JP2014130905A - Vacuum suction device and manufacturing method therefor - Google Patents

Vacuum suction device and manufacturing method therefor Download PDF

Info

Publication number
JP2014130905A
JP2014130905A JP2012287544A JP2012287544A JP2014130905A JP 2014130905 A JP2014130905 A JP 2014130905A JP 2012287544 A JP2012287544 A JP 2012287544A JP 2012287544 A JP2012287544 A JP 2012287544A JP 2014130905 A JP2014130905 A JP 2014130905A
Authority
JP
Japan
Prior art keywords
particles
skeletal
vacuum suction
suction device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012287544A
Other languages
Japanese (ja)
Other versions
JP6159987B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Ai Hayasaka
愛 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2012287544A priority Critical patent/JP6159987B2/en
Publication of JP2014130905A publication Critical patent/JP2014130905A/en
Application granted granted Critical
Publication of JP6159987B2 publication Critical patent/JP6159987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum suction device which allows for grinding of a substrate with high accuracy, by suppressing the shedding when grinding the suction face of a mounting part, and to provide a manufacturing method therefor.SOLUTION: A vacuum suction device for holding a processed substrate comprises a mounting part having a mounting surface for suction holding a target substrate, where first skeletal particles 11 having an average particle size of 60 μm or less, and second skeletal particles 13 existing at a mass ratio of 0.15-0.45 for the first skeletal particles 11 and having an average particle size of 1/5 or less of the first skeletal particles 11 are bonded by a bonding material 12 to form a porous body, and having a Rockwell hardness of 80 HRH, and a support part consisting of a dense body formed by integral sintering with substantially no gap with the mounting part, and having a suction hole communicating with the pore of the mounting part.

Description

本発明は、加工用の基板を吸着保持する真空吸着装置およびその製造方法に関する。   The present invention relates to a vacuum suction apparatus for sucking and holding a processing substrate and a method for manufacturing the same.

従来、半導体ウエハ等の基板を搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が用いられている。そのような真空吸着装置には、均一な吸着が求められるため、多孔質体により基板の全面を吸着保持するものが検討されている。   Conventionally, when a substrate such as a semiconductor wafer is transported, processed, or inspected, a vacuum suction device using a vacuum pressure has been used. Since such a vacuum suction device is required to have uniform suction, a device that holds the entire surface of the substrate by suction with a porous material has been studied.

例えば、多孔質体からなる載置部を支持部および基台に樹脂またはガラス等の接着剤により接合した真空吸着装置が提案されている(特許文献1参照)。このような真空吸着装置では、支持部は、非多孔質からなり載置部の外周を取り囲んでおり、基台は緻密質体である。そして、下方の吸気孔より真空吸引することにより、載置部の吸着面に基板を固定できるように形成されている。   For example, a vacuum suction device has been proposed in which a placing portion made of a porous body is joined to a support portion and a base with an adhesive such as resin or glass (see Patent Document 1). In such a vacuum suction device, the support part is made of non-porous material and surrounds the outer periphery of the mounting part, and the base is a dense body. And it forms so that a board | substrate can be fixed to the adsorption | suction surface of a mounting part by carrying out vacuum suction from the lower suction hole.

しかし、このような多孔質体を用いた吸着部にウエハ等を固定して研削・研磨加工を行うと、載置部の吸着面に研磨屑が堆積する。そのため、吸着面に堆積した研削屑により、ウエハを吸着する吸着力が弱くなったり、吸着時に、ウエハが吸着面に垂直な方向に変形して、その平坦度を高精度に維持して加工できなくなることがあった。   However, when a wafer or the like is fixed to the suction portion using such a porous body and grinding / polishing is performed, polishing dust accumulates on the suction surface of the mounting portion. For this reason, the grinding scrap accumulated on the suction surface weakens the suction force for attracting the wafer, and during suction, the wafer is deformed in the direction perpendicular to the suction surface, so that the flatness can be maintained with high accuracy. Sometimes it disappeared.

そこで、載置部の吸着面に堆積する研削屑が多くなると、吸着面の研磨を行って、研削屑が目詰まりした部分を除去し、新たに露出した面を吸着面として使用し、研削屑の目詰まりを解消している。   Therefore, if the grinding scraps accumulated on the suction surface of the mounting part increase, the suction surface is polished to remove the clogged portion of the grinding scraps, and the newly exposed surface is used as the suction surface. The clogging is eliminated.

特開昭53−090871号公報JP-A-53-090871

上記のように、吸着面の研磨により研削屑の目詰まりは解消したものの、載置部の吸着面を研磨すると、その露出した面において、セラミックス粒子が脱粒しやすくなる。   As described above, the clogging of the grinding scraps has been eliminated by polishing the adsorption surface, but when the adsorption surface of the mounting portion is polished, the ceramic particles are likely to be degranulated on the exposed surface.

多孔質体セラミックスからなる載置部は、セラミックス粒子とガラス粒子が結合し構成されており、この多孔質体を製造する際にガラスの偏析が生じる。これにより、セラミックス粒子の結合力が弱まり、粒子が脱粒する。このような脱粒は、装置を使用した際、薄い基板を破損させかねない。   The placing portion made of the porous ceramic is configured by bonding ceramic particles and glass particles, and segregation of glass occurs when the porous body is manufactured. Thereby, the bonding force of the ceramic particles is weakened, and the particles are shed. Such degranulation can damage thin substrates when the device is used.

このようなガラスの偏析に対しては、セラミックス粒子の粒子径を小さくし、粒子の表面積を大きくし、その隙間に充填されるガラス粒子の量を多くするという対策が考えられる。これにより粒子の結合力を向上できるが、脱粒の抜本的な対策とはならない。   For such segregation of glass, it is conceivable to reduce the particle size of ceramic particles, increase the surface area of the particles, and increase the amount of glass particles filled in the gaps. This can improve the binding force of the particles, but it does not provide a drastic measure against degranulation.

本発明は、このような事情に鑑みてなされたものであり、載置部の吸着面を研磨したときの脱粒を抑制し、高精度での基板の研削を可能にする真空吸着装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a vacuum suction device that suppresses degranulation when the suction surface of the mounting portion is polished and enables grinding of the substrate with high accuracy, and its manufacture. It aims to provide a method.

(1)上記の目的を達成するため、本発明の真空吸着装置は、加工用の基板を吸着保持する真空吸着装置であって、基板を保持吸着するための載置面を有し、60μm以下の平均粒子径を有する第1骨格粒子と前記第1骨格粒子に対し質量比0.15以上0.45以下で存在し、前記第1骨格粒子に対して1/5以下の平均粒子径を有する第2骨格粒子とが結合材により結合されることでセラミックス多孔質体として形成され、ロックウェル硬度が80HRH以上である載置部と、前記載置部との間に実質的に隙間がなく一体焼成で形成されたセラミックス緻密質体からなり、前記載置部の気孔に連通する吸気孔を有する支持部とを備えることを特徴としている。   (1) In order to achieve the above object, the vacuum suction device of the present invention is a vacuum suction device for sucking and holding a processing substrate, has a mounting surface for holding and sucking the substrate, and is 60 μm or less. Present in a mass ratio of 0.15 to 0.45 with respect to the first skeleton particles and the first skeleton particles, and having an average particle diameter of 1/5 or less with respect to the first skeleton particles. It is formed as a ceramic porous body by being bonded to the second skeleton particles by a binding material, and there is substantially no gap between the mounting portion having a Rockwell hardness of 80 HRH or more and the mounting portion described above. It is characterized by comprising a ceramic dense body formed by firing, and a support portion having intake holes communicating with the pores of the mounting portion.

このように、本発明の真空吸着装置は、載置部が第1骨格粒子と第2骨格粒子の2つの粒度配合で構成されているため、第1骨格粒子の気孔中に、第2骨格粒子が混入し、気孔径および気孔率を小さくしている。また、第2骨格粒子と結合材とのアンカー効果により、結合材の結合力および剛性が高まる。そのような構成により、載置部のロックウェル硬度を向上させ、吸着面を研磨したときの脱粒を抑える。その結果、載置部の吸着面を研磨したときの脱粒を抑制し、高精度での基板の研削を可能にしている。   As described above, in the vacuum adsorption device of the present invention, since the mounting portion is composed of two particle sizes of the first skeleton particles and the second skeleton particles, the second skeleton particles are contained in the pores of the first skeleton particles. Is mixed in to reduce the pore diameter and porosity. Further, the binding force and the rigidity of the binding material are increased by the anchor effect between the second skeleton particles and the binding material. With such a configuration, the Rockwell hardness of the mounting portion is improved, and degranulation when the adsorption surface is polished is suppressed. As a result, it is possible to suppress degranulation when the adsorption surface of the mounting portion is polished and to grind the substrate with high accuracy.

(2)また、本発明の真空吸着装置は、前記第1骨格粒子が、小粒径側からの累積個数が全粒子個数の95%となる粒子径D95が平均粒子径の2倍以下である粒度分布を有することを特徴としている。このように、D95の粒子径がD50の粒子径の2倍以下であるため、微粒添加によるアンカー効果が有効に機能する。   (2) Further, in the vacuum adsorption device of the present invention, the first skeletal particles have a particle size D95 at which the cumulative number from the small particle size side becomes 95% of the total number of particles is not more than twice the average particle size. It has a particle size distribution. Thus, since the particle size of D95 is twice or less than the particle size of D50, the anchor effect by adding fine particles functions effectively.

(3)また、本発明の真空吸着装置は、前記結合材が、前記第1骨格粒子に対し質量比0.1以上0.2以下で存在することを特徴としている。これにより、第2骨格粒子と結合材とのアンカー効果で、結合材の結合力および強度が高まる。   (3) Moreover, the vacuum adsorption device of the present invention is characterized in that the binder is present in a mass ratio of 0.1 to 0.2 with respect to the first skeleton particles. Thereby, the binding force and strength of the binding material are increased by the anchor effect of the second skeleton particles and the binding material.

(4)また、本発明の真空吸着装置は、前記載置部が、55MPa以上の曲げ強度を有することを特徴としている。これにより、吸着面を研磨したときの脱粒を抑えることができる。   (4) Moreover, the vacuum suction device of the present invention is characterized in that the mounting portion has a bending strength of 55 MPa or more. Thereby, degranulation when the adsorption surface is polished can be suppressed.

(5)また、本発明の真空吸着装置は、前記載置部が、粘着力2.74N/cmのアクリルテープを用いたピール試験において脱粒数が1/cmあたり10個以下であることを特徴としている。これにより、基板を真空吸着したときの載置面の脱粒を抑え、高精度での基板の研削が可能となる。 (5) Moreover, as for the vacuum adsorption apparatus of this invention, the said description part is that the number of degranulation is 10 or less per 1 / cm < 2 > in the peel test using the acrylic tape of adhesive strength 2.74N / cm. It is a feature. Thereby, the detachment of the mounting surface when the substrate is vacuum-sucked is suppressed, and the substrate can be ground with high accuracy.

(6)また、本発明の真空吸着装置は、前記載置部が、25%以上45%以下の気孔率を有することを特徴としている。これにより、十分な吸着機能を維持しつつ、脱粒が生じない高い強度を得ることができる。   (6) Moreover, the vacuum suction apparatus of the present invention is characterized in that the placement section has a porosity of 25% or more and 45% or less. Thereby, the high intensity | strength which does not generate | occur | produce a degranulation can be obtained, maintaining a sufficient adsorption function.

(7)また、本発明の真空吸着装置は、前記載置部が、メディアン径で15μm以下の気孔径を有することを特徴としている。このように、気孔径が小さいことから、載置部の強度を向上できる。   (7) Moreover, the vacuum suction apparatus of the present invention is characterized in that the mounting portion has a pore diameter of 15 μm or less in terms of median diameter. Thus, since the pore diameter is small, the strength of the placement portion can be improved.

(8)また、本発明の真空吸着装置は、前記載置部と前記支持部との接合部が、前記載置部単体の強度以上の強度を有することを特徴としている。これにより、接合部に隙間が生じることがないため、基板の研削・研磨加工時にも、砥石の押圧により載置部の沈み変形を防止できる。その結果、安定した基板の加工精度が得られる。   (8) Moreover, the vacuum suction device of the present invention is characterized in that the joint portion between the mounting portion and the support portion has a strength higher than the strength of the mounting portion alone. Thereby, since a gap does not occur in the joining portion, it is possible to prevent the mounting portion from being deformed by pressing of the grindstone even when the substrate is ground or polished. As a result, stable processing accuracy of the substrate can be obtained.

(9)また、本発明の真空吸着装置の製造方法は、上記の真空吸着装置の製造方法であって、前記第1骨格粒子、前記第2骨格粒子、および前記第1骨格粒子と前記第2骨格粒子とを結合し、前記第1骨格粒子および第2骨格粒子の集合に対して1/10以下の平均粒子径を有する結合材粒子を混合してスラリーを作製するスラリー作製工程と、凹部を有するセラミックス緻密質体に前記工程で作製されたスラリーを充填するスラリー充填工程と、前記凹部に充填されたスラリーにより形成された成形体とともに前記結合材粒子の軟化点以上の温度で焼成する焼成工程とを含むことを特徴としている。これにより、載置部と凹部との間に隙間が生じるのを防止し、載置部の強度を向上でき、載置部に脱粒の生じ難い真空吸着装置を製造できる。   (9) Moreover, the manufacturing method of the vacuum adsorption device of the present invention is the above-described manufacturing method of the vacuum adsorption device, wherein the first skeleton particles, the second skeleton particles, the first skeleton particles, and the second A slurry preparing step of combining a skeletal particle and mixing a binder particle having an average particle size of 1/10 or less with respect to the aggregate of the first skeleton particle and the second skeleton particle to prepare a slurry; A slurry filling step of filling the ceramic dense body having the slurry produced in the above step, and a firing step of firing at a temperature equal to or higher than the softening point of the binder particles together with a molded body formed by the slurry filled in the concave portion It is characterized by including. Thereby, it can prevent that a clearance gap arises between a mounting part and a recessed part, can improve the intensity | strength of a mounting part, and can manufacture the vacuum suction apparatus with which it is hard to produce a degranulation in a mounting part.

本発明によれば、載置部の吸着面を研磨したときの脱粒を抑制し、高精度での基板の研削を可能にする。   ADVANTAGE OF THE INVENTION According to this invention, the degranulation when the adsorption | suction surface of a mounting part is grind | polished is suppressed, and the grinding | polishing of a board | substrate with high precision is attained.

本発明に係る真空吸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vacuum suction apparatus which concerns on this invention. (a)、(b)それぞれ単粒の多孔質体と粒度配合した多孔質体の断面を示す模式図である。(A), (b) It is a schematic diagram which shows the cross section of the porous body which mix | blended each single particle | grain porous body and particle size.

次に、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の説明では、特にことわらない限り、本発明の真空吸着装置を単に「真空吸着装置」と呼ぶ。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description, unless otherwise specified, the vacuum suction device of the present invention is simply referred to as a “vacuum suction device”.

[真空吸着装置の構成]
図1は、真空吸着装置1の概略構成を示す断面図である。真空吸着装置2は、半導体ウエハや液晶用ガラス基板等の研削加工を行う際に、被吸着物6として加工用の基板を吸着保持する。図1に示すように、真空吸着装置1は、載置部2、支持部3および吸気孔4を備えている。
[Configuration of vacuum suction device]
FIG. 1 is a cross-sectional view showing a schematic configuration of the vacuum suction device 1. The vacuum suction device 2 sucks and holds a processing substrate as an object to be sucked 6 when grinding a semiconductor wafer, a glass substrate for liquid crystal, or the like. As shown in FIG. 1, the vacuum suction device 1 includes a placement portion 2, a support portion 3, and an intake hole 4.

載置部2は、アルミナ、窒化珪素、炭化珪素、ジルコニアから選ばれるセラミックスの1種とガラスとからなる多孔質体で形成され、被吸着物6を保持吸着するための載置面2aを有している。多孔質体からなる載置部2の気孔は連通している。なお、載置部2は、アルミナおよびガラス、または、炭化珪素およびガラスからなる多孔質体で形成されることが好ましい。また、載置部2の材料と支持部3の材料は、これらの接合面が、実質的に隙間なく一体的に焼成されるためには同じである必要がある。   The mounting portion 2 is formed of a porous body made of glass and one kind of ceramic selected from alumina, silicon nitride, silicon carbide, and zirconia, and has a mounting surface 2a for holding and adsorbing the object 6 to be adsorbed. doing. The pores of the mounting portion 2 made of a porous body communicate with each other. In addition, it is preferable that the mounting part 2 is formed of a porous body made of alumina and glass, or silicon carbide and glass. Moreover, the material of the mounting part 2 and the material of the support part 3 need to be the same in order for these joining surfaces to be integrally fired substantially without a gap.

載置部2は、第1骨格粒子と第2骨格粒子とが結合材により結合され多孔質体として形成されている。第1骨格粒子は60μm以下の平均粒子径を有する。第2骨格粒子は、第1骨格粒子に対し質量比0.15以上0.45以下で存在し、第1骨格粒子に対して1/5以下の平均粒子径を有する。   The placement portion 2 is formed as a porous body in which the first skeleton particles and the second skeleton particles are bonded together by a binder. The first skeleton particles have an average particle size of 60 μm or less. The second skeleton particles are present in a mass ratio of 0.15 or more and 0.45 or less with respect to the first skeleton particles, and have an average particle diameter of 1/5 or less with respect to the first skeleton particles.

このような構成を有することで、第1骨格粒子の気孔中に、第2骨格粒子が混入し、気孔径および気孔率を小さくしている。また、第2骨格粒子と結合材とのアンカー効果により、結合材の結合力および載置部2の強度が高まる。   By having such a configuration, the second skeleton particles are mixed in the pores of the first skeleton particles, and the pore diameter and the porosity are reduced. In addition, due to the anchor effect between the second skeleton particles and the binding material, the binding force of the binding material and the strength of the mounting portion 2 are increased.

第1骨格粒子は、小粒径側からの累積個数が全粒子個数の95%となる粒子径D95が平均粒子径の2倍以下である粒度分布を有することが好ましい。このように、D95の粒子径がD50の粒子径の2倍以下であるため、微粒添加によるアンカー効果が有効に機能する。   The first skeletal particles preferably have a particle size distribution in which the cumulative number from the small particle size side is 95% of the total number of particles and the particle size D95 is not more than twice the average particle size. Thus, since the particle size of D95 is twice or less than the particle size of D50, the anchor effect by adding fine particles functions effectively.

結合材は、第1骨格粒子に対し質量比0.1以上0.2以下で存在し、第1骨格粒子および第2骨格粒子の集合に対して1/10以下の平均粒子径を有することが好ましい。これにより、第2骨格粒子と結合材とのアンカー効果で、結合材の結合力および載置部2の強度が高まる。   The binder is present in a mass ratio of 0.1 to 0.2 with respect to the first skeleton particles, and has an average particle diameter of 1/10 or less with respect to the aggregate of the first skeleton particles and the second skeleton particles. preferable. Thereby, the binding force of the binding material and the strength of the placement portion 2 are increased by the anchor effect of the second skeleton particles and the binding material.

図2(a)、(b)は、それぞれ単粒の多孔質体と粒度配合した多孔質体の断面を示す模式図である。図2(a)に示すように、第1骨格粒子11と結合剤12とを有する単粒配合(骨格粒子の粒径が単一)で構成されたセラミックス多孔質体は、結合材の結合力および多孔質体の強度が低くなる。   FIGS. 2A and 2B are schematic views showing cross sections of a single-particle porous body and a porous body in which particle sizes are mixed, respectively. As shown in FIG. 2 (a), a ceramic porous body composed of a single particle having the first skeleton particles 11 and the binder 12 (the particle diameter of the skeleton particles is single) has a binding force of the binder. And the strength of the porous body is lowered.

一方、図2(b)に示すように、第1骨格粒子11の気孔中に第2骨格粒子13を混入させたときには、気孔径および気孔率を小さくできる。また、結合材12となるガラス粉末とのアンカー効果により、結合材の結合力および多孔質体の強度が高まり、高い強度を有するセラミックス多孔質体が製造できる。   On the other hand, as shown in FIG. 2B, when the second skeleton particles 13 are mixed in the pores of the first skeleton particles 11, the pore diameter and the porosity can be reduced. Further, due to the anchor effect with the glass powder to be the binder 12, the binding force of the binder and the strength of the porous body are increased, and a ceramic porous body having high strength can be manufactured.

載置部2は、このような多孔質体として構成されるため、80HRH以上のロックウェル硬度および55MPa以上の曲げ強度を有する。その結果、吸着面を研磨したときの脱粒を抑えることができる。そして、載置部2の吸着面を研磨したときの脱粒を抑制し、高精度での基板の研削を可能にしている。   Since the mounting portion 2 is configured as such a porous body, it has a Rockwell hardness of 80 HRH or more and a bending strength of 55 MPa or more. As a result, degranulation when the adsorption surface is polished can be suppressed. Further, the grain removal when the adsorption surface of the mounting portion 2 is polished is suppressed, and the substrate can be ground with high accuracy.

載置部2は、25%以上45%以下の気孔率を有することが好ましい。これにより、十分な吸着機能を維持しつつ、脱粒が生じない高い強度を得ることができる。また、載置部2は、メディアン径で15μm以下の気孔径を有することが好ましい。このように、細かい気孔径を有することで、載置部2の強度を向上できる。   The placement unit 2 preferably has a porosity of 25% or more and 45% or less. Thereby, the high intensity | strength which does not generate | occur | produce a degranulation can be obtained, maintaining a sufficient adsorption function. Moreover, it is preferable that the mounting part 2 has a pore diameter of 15 μm or less in terms of median diameter. Thus, the strength of the mounting portion 2 can be improved by having a fine pore diameter.

また、載置部2は、粘着力2.74N/cmのアクリルテープを用いたピール試験において脱粒数が1/cmあたり10個以下であることが好ましい。これにより、基板を真空吸着したときの載置面2の脱粒を抑え、高精度での基板の研削が可能となる。 Moreover, it is preferable that the mounting part 2 has 10 or less per 1 / cm < 2 > in the number of shed particles in a peel test using an acrylic tape having an adhesive strength of 2.74 N / cm. Thereby, the detachment of the mounting surface 2 when the substrate is vacuum-sucked is suppressed, and the substrate can be ground with high accuracy.

載置面2aは、吸着面であり、載置部2と載置部の周囲の支持部3とともに研磨加工により形成される。載置面2a上に、被吸着物6として例えば半導体ウエハのような基板を載置しこれを吸着するのに用いられる。   The placement surface 2a is an adsorption surface, and is formed by polishing together with the placement portion 2 and the support portion 3 around the placement portion. For example, a substrate such as a semiconductor wafer is placed on the placement surface 2a as the object to be adsorbed 6 and is used for adsorbing the substrate.

支持部3は、凹部3aにより載置部2の外縁を囲繞、支持し、アルミナ、窒化珪素、炭化珪素、ジルコニアから選ばれるセラミックスの1種の緻密質体からなる。載置部2の場合と同様に、上記のうち、アルミナ、炭化珪素で形成されることが好ましい。載置部2と支持部3との接合界面は実質的に隙間なく一体的に焼成されている。   The support part 3 surrounds and supports the outer edge of the mounting part 2 by the concave part 3a, and is made of one type of dense body of ceramics selected from alumina, silicon nitride, silicon carbide, and zirconia. As in the case of the mounting portion 2, among the above, it is preferably formed of alumina or silicon carbide. The joint interface between the placing portion 2 and the support portion 3 is baked integrally with substantially no gap.

なお、上記の「実質的に隙間なく一体的に焼成されている」とは、すなわち、載置部の多孔質体構造が支持部と接する界面まで連続的しており、かつ、載置部と支持部との接合界面に隙間がなく、載置部と支持部が一体的に焼成されてなることを意味する。   The above-mentioned “fired integrally with substantially no gap” means that the porous structure of the mounting portion is continuous up to the interface contacting the support portion, and the mounting portion and It means that there is no gap at the bonding interface with the support part, and the placing part and the support part are integrally fired.

載置部2と支持部3の接合部は、載置部単体の強度以上の強度を有することが好ましい。これにより、接合部に隙間が生じることがないため、被吸着物6の研削・研磨加工時にも、砥石の押圧により載置部2の沈み変形を防止できる。その結果、安定した被吸着物6への加工精度が得られる。   It is preferable that the joint part of the mounting part 2 and the support part 3 has the intensity | strength more than the intensity | strength of a mounting part single-piece | unit. Thereby, since a gap does not occur in the joint portion, it is possible to prevent sinking deformation of the mounting portion 2 due to the pressing of the grindstone even during grinding / polishing of the adsorbent 6. As a result, stable processing accuracy to the adsorbent 6 is obtained.

支持部3は、載置部2の気孔に連通する吸気孔4を有する。吸気孔4は、載置部の裏面側の中央部に支持部3を貫通するように設けられた孔状を有しており、吸気孔4を介して図示しない真空ポンプにより吸引することにより、載置部2の載置面2aに載置された被吸着物6である半導体ウエハ等を載置部2に真空吸着できる。空隙5は、載置部2の裏面全体にわたって設けられ、載置部2の表面全体で吸引するために設けられている。   The support portion 3 has an intake hole 4 that communicates with the pores of the placement portion 2. The suction hole 4 has a hole shape provided so as to penetrate the support part 3 in the center part on the back side of the mounting part, and is sucked by a vacuum pump (not shown) through the suction hole 4. A semiconductor wafer or the like that is the object to be adsorbed 6 placed on the placement surface 2 a of the placement unit 2 can be vacuum-sucked to the placement unit 2. The gap 5 is provided over the entire back surface of the placement unit 2, and is provided for suction across the entire surface of the placement unit 2.

[真空吸着装置の製造方法]
次に、上記のように構成された真空吸着装置1の製造方法について説明する。まず、載置部2を形成する多孔質体の原料粉末である第1骨格粒子、第2骨格粒子、および第1骨格粒子と第2骨格粒子とを結合する結合材粒子に、水またはアルコールを加えて混合してスラリーを調整する。
[Method of manufacturing vacuum suction device]
Next, a manufacturing method of the vacuum suction device 1 configured as described above will be described. First, water or alcohol is added to the first skeleton particles, the second skeleton particles, and the binder particles that bind the first skeleton particles and the second skeleton particles, which are the raw material powder of the porous body that forms the mounting portion 2. Add and mix to prepare slurry.

第1骨格粒子、第2骨格粒子には、アルミナまたは炭化珪素等の粒子を用いることができる。第1骨格粒子には、60μm以下の平均粒子径を有するものを用い、第2骨格粒子には、第1骨格粒子に対して1/5以下の平均粒子径を有するものを用い、第1骨格粒子に対し質量比0.15以上0.45以下となるように配合を決める。なお、第1骨格粒子は、小粒径側からの累積個数が全粒子個数の95%となる粒子径D95が平均粒子径の2倍以下である粒度分布を有することが好ましい。   As the first skeleton particles and the second skeleton particles, particles such as alumina or silicon carbide can be used. The first skeleton particles are those having an average particle diameter of 60 μm or less, and the second skeleton particles are those having an average particle diameter of 1/5 or less of the first skeleton particles. The formulation is determined so that the mass ratio is 0.15 to 0.45 with respect to the particles. The first skeletal particles preferably have a particle size distribution in which the particle size D95 at which the cumulative number from the small particle size side becomes 95% of the total particle number is not more than twice the average particle size.

結合材としてはガラス等を用いることができる。結合材粒子は、第1骨格粒子に対し質量比0.1以上0.2以下で存在し、第1骨格粒子および第2骨格粒子の集合に対して1/10以下の平均粒子径を有することが好ましい。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるよう水またはアルコールの添加量を調整する。   Glass or the like can be used as the binder. The binder particles are present in a mass ratio of 0.1 to 0.2 with respect to the first skeleton particles, and have an average particle size of 1/10 or less with respect to the aggregate of the first skeleton particles and the second skeleton particles. Is preferred. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. In consideration of the particle size of the ceramic powder and the addition amount of the glass powder, the addition amount of water or alcohol is adjusted so as to obtain a desired fluidity.

次に、凹部を設けたアルミナ、ジルコニア、炭化珪素または窒化珪素からなるセラミックスの支持部3を準備する。そして、支持部3の凹部に得られたスラリーを充填する。この際、必要に応じて、残留気泡を除去するための真空脱泡や、充填を高めるための振動を加える。また、吸気孔4および空隙5は、載置部2となるスラリー混合物を注ぐ前に、ろう、樹脂等の焼失部材により閉塞しておく。   Next, a ceramic support portion 3 made of alumina, zirconia, silicon carbide or silicon nitride provided with a recess is prepared. Then, the obtained slurry is filled in the concave portion of the support portion 3. At this time, vacuum defoaming for removing residual bubbles and vibration for enhancing filling are applied as necessary. In addition, the air intake holes 4 and the air gaps 5 are closed by a burned-out member such as wax or resin before pouring the slurry mixture to be the placement unit 2.

次に、凹部3aにスラリーを充填した支持部を十分に乾燥させ、スラリーを成形体にした後、ガラスの軟化点以上の温度で焼成する。この際、焼成温度がガラスの軟化点より低いと十分に一体化できないが、反対に焼成温度が高すぎると変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。このようにして、載置部2と支持部3の凹部3aとの間に隙間が生じるのを防止し、載置部2の強度を向上でき、載置部2に脱粒の生じ難い真空吸着装置1を製造できる。   Next, after the support portion in which the concave portion 3a is filled with the slurry is sufficiently dried to form the slurry, it is fired at a temperature equal to or higher than the softening point of the glass. At this time, if the firing temperature is lower than the softening point of the glass, sufficient integration cannot be achieved. On the other hand, if the firing temperature is too high, deformation or shrinkage occurs. In this manner, a vacuum suction device that prevents a gap from being formed between the mounting portion 2 and the recess 3a of the support portion 3, can improve the strength of the mounting portion 2, and is less likely to cause degranulation in the mounting portion 2. 1 can be manufactured.

[実施例]
以下に、本発明の実施例を説明する。上記の製造方法に従い、載置部を作製した。その際の第1骨格粒子、第2骨格粒子、結合材粒子の特性は以下の表1に示す通りである。なお、第1骨格粒子と第2骨格粒子のそれぞれの添加量は、両者の合計のうちの比率を意味する。また、結合材粒子の添加量は、第1骨格粒子および第2骨格粒子の合計添加量を1としたときの比率を意味する(以下、同様)。
[Example]
Examples of the present invention will be described below. In accordance with the above manufacturing method, a mounting portion was produced. The characteristics of the first skeleton particles, the second skeleton particles, and the binder particles at that time are as shown in Table 1 below. In addition, each addition amount of a 1st frame particle and a 2nd frame particle means the ratio of the sum total of both. Moreover, the addition amount of the binder particles means a ratio when the total addition amount of the first skeleton particles and the second skeleton particles is 1 (hereinafter the same).

Figure 2014130905
Figure 2014130905

表1に示す条件で載置部を作製したところ、以下の表2のような結果が得られた。

Figure 2014130905
When the mounting part was produced under the conditions shown in Table 1, the results shown in Table 2 below were obtained.
Figure 2014130905

表2に示すように、いずれの実施例についてもロックウェル硬度が80HRH以上であり、載置部の強度が55MPa以上であった。また、気孔率は25%以上45%以下であり、気孔径が15μm以下であった。載置部と支持部の接合強度は、載置部単体の強度より大きかった。脱粒数は10/cm/個以下であった。 As shown in Table 2, the Rockwell hardness of each example was 80 HRH or more, and the strength of the mounting portion was 55 MPa or more. The porosity was 25% or more and 45% or less, and the pore diameter was 15 μm or less. The bonding strength between the mounting portion and the support portion was greater than the strength of the mounting portion alone. The number of shed grains was 10 / cm 2 / piece or less.

なお、第1骨格粒子の平均粒子径を40μm、添加量を0.75重量部、D95の粒度分布を72とし、第2骨格粒子の平均粒子径を8.0μm、添加量を0.25重量部とし、結合材粒子の平均粒子径を2.5μm、添加量を0.15重量部としたときに、特にロックウェル硬度が高くなった。   The average particle size of the first skeleton particles is 40 μm, the addition amount is 0.75 parts by weight, the particle size distribution of D95 is 72, the average particle size of the second skeleton particles is 8.0 μm, and the addition amount is 0.25 weight. When the average particle size of the binder particles was 2.5 μm and the addition amount was 0.15 parts by weight, the Rockwell hardness was particularly high.

[比較例]
以下に、比較例についても説明する。載置部の製造条件を表3に、製造後の結果を表4に示す。

Figure 2014130905
[Comparative example]
Below, a comparative example is also demonstrated. Table 3 shows the manufacturing conditions of the mounting portion, and Table 4 shows the results after manufacturing.
Figure 2014130905

Figure 2014130905
Figure 2014130905

比較例1では、第1骨格粒子が60μm以上であるため、気孔径が15μm以上となった。その結果、ロックウェル硬度が80HRHより小さくなり、脱粒数が10個を超えた。比較例2では、第1骨格粒子の小粒径側からの累積個数が全粒子個数の95%となる粒子径D95が平均粒子径の2倍以上となり、ロックウェル硬度が80HRHより小さくなった。比較例3では、第2骨格粒子の平均粒径が第1骨格粒子の平均粒径の1/5以上であるため、気孔径が15μm以上となった。その結果、ロックウェル硬度が80HRHより小さくなり、載置部の強度が55MPaより小さくなり、脱粒数が10/cm/個より多かった。 In Comparative Example 1, since the first skeleton particles were 60 μm or more, the pore diameter was 15 μm or more. As a result, the Rockwell hardness became smaller than 80 HRH, and the number of shed grains exceeded 10. In Comparative Example 2, the particle diameter D95 at which the cumulative number from the small particle diameter side of the first skeletal particles was 95% of the total particle number was more than twice the average particle diameter, and the Rockwell hardness was less than 80 HRH. In Comparative Example 3, since the average particle diameter of the second skeleton particles was 1/5 or more of the average particle diameter of the first skeleton particles, the pore diameter was 15 μm or more. As a result, the Rockwell hardness was smaller than 80 HRH, the strength of the mounting portion was smaller than 55 MPa, and the number of shed grains was more than 10 / cm 2 / piece.

比較例4では、第2骨格粒子の添加量が0.15以下であるため、気孔径が15μm以上となった。その結果、ロックウェル硬度が80HRHより小さくなり、載置部の強度が55MPaより小さくなり、脱粒数が10/cm/個より多かった。比較例5では、第2骨格粒子の添加量が0.45重量部以上であるため、気孔径が15μm以上となった。その結果、ロックウェル硬度が80HRHより小さくなり、載置部の強度が55MPaより小さくなった。また、載置部と支持部の接合強度が、載置部単体の強度より小さくなり、脱粒数が10/cm/個より多かった。 In Comparative Example 4, since the amount of the second skeleton particles added was 0.15 or less, the pore diameter was 15 μm or more. As a result, the Rockwell hardness was smaller than 80 HRH, the strength of the mounting portion was smaller than 55 MPa, and the number of shed grains was more than 10 / cm 2 / piece. In Comparative Example 5, since the added amount of the second skeleton particles was 0.45 parts by weight or more, the pore diameter was 15 μm or more. As a result, the Rockwell hardness became smaller than 80 HRH, and the strength of the mounting portion became smaller than 55 MPa. Further, the bonding strength between the mounting portion and the supporting portion was smaller than the strength of the mounting portion alone, and the number of shed grains was more than 10 / cm 2 / piece.

比較例6では、結合材粒子の平均粒子径が第1骨格粒子の平均粒子径の1/10以上であるため、熱処理時に収縮が発生し、多孔質体にクラックが発生した。比較例7では、結合材粒子の添加量が0.1以下であるため、粒子の結合力が低下し、気孔率が45%以上となった。その結果、ロックウェル硬度が80HRHより小さくなり、載置部の強度が55MPaより小さくなった。また、載置部と支持部の接合強度が、載置部単体の強度より小さくなった。脱粒数は10/cm/個より多かった。比較例8では、結合材粒子の添加量が0.22以上であるため、熱処理時に収縮が発生し、多孔質体にクラックが発生した。 In Comparative Example 6, since the average particle diameter of the binder particles was 1/10 or more of the average particle diameter of the first skeleton particles, shrinkage occurred during heat treatment, and cracks occurred in the porous body. In Comparative Example 7, since the amount of the binder particles added was 0.1 or less, the binding force of the particles was reduced, and the porosity was 45% or more. As a result, the Rockwell hardness became smaller than 80 HRH, and the strength of the mounting portion became smaller than 55 MPa. Further, the bonding strength between the mounting portion and the support portion is smaller than the strength of the mounting portion alone. The number of threshing was more than 10 / cm 2 / piece. In Comparative Example 8, since the amount of binder particles added was 0.22 or more, shrinkage occurred during heat treatment, and cracks occurred in the porous body.

1 真空吸着装置
2 載置部
2a 載置面
3 支持部
3a 凹部
4 吸気孔
5 空隙
6 被吸着物(基板)
11 第1骨格粒子
12 結合材
13 第2骨格粒子
DESCRIPTION OF SYMBOLS 1 Vacuum suction apparatus 2 Mounting part 2a Mounting surface 3 Support part 3a Recessed part 4 Intake hole 5 Cavity 6 Adsorbed object (substrate)
11 First skeletal particle 12 Binder 13 Second skeletal particle

Claims (9)

加工用の基板を吸着保持する真空吸着装置であって、
基板を保持吸着するための載置面を有し、60μm以下の平均粒子径を有する第1骨格粒子と前記第1骨格粒子に対し質量比0.15以上0.45以下で存在し、前記第1骨格粒子に対して1/5以下の平均粒子径を有する第2骨格粒子とが結合材により結合されることでセラミックス多孔質体として形成され、ロックウェル硬度が80HRH以上である載置部と、
前記載置部との間に実質的に隙間がなく一体焼成で形成されたセラミックス緻密質体からなり、前記載置部の気孔に連通する吸気孔を有する支持部と、を備えることを特徴とする真空吸着装置。
A vacuum suction device for sucking and holding a processing substrate,
A first skeletal particle having a mounting surface for holding and adsorbing a substrate and having an average particle diameter of 60 μm or less and the first skeletal particle in a mass ratio of 0.15 to 0.45; A mounting portion that is formed as a ceramic porous body by binding a second skeletal particle having an average particle diameter of 1/5 or less to one skeletal particle by a binder, and having a Rockwell hardness of 80 HRH or more; ,
A support part having a suction hole that is formed of a ceramic dense body formed by integral firing with substantially no gap between the placement part and communicating with the pores of the placement part. Vacuum suction device.
前記第1骨格粒子は、小粒径側からの累積個数が全粒子個数の95%となる粒子径D95が平均粒子径の2倍以下である粒度分布を有することを特徴とする請求項1記載の真空吸着装置。   2. The first skeletal particles have a particle size distribution in which a particle size D95 in which the cumulative number from the small particle size side becomes 95% of the total number of particles is not more than twice the average particle size. Vacuum suction device. 前記結合材は、前記第1骨格粒子に対し質量比0.1以上0.2以下で存在することを特徴とする請求項1または請求項2記載の真空吸着装置。   3. The vacuum adsorption device according to claim 1, wherein the binder is present in a mass ratio of 0.1 to 0.2 with respect to the first skeleton particles. 4. 前記載置部は、55MPa以上の曲げ強度を有することを特徴とする請求項1から請求項3のいずれかに記載の真空吸着装置。   The vacuum suction device according to any one of claims 1 to 3, wherein the placement portion has a bending strength of 55 MPa or more. 前記載置部は、粘着力2.74N/cmのアクリルテープを用いたピール試験において脱粒数が1/cmあたり10個以下であることを特徴とする請求項1から請求項4のいずれかに記載の真空吸着装置。 5. The placement unit according to claim 1, wherein the number of shedding is 10 or less per 1 / cm < 2 > in a peel test using an acrylic tape having an adhesive strength of 2.74 N / cm. A vacuum adsorption apparatus as described in 1. 前記載置部は、25%以上45%以下の気孔率を有することを特徴とする請求項1から請求項5のいずれかに記載の真空吸着装置。   The vacuum suction device according to any one of claims 1 to 5, wherein the placing portion has a porosity of 25% or more and 45% or less. 前記載置部は、メディアン径で15μm以下の気孔径を有することを特徴とする請求項1から請求項6のいずれかに記載の真空吸着装置。   The vacuum suction device according to any one of claims 1 to 6, wherein the placement unit has a median diameter of 15 µm or less. 前記載置部と前記支持部との接合部は、前記載置部単体の強度以上の強度を有することを特徴とする請求項1から請求項5のいずれかに記載の真空吸着装置。   The vacuum suction device according to any one of claims 1 to 5, wherein a joint portion between the mounting portion and the support portion has a strength higher than that of the single mounting portion. 請求項1から請求項8のいずれかに記載の真空吸着装置の製造方法であって、
前記第1骨格粒子、前記第2骨格粒子、および前記第1骨格粒子と前記第2骨格粒子とを結合し、前記第1骨格粒子および第2骨格粒子の集合に対して1/10以下の平均粒子径を有する結合材粒子を混合してスラリーを作製するスラリー作製工程と、
凹部を有するセラミックス緻密質体に前記工程で作製されたスラリーを充填するスラリー充填工程と、
前記凹部に充填されたスラリーにより形成された成形体とともに前記結合材粒子の軟化点以上の温度で焼成する焼成工程と、を含むことを特徴とする真空吸着装置の製造方法。
It is a manufacturing method of the vacuum adsorption device according to any one of claims 1 to 8,
The first skeletal particles, the second skeletal particles, and the first skeletal particles and the second skeletal particles are combined, and the average is 1/10 or less with respect to the aggregate of the first skeletal particles and the second skeletal particles. A slurry preparation step of preparing a slurry by mixing binder particles having a particle size;
A slurry filling step of filling the ceramic dense body having recesses with the slurry produced in the above step;
And a firing step of firing at a temperature equal to or higher than the softening point of the binder particles together with a molded body formed by the slurry filled in the recesses.
JP2012287544A 2012-12-28 2012-12-28 Vacuum adsorption apparatus and method for manufacturing the same Active JP6159987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287544A JP6159987B2 (en) 2012-12-28 2012-12-28 Vacuum adsorption apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287544A JP6159987B2 (en) 2012-12-28 2012-12-28 Vacuum adsorption apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2014130905A true JP2014130905A (en) 2014-07-10
JP6159987B2 JP6159987B2 (en) 2017-07-12

Family

ID=51409062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287544A Active JP6159987B2 (en) 2012-12-28 2012-12-28 Vacuum adsorption apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6159987B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819927A (en) * 1994-07-04 1996-01-23 Kyocera Corp Vacuum sucking device and its manufacture
JPH11207632A (en) * 1998-01-21 1999-08-03 Mitsui Kensaku Toishi Kk Polisher, manufacture of the same and polishing tool
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2001158674A (en) * 1999-11-30 2001-06-12 Ibiden Co Ltd Sintered compact of porous silicon carbide, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2003119087A (en) * 2001-10-17 2003-04-23 Ngk Insulators Ltd Composite coating material, laminated body, corrosion resistant member, halogen gas plasma resistant member and method for manufacturing composite coating material
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
US20050011460A1 (en) * 2002-02-19 2005-01-20 Olympus Corporation Substrate chucking apparatus
JP2005022010A (en) * 2003-06-30 2005-01-27 Mizuho:Kk Vitrified grinding wheel
JP2005123556A (en) * 2003-09-25 2005-05-12 Kyocera Corp Wafer polishing suction plate
JP2009107880A (en) * 2007-10-30 2009-05-21 Kyocera Corp Joined body, adsorption member, adsorption device, and working apparatus
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same
JP2012204419A (en) * 2011-03-24 2012-10-22 Kyocera Corp Manufacturing method of member for suction
JP2012201578A (en) * 2011-03-28 2012-10-22 Taiheiyo Cement Corp Vacuum suction apparatus and method for manufacturing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819927A (en) * 1994-07-04 1996-01-23 Kyocera Corp Vacuum sucking device and its manufacture
JPH11207632A (en) * 1998-01-21 1999-08-03 Mitsui Kensaku Toishi Kk Polisher, manufacture of the same and polishing tool
JPH11309638A (en) * 1998-04-28 1999-11-09 Kyocera Corp Vacuum suction pad
JP2001158674A (en) * 1999-11-30 2001-06-12 Ibiden Co Ltd Sintered compact of porous silicon carbide, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2003119087A (en) * 2001-10-17 2003-04-23 Ngk Insulators Ltd Composite coating material, laminated body, corrosion resistant member, halogen gas plasma resistant member and method for manufacturing composite coating material
US20050011460A1 (en) * 2002-02-19 2005-01-20 Olympus Corporation Substrate chucking apparatus
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
JP2005022010A (en) * 2003-06-30 2005-01-27 Mizuho:Kk Vitrified grinding wheel
JP2005123556A (en) * 2003-09-25 2005-05-12 Kyocera Corp Wafer polishing suction plate
JP2009107880A (en) * 2007-10-30 2009-05-21 Kyocera Corp Joined body, adsorption member, adsorption device, and working apparatus
JP2011258846A (en) * 2010-06-11 2011-12-22 Sintokogio Ltd Suction member and method of manufacturing the same
JP2012204419A (en) * 2011-03-24 2012-10-22 Kyocera Corp Manufacturing method of member for suction
JP2012201578A (en) * 2011-03-28 2012-10-22 Taiheiyo Cement Corp Vacuum suction apparatus and method for manufacturing the same

Also Published As

Publication number Publication date
JP6159987B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP5730071B2 (en) Adsorption member
JP4885165B2 (en) Vacuum adsorption device
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP5261057B2 (en) Suction board and vacuum suction device
JP4336532B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP6179030B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP5681481B2 (en) Dense-porous joint
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP4405887B2 (en) Vacuum adsorption device
JP4964910B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP6159987B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2004283936A (en) Vacuum sucking device
JP4704971B2 (en) Vacuum adsorption device
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405886B2 (en) Vacuum adsorption device
JP2009107880A (en) Joined body, adsorption member, adsorption device, and working apparatus
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2012204419A (en) Manufacturing method of member for suction
JP5973147B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005254412A (en) Vacuum suction device
JP2005212000A (en) Vacuum suction device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6159987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250