JP2014173440A - 蒸気タービン用ロータ、その製造方法、及び蒸気タービン - Google Patents

蒸気タービン用ロータ、その製造方法、及び蒸気タービン Download PDF

Info

Publication number
JP2014173440A
JP2014173440A JP2013044344A JP2013044344A JP2014173440A JP 2014173440 A JP2014173440 A JP 2014173440A JP 2013044344 A JP2013044344 A JP 2013044344A JP 2013044344 A JP2013044344 A JP 2013044344A JP 2014173440 A JP2014173440 A JP 2014173440A
Authority
JP
Japan
Prior art keywords
rotor
rotor body
steam turbine
alloy
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013044344A
Other languages
English (en)
Other versions
JP6066777B2 (ja
Inventor
Ryuichi Yamamoto
隆一 山本
Shin Nishimoto
西本  慎
Yoshinori Tanaka
良典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013044344A priority Critical patent/JP6066777B2/ja
Publication of JP2014173440A publication Critical patent/JP2014173440A/ja
Application granted granted Critical
Publication of JP6066777B2 publication Critical patent/JP6066777B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

【課題】耐用温度が高く、且つ、超音波探傷検査により内部欠陥を検出し易い蒸気タービン用ロータを提供する。
【解決手段】軸線Arに垂直な断面形状が円形を成し、動翼25が外周に設けられているロータ胴部10と、軸方向Daにおけるロータ胴部10の両端に設けられてタービンケーシング30に回転自在に支承されるロータ軸部20と、を備える。ロータ胴部10は、Ni基合金又はFeNi基合金により、軸線Arを中心として筒状の複数のロータ胴部材11が、軸方向Daに並び相互に接合されて形成されている。
【選択図】図1

Description

本発明は、蒸気タービン用ロータ、その製造方法、及び蒸気タービンに関する。
蒸気タービン用ロータには、12Cr鋼等の鉄鋼材料が用いられることが多い。しかし、近年、発電効率を向上させるために、700℃を超える高温蒸気でロータを駆動することが研究され、従来の鉄鋼材料製のロータよりも耐用温度の高い蒸気タービン用ロータが望まれるようになっている。
そこで、例えば、以下の特許文献1では、耐用温度の高い蒸気タービン用ロータが開示されている。
この蒸気タービン用ロータは、動翼が外周に取り付けられるロータ胴部をNi基合金で形成されているものである。
特開2011−69307号公報
Ni基合金は、12Cr鋼等の鉄鋼と比較して、超音波透過性が悪い。そのため、特許文献1に記載の蒸気タービン用ロータでは、超音波探傷検査を実施しても、Ni基合金製のロータ胴部の深層部の欠陥を検出することが難しく、欠陥を見落とす虞があるという問題点がある。
そこで、本発明は、高い耐用温度を確保することができ、且つ、超音波探傷検査により内部欠陥を検出し易い蒸気タービン用ロータ、これを備えている蒸気タービン、及び蒸気タービン用ロータの製造方法を提供することを目的とする。
上記問題点を解決するための発明の一態様としての蒸気タービン用ロータは、
軸線に垂直な断面形状が円形を成し、複数の動翼が外周に設けられているロータ胴部と、前記軸線が延びる軸方向における前記ロータ胴部の両端に設けられてタービンケーシングに回転自在に支承されるロータ軸部と、を備え、
前記ロータ胴部は、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数のロータ胴部材が、前記軸方向に並び相互に接合されて形成されていることを特徴とする。
当該蒸気タービン用ロータでは、ロータ胴部が、耐用温度の高いNi基合金又はFeNi基合金により形成されているため、高い耐用温度を確保することができる。また、当該蒸気タービン用ロータでは、ロータ胴部が中空の筒状構造であり、中実構造の場合と比較すると、超音波探傷検査時における探傷距離が短くなるため、超音波探傷検査で、内部欠陥を容易に検出することができる。しかも、ロータ胴部が中空の筒状構造であるため、ロータ胴部の外周側及び内周側の双方から超音波探傷検査を実施することができる。このため、探傷距離を更に短くすることができるため、微細な欠陥でも検出漏れを少なくすることができる。
また、当該蒸気タービン用ロータでは、複数のロータ胴部材を同軸に接合してロータ胴部を形成するため、個々のロータ胴部材の大きさをNi基合金又はFeNi基合金による製造が容易な大きさに抑えることで、Ni基合金又はFeNi基合金製のロータ胴部の製造を容易にすることもできる。
ここで、前記蒸気タービン用ロータにおいて、前記ロータ軸部は、鉄鋼で形成されており、前記ロータ胴部に接合されていてもよい。
蒸気タービン用ロータの場合、ロータ軸部は、ロータ胴部と比較して、それほど高い耐用温度が要求されない。このため、当該蒸気タービン用ロータでは、Ni基合金又はFeNi基合金などと比較して耐用温度の低く且つ低材料コストの鉄鋼でロータ軸部を形成し、製造コストを抑えている。
また、鉄鋼でロータ軸部が形成されている前記蒸気タービン用ロータにおいて、前記ロータ軸部と前記ロータ胴部とは、前記ロータ胴部材を形成する合金を主成分とする溶接材料を用いて溶接されていてもよい。
当該蒸気タービンロータでは、ロータ軸部とロータ胴部との間の溶接部における強度及び耐久性を高めることができる。
また、以上のいずれかの前記蒸気タービン用ロータにおいて、複数の前記ロータ胴部材は、互いに、該ロータ胴部材を形成する合金を主成分とする溶接材料を用いて溶接されていてもよい。
当該蒸気タービン用ロータでは、ロータ胴部材相互間の溶接部における強度及び耐久性を高めることができる。
上記問題点を解決するための発明の一態様としての蒸気タービンは、
以上のいずれかの前記蒸気タービン用ロータと、前記タービンケーシングと、を備えていることを特徴とする。
上記問題点を解決するための発明の一態様としての蒸気タービン用ロータの製造方法は、
軸線に対して垂直な断面形状が円形を成し、複数の動翼が外周に設けられているロータ胴部を形成する胴部形成工程と、前記軸線が延びる軸方向における前記ロータ胴部の両端に設けられてタービンケーシングに回転自在に支承されるロータ軸部を形成する軸部形成工程と、前記ロータ胴部の前記両端部に前記ロータ軸部を接合する軸部接合工程と、を実行し、
前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数のロータ胴部材が、前記軸方向に並び相互に接合された前記ロータ胴部を形成することを特徴とする。
ここで、前記一態様としての蒸気タービン用ロータの製造方法において、前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として柱状の複数のロータ胴部母材を前記軸方向に並べ、相互に接合して柱状のロータ胴母体を形成した後、該ロータ胴母体の前記軸線上を貫通加工して、前記ロータ胴部を形成してもよい。
当該製造方法では、ロータ胴部母材が中実であるため、複数のロータ胴部母材を接合する際、複数のロータ胴部母材の中心軸を容易に一致させることができる。
また、前記一態様としての蒸気タービン用ロータの製造方法において、前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数の前記ロータ胴部材を前記軸方向に並べ、相互に接合して前記ロータ胴部を形成してもよい。
当該製造方法では、中空の円筒状の複数のロータ胴部材を接合して、ロータ胴部を形成しているので、材料コストを抑えることができる。
また、以上のいずれかの前記蒸気タービン用ロータの製造方法において、前記軸部接合工程では、前記ロータ胴部材を形成する合金を主材料とする溶接材料を用いて、前記ロータ胴部と前記ロータ軸部とを溶接してもよい。
本発明によれば、高い耐用温度を確保することができ、且つ、超音波探傷検査により容易に内部欠陥を検出することができる。
本発明に係る第一実施形態における蒸気タービンの模式的な断面図である。 本発明に係る第一実施形態におけるロータ胴部材及び動翼の斜視図である。 本発明に係る第一実施形態における蒸気タービン用ロータの製造手順を示すフローチャートである。 本発明に係る第一実施形態におけるロータ胴部の製造方法を示す説明図である。 本発明に係る第二実施形態におけるロータ胴部の製造方法を示す説明図である。 本発明に係る変形例における蒸気タービンの模式的な断面図である。
以下、本発明の各種実施形態及び変形例について、図面を参照して詳細に説明する。
「第一実施形態」
まず、本発明に係る蒸気タービンの第一実施形態について、図1〜図4を参照して説明する。
本実施形態の蒸気タービンSTは、軸線Arを中心として回転する蒸気タービン用ロータR(以下、単にロータRとする)と、このロータRの外周に固定されている複数の動翼25と、ロータRを回転可能に覆うタービンケーシング30と、タービンケーシング30の内周面34に固定されている複数の静翼35と、ロータRを回転可能に支持すると共に軸封止する軸受・封止部39と、を備えている。ロータRの端部には、例えば、ロータRの回転で発電する発電機が接続されている。なお、以下では、軸線Arが延びている方向を軸方向Da、軸線Arを中心とする周方向を単に周方向Dcとする。
ロータRは、軸線Arを中心として円筒状を成し、外周に複数の動翼25が固定されるロータ胴部10と、ロータ胴部10の軸方向Daの両端部に固定されるロータ軸部20と、を有している。複数の動翼25は、軸線Arを中心として、周方向Dcに等間隔でロータ胴部10に固定されている。この周方向Dcに並んでいる複数の動翼25は、一つの動翼列を構成する。ロータ胴部10には、軸方向Daに並んでいる複数の動翼列が設けられている。ロータ軸部20は、ロータ胴部10の外径寸法と同じ外径寸法の胴接続部22と、この胴接続部22の外径寸法よりも小さい外径寸法の軸本体部21と、を有している。胴接続部22の一方の端部には、ロータ胴部10が接合されている。また、胴接続部22の他方の端部には、軸本体部21が形成されている。軸本体部21には、軸受・封止部39が取り付けられる。この軸受・封止部39は、基本的に、この軸本体部21を回転可能に支持する軸受装置と、この軸本体部21とタービンケーシング30との間を封止する軸封装置と、を有している。これら軸受装置及び軸封装置は、いずれも、タービンケーシング30.に固定されている。よって、ロータRは、軸受・封止部39を介して、タービンケーシング30に回転可能に支持されている。
タービンケーシング30には、軸方向Daの一端側(図1では、左端側)に蒸気が流入する蒸気入口32が形成され、軸方向Daの他端側(図1では、右端側)に蒸気が排出される蒸気排出口33が形成されている。タービンケーシング30の内周面34とロータRとの間は、蒸気入口32から流入した蒸気が通る蒸気主流路Pmを成す。タービンケーシング30の内周面34には、前述したように、複数の静翼35が固定されている。複数の静翼35は、軸線Arを中心として、周方向Dcに等間隔でタービンケーシング30の内周面34に固定されている。この周方向Dcに並んでいる複数の静翼35は、一つの静翼列を構成する。タービンケーシング30の内周面34には、複数の動翼列のそれぞれの上流側(軸方向Daにおける蒸気入口32側)に静翼列が固定されている。
蒸気入口32からタービンケーシング30内に流入した蒸気は、タービンケーシング30内の蒸気主流路Pmを流れる過程で、動翼25に衝突してロータRに回転力を付与する。この結果、ロータRは、軸線Arを中心として回転する。ロータRを回転させた蒸気は、蒸気排出口33から排出される。この過程で、静翼35は、適切な方向から動翼25に蒸気を衝突させる役目を果たす。なお、図1中の矢印S1〜S5は、蒸気の流れ方向を示している。
ロータ胴部10は、軸線Arを中心として円筒状の複数のロータ胴部材11が、軸方向Daに並び相互に接合されて形成されている。このため、ロータ胴部10も、軸線Arを中心として円筒状を成し、軸線Arに垂直な断面形状は、軸方向Daのいずれの位置でも円形である。
各ロータ胴部材11は、Ni基合金で形成さている。Ni基合金としては、例えば、Ni−12Cr−7Mo−6W−Al−Tiの成分組成のNi基合金を使用することができる。このNi基合金は、圧力100MPa、温度700℃の環境下で、10万時間使用するという仕様を十分満足させることのできる耐熱性能を備えている。また、このNi基合金は、12Cr鋼より、100℃以上高いクリープ特性を有している。
ロータ軸部20は、12Cr鋼等の鉄鋼で形成されている。円筒状のロータ胴部材11は、図2に示すように、外周に、動翼25が嵌着させる翼支持部13が設けられている。この翼支持部13は、軸線Arを中心として環状を成し、軸線Arに対する径方向外側から径方向内側に向かって凹む複数の翼根溝13aが形成されている。また、動翼25は、径方向に延びる翼体25aと、翼体25aの径方向内側に設けられている翼根25bと、を有している。動翼25は、その翼根25bが翼支持部13の翼根溝13aに嵌着されて、ロータRに固定されている。
次に、図3に示すフローチャートに従がって、ロータRの製造方法について説明する。
まず、ロータ胴部10を形成する(胴部形成工程(S1))。
この胴部形成工程(S1)では、まず、図4(a)に示すように、Ni基合金で形成された円柱状の複数のロータ胴部母材11aを準備する。Ni基合金では、その製造方法等の都合により、大きな塊を形成することが極めて困難である。このため、胴部形成工程(S1)では、ロータ胴部10を形成する複数のロータ胴部母材11aを準備する。次に、図4(b)に示すように、複数のロータ胴部母材11aの中心軸の位置を一致させて、相互に突き合わせる。続いて、突き合わさったロータ胴部母材11a相互のつなぎ目Fを、溶接材料を用いて溶接し、円柱状のロータ胴母体10aを形成する。ここでは、ロータ胴部母材11aが中実であるため、複数のロータ胴部母材11aの中心軸を容易に一致させることができる。なお、相互に一致した複数のロータ胴部母材11aの各中心軸は、ロータRの軸線Arとなる。
溶接材料としては、ロータ胴部母材11aを形成するNi基合金と同じ成分、又は、ロータ胴部母材11aを形成するNi基合金に僅かに他の材料を加えたものを用いる。つまり、ロータ胴部母材11aを形成する合金を主成分とする溶接材料を用いる。
その後、図4(c)に示すように、ロータ胴母体10aに、このロータ胴母体10aの中心軸である軸線Ar上を貫通する中空部10bを形成することで、円筒状のロータ胴部10を得る。なお、このロータ胴部10中で、各ロータ胴部母材11aを成す部位がロータ胴部材11を成す。
次に、12Cr鋼等の鉄鋼の塊を加工して、ロータ軸部20を形成する(軸部形成工程(S2))。蒸気タービン用ロータの場合、ロータ軸部は、ロータ胴部と比較して、それほど高い耐用温度が要求されない。このため、ここでは、Ni基合金と比較して耐用温度の低く且つ低材料コストの12Cr鋼等の鉄鋼でロータ軸部20を形成し、製造コストを抑えている。
次に、胴部形成工程(S1)で形成したロータ胴部10及び軸部形成工程(S2)で形成したロータ軸部20を、超音波探傷検査する(部材検査工程(S3))。この部材検査工程(S3)におけるロータ胴部10の検査では、ロータ胴部10の外周側から、又はロータ胴部10の内周側から、さらに、必要に応じてロータ胴部10の外周側及び内周側から超音波探傷検査する。この際、ロータ胴部10を形成する複数のロータ胴部材11相互の溶接による接合部も併せて、接合部の外側から、又は接合部の内周側から、さらに、必要に応じて接合部の外周側及び内周側から超音波探傷検査する。
次に、胴部形成工程(S1)で形成したロータ胴部10の中心軸と、軸部形成工程(S2)で形成したロータ軸部20の中心軸との位置を一致させ、相互に突き合わせる。続いて、突き合わさったロータ胴部10とロータ軸部20とのつなぎ目を、溶接材料を用いて溶接する(軸部接合工程(S4))。こここで、溶接材料としては、胴部形成工程(S1)で用いた溶接材料、つまり、ロータ胴部母材11aを形成する合金を主成分とする溶接材料を用いる。
次に、ロータ胴部10とロータ軸部20との溶接による接合部を、超音波探傷検査する(接合部検査工程(S5))。この接合部検査工程(S5)では、ロータ胴部10とロータ軸部20との接合部を、この接合部の外周側から超音波探傷検査する。
以上で、ロータRが完成する。
以上、本実施形態のロータRでは、ロータ胴部10が、耐用温度の高いNi基合金で形成されているため、高い耐用温度を確保することができる。また、本実施形態のロータRでは、ロータ胴部10が中空の筒状であり、中実構造の場合と比較すると、超音波探傷検査時における探傷距離が短くなるため、超音波探傷検査による内部欠陥の検出を容易にすることができる。しかも、ロータ胴部10の外周側及び内周側の双方から超音波探傷検査を実施することができ、その場合には、探傷距離を更に短くすることができるため、微細な欠陥でも検出漏れを少なくすることができる。
なお、以上では、胴部形成工程(S1)及び軸部形成工程(S2)を実行した後、部材検査工程(S3)を実行しているが、胴部形成工程(S1)を実行した後にロータ胴部10に対する部材検査工程を実行し、軸部形成工程(S2)を実行した後にロータ軸部20に対する部材検査工程を実行してもよい。また、ここでは、胴部形成工程(S1)を実行した後に、軸部形成工程(S2)を実行しているが、軸部形成工程(S2)を実行した後に、胴部形成工程(S1)を実行してもよい。
「第二実施形態」
次に、本発明に係る蒸気タービンの第二実施形態について、図5を参照して説明する。
本実施形態の蒸気タービンSTの構成は、第一実施形態の蒸気タービンSTの構成と同一である。但し、ロータRのロータ胴部10の形成方法が第一実施形態と異なっている。つまり、本実施形態では、胴部形成工程が第一実施形態と異なっている。そこで、以下では、本実施形態の胴部形成工程について説明する。
本実施形態の胴部形成工程では、まず、図5(a)に示すように、Ni基合金で形成された円筒状の複数のロータ胴部材11を準備する。次に、図5(b)に示すように、複数のロータ胴部材11の中心軸の位置を一致させて、相互に突き合わせる。続いて、突き合わさったロータ胴部材11相互のつなぎ目Faを、第一実施形態で説明した溶接材料を用いて溶接し、円筒状のロータ胴部10を得る。なお、相互に一致した複数のロータ胴部材11の各中心軸は、ロータRの軸線Arとなる。
以上、本実施形態の胴部形成工程で形成したロータ胴部10を用いて、ロータRを製造しても、構造自体は第一実施形態のロータ胴部10と同一構造であるため、本実施形態でも、基本的に第一実施形態と同一の効果を得ることができる。
また、本実施形態では、中空の円筒状の複数のロータ胴部材11を溶接で接合して、ロータ胴部10を形成しているので、材料コストを抑えることができる。
「蒸気タービンの変形例」
次に、本発明に係る蒸気タービンの変形例について、図6を参照して説明する。
本変形例の蒸気タービンSTdも、以上の実施形態の蒸気タービンSTと同様、軸線Arを中心として回転するロータRdと、このロータRdの外周に固定されている複数の動翼25と、ロータRdを回転可能に覆うタービンケーシング30dと、タービンケーシング30dの内周面34に固定されている複数の動翼25と、ロータRdを回転可能に支持すると共に軸封止する軸受・封止部39と、を備えている。
本変形例のタービンケーシング30dには、軸方向Daの中央部に蒸気が流入する蒸気入口32dが形成され、軸方向Daの両端側のそれぞれに蒸気が排出される蒸気排出口33dが形成されている。蒸気入口32dからタービンケーシング30d内に流入した蒸気は、タービンケーシング30d内を中央部から軸方向Da両側に振り分けられて流れ、ロータRdに回転力を付与する。そして、タービンケーシング30dの両端に到達した蒸気は、蒸気排出口33dから排出される。図8に示した矢印S5〜S10は、蒸気の流れ方向を示している。
すなわち、本変形例の蒸気タービンSTdは、ダブルフロー型の蒸気タービンである。
本変形例のロータRdも、以上の各実施形態のロータRと同様、軸線Arを中心として円筒状を成し、外周に複数の動翼25が固定されるロータ胴部10dと、ロータ胴部10dの軸方向Daの両端部に固定されるロータ軸部20と、を有している。また、本変形例のロータRdの製造方法は、以上の複数の実施形態のいずれかの実施形態の製造方法と同一である。従がって、本変形例のロータRdも、以上の実施形態のロータRと同様の効果を得ることができる。但し、ダブルフロー型の蒸気タービンでは、シングルフロー型の蒸気タービンと比較して、ロータ長が長くなる傾向があるため、ロータ胴部10dを構成するロータ胴部材11の数量もこれに対応して多くなる。
なお、以上の実施形態では、ロータ胴部材11をNi基合金で形成しているが、この代わりに、Ni基合金と同程度の耐用温度性能を持つFeNi基合金でロータ胴部材を形成してもよい。このように、ロータ胴部材をFeNi基合金で形成する場合でも、ロータ胴部材相互を溶接する際に用いる溶接材料、及ロータ胴部材とロータ軸部とを溶接する際に用いる溶接材料は、以上と同様、ロータ胴部を形成する合金を主成分とする溶接材料を用いることが好ましい。
また、以上では、ロータ胴部を形成する複数のロータ胴部材の全てをNi基合金又はFeNi基合で形成しているが、ロータ胴部を形成する複数のロータ胴部材のうち、一部を12Cr鋼等の鉄鋼で形成してもよい。この場合、ロータ胴部を形成する複数のロータ胴部材のうち、蒸気の流れの最下流側のロータ胴部材を、12Cr鋼等の鉄鋼により中実構造で形成する。このように、蒸気温度が低下する最も下流側の部分を12Cr鋼等の鉄鋼で形成することにより、製造コストをより抑えることができる。
10,10d:ロータ胴部、10a:ロータ胴母体、10b:中空部、11:ロータ胴部材、11a:ロータ胴部母材、13:翼支持部、20:ロータ軸部、21:軸本体部、22:胴接続部、25:動翼、30,30d:タービンケーシング、32,32d:蒸気入口、33,33d:蒸気排出口、34:内周面、35:静翼、R,Rd:蒸気タービン用ロータ、ST,STd:蒸気タービン

Claims (9)

  1. 軸線に垂直な断面形状が円形を成し、複数の動翼が外周に設けられているロータ胴部と、
    前記軸線が延びる軸方向における前記ロータ胴部の両端に設けられてタービンケーシングに回転自在に支承されるロータ軸部と、
    を備え、
    前記ロータ胴部は、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数のロータ胴部材が、前記軸方向に並び相互に接合されて形成されている、
    ことを特徴とする蒸気タービン用ロータ。
  2. 請求項1に記載の蒸気タービン用ロータにおいて、
    前記ロータ軸部は、鉄鋼で形成されており、前記ロータ胴部に接合されている、
    ことを特徴とする蒸気タービン用ロータ。
  3. 請求項2に記載の蒸気タービン用ロータにおいて、
    前記ロータ軸部と前記ロータ胴部とは、前記ロータ胴部材を形成する合金を主成分とする溶接材料を用いて溶接されている、
    ことを特徴とする蒸気タービン用ロータ。
  4. 請求項1から3のいずれか一項に記載の蒸気タービン用ロータにおいて、
    複数の前記ロータ胴部材は、互いに、該ロータ胴部材を形成する合金を主成分とする溶接材料を用いて溶接されている、
    ことを特徴とする蒸気タービン用ロータ。
  5. 請求項1から4のいずれか一項に記載の蒸気タービン用ロータと、
    前記タービンケーシングと、
    を備えていることを特徴とする蒸気タービン。
  6. 軸線に対して垂直な断面形状が円形を成し、複数の動翼が外周に設けられているロータ胴部を形成する胴部形成工程と、
    前記軸線が延びる軸方向における前記ロータ胴部の両端に設けられてタービンケーシングに回転自在に支承されるロータ軸部を形成する軸部形成工程と、
    前記ロータ胴部の前記両端に前記ロータ軸部を接合する軸部接合工程と、
    を実行し、
    前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数のロータ胴部材が、前記軸方向に並び相互に接合された前記ロータ胴部を形成する、
    ことを特徴とする蒸気タービン用ロータの製造方法。
  7. 請求項6に記載の蒸気タービン用ロータの製造方法において、
    前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として柱状の複数のロータ胴部母材を前記軸方向に並べ、相互に接合して柱状のロータ胴母体を形成した後、該ロータ胴母体の前記軸線上を貫通加工して、前記ロータ胴部を形成する、
    ことを特徴とする蒸気タービン用ロータの製造方法。
  8. 請求項6に記載の蒸気タービン用ロータの製造方法において、
    前記胴部形成工程では、Ni基合金又はFeNi基合金により、前記軸線を中心として筒状の複数の前記ロータ胴部材を前記軸方向に並べ、相互に接合して前記ロータ胴部を形成する、
    ことを特徴とする蒸気タービン用ロータの製造方法。
  9. 請求項6から8のいずれか一項に記載の蒸気タービン用ロータの製造方法において、
    前記軸部接合工程では、前記ロータ胴部材を形成する合金を主材料とする溶接材料を用いて、前記ロータ胴部と前記ロータ軸部とを溶接する、
    ことを特徴とする蒸気タービン用ロータの製造方法。
JP2013044344A 2013-03-06 2013-03-06 蒸気タービン用ロータの製造方法 Expired - Fee Related JP6066777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013044344A JP6066777B2 (ja) 2013-03-06 2013-03-06 蒸気タービン用ロータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013044344A JP6066777B2 (ja) 2013-03-06 2013-03-06 蒸気タービン用ロータの製造方法

Publications (2)

Publication Number Publication Date
JP2014173440A true JP2014173440A (ja) 2014-09-22
JP6066777B2 JP6066777B2 (ja) 2017-01-25

Family

ID=51694955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013044344A Expired - Fee Related JP6066777B2 (ja) 2013-03-06 2013-03-06 蒸気タービン用ロータの製造方法

Country Status (1)

Country Link
JP (1) JP6066777B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307169A (ja) * 2001-03-14 2002-10-22 Alstom (Switzerland) Ltd 互いに異なる温度の熱で負荷される2つの部分を互いに溶接するための方法ならびにこのような方法により製作されたターボ機械
JP2013007282A (ja) * 2011-06-22 2013-01-10 Kawasaki Heavy Ind Ltd タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307169A (ja) * 2001-03-14 2002-10-22 Alstom (Switzerland) Ltd 互いに異なる温度の熱で負荷される2つの部分を互いに溶接するための方法ならびにこのような方法により製作されたターボ機械
JP2013007282A (ja) * 2011-06-22 2013-01-10 Kawasaki Heavy Ind Ltd タービン用ロータおよびその製造方法ならびにNi基超合金材と鋼材の接合方法および構造

Also Published As

Publication number Publication date
JP6066777B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
US20180209280A1 (en) Bladed disc and method of manufacturing the same
JP6234478B2 (ja) ノズルベーンとレバーの接合構造、接合方法及び可変容量型ターボチャージャ
JP6143523B2 (ja) タービンシュラウド組立体及びその形成方法
JP6072930B2 (ja) アンダーラップ端部を有するベリーシール
KR101671603B1 (ko) 정익 세그먼트, 및 이것을 구비하고 있는 축류 유체 기계
JP6087182B2 (ja) 熱分離装置
JP6162951B2 (ja) シール組立体及びタービンの組み立て方法
JP2010190215A (ja) 懸垂線状タービン・シール・システム
JP2011220330A (ja) タービンロータディスク間の取付けアセンブリ及びタービンロータディスクを取付けるための方法
JP6096639B2 (ja) 回転機械
JP6066777B2 (ja) 蒸気タービン用ロータの製造方法
US8517676B2 (en) Welded rotor of a gas turbine engine compressor
US20160115874A1 (en) Liner grommet assembly
US11319879B2 (en) Manufacturing method of turbine casing
JP2011127505A (ja) 板金タービンハウジング
US11047260B2 (en) Turbine casing
US10962117B2 (en) Brush seal with spring-loaded backing plate
US10465546B2 (en) Brush seal with extended backing plate
JP5518232B2 (ja) 板金タービンハウジング
JP2017106414A (ja) ノズルダイヤフラム、タービンおよびノズルダイヤフラムの製造方法
JP5829774B2 (ja) 蒸気タービン
CA2808491C (en) Friction welded turbine disk and shaft
JP5869173B2 (ja) 蒸気タービンのロータ
JP2020139443A (ja) ダイヤフラム、蒸気タービン及びダイヤフラムの製造方法
JP2017025878A (ja) 蒸気タービンロータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R151 Written notification of patent or utility model registration

Ref document number: 6066777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees