2018105769A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2018105770A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダシステム
JP2019095391A (ja) * 2017-11-27 2019-06-20 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
JP2019100947A (ja) * 2017-12-06 2019-06-24 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2019105601A (ja) * 2017-12-14 2019-06-27 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2019158670A (ja) * 2018-03-14 2019-09-19 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
WO2020138108A1 (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 検知装置及び検知方法
CN113419251A (zh) * 2021-05-17 2021-09-21 重庆大学 基于激光反射的姿态识别、编解码及通信方法
WO2021240632A1 (ja) * 2020-05-26 2021-12-02 三菱電機株式会社 到来方向推定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158487A (ja) * 1986-08-06 1988-07-01 Mitsubishi Electric Corp 航空機搭載レーダ装置
JP2001165598A (ja) * 1999-12-03 2001-06-22 Mitsubishi Electric Corp 誘導飛しょう体
JP2006078270A (ja) * 2004-09-08 2006-03-23 Toshiba Corp レーダ装置
JP2008101997A (ja) * 2006-10-18 2008-05-01 Mitsubishi Electric Corp レーダ装置
JP2012242288A (ja) * 2011-05-20 2012-12-10 Mitsubishi Electric Corp レーダ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158487A (ja) * 1986-08-06 1988-07-01 Mitsubishi Electric Corp 航空機搭載レーダ装置
JP2001165598A (ja) * 1999-12-03 2001-06-22 Mitsubishi Electric Corp 誘導飛しょう体
JP2006078270A (ja) * 2004-09-08 2006-03-23 Toshiba Corp レーダ装置
JP2008101997A (ja) * 2006-10-18 2008-05-01 Mitsubishi Electric Corp レーダ装置
JP2012242288A (ja) * 2011-05-20 2012-12-10 Mitsubishi Electric Corp レーダ装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170024452A (ko) * 2015-08-25 2017-03-07 광운대학교 산학협력단 레이더를 이용한 고정물체 탐지 방법 및 장치
KR101714198B1 (ko) 2015-08-25 2017-03-08 광운대학교 산학협력단 레이더를 이용한 고정물체 탐지 방법 및 장치
WO2017115459A1 (ja) 2015-12-28 2017-07-06 パナソニックIpマネジメント株式会社 センサ、およびセンサを用いた水栓装置
JP2017161358A (ja) * 2016-03-09 2017-09-14 株式会社東芝 レーダ装置
JP2018105769A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2018105770A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダシステム
JP2019095391A (ja) * 2017-11-27 2019-06-20 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
JP2019100947A (ja) * 2017-12-06 2019-06-24 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2019105601A (ja) * 2017-12-14 2019-06-27 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
JP2019158670A (ja) * 2018-03-14 2019-09-19 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
WO2020138108A1 (ja) * 2018-12-25 2020-07-02 パナソニックIpマネジメント株式会社 検知装置及び検知方法
WO2021240632A1 (ja) * 2020-05-26 2021-12-02 三菱電機株式会社 到来方向推定装置
CN113419251A (zh) * 2021-05-17 2021-09-21 重庆大学 基于激光反射的姿态识别、编解码及通信方法
CN113419251B (zh) * 2021-05-17 2023-07-18 重庆大学 基于激光反射的姿态识别、编解码及通信方法

Similar Documents

Publication Publication Date Title
JP2014182010A (ja) レーダ装置
US10557933B2 (en) Radar device and position-determination method
JP2016151425A (ja) レーダ装置
JP6301749B2 (ja) ドップラレーダ装置及びそのレーダ信号処理方法
JPWO2014118968A1 (ja) レーダ装置
JP6088492B2 (ja) パルス信号設定装置、レーダ装置、パルス信号設定方法及びパルス信号設定プログラム
JP6470152B2 (ja) レーダ装置及びレーダ信号処理方法
JP6352837B2 (ja) レーダシステム及びそのレーダ信号処理方法
JP5660973B2 (ja) レーダ装置
Schroeder et al. X-band FMCW radar system with variable chirp duration
JP5554384B2 (ja) Fmcwレーダ装置およびfmcwレーダ用信号処理方法
JP6324327B2 (ja) パッシブレーダ装置
JP6466263B2 (ja) レーダ装置及びレーダ信号処理方法
JP6546109B2 (ja) レーダ装置
EP2927708B1 (en) Target detection apparatus and target detection method
KR102610917B1 (ko) Cw 레이더 및 cw 레이더를 이용한 거리 측정 방법
JP7399706B2 (ja) レーダ装置及びそのレーダ信号処理方法
RU2608551C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станции радиотехнической разведки
JP2016170023A (ja) レーダ装置及びレーダ信号処理方法
JP6851957B2 (ja) レーダシステム及びそのレーダ信号処理方法
JP6363524B2 (ja) レーダ装置及びレーダ信号処理方法
JP2013113723A (ja) レーダ装置
Gawande et al. Design and Implementation of 10 GHz FMCW Radar for Proximity Fuze Application
Madhupriya et al. Implementation of compressed wave pulsed radar altimeter in signal processing
KR20150135734A (ko) 선형 주파수 변조 신호와 잡음 신호를 이용한 레이더 및 이의 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607