JP2014177389A - Lithium battery electrode active material - Google Patents

Lithium battery electrode active material Download PDF

Info

Publication number
JP2014177389A
JP2014177389A JP2013054385A JP2013054385A JP2014177389A JP 2014177389 A JP2014177389 A JP 2014177389A JP 2013054385 A JP2013054385 A JP 2013054385A JP 2013054385 A JP2013054385 A JP 2013054385A JP 2014177389 A JP2014177389 A JP 2014177389A
Authority
JP
Japan
Prior art keywords
fine particles
carbon
marimocarbon
material composite
nanocarbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013054385A
Other languages
Japanese (ja)
Other versions
JP6106870B2 (en
Inventor
Hisahiro Ando
寿浩 安藤
Yusuke Kanda
雄介 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
National Institute for Materials Science
Original Assignee
Daicel Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp, National Institute for Materials Science filed Critical Daicel Corp
Priority to JP2013054385A priority Critical patent/JP6106870B2/en
Publication of JP2014177389A publication Critical patent/JP2014177389A/en
Application granted granted Critical
Publication of JP6106870B2 publication Critical patent/JP6106870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nano-carbon material composite in which it is difficult for the nano-carbon material to aggregate, and a Li ion battery active material and a method for producing nano-carbon material composite.SOLUTION: A nano-carbon material composite 1 is formed of Si fine particles 3 included in voids 2a of aegagropila-like carbon 2 in which a fibrous nano-carbon material 2b is radially formed from oxidation diamond catalyst fine particle 4 as core. The diameter of the aegagropila-like carbon 2 preferably is in a range of 1 μm to 100 μm and the Si fine particle 3 is polycrystalline. The nano-carbon material composite 1 comprises a step of forming aegagropila-like carbon 2 in which a fibrous nano-carbon material 2b is radially formed from oxidation diamond catalyst fine particle 4 as core, and a step of receiving the aegagropila-like carbon 2 in a reaction tank and evacuating the reaction tank, followed by crystallizing out Si fine particles 3 in voids 2a of the aegagropila-like carbon 2.

Description

本発明は、ナノ炭素材料複合体及びLiイオン電池用活物質、さらにはナノ炭素材料複合体を製造する方法に関する。さらに詳しくは、本発明は、マリモカーボンの空隙中にSi微粒子が内包されたナノ炭素材料複合体と、これを利用したLiイオン電池用活物質、並びにナノ炭素材料複合体の製造方法に関する。   The present invention relates to a nanocarbon material composite and an active material for a Li-ion battery, and further to a method for producing a nanocarbon material composite. More specifically, the present invention relates to a nanocarbon material composite in which Si fine particles are encapsulated in a void of marimocarbon, an active material for a Li ion battery using the same, and a method for producing the nanocarbon material composite.

近年、リチウムイオン電池の電極材料が研究されている。現状のリチウムイオン電池の負極の材料は、一般にカーボンが使用されており、理論容量は370mAh/gである。さらに大きな理論容量を得るためにリチウムイオン電池の負極の材料が検討されている。   In recent years, electrode materials for lithium ion batteries have been studied. Carbon is generally used as the material for the negative electrode of current lithium ion batteries, and the theoretical capacity is 370 mAh / g. In order to obtain a larger theoretical capacity, materials for negative electrodes of lithium ion batteries have been studied.

リチウムイオン電池の負極にSi(シリコン)を用いた場合(非特許文献1参照)の理論容量は、負極にカーボンを用いた場合に比較して、大凡4倍以上、少なくとも1500mAh/g以上が期待されている。Siからなる負極をSi負極と呼ぶ。   The theoretical capacity when Si (silicon) is used for the negative electrode of a lithium ion battery (see Non-Patent Document 1) is expected to be at least four times that of when carbon is used for the negative electrode, at least 1500 mAh / g. Has been. A negative electrode made of Si is called a Si negative electrode.

しかしながら、従来のSi負極を用いたリチウムイオン電池の充放電は、100回程度が限界であり、実用化されていない。   However, charging and discharging of a conventional lithium ion battery using a Si negative electrode is limited to about 100 times and has not been put into practical use.

Si負極を用いたリチウムイオン電池の充放電の回数が100回程度であるのは、Si負極が充放電する際に膨張と収縮により劣化することに起因している。このため、リチウムイオン電池の充放電特性を改善するためにSi負極の研究が盛んに行われている。   The reason why the number of times of charge and discharge of the lithium ion battery using the Si negative electrode is about 100 is that the Si negative electrode deteriorates due to expansion and contraction when charging and discharging. For this reason, in order to improve the charge / discharge characteristics of a lithium ion battery, research on the Si negative electrode has been actively conducted.

さらに、リチウムイオン電池の電極材料には、伝導性の向上のために導電助剤が添加されている。導電助剤は、例えばカーボンブラックである。このため、リチウムイオン電池の電極を形成する際には、電極材料、カーボンブラック及びバインダーが均一に混合された状態にすることが重要となる。   Furthermore, a conductive additive is added to the electrode material of the lithium ion battery in order to improve conductivity. The conductive aid is, for example, carbon black. For this reason, when forming the electrode of a lithium ion battery, it is important to make the electrode material, carbon black, and a binder into a uniformly mixed state.

ナノサイズのカーボンブラックは凝集しやすく均一に分散させることは難しい。このような状態であるとカーボンブラックを添加しても伝導性が低いままである。   Nano-sized carbon black tends to aggregate and is difficult to disperse uniformly. In such a state, the conductivity remains low even when carbon black is added.

図6は、従来の電極材料101に添加されたナノサイズのカーボンブラック102の分散状態が良好でない場合を模式的に示す図である。図6に示すように、電極100は、電極材料101に導電助剤としてカーボンブラック102等が添加されて形成されている。カーボンブラック102は凝集しているので、図に示すようにカーボンブラック102が存在しない不活性な領域103が生じる。このように、電極材料101に導電助剤としてカーボンブラック102を添加しても、カーボンブラック102が凝集するため不活性な領域103が生じることで、電極の伝導性は直ちには改善され難い。   FIG. 6 is a diagram schematically showing a case where the nano-sized carbon black 102 added to the conventional electrode material 101 is not well dispersed. As shown in FIG. 6, the electrode 100 is formed by adding carbon black 102 or the like as a conductive additive to an electrode material 101. Since the carbon black 102 is aggregated, an inactive region 103 in which the carbon black 102 does not exist is generated as shown in the figure. Thus, even if carbon black 102 is added as a conductive additive to electrode material 101, carbon black 102 agglomerates, so that inactive region 103 is generated, so that the conductivity of the electrode is not readily improved.

特許文献1には、ナノ炭素材料微粒子として、マリモ様の形状をしたカーボンが開示されている。マリモ様のカーボンは、酸化ダイヤモンド触媒微粒子を核として、ナノメートル(nm)サイズの径を有するカーボンナノ繊維が放射状に、恰もマリモのように成長した球状の形状を有している。   Patent Document 1 discloses carbon having a marimo-like shape as nano-carbon material fine particles. Marimo-like carbon has a spherical shape in which carbon nanofibers having a nanometer (nm) size diameter radiate and coconut-like growth, with oxidized diamond catalyst fine particles as nuclei.

図7は、特許文献1に開示されたマリモ様のカーボン(以下、マリモカーボンと称する。)の製造装置110の構成を示す。
図7に示すマリモカーボン製造装置110は、流動気相合成装置とも呼ばれており、酸化ダイヤモンド触媒微粒子112が投入される垂直に配設された反応槽113と、反応槽113の下部及び上部にそれぞれ設けられた炭化水素からなるガス114を導入する導入口115と、ガス114を排出する排出口116と、反応槽113を取り囲んで配設される加熱装置117と、酸化ダイヤモンド触媒微粒子112を通過させないがガス114を通過させるフィルター118、等とから構成されている。混合装置120は、炭化水素からなるガス114に、反応補助ガスや希釈ガス119を混合するために配設されている。
FIG. 7 shows a configuration of a marimo-like carbon (hereinafter referred to as marimo carbon) manufacturing apparatus 110 disclosed in Patent Document 1.
The marimocarbon production apparatus 110 shown in FIG. 7 is also referred to as a fluidized gas phase synthesis apparatus, and is arranged vertically in a reaction tank 113 into which diamond oxide catalyst fine particles 112 are charged, and below and above the reaction tank 113. Passing through the introduction port 115 for introducing the gas 114 made of hydrocarbon, the discharge port 116 for discharging the gas 114, the heating device 117 disposed so as to surround the reaction tank 113, and the diamond oxide catalyst fine particles 112. The filter 118 is configured to allow the gas 114 to pass therethrough. The mixing device 120 is arranged to mix the reaction auxiliary gas and the dilution gas 119 with the gas 114 made of hydrocarbon.

特許文献1によれば、酸化ダイヤモンド触媒微粒子が反応槽113中で浮遊し、かつ、撹拌されるので、炭化水素からなるガス114を導入し、反応槽113を電気炉で加熱すると、酸化ダイヤモンド触媒微粒子112の全表面に亘って触媒反応が均等に起こる。これにより、酸化ダイヤモンド触媒微粒子112の全表面に亘って長さの等しいナノ炭素材料が放射状に成長し、マリモ状の微粒子、つまり、マリモカーボンが得られる。   According to Patent Document 1, since the diamond oxide catalyst fine particles float in the reaction tank 113 and are stirred, when the gas 114 made of hydrocarbon is introduced and the reaction tank 113 is heated in an electric furnace, the diamond oxide catalyst Catalytic reaction occurs uniformly over the entire surface of the fine particles 112. As a result, nanocarbon materials having the same length grow radially over the entire surface of the oxidized diamond catalyst fine particles 112, and marimo-like fine particles, that is, marimocarbon, are obtained.

特開2005−335968号公報、米国特許7,608,331,B2JP 2005-335968 A, US Pat. No. 7,608,331, B2 特開2004−277241号公報JP 2004-277241 A 特開2005−136020号公報JP 2005-136020 A

J. Electrochem. Soc., Volume 155, Issue 2, pp. A158-A163, 2008J. Electrochem. Soc., Volume 155, Issue 2, pp. A158-A163, 2008

従来の負極材料中にナノサイズの固体のカーボンを均一に分散させることは、図6に示すようにカーボンが凝集してしまうため非常に難しいという課題があった。   Uniformly dispersing nano-sized solid carbon in a conventional negative electrode material has a problem that it is very difficult because carbon aggregates as shown in FIG.

本発明は上記課題に鑑み、ナノ炭素材料が凝集し難いナノ炭素材料複合体及びLiイオン電池用活物質並びにその製造方法を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide a nanocarbon material composite in which a nanocarbon material hardly aggregates, an active material for a Li-ion battery, and a method for producing the same.

本発明者等は、鋭意検討し、マリモカーボンを構成するカーボンナノ繊維の間に形成される空隙にSi微粒子を内包できることを見出し、本発明に想到した。   The present inventors diligently studied and found that Si fine particles can be encapsulated in voids formed between carbon nanofibers constituting marimocarbon, and arrived at the present invention.

上記目的を達成するために、本発明のナノ炭素材料複合体は、酸化ダイヤモンド触媒微粒子を核として繊維状のナノ炭素材料が放射状に形成されたマリモカーボンの空隙に、Si微粒子が内包されてなる。   In order to achieve the above object, the nanocarbon material composite of the present invention is formed by encapsulating Si fine particles in the voids of marimocarbon in which fibrous nanocarbon materials are radially formed with oxidized diamond catalyst fine particles as nuclei. .

上記構成において、マリモカーボンの直径は、好ましくは、1μm〜100μmの範囲である。Si微粒子は、好ましくは多結晶である。   In the above configuration, the diameter of marimocarbon is preferably in the range of 1 μm to 100 μm. The Si fine particles are preferably polycrystalline.

本発明のナノ炭素材料複合体の製造方法は、酸化ダイヤモンド触媒微粒子を核として繊維状のナノ炭素材料を放射状に形成するマリモカーボンの形成工程と、マリモカーボンを反応槽に収容し、反応槽を排気した後で、Si微粒子をマリモカーボンの空隙に析出するSi微粒子の析出工程と、を含む。   The method for producing a nanocarbon material composite according to the present invention includes a marimocarbon forming step in which a fibrous nanocarbon material is formed radially with diamond oxide catalyst fine particles as nuclei, and the marimocarbon is accommodated in a reaction vessel. And a step of depositing Si fine particles in which the Si fine particles are precipitated in the voids of the marimocarbon after being evacuated.

上記Si微粒子の析出工程は、好ましくは化学蒸気堆積法による。   The Si fine particle deposition step is preferably performed by chemical vapor deposition.

本発明のリチウムイオン電池は、上記の何れかに記載のナノ炭素材料複合体を用いたことを特徴とする。   The lithium ion battery of the present invention is characterized by using any of the nanocarbon material composites described above.

本発明のLiイオン電池用活物質は、上記の何れかに記載のナノ炭素材料複合体を、活物質に用いたことを特徴とする。   The active material for a Li-ion battery according to the present invention is characterized in that the nanocarbon material composite described above is used as an active material.

本発明のナノ炭素材料複合体によれば、マリモカーボンを構成するカーボンナノ繊維の空隙にSi微粒子を内包することにより、Si微粒子をカーボンナノ繊維中に均一に分散させることができ、例えばリチウムイオン電池等の活物質、特に、負極や負極用活物質等に用いることが可能となる。   According to the nanocarbon material composite of the present invention, Si fine particles can be uniformly dispersed in carbon nanofibers by encapsulating Si fine particles in the voids of carbon nanofibers constituting marimocarbon. It becomes possible to use for active materials, such as a battery, especially a negative electrode, the active material for negative electrodes, etc.

本発明のナノ炭素材料複合体の製造方法によれば、マリモカーボンにSi微粒子を化学上蒸気堆積(Chemical Vapor Deposition、CVD)で堆積させることにより容易にナノ炭素材料複合体を製造することができる。   According to the method for producing a nanocarbon material composite of the present invention, a nanocarbon material composite can be easily produced by depositing Si fine particles on marimocarbon by chemical vapor deposition (CVD). .

本発明のナノ炭素材料複合体の構造を模式的に示す図である。It is a figure which shows typically the structure of the nano carbon material composite_body | complex of this invention. ナノ炭素材料複合体を構成するマリモカーボンの構造を模式的に示す図である。It is a figure which shows typically the structure of the marimo carbon which comprises a nanocarbon material composite_body | complex. 本発明の複数のナノ炭素材料複合体からなる構造を模式的に示す図である。It is a figure which shows typically the structure which consists of a some nanocarbon material composite_body | complex of this invention. 本発明のナノ炭素材料複合体の製造に用いるCVD装置を模式的に示す図である。It is a figure which shows typically the CVD apparatus used for manufacture of the nano carbon material composite_body | complex of this invention. 本発明のナノ炭素材料複合体の製造方法を説明するフロー図である。It is a flowchart explaining the manufacturing method of the nano carbon material composite_body | complex of this invention. 従来の電極材料に添加されたナノサイズのカーボンの分散状態が良好でない場合を模式的に示す図である。It is a figure which shows typically the case where the dispersion state of the nanosized carbon added to the conventional electrode material is not favorable. 特許文献1に開示されたマリモカーボンの製造装置の構成を示す図である。It is a figure which shows the structure of the manufacturing apparatus of the marimo carbon disclosed by patent document 1. FIG.

以下、本発明の実施例について、図面を参照しながら説明する。
図1は、本発明のナノ炭素材料複合体1の構造を模式的に示す図であり、図2は、図1のナノ炭素材料複合体1を構成するマリモカーボン2の構造を模式的に示す図である。
図1に示すように、本発明のナノ炭素材料複合体1は、マリモカーボン2とSi微粒子3とからなり、マリモカーボン2の空隙2aにSi微粒子3が内包された構造を有している。つまり、ナノ炭素材料複合体1は、酸化ダイヤモンド触媒微粒子4を核として繊維状のナノ炭素材料が放射状に形成されたマリモカーボン2の空隙2aに、Si微粒子3が内包されて構成される。図1では、外形を点線で示す空隙2aに、Si微粒子3が分散している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram schematically showing the structure of a nanocarbon material composite 1 of the present invention, and FIG. 2 schematically shows the structure of marimocarbon 2 constituting the nanocarbon material composite 1 of FIG. FIG.
As shown in FIG. 1, the nanocarbon material composite 1 of the present invention is composed of marimocarbon 2 and Si fine particles 3, and has a structure in which Si fine particles 3 are enclosed in voids 2 a of marimocarbon 2. That is, the nanocarbon material composite 1 is configured such that Si fine particles 3 are encapsulated in voids 2a of marimocarbon 2 in which fibrous nanocarbon materials are formed radially with diamond catalyst fine particles 4 as nuclei. In FIG. 1, Si fine particles 3 are dispersed in a gap 2 a whose outer shape is indicated by a dotted line.

図2に示すように、マリモカーボン2は、酸化ダイヤモンド(sp3炭素)に担持された触媒、つまり酸化ダイヤモンド触媒微粒子4を介して形成されたsp2炭素からなる繊維状のカーボンナノ繊維2b(Carbon Nano Filament、CNFとも呼ばれている。)が、放射状に0.1μmから10μmの長さに伸びており、恰もマリモのように全体として球形状を呈している。即ち、マリモカーボン2は、球状のカーボンナノ繊維2bで構成されている。 As shown in FIG. 2, marimocarbon 2 is a fibrous carbon nanofiber 2 b (sp 2 carbon formed of catalyst supported on oxidized diamond (sp 3 carbon), that is, sp 2 carbon formed through oxidized diamond catalyst fine particles 4. Carbon Nano Filament (also called CNF)) extends radially from 0.1 μm to 10 μm, and the coral also has a spherical shape as a whole like Marimo. That is, the marimo carbon 2 is composed of spherical carbon nanofibers 2b.

本発明のナノ炭素材料複合体1においては、図1に示すように、マリモカーボン2の空隙2aの外側には、マリモカーボン2を構成するカーボンナノ繊維2bの一部2cが露出している。   In the nanocarbon material composite 1 of the present invention, as shown in FIG. 1, a part 2 c of the carbon nanofibers 2 b constituting the marimocarbon 2 is exposed outside the void 2 a of the marimocarbon 2.

マリモカーボン2の球の直径は、1〜50μm、さらには、1μm〜100μmとすることができる。マリモカーボン2は、多くのカーボンナノ繊維2bを有している。マリモカーボン2を構成する各カーボンナノ繊維2bは互いに絡まり合っており、全体として球状の構造を有している。そして、マリモカーボン2のカーボンナノ繊維2b間には多くの空隙2aが形成されている。   The diameter of the sphere of the marimocarbon 2 can be 1 to 50 μm, and further 1 μm to 100 μm. The marimo carbon 2 has many carbon nanofibers 2b. The carbon nanofibers 2b constituting the marimo carbon 2 are entangled with each other and have a spherical structure as a whole. Many voids 2 a are formed between the carbon nanofibers 2 b of the marimo carbon 2.

図2に示す酸化ダイヤモンド触媒微粒子4に用いる酸化ダイヤモンドは、工業的に研磨用として市販されている500nm以下の粒径のダイヤモンド粉末を酸化することにより調製できる(特許文献2参照)。ダイヤモンド粉末は、10m2/g以上の高い比表面積を有するものを用いることが好ましい。酸化ダイヤモンド触媒微粒子4に用いる酸化ダイヤモンドは、ダイヤモンド粉末を350〜450℃の温度で、酸素雰囲気下又は空気中で表面を酸化させた後に触媒の担体として用いる。 The diamond oxide used for the diamond oxide catalyst fine particles 4 shown in FIG. 2 can be prepared by oxidizing diamond powder having a particle size of 500 nm or less that is commercially available for polishing (see Patent Document 2). It is preferable to use a diamond powder having a high specific surface area of 10 m 2 / g or more. The diamond oxide used for the diamond oxide catalyst fine particles 4 is used as a catalyst carrier after the surface of a diamond powder is oxidized at 350 to 450 ° C. in an oxygen atmosphere or in air.

酸化ダイヤモンド触媒微粒子4の触媒としては、Ni、Co、Pd等が使用できる。酸化ダイヤモンドに触媒を担持するには、触媒となる金属を含む金属塩の水溶液に酸化ダイヤモンドを浸漬し、所定時間、例えば12時間放置した後で、過剰の水を蒸発させ、乾燥後400〜500℃の空気中で焼成し、金属塩の分解と酸化を起こさせ、金属塩を酸化物に転換する。
次に、空気焼成後、Ni等からなる金属の酸化物を、水素等の還元雰囲気で金属へ還元して触媒とすることにより酸化ダイヤモンド触媒微粒子4を得ることができる(特許文献2参照)。
Ni, Co, Pd or the like can be used as a catalyst for the oxidized diamond catalyst fine particles 4. In order to support the catalyst on the diamond oxide, the diamond oxide is immersed in an aqueous solution of a metal salt containing a metal serving as a catalyst, left for a predetermined time, for example, 12 hours, excess water is evaporated, and 400 to 500 after drying. Baking in air at 0 ° C. causes decomposition and oxidation of the metal salt, converting the metal salt into an oxide.
Next, after air firing, diamond oxide catalyst particles 4 can be obtained by reducing a metal oxide composed of Ni or the like to a metal in a reducing atmosphere such as hydrogen to form a catalyst (see Patent Document 2).

酸化ダイヤモンド触媒微粒子4にカーボンナノ繊維2bを成長させるには、図7に示す流動気相合成装置(特許文献1参照)を使用し、原料ガス16として炭化水素を用いて、酸化ダイヤモンド触媒微粒子4にカーボンナノ繊維2bを成長させて製造することができる。酸化ダイヤモンド触媒微粒子4の粒径は、500nm以下であれば良く、大きすぎると流動気相合成装置110の反応槽113において浮遊し難くなるので好ましくない。原料ガス16としてメタンを用い、触媒としてNi、Co又はPdを用いた場合には、成長温度は、400℃〜600℃の範囲が好ましい。また、酸化ダイヤモンド触媒微粒子4を所定の温度で浮遊させかつ撹拌させてカーボンナノ繊維2bを成長させる際に、生成するマリモカーボン2の粒径は攪拌時間、つまり反応時間に比例して大きくなるので、使用目的に応じて反応時間を設定すればよい。   In order to grow the carbon nanofibers 2b on the oxidized diamond catalyst fine particles 4, a fluidized gas phase synthesizer (see Patent Document 1) shown in FIG. The carbon nanofibers 2b can be grown and manufactured. The particle diameter of the diamond oxide catalyst fine particles 4 may be 500 nm or less, and if it is too large, it is difficult to float in the reaction vessel 113 of the fluidized gas phase synthesis apparatus 110, which is not preferable. When methane is used as the source gas 16 and Ni, Co or Pd is used as the catalyst, the growth temperature is preferably in the range of 400 ° C to 600 ° C. Further, when the carbon nanofibers 2b are grown by suspending and stirring the diamond oxide catalyst fine particles 4 at a predetermined temperature, the particle diameter of the produced marimocarbon 2 increases in proportion to the stirring time, that is, the reaction time. The reaction time may be set according to the purpose of use.

触媒としてNi、Coを用いた場合に形成されるマリモカーボン2のカーボンナノ繊維2bは、例えば直径が18nm程度の単層カーボンナノチューブからなる。   The carbon nanofibers 2b of marimocarbon 2 formed when Ni or Co is used as the catalyst are composed of single-walled carbon nanotubes having a diameter of about 18 nm, for example.

触媒としてPdを用いた場合に形成されるマリモカーボン2のカーボンナノ繊維2bは、例えば直径が27nm程度のコイン積層型カーボンナノグラファイト繊維からなる(特許文献3参照)。コイン積層型グラファイト繊維は、直径が数〜数百nmのコイン型の単層グラファイトが積層された炭素繊維であり、コイン型単層グラファイトの間隔は0.3〜1nmである。   The carbon nanofibers 2b of marimocarbon 2 formed when Pd is used as the catalyst are made of, for example, coin-laminated carbon nanographite fibers having a diameter of about 27 nm (see Patent Document 3). Coin-stacked graphite fibers are carbon fibers in which coin-type single-layer graphite having a diameter of several to several hundred nm is stacked, and the interval between coin-type single-layer graphite is 0.3 to 1 nm.

Si微粒子3は、例えば多結晶である。Si微粒子3の大きさは、0.1μm(100nm)〜10μmである。   The Si fine particles 3 are, for example, polycrystalline. The size of the Si fine particles 3 is 0.1 μm (100 nm) to 10 μm.

図3は、本発明の複数のナノ炭素材料複合体1からなる構造を模式的に示す図である。図3に示すように、本発明の複数のナノ炭素材料複合体1からなる構造は、図1に示すマリモカーボン2の最外側のカーボンナノ繊維2cと隣接するマリモカーボン2の最外側のカーボンナノ繊維2cとが互いに絡み合って配設されている。このため、本発明の複数のナノ炭素材料複合体1からなる構造では、非常に多くのカーボンナノ繊維2bが四方に分散し、その間の空隙2aにSi微粒子3が内包され、かつマリモカーボン2同士がマリモカーボン2から伸び出したカーボンナノ繊維2cで互いに絡み合った構造が形成される。このため、ナノ炭素材料複合体1では、Si微粒子3がマリモカーボン2の空隙2a中に均一に分散され、かつ、マリモカーボン2により導電性が向上する。   FIG. 3 is a diagram schematically showing a structure composed of a plurality of nanocarbon material composites 1 of the present invention. As shown in FIG. 3, the structure composed of the plurality of nanocarbon material composites 1 of the present invention has the outermost carbon nanofibers of the marimocarbon 2 adjacent to the outermost carbon nanofibers 2c of the marimocarbon 2 shown in FIG. The fibers 2c are entangled with each other. For this reason, in the structure composed of a plurality of nanocarbon material composites 1 of the present invention, a very large number of carbon nanofibers 2b are dispersed in all directions, Si fine particles 3 are encapsulated in voids 2a therebetween, and marimocarbon 2 Are entangled with each other by the carbon nanofibers 2 c extending from the marimocarbon 2. Therefore, in the nanocarbon material composite 1, the Si fine particles 3 are uniformly dispersed in the voids 2 a of the marimocarbon 2, and the marimocarbon 2 improves the conductivity.

マリモカーボン2とSi微粒子3とからなるナノ炭素材料複合体1は、リチウムイオン二次電池の負極に使用することができる。Si微粒子3を内包したマリモカーボン2は、本明細書では、Si微粒子/マリモカーボン複合体1とも表記する。具体的には、Si微粒子/マリモカーボン複合体1は、負極又は負極用活物質や、導電助剤として用いることができる。さらに、Si微粒子/マリモカーボン複合体1は、負極や負極用活物質或いは導電助剤の添加剤として用いることができる。   The nanocarbon material composite 1 composed of marimocarbon 2 and Si fine particles 3 can be used for a negative electrode of a lithium ion secondary battery. The marimocarbon 2 containing the Si fine particles 3 is also referred to as Si fine particles / marimocarbon composite 1 in this specification. Specifically, the Si fine particles / marimocarbon composite 1 can be used as a negative electrode or a negative electrode active material or a conductive aid. Further, the Si fine particles / marimocarbon composite 1 can be used as an additive for a negative electrode, a negative electrode active material, or a conductive additive.

本発明のナノ炭素材料複合体1に用いるマリモカーボン2は、カーボンブラックやカーボンナノチューブと比べて取り扱いが容易であり、カーボンナノ繊維2b間に大きな空隙2aを有している。そして、本発明のナノ炭素材料複合体1は、この空隙2aにSi微粒子3が担持されているので、カーボンブラックやカーボンナノチューブを活物質等に混合する際に生じる凝集が、生起しないという利点を有している。このため、本発明のナノ炭素材料複合体1を負極、負極用活物質、導電助剤、或いはこれらの添加剤に用いた場合、伝導性の向上、つまり低抵抗化が図れる。   The marimocarbon 2 used in the nanocarbon material composite 1 of the present invention is easier to handle than carbon black and carbon nanotubes, and has large voids 2a between the carbon nanofibers 2b. In the nanocarbon material composite 1 of the present invention, since the Si fine particles 3 are supported in the voids 2a, the agglomeration that occurs when carbon black or carbon nanotubes are mixed with an active material or the like does not occur. Have. For this reason, when the nanocarbon material composite 1 of the present invention is used for the negative electrode, the negative electrode active material, the conductive additive, or these additives, the conductivity can be improved, that is, the resistance can be reduced.

これにより、本発明のナノ炭素材料複合体1を用いた二次電池の充放電特性の性能を向上させることができる。さらに、マリモカーボン2の空隙2aに内包されているSi微粒子3は、Si微粒子3自体にクラックが入っても、Si微粒子3がナノ炭素材料複合体1にカーボンナノ繊維を含有して構成されているので、Si微粒子3が崩れてバラバラにならない。これにより、本発明のナノ炭素材料複合体1を用いた二次電池やリチウムイオン電池用の充放電に伴うSi微粒子3の膨張と収縮の繰り返しによる劣化が緩和される。このため、本発明のナノ炭素材料複合体1を負極としたリチウムイオン電池の充放電の繰り返し回数を向上させることができる。   Thereby, the performance of the charge / discharge characteristic of the secondary battery using the nanocarbon material composite 1 of the present invention can be improved. Further, the Si fine particles 3 encapsulated in the voids 2a of the marimocarbon 2 are configured such that the Si fine particles 3 contain carbon nanofibers in the nanocarbon material composite 1 even if the Si fine particles 3 themselves crack. As a result, the Si fine particles 3 do not collapse and fall apart. Thereby, the deterioration by the repetition of expansion | swelling and shrinkage | contraction of Si fine particle 3 accompanying the charging / discharging for the secondary battery using the nano carbon material composite_body | complex 1 of this invention or a lithium ion battery is relieved. For this reason, the repetition frequency of charging / discharging of the lithium ion battery which used the nanocarbon material composite 1 of this invention as the negative electrode can be improved.

本発明のマリモカーボン2とSi微粒子3とからなるナノ炭素材料複合体1によれば、二次電池の負極、負極用活物質、導電助剤だけではなく、触媒としても利用できる。   According to the nanocarbon material composite 1 composed of marimocarbon 2 and Si fine particles 3 of the present invention, it can be used not only as a negative electrode for a secondary battery, an active material for a negative electrode, and a conductive assistant, but also as a catalyst.

(ナノ炭素材料複合体の製造方法)
本発明のナノ炭素材料複合体1の製造方法について説明する。
図4は、本発明のナノ炭素材料複合体1の製造に用いるCVD装置10を模式的に示す図である。図4に示すように、CVD装置10は、反応槽11と、反応槽11を加熱する電気炉12と、電気炉12の温度を制御する温度制御部13と、反応槽11に希釈ガス15と原料ガス16からなる反応ガス17を供給する反応ガス供給部18と、排気部19等を含んで構成されている。
(Method for producing nanocarbon material composite)
A method for producing the nanocarbon material composite 1 of the present invention will be described.
FIG. 4 is a diagram schematically showing a CVD apparatus 10 used for manufacturing the nanocarbon material composite 1 of the present invention. As shown in FIG. 4, the CVD apparatus 10 includes a reaction tank 11, an electric furnace 12 that heats the reaction tank 11, a temperature control unit 13 that controls the temperature of the electric furnace 12, and a dilution gas 15 in the reaction tank 11. A reaction gas supply unit 18 for supplying a reaction gas 17 made of a source gas 16 and an exhaust unit 19 are included.

反応ガス供給部18は、希釈ガス15の図示しないガスボンベ及び圧力調整器に接続されるストップバルブ21、マスフローコントローラ等の流量調整器22と、原料ガス16の図示しないガスボンベ及び圧力調整器に接続されるストップバルブ21、マスフローコントローラ等の流量調整器22と、流量調整器22と反応槽11とを接続するフランジ24と、これらを接続するステンレス等からなる配管25等から構成されている。   The reaction gas supply unit 18 is connected to a stop valve 21 connected to a gas cylinder and a pressure regulator (not shown) of the dilution gas 15, a flow regulator 22 such as a mass flow controller, and a gas cylinder and a pressure regulator (not shown) of the source gas 16. A stop valve 21, a flow rate regulator 22 such as a mass flow controller, a flange 24 connecting the flow rate regulator 22 and the reaction tank 11, a pipe 25 made of stainless steel or the like for connecting them, and the like.

排気部19は、真空ポンプと反応槽11とを接続するフランジ、真空ポンプと反応槽11との間に挿入されるゲートバルブ、真空計等の図示しない部品から構成されている。真空ポンプとしては、荒引き用ポンプ、油拡散ポンプ、ターボ分子ポンプ、イオンポンプ等を用いる。これらの真空ポンプは、反応槽11が所定の圧力となるように適宜に組み合わせて使用することができる。   The exhaust part 19 is composed of a flange (not shown) such as a flange connecting the vacuum pump and the reaction tank 11, a gate valve inserted between the vacuum pump and the reaction tank 11, and a vacuum gauge. As the vacuum pump, a roughing pump, an oil diffusion pump, a turbo molecular pump, an ion pump, or the like is used. These vacuum pumps can be used in appropriate combination so that the reaction tank 11 has a predetermined pressure.

電気炉12、温度制御部13、反応ガス供給部18、排気部19等は、さらに図示しないマイクロコンピュータ等によりシーケンス制御されてもよい。   The electric furnace 12, the temperature control unit 13, the reaction gas supply unit 18, the exhaust unit 19 and the like may be further sequence-controlled by a microcomputer or the like (not shown).

図5は、本発明のナノ炭素材料複合体1の製造方法を説明するフロー図である。
(a)最初に、マリモカーボン2を合成する。
(b)合成したマリモカーボン2をCVD装置10の反応槽11に収容する。
(c)マリモカーボン2を収容したCVD装置10の反応槽11を十分に排気し、マリモカーボン2の繊維内に残留しているガスを排気する。排気は、反応槽11に接続した排気部19により行うことができる。
(d)反応槽11に希釈ガス15を導入し、反応槽11内に収容したSi微粒子3を成長温度に加熱する。加熱には、電気炉12、ランプ、レーザーを使用できる。Si微粒子3をカーボン容器等に収容し、カーボン容器を加熱コイルにより誘導加熱してもよい。
(e)反応槽11にSi微粒子3を成長させるための原料ガス16を導入する。原料ガス16としては、SiとH(水素)、SiとCl(塩素)、SiとClとH(水素)との化合物ガスを使用することができる。原料ガス16は例えば、SiH4である。これらの原料ガス16は、不活性ガスや水素ガスで希釈してもよい。不活性ガスは、Ar(アルゴン)やHe(ヘリウム)を用いればよい。原料ガス16を、成長温度で所定時間流すことにより、マリモカーボン2のカーボンナノ繊維2bの隙間2aにSi微粒子3を成長させ、ナノ炭素材料複合体1を形成することができる。多結晶のSi微粒子3は、例えば、原料ガス16をArで希釈してSiH4とし、成長温度を600〜800℃として、マリモカーボン2の空隙2a内に析出することができる。
(f)所定時間成長した後、原料ガス16であるSiH4の反応槽11への供給を停止し、電気炉12による加熱を停止して、室温程度まで降温する。
(g)反応槽11から合成したSi微粒子/マリモカーボン複合体1を回収する。
FIG. 5 is a flow diagram illustrating a method for producing the nanocarbon material composite 1 of the present invention.
(A) First, marimocarbon 2 is synthesized.
(B) The synthesized marimocarbon 2 is accommodated in the reaction tank 11 of the CVD apparatus 10.
(C) The reaction tank 11 of the CVD apparatus 10 containing the marimocarbon 2 is sufficiently exhausted, and the gas remaining in the fibers of the marimocarbon 2 is exhausted. Exhaust can be performed by the exhaust unit 19 connected to the reaction tank 11.
(D) The dilution gas 15 is introduced into the reaction vessel 11 and the Si fine particles 3 accommodated in the reaction vessel 11 are heated to the growth temperature. An electric furnace 12, a lamp, or a laser can be used for heating. The Si fine particles 3 may be accommodated in a carbon container or the like, and the carbon container may be induction heated by a heating coil.
(E) The raw material gas 16 for growing the Si fine particles 3 is introduced into the reaction vessel 11. As the source gas 16, a compound gas of Si and H (hydrogen), Si and Cl (chlorine), Si, Cl and H (hydrogen) can be used. The source gas 16 is, for example, SiH 4 . These source gases 16 may be diluted with an inert gas or hydrogen gas. As the inert gas, Ar (argon) or He (helium) may be used. By flowing the raw material gas 16 at a growth temperature for a predetermined time, the Si fine particles 3 are grown in the gaps 2a between the carbon nanofibers 2b of the marimocarbon 2, and the nanocarbon material composite 1 can be formed. The polycrystalline Si fine particles 3 can be deposited in the voids 2a of the marimocarbon 2 at a growth temperature of 600 to 800 ° C., for example, by diluting the source gas 16 with Ar to make SiH 4 .
(F) After growing for a predetermined time, the supply of SiH 4 as the raw material gas 16 to the reaction vessel 11 is stopped, the heating by the electric furnace 12 is stopped, and the temperature is lowered to about room temperature.
(G) The synthesized Si fine particles / marimocarbon composite 1 is recovered from the reaction vessel 11.

次に、本発明の製造方法の一例について説明する。
最初に、マリモカーボン2を、Niを酸化ダイヤモンド触媒微粒子4上にメタンガスの分解によって合成した(非特許文献14参照)。
Niを触媒として合成したマリモカーボン2を、図4に示すCVD装置10を用いて、Si微粒子3を堆積する。
先ず、反応槽11内の石英容器に載置し、反応槽11内のマリモカーボン2中の残留ガスを排気部19より真空排気した後、反応槽11内に希釈ガス15を流す。
次に、反応槽11を電気炉12により600℃まで昇温し、続いて、原料ガス16としてSiH4を、希釈ガス15としてArを用いて、SiH4の流量が10%で流量が100sccm(sccmはcm3/分である。)の反応ガス17を反応槽11に供給する。反応時間は60分とし、60分経過後に、電気炉12の通電を停止し、反応槽11を自然冷却することにより、Si微粒子/マリモカーボン複合体1を製造することができる。
Next, an example of the manufacturing method of the present invention will be described.
First, marimocarbon 2 was synthesized by decomposing Ni on oxidized diamond catalyst fine particles 4 by decomposition of methane gas (see Non-Patent Document 14).
Si fine particles 3 are deposited on the marimocarbon 2 synthesized using Ni as a catalyst, using the CVD apparatus 10 shown in FIG.
First, after placing in a quartz container in the reaction vessel 11 and evacuating the residual gas in the marimocarbon 2 in the reaction vessel 11 from the exhaust unit 19, a dilution gas 15 is caused to flow into the reaction vessel 11.
Next, the reaction vessel 11 by an electric furnace 12 was raised to 600 ° C., followed by the SiH 4 as a raw material gas 16, using Ar as a dilution gas 15, the flow rate of SiH 4 is the flow rate at 10% 100 sccm ( sccm is cm 3 / min)). The reaction time is 60 minutes, and after 60 minutes, the energization of the electric furnace 12 is stopped, and the reaction vessel 11 is naturally cooled, whereby the Si fine particles / marimocarbon composite 1 can be produced.

本発明は、上記実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Nor.

1:ナノ炭素材料複合体
2:マリモカーボン
2a:空隙
2b:カーボンナノ繊維
2c:最外側のカーボンナノ繊維
3:Si微粒子
4:酸化ダイヤモンド触媒微粒子
10:CVD装置
11:反応槽
12:電気炉
13:温度制御部
15:希釈ガス
16:原料ガス
17:反応ガス
18:反応ガス供給部
19:排気部
21:ストップバルブ
22:流量調整器
24:フランジ
25:配管
1: nanocarbon material composite 2: marimocarbon 2a: void 2b: carbon nanofiber 2c: outermost carbon nanofiber 3: Si fine particles 4: oxidized diamond catalyst fine particles 10: CVD apparatus 11: reaction vessel 12: electric furnace 13 : Temperature control unit 15: Dilution gas 16: Raw material gas 17: Reaction gas 18: Reaction gas supply unit 19: Exhaust unit 21: Stop valve 22: Flow rate regulator 24: Flange 25: Piping

Claims (7)

酸化ダイヤモンド触媒微粒子を核として繊維状のナノ炭素材料が放射状に形成されたマリモカーボンの空隙に、Si微粒子が内包されてなる、ナノ炭素材料複合体。   A nanocarbon material composite in which Si fine particles are encapsulated in marimocarbon voids in which fibrous nanocarbon materials are formed radially using oxide diamond catalyst fine particles as nuclei. 前記マリモカーボンの直径は、1μm〜100μmの範囲であることを特徴とする、請求項1に記載のナノ炭素材料複合体。   2. The nanocarbon material composite according to claim 1, wherein a diameter of the marimocarbon is in a range of 1 μm to 100 μm. 前記Si微粒子は、多結晶であることを特徴とする、請求項1に記載のナノ炭素材料複合体。   2. The nanocarbon material composite according to claim 1, wherein the Si fine particles are polycrystalline. 酸化ダイヤモンド触媒微粒子を核として繊維状のナノ炭素材料を放射状に形成するマリモカーボンの形成工程と、
上記マリモカーボンを反応槽に収容し、該反応槽を排気した後で、Si微粒子を上記マリモカーボンの空隙に析出する工程と、
を、含むナノ炭素材料複合体の製造方法。
Marimocarbon formation process that forms fibrous nanocarbon material radially with oxide diamond catalyst fine particles as nuclei,
Depositing the marimocarbon in a reaction vessel, evacuating the reaction vessel, and then depositing Si fine particles in the voids of the marimocarbon;
The manufacturing method of the nanocarbon material composite containing this.
前記Si微粒子を析出する工程は、化学蒸気堆積法によることを特徴とする、請求項4に記載のナノ炭素材料複合体の製造方法。   The method for producing a nanocarbon material composite according to claim 4, wherein the step of depositing the Si fine particles is performed by a chemical vapor deposition method. 請求項1〜3の何れかに記載のナノ炭素材料複合体を用いたことを特徴とする、二次電池。   A secondary battery using the nanocarbon material composite according to claim 1. 請求項1〜3の何れかに記載のナノ炭素材料複合体を、活物質に用いたことを特徴とする、Liイオン電池用活物質。   The active material for Li ion batteries using the nano carbon material composite_body | complex in any one of Claims 1-3 for the active material.
JP2013054385A 2013-03-15 2013-03-15 Electrode active material for lithium batteries Expired - Fee Related JP6106870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013054385A JP6106870B2 (en) 2013-03-15 2013-03-15 Electrode active material for lithium batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013054385A JP6106870B2 (en) 2013-03-15 2013-03-15 Electrode active material for lithium batteries

Publications (2)

Publication Number Publication Date
JP2014177389A true JP2014177389A (en) 2014-09-25
JP6106870B2 JP6106870B2 (en) 2017-04-05

Family

ID=51697744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013054385A Expired - Fee Related JP6106870B2 (en) 2013-03-15 2013-03-15 Electrode active material for lithium batteries

Country Status (1)

Country Link
JP (1) JP6106870B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166414A (en) * 2003-12-02 2005-06-23 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005335968A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Aegagropila-like carbon, and method and apparatus for producing the same
JP2008050239A (en) * 2006-08-28 2008-03-06 National Institute For Materials Science Nanocarbon material composite and method for producing the same
JP2008066230A (en) * 2006-09-11 2008-03-21 National Institute For Materials Science Catalyst electrode for fuel cell, membrane electrode assembly provided with the same and fuel cell
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
US20080280207A1 (en) * 2005-12-23 2008-11-13 Commissariat A L'energie Atomique Material Based on Carbon and Silicon Nanotubes that Can be Used in Negative Electrodes for Lithium Batteries
US20120321959A1 (en) * 2009-09-29 2012-12-20 Gleb Yushin Electrodes, lithium-ion batteries, and methods of making and using same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166414A (en) * 2003-12-02 2005-06-23 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2005335968A (en) * 2004-05-24 2005-12-08 National Institute For Materials Science Aegagropila-like carbon, and method and apparatus for producing the same
US20080193764A1 (en) * 2004-05-24 2008-08-14 National Institute For Materials Science Cladophora-Form Carbon, Process for Producing the Same and Production Apparatus
US20080280207A1 (en) * 2005-12-23 2008-11-13 Commissariat A L'energie Atomique Material Based on Carbon and Silicon Nanotubes that Can be Used in Negative Electrodes for Lithium Batteries
JP2009521082A (en) * 2005-12-23 2009-05-28 コミツサリア タ レネルジー アトミーク Carbon nanotubes and silicon-based materials that can be used as cathodes for lithium batteries
JP2008050239A (en) * 2006-08-28 2008-03-06 National Institute For Materials Science Nanocarbon material composite and method for producing the same
JP2008066230A (en) * 2006-09-11 2008-03-21 National Institute For Materials Science Catalyst electrode for fuel cell, membrane electrode assembly provided with the same and fuel cell
US20080261116A1 (en) * 2007-04-23 2008-10-23 Burton David J Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries
JP2010525549A (en) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド Method of depositing silicon on carbon material to form anode for lithium ion battery
US20120321959A1 (en) * 2009-09-29 2012-12-20 Gleb Yushin Electrodes, lithium-ion batteries, and methods of making and using same
JP2013506264A (en) * 2009-09-29 2013-02-21 ジョージア テック リサーチ コーポレイション Electrode, lithium ion battery and method for making and using the same

Also Published As

Publication number Publication date
JP6106870B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
Huang et al. Multifunctional hyphae carbon powering lithium–sulfur batteries
Chen et al. Recent advancement of SiOx based anodes for lithium-ion batteries
Qi et al. Few-layered ReS2 nanosheets grown on carbon nanotubes: A highly efficient anode for high-performance lithium-ion batteries
EP2876710B1 (en) Negative active material of lithium-ion secondary battery and preparation method therefor, negative plate of lithium-ion secondary battery, and lithium-ion secondary battery
Wang et al. Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@ N-doped carbon cathode
Li et al. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries
WO2018032975A1 (en) Manufacturing method of lithium-ion battery negative-electrode material effectively buffering volume change effect of silicon
Shi et al. In situ fabrication of dual coating structured SiO/1D-C/aC composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition
JP2016526262A5 (en)
CN104103821B (en) The preparation method of silicon-carbon cathode material
WO2021077884A1 (en) Composite material, preparation method therefor and use thereof as electrode material
JP2018502420A (en) Method for producing electrode material for battery electrode
JP2004299986A (en) Carbon nanotube, and its production method
CN104037393B (en) A kind of tin/graphene/carbon fiber composite lithium cell cathode material preparation method
TW201908239A (en) Silicon-carbon composite powder
KR20120120034A (en) SiOx-based complex powder, preparation method thereof and the use of the same
Ding et al. Confined Pyrolysis of ZIF‐8 Polyhedrons Wrapped with Graphene Oxide Nanosheets to Prepare 3D Porous Carbon Heterostructures
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
JP2004300631A (en) Carbon nanofiber and method for producing the same
KR101631300B1 (en) Manufacturing method of SiO2/CNFs composite and Lithium Secondary battery using of Ni-Cu catalysts
KR101833401B1 (en) Siliconoxycarbide composite, preparation method thereof and anode material for sodium secondary battery comprising the same
Li et al. Preparation and structural evolution of well aligned-carbon nanotube arrays onto conductive carbon-black layer/carbon paper substrate with enhanced discharge capacity for Li–air batteries
Zhao et al. Interfacial Engineering of Co3O4/Fe2O3 Nano‐Heterostructure Toward Superior Li‐O2 Batteries
CN111180713B (en) Silicon-carbon negative electrode material for lithium ion battery and preparation method thereof
Lee et al. Vapor–Solid Reaction Growth of Rutile TiO2 Nanorods and Nanowires for Li-Ion-Battery Electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R150 Certificate of patent or registration of utility model

Ref document number: 6106870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees