JP2014159353A - Composite material and method of producing the same - Google Patents

Composite material and method of producing the same Download PDF

Info

Publication number
JP2014159353A
JP2014159353A JP2013031320A JP2013031320A JP2014159353A JP 2014159353 A JP2014159353 A JP 2014159353A JP 2013031320 A JP2013031320 A JP 2013031320A JP 2013031320 A JP2013031320 A JP 2013031320A JP 2014159353 A JP2014159353 A JP 2014159353A
Authority
JP
Japan
Prior art keywords
composite material
porous body
boron carbide
powder
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013031320A
Other languages
Japanese (ja)
Inventor
Takuya Masuguchi
卓也 益口
Mamoru Ishii
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2013031320A priority Critical patent/JP2014159353A/en
Publication of JP2014159353A publication Critical patent/JP2014159353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material applicable as a high-density and high-strength material, and a method of producing the same.SOLUTION: The composite material in which a porous body is filled with a metal includes: the porous body which is made of boron carbide and has silicon carbide formed on its surface; and a matrix which is made of metallic silicon and fills voids of the porous body. The volume percentage of the porous body is 85% or more, and the elastic modulus of the porous body is 390 GPa or more. Since the porous body has a high density and a large elastic modulus, the composite material is applicable as a high-strength composite material to an impact-resistant material such as a bulletproof member.

Description

本発明は、多孔質体に金属が充填された複合材料およびその製造方法に関する。   The present invention relates to a composite material in which a porous body is filled with a metal and a method for producing the same.

従来、炭化ホウ素の強化材と金属ケイ素のマトリックスとからなる複合材料が知られている。例えば、特許文献1記載の複合材料の製造方法は、炭化ホウ素含有材料を溶融金属ケイ素に混合し事前溶解させることで、製造工程でクラックの発生を防止している。また、特許文献2記載の複合材料の製造方法は、炭化ホウ素の粒子表面に炭素成分をコーティングした多孔質体を作製することで、炭化ホウ素の多孔質体にケイ素を含浸する際に、多孔質体におけるクラックの発生を防止している。   Conventionally, composite materials composed of a boron carbide reinforcement and a metallic silicon matrix are known. For example, the method for manufacturing a composite material described in Patent Document 1 prevents the occurrence of cracks in the manufacturing process by mixing a boron carbide-containing material with molten metal silicon and pre-dissolving it. In addition, the method for producing a composite material described in Patent Document 2 is to produce a porous body in which a boron carbide particle surface is coated with a carbon component, so that the porous body of boron carbide is porous when impregnated with silicon. Prevents the generation of cracks in the body.

特開2012−072026号公報JP 2012-072026 A 特開2013−010669号公報JP 2013-010669 A

上記のような炭化ホウ素粉末を主原料とする多孔質体の作製においては湿式または乾式成形のいずれにおいても、粉原料の成形流動性が悪い。これは炭化ホウ素の硬度が高く被粉砕性に劣るためである。例えば、乾式成形により多孔質体を成形すると、多孔質体中に空気をまき込み大きなボイド(空隙)を発生させることがある。また、空気を含んだ状態の粉末にプレス成形(乾式成形)を行うと、プレス開始時、エアー噴きが生じ、これに伴い金型から原料も噴出する。その結果、原料をロスしたり、規定肉厚の多孔質体の製造が困難になったりするという問題が生じる。   In producing a porous body using boron carbide powder as a main raw material as described above, the molding fluidity of the powder raw material is poor in either wet or dry molding. This is because boron carbide has a high hardness and poor grindability. For example, when a porous body is molded by dry molding, air may be blown into the porous body to generate large voids (voids). Further, when press molding (dry molding) is performed on the powder containing air, air is blown at the start of pressing, and the raw material is also ejected from the mold. As a result, there are problems that raw materials are lost and that it is difficult to produce a porous body having a specified thickness.

また、多孔質体中に大きなボイドが含まれることにより、位置により多孔質体密度に差が生じる。上記の多孔質体を作製すると自身の密度差による強度不足、割れ、Si浸透または加熱する際にクリープ等変形からの不良が発生する。このような不良が生じると、高強度の材料として、例えば耐衝撃材料に応用することができない。   Moreover, when a big void is contained in a porous body, a difference arises in a porous body density by a position. When the above porous body is produced, the strength is insufficient due to its own density difference, cracks, Si penetration, or defects such as creep when heated. When such a defect occurs, it cannot be applied as a high-strength material, for example, an impact resistant material.

本発明は、このような事情に鑑みてなされたものであり、高密度かつ高強度の材料として応用できる複合材料およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the composite material which can be applied as a high-density and high intensity | strength material, and its manufacturing method.

(1)上記の目的を達成するため、本発明の複合材料は、多孔質体に金属が充填された複合材料であって、炭化ホウ素からなり、表面に炭化ケイ素が形成された多孔質体と、金属ケイ素または金属ケイ素を含む合金からなり、前記多孔質体のボイドに充填されたマトリックスと、を備え、前記多孔質体の体積%が85%以上であり、弾性率が390GPa以上であることを特徴としている。このように、本発明の複合材料は、多孔質体の密度が高く、弾性率が大きいことから、高強度の複合材料として、例えば防弾部材等の耐衝撃材料に応用できる。   (1) In order to achieve the above object, a composite material of the present invention is a composite material in which a porous body is filled with a metal, which is made of boron carbide and has a surface on which silicon carbide is formed. A matrix made of metal silicon or an alloy containing metal silicon and filled with voids of the porous body, and the volume% of the porous body is 85% or more and the elastic modulus is 390 GPa or more. It is characterized by. Thus, since the composite material of the present invention has a high density of the porous body and a large elastic modulus, it can be applied as a high-strength composite material, for example, an impact resistant material such as a bulletproof member.

(2)また、本発明の複合材料は、断面に対して測定されたボイド量/ボイド径が、57mm-1以下であることを特徴としている。複合材料は、密度が均質で、断面におけるボイド量/ボイド径が小さくなっているため、製造工程で応力が残留したり、割れが生じることが無くなる。 (2) Further, the composite material of the present invention is characterized in that the void amount / void diameter measured with respect to the cross section is 57 mm −1 or less. Since the composite material has a uniform density and the void amount / void diameter in the cross section is small, no stress remains or cracks do not occur in the manufacturing process.

(3)また、本発明の複合材料の製造方法は、多孔質体に金属が充填された複合材料の製造方法であって、炭化ホウ素の粉粒体を、滑材でコーティングする工程と、前記コーティングされた炭化ホウ素の粉粒体に炭素源を追加して得られた原料粉末をプレスする工程と、前記プレスされた原料粉末に、金属ケイ素または金属ケイ素を含む合金からなるマトリックスを浸透させる工程と、を含むことを特徴としている。このように、滑材で炭化ホウ素粒子をコーティングし、プレスすることで原料粉末の流動性が確保され、密度が均質な成形体を作製できる。また、炭素源が金属ケイ素と反応して炭化ケイ素を生成することで多孔質体(強化材)が増加する。その結果、高強度の複合材料を実現できる。   (3) Moreover, the method for producing a composite material according to the present invention is a method for producing a composite material in which a porous body is filled with metal, the step of coating boron carbide particles with a lubricant, A step of pressing a raw material powder obtained by adding a carbon source to the coated boron carbide powder, and a step of infiltrating the pressed raw material powder with a matrix made of metal silicon or an alloy containing metal silicon It is characterized by including. Thus, by coating the boron carbide particles with the lubricant and pressing, the fluidity of the raw material powder is ensured, and a compact having a uniform density can be produced. Moreover, a porous body (reinforcing material) increases because a carbon source reacts with metallic silicon to produce silicon carbide. As a result, a high-strength composite material can be realized.

(4)また、本発明の複合材料の製造方法は、前記滑材として、炭化水素系液体を用いることを特徴としている。このように炭化水素系液体の滑材を用いることで、成形体作製時の成形流動性を確保し、多孔質体の密度を高くするとともに均質化することができる。   (4) Moreover, the manufacturing method of the composite material of this invention is characterized by using a hydrocarbon-type liquid as said lubricating material. Thus, by using the hydrocarbon-based liquid lubricant, it is possible to ensure the molding fluidity during the production of the molded body, to increase the density of the porous body and to homogenize it.

本発明によれば、複合材料の多孔質体の密度が高く、弾性率が大きいことから、高強度の複合材料として、例えば防弾部材等の耐衝撃材料に応用できる。   According to the present invention, since the density of the porous body of the composite material is high and the elastic modulus is large, the composite material can be applied to an impact resistant material such as a bulletproof member, for example, as a high-strength composite material.

複号材料の製造方法の一例を示したフローチャートである。It is the flowchart which showed an example of the manufacturing method of compound material.

以下に、本発明の実施形態を図面に沿って説明する。なお、以下の説明で、「成形体」は、炭化ホウ素、滑材、バインダ等により工程の途上で成形されたものを指し、「多孔質体」は、炭化ホウ素および炭化ケイ素で形成され、完成した複合材料の強化材を形成する部分を指す。「成形体」は工程後の「多孔質体」に相当する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, “molded body” refers to a product molded in the course of the process using boron carbide, a lubricant, a binder, etc., and the “porous body” is formed of boron carbide and silicon carbide and completed. It refers to the part of the composite material that forms the reinforcement. The “molded body” corresponds to the “porous body” after the process.

(複合材料の構成)
本発明のB4C/SiC/Si複合材料(以下、単に「複合材料」と呼ぶ)は、主に炭化ホウ素(B4C、ボロンカーバイド)の粉粒体からなり、表面に炭化ケイ素が形成された多孔質体と、金属ケイ素のマトリックスとを備えている。複合材料は、多孔質体のボイドにマトリックスが充填された構造を有している。多孔質体の骨格を構成する炭化ホウ素の粒子の表面には、炭化ケイ素(SiC)の被膜が形成されている。
(Composition of composite material)
The B 4 C / SiC / Si composite material of the present invention (hereinafter simply referred to as “composite material”) is mainly composed of a powder of boron carbide (B 4 C, boron carbide), and silicon carbide is formed on the surface. And a porous metal body and a matrix of metallic silicon. The composite material has a structure in which a matrix is filled in a void of a porous body. A silicon carbide (SiC) film is formed on the surface of the boron carbide particles constituting the skeleton of the porous body.

複合材料は、密度が均質な多孔質体にマトリックスが充填されており、断面に対して測定されたボイド量/ボイド径が、57mm-1以下である。このように断面におけるボイド量/ボイド径が小さく、密度が均質であるということは、複合材料を形成する多孔質体も密度が均質であり、マトリックスが十分に充填されていることを表している。そのため、製造工程で応力が残留したり、割れが生じることが無くなる。一方で、金属ケイ素の浸透を考慮すると、断面に対して測定されたボイド量/ボイド径は、50mm-1以上程度が好ましい。 In the composite material, a porous body having a uniform density is filled with a matrix, and the void amount / void diameter measured with respect to the cross section is 57 mm −1 or less. The fact that the void amount / void diameter in the cross section is small and the density is uniform in this way indicates that the porous body forming the composite material is also uniform in density and sufficiently filled with the matrix. . Therefore, no stress remains in the manufacturing process and no cracks occur. On the other hand, considering the penetration of metal silicon, the void amount / void diameter measured with respect to the cross section is preferably about 50 mm −1 or more.

その結果、複合材料における多孔質体の体積%は85%以上であり、複合材料の弾性率は390GPa以上となっている。多孔質体の密度が高く、弾性率が大きいことから、高強度の複合材料として、例えば防弾部材等の耐衝撃材料に好適である。   As a result, the volume% of the porous body in the composite material is 85% or more, and the elastic modulus of the composite material is 390 GPa or more. Since the density of the porous body is high and the elastic modulus is high, it is suitable as a high-strength composite material, for example, an impact resistant material such as a bulletproof member.

また、金属基複合材料の製品は、薄物の方がボイドの影響を受けて破損等が生じやすい。したがって、上記の通りボイドの少ない本発明の複合材料は、薄物への適用に好ましい。例えば、厚さ10mm以下の板形状の製品に複合材料を応用することでその特性を活かすことができる。   In addition, in a metal matrix composite product, a thin material is more likely to be damaged due to the influence of voids. Therefore, as described above, the composite material of the present invention having few voids is preferable for application to thin objects. For example, the characteristics can be utilized by applying a composite material to a plate-shaped product having a thickness of 10 mm or less.

このような複合材料は、炭化ホウ素の成形体に金属ケイ素を浸透することで得られる。その際には、炭化ホウ素粒子の表面を滑材でコーティングしておく。滑材とは、粒子同士の摩擦を軽減させる目的で使用される添加剤をいう。マトリックスは、金属ケイ素の単体でも合金でもよい。なお、複合材料は、実質的に炭化ホウ素の粉粒体、金属ケイ素のマトリックス、炭化ケイ素の反応生成物とからなるものであり、若干の不純物を含んでいてもよい。   Such a composite material can be obtained by infiltrating metal silicon into a boron carbide molded body. In that case, the surface of the boron carbide particles is coated with a lubricant. A lubricant is an additive used for the purpose of reducing friction between particles. The matrix may be metallic silicon alone or an alloy. The composite material is substantially composed of boron carbide particles, a metal silicon matrix, and a silicon carbide reaction product, and may contain some impurities.

(複合材料の製造方法)
上記のように構成される複合材料の製造方法を説明する。図1は、複合材料の製造方法の一例を示したフローチャートである。図1に示すように、まず、炭化ホウ素の粒子表面に滑材をコーティングする。
(Production method of composite material)
The manufacturing method of the composite material comprised as mentioned above is demonstrated. FIG. 1 is a flowchart showing an example of a method for manufacturing a composite material. As shown in FIG. 1, first, a lubricant is coated on the surface of boron carbide particles.

<滑材のコーティング>
まず、炭化ホウ素粉末を主原料とする原料粉末を乾式成形し、成形体を作製する。原料粉末を生成する際には、粉原料の成形流動性を確保するために、炭化ホウ素粉末に潤滑を促す滑材(助剤)で炭化ホウ素粉末をコーティングする(ステップS1)。このように、炭化ホウ素粉末に滑材コーティングすることで非加熱プレス成形にて流動性を確保でき、加熱プレス時には滑材が溶融することでさらに流動性を確保できる。
<Coating of lubricant>
First, a raw material powder containing boron carbide powder as a main raw material is dry-molded to produce a molded body. When producing the raw material powder, the boron carbide powder is coated with a lubricant (auxiliary) that promotes lubrication of the boron carbide powder in order to ensure the molding fluidity of the powder raw material (step S1). Thus, fluidity can be secured by non-heat press molding by coating the boron carbide powder with a lubricant, and fluidity can be further secured by melting the lubricant during the hot pressing.

コーティングは、炭化ホウ素粉末の0.5wt%以上、2.5wt%以下の滑材を、炭化ホウ素粉末の2.5wt%以上、4.5wt%以下のイオン交換水とを混ぜた混合液を用いて行う。滑材が少ないと、コートによる効果が低く、ボイド量が小さくならず成形体(および複合材料中の多孔質体)の密度が上がらない。一方、滑材が多すぎても成形体の密度が低下する。滑材としてはポリエチレン水溶液のような炭化水素系液体が好ましい。その他、ステアリン酸アンモニウム、ステアリン酸、特殊エステル系化合物、マイクロ・クリスタリンワックスを滑材として用いてもよい。その後、粗粒と細粒とが適度に分布した炭化ホウ素粉末と一緒に容器に投入し、混合する。なお、混合に代えて浸漬、スプレー噴霧の方法を行ってもよいが、混合が好ましい。   For coating, a mixed liquid in which 0.5 wt% or more and 2.5 wt% or less of boron carbide powder is mixed with 2.5 wt% or more and 4.5 wt% or less of ion-exchanged water of boron carbide powder is used. Do it. If the amount of the lubricant is small, the effect of the coating is low, the amount of voids is not reduced, and the density of the molded body (and the porous body in the composite material) does not increase. On the other hand, even if there is too much lubricant, the density of a molded object falls. The lubricant is preferably a hydrocarbon liquid such as an aqueous polyethylene solution. In addition, ammonium stearate, stearic acid, special ester compounds, and microcrystalline wax may be used as the lubricant. Thereafter, the mixture is put into a container together with boron carbide powder in which coarse particles and fine particles are appropriately distributed and mixed. In place of mixing, dipping or spraying may be performed, but mixing is preferable.

混合した原料を篩にて解砕してほぐし、水分を揮発させるため、バット乾燥する(ステップS2)。乾燥後にも再度、篩にてほぐすことが好ましい。このようにして、炭化水素系液体の炭化ホウ素粉末へのコーティングを完了する。   The mixed raw material is crushed and loosened with a sieve, and bat dried to volatilize water (step S2). It is preferable to loosen with a sieve again after drying. In this way, the coating of the hydrocarbon-based liquid on the boron carbide powder is completed.

次に、コーティングを完了した原料粉末に熱硬化性の有機粉末バインダを外割15wt%以上、外割25wt%以下添加し、更に、セラミックス強化材の増量を目的として、成形体中の空隙に入り込む大きさの炭素源(コークス粉)を外割10wt%以上、外割20wt%以下添加し(ステップS3)、ボールミル混合する。バインダが少ないと、その効果が低くなり、成形不良が生じる。一方、バインダが多いと、充填不良が発生し、成形時等に割れが発生する。   Next, a thermosetting organic powder binder is added to the raw material powder that has been coated in an outer split of 15 wt% or more and an outer split of 25 wt% or less, and further enters the voids in the molded body for the purpose of increasing the amount of the ceramic reinforcing material. A carbon source (coke powder) having a size of 10 wt% or more and 20 wt% or less of the outer portion is added (step S3), and ball mill mixing is performed. When there is little binder, the effect will become low and a molding defect will arise. On the other hand, if there are many binders, filling failure will occur and cracks will occur during molding.

<仮プレス>
金型中にバインダ、炭素源を添加された原料粉末を空気を巻込まないように投入し、原料を均等な厚み(嵩)になるように、治具で均し、蓋を閉める。この状態で上下熱板付きの一軸プレス機にて加熱せずに仮プレスを行う(ステップS4)。このとき、低速非加熱、低圧0.4MPa以上、1.2MPa以下にてプレスすることで、均された原料中の空気を押し出しつつ原料噴出しを防止できる。仮プレスで空気を押出すため、加熱成形時に熱伝達を向上し原料の流動性も向上できる。仮プレスの加圧力が低いと、充填不良となり、密度が上がらない。一方、加圧力高すぎるときには、低速のプレスであれば充填するが、そうでなければ、粉末が噴出する。
<Temporary press>
Raw material powder to which a binder and a carbon source have been added is put into the mold so as not to entrain air, and the raw material is leveled with a jig so as to have an even thickness (bulk), and the lid is closed. In this state, temporary pressing is performed without heating with a uniaxial pressing machine with upper and lower heating plates (step S4). At this time, by pressing at a low speed, non-heating, and a low pressure of 0.4 MPa or more and 1.2 MPa or less, it is possible to prevent the ejection of the raw material while extruding the air in the leveled raw material. Since air is extruded by a temporary press, heat transfer can be improved during heat molding and the fluidity of the raw material can be improved. If the pressing force of the temporary press is low, filling will be poor and the density will not increase. On the other hand, when the pressurizing force is too high, if it is a low-speed press, it is filled. Otherwise, the powder is ejected.

<加熱加圧プレス>
仮プレス完了後、一軸プレス機の上下熱板を90℃以上、200℃以下に加熱し、温度が到達した時点で、金型一式を機内に設置し、加熱と加圧を開始する。2.0MPa以上、4.0MPa以下の圧力を1時間以上保持する。これにより、バインダ、滑材が加熱されて軟化し、粉末流動性が良好となる。その後、加熱、加圧したまま1時間以上保持する(ステップS5)。その結果、バインダが硬化し、成形体が保型できるようになる。このようにして成形(乾式成形)を完了する。
<Heat and pressure press>
After the temporary pressing is completed, the upper and lower heating plates of the single-screw press are heated to 90 ° C. or higher and 200 ° C. or lower, and when the temperature reaches, the mold set is installed in the machine and heating and pressurization are started. A pressure of 2.0 MPa or more and 4.0 MPa or less is maintained for 1 hour or more. Thereby, a binder and a lubricating material are heated and softened, and powder fluidity | liquidity becomes favorable. Then, it hold | maintains 1 hour or more with heating and pressurizing (step S5). As a result, the binder is cured and the molded body can be retained. In this way, molding (dry molding) is completed.

<脱型>
プレス機から金型一式を取り出し(ステップS6)、常温まで冷却する。その後、金型を脱型し、成形体取り出す。そして、成形体の外観、重量、密度等チェックを行った後、乾燥加熱し、成形体を乾燥硬化させる(ステップS7)。
<Demolding>
A set of dies is taken out from the press machine (step S6) and cooled to room temperature. Thereafter, the mold is removed and the molded body is taken out. Then, after checking the appearance, weight, density, etc. of the molded body, it is dried and heated to dry and cure the molded body (step S7).

<金属ケイ素浸透>
次に、容器内に乾燥硬化させた成形体、金属ケイ素の合金を設置し、その合金上に、反応抑制ドープ材として炭化ホウ素粉末を添加する(ステップS8)。
<Metallic silicon penetration>
Next, a dry-cured compact and metal silicon alloy are placed in the container, and boron carbide powder is added as a reaction-suppressing dope on the alloy (step S8).

得られたレイアップ品一式は、真空雰囲気にて1475℃付近で加熱する(ステップS9)。なお、金属ケイ素の融点が1414℃であるため、理論的には1414℃以上であれば金属ケイ素は融解するが、十分に融解を進めさせるためには1420℃以上であることが好ましく、特に、1475℃程度であることが好ましい。   The obtained set of lay-up products is heated at around 1475 ° C. in a vacuum atmosphere (step S9). In addition, since the melting point of metal silicon is 1414 ° C., the metal silicon melts theoretically if it is 1414 ° C. or higher, but it is preferably 1420 ° C. or higher in order to sufficiently promote the melting, It is preferable that it is about 1475 degreeC.

上記の工程により、溶融した金属ケイ素が多孔質体のボイドに浸透する。その際には、溶融金属が炭化ホウ素の表面にコーティングされた炭素成分に接触し、炭化ホウ素の表面に炭化ケイ素の被膜が形成される。   Through the above process, the molten metal silicon penetrates into the voids of the porous body. At that time, the molten metal comes into contact with the carbon component coated on the surface of boron carbide, and a silicon carbide film is formed on the surface of boron carbide.

<冷却後、取り出し>
冷却後、得られた複合材料を取り出す(ステップS10)。このようにして複合材料を作製できる。複合材料は、コーティングした炭素成分の分だけ形成される炭化ケイ素の量が増え、形成された炭化ケイ素も多孔質体の一部となっている。このような複合材料は、高強度材料として、例えば防弾部材のような耐衝撃材料に用いることができる。
<After cooling, take out>
After cooling, the obtained composite material is taken out (step S10). In this way, a composite material can be produced. In the composite material, the amount of silicon carbide formed corresponding to the coated carbon component increases, and the formed silicon carbide is also part of the porous body. Such a composite material can be used as a high-strength material, for example, an impact-resistant material such as a bulletproof member.

(実施例1、比較例1)
上記の製造方法に沿って、実際に複合材料を作製し、特性を測定した。具体的な作製条件と結果を以下に説明する。まず、滑材には、ポリエチレン水溶物を主成分とするもの(サンノプコ(株)製 PEM−17)を用いた。径が90μm以下の粒子を粗粒とし径が20μm以下の粒子を細粒としたとき、粗粒と細粒との比が7:3である炭化ホウ素粉末を準備し、滑材とイオン交換水との混合液とともに容器に投入し、ボールミルで16〜20時間混合した。混合した原料は篩にてほぐし、水分を揮発させるため、150℃にて20時間以上バット乾燥した。乾燥後にも凝集するため再度、篩にてほぐした。
(Example 1, Comparative Example 1)
In accordance with the above manufacturing method, a composite material was actually produced and its characteristics were measured. Specific production conditions and results will be described below. First, a lubricant mainly composed of a water-soluble polyethylene (PEM-17 manufactured by San Nopco Co., Ltd.) was used as the lubricant. When particles having a diameter of 90 μm or less are coarse particles and particles having a diameter of 20 μm or less are fine particles, boron carbide powder having a ratio of coarse particles to fine particles of 7: 3 is prepared, and the lubricant and ion-exchanged water are prepared. And the mixed solution was mixed in a ball mill for 16 to 20 hours. The mixed raw material was loosened with a sieve and bat dried for 20 hours or more at 150 ° C. to volatilize water. Since it aggregates even after drying, it was loosened again with a sieve.

コーティングした原料に有機粉末バインダを20wt%、更に、セラミックス強化材増量目的として、多孔質体中の空隙に入り込む大きさのコークス粉(カーボン粉末:6μm)を15wt%添加し16〜20時間ボールミル混合した。このようにして、原料粉末を調整した。   Add 20 wt% of organic powder binder to the coated raw material, and add 15 wt% of coke powder (carbon powder: 6 μm) that can enter the voids in the porous material for the purpose of increasing the amount of ceramic reinforcement. did. In this way, the raw material powder was prepared.

そして、鉄、およびアルミ材からなる金型中に上記の調整された原料粉末を空気を巻込まないように投入した。原料粉末を均等な厚みになるように、治具で均し、蓋を閉め、仮プレスした。仮プレス完了後、一軸プレス機により加熱したまま加圧を行った。   Then, the adjusted raw material powder was put into a mold made of iron and aluminum so as not to entrain air. The raw material powder was leveled with a jig so as to have a uniform thickness, the lid was closed, and temporary pressing was performed. After the temporary pressing was completed, pressurization was performed while heating with a single screw press.

次に、金型一式を冷却し多孔質体を取り出し、バリ等の除去した。そして、150℃で20時間以上、乾燥加熱した。このようにして得られた多孔質体の密度をアルキメデス法で測定したところ、密度が1.79×103kg/m3(R:0.07×103)で、気孔率が14.66%であった。同様に、従来の方法(滑材の添加なしでバインダおよび炭素源は実施例と同等に添加し、実施例と同様に成形する方法)で得られた成形体の密度を測定したところ、密度が1.74×103kg/m3(R:0.2×103)で、気孔率が17.52%であった(比較例1)。以上の結果から、本発明の複合材料は、気孔率減少により密度が向上し、密度が均質化していることが分かった。 Next, the mold set was cooled, the porous body was taken out, and burrs and the like were removed. And it dried and heated at 150 degreeC for 20 hours or more. When the density of the porous body thus obtained was measured by the Archimedes method, the density was 1.79 × 10 3 kg / m 3 (R: 0.07 × 10 3 ) and the porosity was 14.66. %Met. Similarly, when the density of a molded body obtained by a conventional method (a method in which a binder and a carbon source are added in the same manner as in the example without addition of a lubricant and molded in the same manner as in the example), the density is measured. It was 1.74 × 10 3 kg / m 3 (R: 0.2 × 10 3 ), and the porosity was 17.52% (Comparative Example 1). From the above results, it was found that the density of the composite material of the present invention was improved and the density was homogenized by decreasing the porosity.

次に、カーボン製の浸透容器内に成形体、金属ケイ素合金を配置し、反応抑制ドープ材としてケイ素合金の18wt%に当たる40μm以下の炭化ホウ素粉末を添加し、真空雰囲気にて1475℃で金属ケイ素を含浸させた。そして、得られた複合材料の表面全体をセラミックス砥粒のブラスト機にて研磨処理した。   Next, a compact and a metal silicon alloy are placed in a carbon infiltration container, boron carbide powder of 40 μm or less corresponding to 18 wt% of the silicon alloy is added as a reaction suppression dope, and metal silicon is obtained at 1475 ° C. in a vacuum atmosphere. Was impregnated. And the whole surface of the obtained composite material was grind | polished with the blasting machine of the ceramic abrasive grain.

得られた複合材料の炭化ホウ素、炭化ケイ素、金属ケイ素の体積比を測定したところ、B4C/SiC/Si=52:35:13であった。したがって、多孔質体の割合の合計がvf87%であることが分かった。複合材料(実施例1)の弾性率を測定したところ(JIS R 1602)、394GPaであった。従来材料(比較例1)についても同様の測定を行ったところ、炭化ホウ素、炭化ケイ素、金属ケイ素の体積比は、B4C/SiC/Si=48:35:17であった。したがって、多孔質体の割合の合計がvf83%である。また、弾性率は380GPaであった。 When the volume ratio of boron carbide, silicon carbide, and metal silicon of the obtained composite material was measured, it was B 4 C / SiC / Si = 52: 35: 13. Therefore, it was found that the total ratio of the porous body was vf 87%. When the elastic modulus of the composite material (Example 1) was measured (JIS R 1602), it was 394 GPa. When the same measurement was performed on the conventional material (Comparative Example 1), the volume ratio of boron carbide, silicon carbide, and metal silicon was B 4 C / SiC / Si = 48: 35: 17. Therefore, the total ratio of the porous body is vf 83%. The elastic modulus was 380 GPa.

また、得られた複合材料を切断し、断面のボイド量およびボイド径を測定した。ボイド量およびボイド径は、水銀圧入法による細孔分布測定(JIS R 1655)で求めた。このようにして測定したボイド量およびボイド径から、ボイド量/ボイド径を算出したところ、平均で51.85mm-1だった。従来材料についても同様の測定を行ったところ、ボイド量/ボイド径は、平均で58.62mm-1だった。この結果から、本発明の複合材料は、ボイド量/ボイド径が小さく、密度が均質であることが分かった。 Moreover, the obtained composite material was cut | disconnected and the void amount and void diameter of a cross section were measured. The void amount and the void diameter were determined by measurement of pore distribution by a mercury intrusion method (JIS R 1655). The void amount / void diameter was calculated from the void amount and the void diameter thus measured, and the average was 51.85 mm −1 . When the same measurement was performed for the conventional material, the void amount / void diameter averaged 58.62 mm −1 . From this result, it was found that the composite material of the present invention had a small void amount / void diameter and a uniform density.

(実施例2、3、比較例2、3)
上記の例とは異なる条件でも、複合材料を作製し、測定した。表1は、各実施例、比較例の作製条件および測定結果をまとめた表である。実施例1と同様の条件で、滑材の添加量を炭化ホウ素比で1.5wt%から2.0wt%および1.0wt%のそれぞれに変えて複合材料を作製した(実施例2、3)。これらの実施例2、3のボイド量/径の値から分かるように、実施例2では実施例1に比べやや特性が向上し、実施例3ではやや劣化した。
(Examples 2 and 3, Comparative Examples 2 and 3)
A composite material was prepared and measured under different conditions from the above examples. Table 1 is a table summarizing the production conditions and measurement results of each example and comparative example. A composite material was produced under the same conditions as in Example 1 except that the amount of lubricant added was changed from 1.5 wt% to 2.0 wt% and 1.0 wt% in boron carbide ratio (Examples 2 and 3). . As can be seen from the void amount / diameter values of Examples 2 and 3, the characteristics of Example 2 were slightly improved as compared to Example 1, and slightly deteriorated in Example 3.

一方、比較例1と同様の条件で、滑材の添加量を炭化ホウ素比で3.0wt%および0.4wt%のそれぞれに変えて複合材料を作製した(比較例2、3)。得られた比較例2、3では、いずれのボイド量/径の値がいずれも58mm-1であり、比較例1と同等の特性が得られた。

Figure 2014159353
On the other hand, composite materials were produced under the same conditions as in Comparative Example 1 except that the amount of lubricant added was changed to 3.0 wt% and 0.4 wt% in boron carbide ratio (Comparative Examples 2 and 3). In Comparative Examples 2 and 3 obtained, the value of any void amount / diameter was 58 mm −1 , and the same characteristics as Comparative Example 1 were obtained.
Figure 2014159353

Claims (4)

多孔質体に金属が充填された複合材料であって、
炭化ホウ素からなり、表面に炭化ケイ素が形成された多孔質体と、
金属ケイ素または金属ケイ素を含む合金からなり、前記多孔質体のボイドに充填されたマトリックスと、を備え、
前記多孔質体の体積%が85%以上であり、弾性率が390GPa以上であることを特徴とする複合材料。
A composite material in which a porous body is filled with metal,
A porous body made of boron carbide and having silicon carbide formed on the surface;
A matrix made of metal silicon or an alloy containing metal silicon, and filled with voids of the porous body,
A composite material, wherein the porous body has a volume% of 85% or more and an elastic modulus of 390 GPa or more.
断面に対して測定されたボイド量/ボイド径が、57mm-1以下であることを特徴とする請求項1記載の複合材料。 The composite material according to claim 1, wherein the void amount / void diameter measured with respect to the cross section is 57 mm -1 or less. 多孔質体に金属が充填された複合材料の製造方法であって、
炭化ホウ素の粉粒体を、滑材でコーティングする工程と、
前記コーティングされた炭化ホウ素の粉粒体に炭素源を追加して得られた原料粉末をプレスする工程と、
前記プレスされた原料粉末に、金属ケイ素または金属ケイ素を含む合金からなるマトリックスを浸透させる工程と、を含むことを特徴とする複合材料の製造方法。
A method for producing a composite material in which a porous body is filled with metal,
Coating boron carbide powder with a lubricant,
Pressing a raw material powder obtained by adding a carbon source to the coated boron carbide powder;
Impregnating the pressed raw material powder with a matrix made of metallic silicon or an alloy containing metallic silicon, and a method for producing a composite material.
前記滑材として、炭化水素系液体を用いることを特徴とする請求項3記載の複合材料の製造方法。

The method for producing a composite material according to claim 3, wherein a hydrocarbon-based liquid is used as the lubricant.

JP2013031320A 2013-02-20 2013-02-20 Composite material and method of producing the same Pending JP2014159353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031320A JP2014159353A (en) 2013-02-20 2013-02-20 Composite material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031320A JP2014159353A (en) 2013-02-20 2013-02-20 Composite material and method of producing the same

Publications (1)

Publication Number Publication Date
JP2014159353A true JP2014159353A (en) 2014-09-04

Family

ID=51611391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031320A Pending JP2014159353A (en) 2013-02-20 2013-02-20 Composite material and method of producing the same

Country Status (1)

Country Link
JP (1) JP2014159353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012911B1 (en) * 2021-01-26 2022-01-28 三菱電機株式会社 Manufacturing method of composite ceramic material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741365A (en) * 1990-02-21 1995-02-10 Dow Corning Corp Preparation of high-density boron carbide ceramics
JPH08119741A (en) * 1994-10-17 1996-05-14 Toyo Tanso Kk Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JP2008273753A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
JP2009249217A (en) * 2008-04-04 2009-10-29 Toto Ltd Boron carbide/silicon carbide/silicon composite material and method for producing the same
JP2010202488A (en) * 2008-04-04 2010-09-16 Toto Ltd Boron carbide/silicon carbide/silicon complex material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741365A (en) * 1990-02-21 1995-02-10 Dow Corning Corp Preparation of high-density boron carbide ceramics
JPH08119741A (en) * 1994-10-17 1996-05-14 Toyo Tanso Kk Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact
JP2008273753A (en) * 2007-04-25 2008-11-13 Kyocera Corp Boron carbide-based sintered compact and protective member
JP2009249217A (en) * 2008-04-04 2009-10-29 Toto Ltd Boron carbide/silicon carbide/silicon composite material and method for producing the same
JP2010202488A (en) * 2008-04-04 2010-09-16 Toto Ltd Boron carbide/silicon carbide/silicon complex material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012911B1 (en) * 2021-01-26 2022-01-28 三菱電機株式会社 Manufacturing method of composite ceramic material
WO2022162727A1 (en) * 2021-01-26 2022-08-04 三菱電機株式会社 Composite ceramic material and method for manufacturing composite ceramic material

Similar Documents

Publication Publication Date Title
EP2657207A1 (en) Method of producing a melt-infiltrated ceramic matrix composite article
CN105541331B (en) A kind of Ti3siC2the preparation method of/SiC FGM
JPS6141867B2 (en)
WO2007010848A1 (en) Resin-coated sand for use in cast steel, casting mold made of the sand, steel casting casted using the casting mold
JP2017535667A (en) Titanium-based composition, method for producing the same, and method for using the same
EP3523371B1 (en) A thermoplastic mounting medium and a method of its manufacture
US11384809B2 (en) Sintered friction material and production method for sintered friction material
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2014159353A (en) Composite material and method of producing the same
RU2621241C1 (en) Nanostructured composite material based on boron carbide and the method of its obtaining
EP3875561B1 (en) Sintered friction material and method for producing sintered friction material
JP5601833B2 (en) Method for producing metal-ceramic composite material
JP5320132B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2011093758A (en) Carbonaceous material
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
US10646916B2 (en) Composition and method to form displacements for use in metal casting
US20170080481A1 (en) Casting green sand mold for forming cast steel article and its production method, and method for producing cast steel article using such green sand mold
TWI628064B (en) Method of manufacturing graphite molds, graphite molds manufactured by the method, and use thereof
JP5379059B2 (en) Method for producing SiC / Si composite material
KR101865571B1 (en) Ceramic joining material for repairing carbonaceous block
JP2007245251A (en) Grinding tool, and its manufacturing method
JP4781934B2 (en) Method for producing aluminum alloy matrix composite
RU2257297C1 (en) Method of manufacture of sliding bearings
JP2000046078A (en) Backing plate for brake pad and manufacture of backing plate
EP3124455B1 (en) Method for the production of a fibre-reinforced carbon-ceramic composite material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170321