JP5530275B2 - Vacuum adsorption apparatus and method for manufacturing the same - Google Patents

Vacuum adsorption apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP5530275B2
JP5530275B2 JP2010150019A JP2010150019A JP5530275B2 JP 5530275 B2 JP5530275 B2 JP 5530275B2 JP 2010150019 A JP2010150019 A JP 2010150019A JP 2010150019 A JP2010150019 A JP 2010150019A JP 5530275 B2 JP5530275 B2 JP 5530275B2
Authority
JP
Japan
Prior art keywords
intake groove
mounting portion
porous body
recess
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010150019A
Other languages
Japanese (ja)
Other versions
JP2012015300A (en
Inventor
基宏 梅津
伸也 佐藤
知之 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010150019A priority Critical patent/JP5530275B2/en
Publication of JP2012015300A publication Critical patent/JP2012015300A/en
Application granted granted Critical
Publication of JP5530275B2 publication Critical patent/JP5530275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体ウエハや液晶用ガラス基板等の基板の研削加工を行う際に、基板を吸着保持するための真空吸着装置に関する。 The present invention relates to a vacuum suction device for sucking and holding a substrate when grinding a substrate such as a semiconductor wafer or a glass substrate for liquid crystal.

半導体ウエハ等の基板を搬送、加工、検査する場合に、真空圧を利用した真空吸着装置が用いられている。なかでも均一な吸着を行うために、多孔質体により基板の全面を吸着保持する真空吸着装置が多く使用されている。例えば、多孔質セラミックスからなる載置部を、その載置面を除く周囲を取り囲む緻密質セラミックスからなる基台にガラス接合し、下方の吸気孔より真空吸引することにより、上記載置部の吸着面に基板を固定するものがある。 When a substrate such as a semiconductor wafer is transferred, processed, or inspected, a vacuum suction device using a vacuum pressure is used. In particular, in order to perform uniform adsorption, a vacuum adsorption apparatus that adsorbs and holds the entire surface of the substrate with a porous body is often used. For example, the placement part made of porous ceramics is glass-bonded to a base made of dense ceramics surrounding the circumference excluding the placement surface, and vacuum suction is performed from the lower suction hole, thereby adsorbing the placement part. There are some that fix the substrate to the surface.

本出願人は、セラミックス粉末と結合材のガラス粉末とからなる多孔質セラミックス原料を凹型の基台に流し込んで成形・焼成する製法により多孔質セラミックスと緻密質セラミックスとを密着させた真空吸着装置を提案している(特許文献1)。 また、特許文献2には、第1の多孔質体からなる吸着部材と、前記吸着部材の一方主面と当接する当接面を備える支持部材と、前記支持部材の前記当接面に設けられた凹部に配置されて前記吸着部材を支持する、第2の多孔質体からなる補助部材と、を備える吸着盤が開示されている。 The applicant of the present application is a vacuum adsorption device in which a porous ceramic material made of a ceramic powder and a glass powder of a binder material is poured into a concave base and molded and fired to adhere the porous ceramic and the dense ceramic. (Patent Document 1). Further, in Patent Document 2, a suction member made of a first porous body, a support member having a contact surface that comes into contact with one main surface of the suction member, and the contact surface of the support member are provided. And an auxiliary member made of a second porous body that is disposed in the recessed portion and supports the adsorption member.

特開2005−22027号公報JP 2005-22027 A 特開2010−29984号公報JP 2010-29984 A

特許文献1では、載置部と支持部とが密着して接合されているので、載置部と支持部とを接合した場合に生じる隙間に起因する載置部の撓み変形を防ぐことができるので、基板の加工精度が向上した。また、特許文献2では、溝部に補助部材が充填されていることから、更なる加工精度の向上が図られている。 In Patent Document 1, since the placement portion and the support portion are closely bonded to each other, it is possible to prevent the placement portion from being deformed due to a gap generated when the placement portion and the support portion are joined. Therefore, the processing accuracy of the substrate has improved. Moreover, in patent document 2, since the auxiliary | assistant member is filled in the groove part, the improvement of the further processing precision is achieved.

しかしながら、吸気溝の空間を確保することは載置部全面に均一な吸着力を発生させるうえで重要である。また、吸気溝の空間が無いと、載置部の多孔質体が加工屑により目詰まりを起こした際に、吸気溝側から高圧水を流して洗浄することができなくなるため、製品寿命が著しく短くなる。したがって、特許文献2のように溝部の空間を小さくすると、吸着性能及び製品寿命において問題が生じ、実使用可能なものが得られないおそれがあった。 However, securing the space for the intake groove is important for generating a uniform suction force on the entire surface of the mounting portion. In addition, if there is no space for the intake groove, the porous body of the mounting part will not be washed by flowing high pressure water from the intake groove side when clogged with processing waste, so the product life will be remarkably long Shorter. Therefore, when the space of the groove portion is made small as in Patent Document 2, there arises a problem in the adsorption performance and the product life, and there is a possibility that an actually usable product cannot be obtained.

本発明は、上記課題を解決するために見出されたものであり、吸気溝の空間を確保しつつ、基板の加工精度を高めることができる真空吸着装置を提供するものである。 The present invention has been found to solve the above-described problems, and provides a vacuum suction device that can increase the processing accuracy of a substrate while ensuring a space for an intake groove.

本発明は、以下の(1)〜(8)を提供するものである。 The present invention provides the following (1) to (8).

(1)凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部と、セラミックス粉末と結合材から構成された多孔質体の載置部とからなり、前記セラミックス粉末が結合材により結合されて多孔質体が得られるとともに、前記多孔質体の結合材により該多孔質体と前記支持部とが接合されて、前記凹部に多孔質体の載置部が形成されてなる真空吸着装置であって、前記載置部と、前記凹部及び前記吸気溝の少なくとも側壁面の一部とが、隙間無く接合されていることを特徴とする真空吸着装置。 (1) A support portion made of a ceramic dense sintered body in which an intake groove is provided in a recess, and a mounting portion for a porous body made of ceramic powder and a binder, and the ceramic powder is formed by a binder. A porous body is obtained by bonding, and the porous body and the support portion are joined by the porous body bonding material, and the porous body mounting portion is formed in the concave portion. It is an apparatus, Comprising: The said mounting part and the said recessed part and at least one part of the side wall surface of the said intake groove are joined without gap, The vacuum suction apparatus characterized by the above-mentioned.

上記(1)によれば、載置部と、凹部及び吸気溝の側壁面の少なくとも一部とが、隙間無く接合されているので、吸気溝の空間を確保しつつ、基板の加工精度を高めることができる。特に吸気溝の少なくとも側壁面の一部が隙間無く接合されているので、溝部分での拘束力によって載置部の変形を抑えることができる。 According to the above (1), since the mounting portion and at least a part of the recess and the side wall surface of the intake groove are joined without a gap, the processing accuracy of the substrate is improved while ensuring the space of the intake groove. be able to. In particular, since at least a part of the side wall surface of the intake groove is joined without a gap, deformation of the mounting portion can be suppressed by the restraining force in the groove portion.

(2)凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部と、セラミックス粉末と結合材から構成された多孔質体の載置部とからなり、前記セラミックス粉末が結合材により結合されて多孔質体が得られるとともに、前記多孔質体の結合材により該多孔質体と前記支持部とが接合されて、前記凹部に多孔質体の載置部が形成されてなる真空吸着装置であって、前記載置部と、前記凹部及び前記吸気溝のC面とが、隙間無く接合されていることを特徴とする真空吸着装置。 (2) A support portion made of a ceramic dense sintered body in which an intake groove is provided in a recess, and a porous body mounting portion made of ceramic powder and a binder, wherein the ceramic powder is formed by a binder. A porous body is obtained by bonding, and the porous body and the support portion are joined by the porous body bonding material, and the porous body mounting portion is formed in the concave portion. It is an apparatus, Comprising: The vacuum suction apparatus characterized by the above-mentioned mounting part, and the C surface of the said recessed part and the said intake groove | channel being joined without gap.

上記(2)によれば、吸気溝のC面との密着を形成することで、拘束を高めるとともに応力を分散させ、変形を抑制することができる。 According to said (2), by forming close_contact | adherence with C surface of an intake groove | channel, restraint can be heightened, stress can be disperse | distributed, and a deformation | transformation can be suppressed.

(3)前記載置部と、吸気溝の側壁面の少なくとも一部とが、隙間無く接合されている(2)記載の真空吸着装置。吸気溝のC面に加えて、側壁面とも接合されるので、より変形を抑えることができる。 (3) The vacuum suction device according to (2), wherein the mounting portion and at least a part of the side wall surface of the intake groove are joined without a gap. In addition to the C surface of the intake groove, the side wall surface is also joined, so that deformation can be further suppressed.

(4)前記吸気溝の溝幅は、前記載置部の厚みの2倍以下である上記(1)〜(3)記載の真空吸着装置。上記のような吸気溝の側壁面に載置部が形成された構造に加えて、吸気溝の溝幅を載置部の厚みの2倍以下とすることで、変形を僅かなものに抑えることができる。 (4) The vacuum suction device according to any one of (1) to (3), wherein a groove width of the intake groove is not more than twice a thickness of the mounting portion. In addition to the structure in which the mounting portion is formed on the side wall surface of the intake groove as described above, the groove width of the intake groove is set to be not more than twice the thickness of the mounting portion, thereby suppressing deformation to a slight amount. Can do.

(5)凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部を作製する工程と、前記吸気溝に少なくとも側壁面の一部が露出するように焼失材を充填する工程と、セラミックス粉末と結合材を含む混合物を前記凹部及び前記吸気溝の一部に充填し、焼成することにより多孔質体の載置部と前記凹部及び前記吸気溝の少なくとも側壁面の一部とが、隙間無く接合されるとともに、焼失材の焼失により吸気溝に空間が形成される工程と、を備える真空吸着装置の製造方法。また、(6)凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部を作製する工程と、前記吸気溝のC面が露出するように焼失材を充填する工程と、セラミックス粉末と結合材を含む混合物を前記凹部及び前記吸気溝の一部に充填し、焼成することにより多孔質体の載置部と前記凹部及び前記吸気溝C面とが、隙間無く接合されるとともに、焼失材の焼失により吸気溝に空間が形成される工程と、を備える真空吸着装置の製造方法。このような製造方法によれば、吸気溝の空間を確保しつつ、載置部の変形の少ない真空吸着装置を製造することができる。また、セラミックス緻密質焼結体の加工や載置部の加工を減らすことができるので、製造コストを抑えることができる。
(7)前記凹部が、0.1〜4.0μmの表面粗さRaを有し、前記凹部の周方向の表面粗さRa1と径方向の表面粗さRa2との比Ra1/Ra2が0.2〜0.9である上記(5)又は(6)記載の真空吸着装置。凹部の接合面の表面粗さRa及び、前記Ra1/Ra2を上記範囲としたのは、吸気溝の側壁面に載置部が形成された構造に加えて、このような接合面とすることで凹部と載置部との密着を高めることができるからである。凹部の接合面と多孔質体とに熱膨張のズレが生じると、載置部に引張り応力が作用することから、径方向の表面粗さRa2を大きく形成し、径方向の応力に耐え得る接合構造とすることにより凹部から載置部が剥離することを防止することができる。
(8)前記凹部の接合面が、焼放し面である上記(7)記載の真空吸着装置。凹部の接合面は焼放し面によって上記の凹部の吸気溝や表面構造を形成することができるので、コスト高の要因である焼結体の加工工程を減らすことができる。
(5) a step of producing a support portion made of a ceramic dense sintered body in which an intake groove is provided in the recess, and a step of filling a burned material so that at least a part of the side wall surface is exposed in the intake groove; Filling the concave portion and a part of the intake groove with a mixture containing a ceramic powder and a binder and firing the mixture, the porous body mounting portion and at least a part of the side wall surface of the concave portion and the intake groove, And a step of forming a space in the intake groove by burning of the burned material while being joined without a gap. And (6) a step of producing a support portion made of a ceramic dense sintered body provided with an intake groove in the recess, a step of filling a burned material so that the C surface of the intake groove is exposed, and a ceramic powder. And filling the mixture containing the binding material into a part of the recess and the intake groove, and baking the porous body mounting part and the recess and the intake groove C surface without gaps, And a step of forming a space in the intake groove by burning out the burnt material. According to such a manufacturing method, it is possible to manufacture a vacuum suction device with less deformation of the mounting portion while securing the space of the intake groove. In addition, since the processing of the ceramic dense sintered body and the processing of the mounting portion can be reduced, the manufacturing cost can be suppressed.
(7) The concave portion has a surface roughness Ra of 0.1 to 4.0 μm, and a ratio Ra1 / Ra2 between the circumferential surface roughness Ra1 and the radial surface roughness Ra2 of the concave portion is 0.00. The vacuum suction device according to the above (5) or (6), which is 2 to 0.9. The reason why the surface roughness Ra of the joint surface of the recess and the Ra1 / Ra2 is in the above range is that such a joint surface is formed in addition to the structure in which the mounting portion is formed on the side wall surface of the intake groove. This is because the adhesion between the recess and the placement portion can be enhanced. When a thermal expansion shift occurs between the joint surface of the recess and the porous body, tensile stress acts on the mounting portion, so that the surface roughness Ra2 in the radial direction is greatly increased and the joint can withstand the radial stress. By adopting the structure, it is possible to prevent the mounting portion from being peeled from the concave portion.
(8) The vacuum suction device according to (7), wherein the joint surface of the recess is a burnt surface. Since the joint surface of the recess can form the intake groove and the surface structure of the recess by the burn-in surface, it is possible to reduce the processing step of the sintered body, which is a factor of high cost.

本発明は、吸気溝の空間を確保しつつ、基板の加工精度を高めることができる真空吸着装置を提供することができる。 The present invention can provide a vacuum suction device that can increase the processing accuracy of a substrate while securing a space for an intake groove.

本発明の真空吸着装置の概略構成を示す模式断面図である。It is a schematic cross section which shows schematic structure of the vacuum suction apparatus of this invention. 本発明の真空吸着装置の吸気溝部分の一例を示した拡大模式断面図である。It is the expansion schematic cross section which showed an example of the intake groove part of the vacuum suction apparatus of this invention. 本発明の真空吸着装置の吸気溝部分のその他の例を示した拡大模式断面図である。It is the expansion schematic cross section which showed the other example of the intake groove part of the vacuum suction apparatus of this invention. 本発明の真空吸着装置の吸気溝部分のその他の例を示した拡大模式断面図である。It is the expansion schematic cross section which showed the other example of the intake groove part of the vacuum suction apparatus of this invention. 支持部を凹部側から見た模式図である。It is the schematic diagram which looked at the support part from the recessed part side.

以下、図面を参照して、本発明の実施形態について説明する。
図1は真空吸着装置10の概略構成を示す模式断面図である。真空吸着装置10は、断面凹形の容器状に作られたセラミックス緻密質焼結体からなる支持部11と、多孔質体の載置部12とからなる。支持部11には、吸気溝13や吸気孔14が設けられている。そして、断面凹形の容器状の支持部11の内側の部分、すなわち支持部11の凹部に載置部12が接合されている。実際に使用する際には、載置部の表面にシリコンウエハ等の基板を載置して、吸気溝13及び吸気孔14を介して図示しない真空ポンプにより吸引することにより、基板が真空吸着される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of the vacuum suction device 10. The vacuum suction device 10 includes a support portion 11 made of a ceramic dense sintered body formed in a container shape having a concave cross section, and a porous body mounting portion 12. The support portion 11 is provided with an intake groove 13 and an intake hole 14. And the mounting part 12 is joined to the inner part of the container-shaped support part 11 with a concave cross section, that is, the concave part of the support part 11. In actual use, a substrate such as a silicon wafer is mounted on the surface of the mounting portion, and is sucked by a vacuum pump (not shown) through the suction groove 13 and the suction hole 14 so that the substrate is vacuum-sucked. The

本発明の真空吸着装置は、載置部12と、支持部11の凹部及び吸気溝13の少なくとも側壁面の一部とが、隙間無く接合されている。図2に吸気溝部分を拡大した模式断面図を示した。図2に示したように、載置部22は、支持部21の凹部21a及び吸気溝23の側壁面の一部21cと隙間無く接合された構造を有している。このような構造であれば、吸気溝23の空間を確保しつつ、基板を真空吸着した際の変形を抑えることができるので、基板の加工精度を高めることができる。特に吸気溝の少なくとも側壁面の一部が隙間無く接合されているので、溝部分での載置部の拘束力が高まり、梁の効果も生じることから、載置部の変形を抑えることができる。なお、図2には、吸気孔が記載されていないが、吸気孔は、吸気溝の任意の箇所に設けられて良い。例えば、凹部の中央の一箇所にのみ設けられても良いし、図1のように吸気溝の位置に応じて複数箇所に設けられても良い。 In the vacuum suction device of the present invention, the mounting portion 12 and the concave portion of the support portion 11 and at least a part of the side wall surface of the intake groove 13 are joined without a gap. FIG. 2 shows a schematic cross-sectional view in which the intake groove portion is enlarged. As shown in FIG. 2, the mounting portion 22 has a structure in which the recess 21 a of the support portion 21 and a part 21 c of the side wall surface of the intake groove 23 are joined without a gap. With such a structure, it is possible to suppress deformation when the substrate is vacuum-sucked while securing the space of the intake groove 23, so that the processing accuracy of the substrate can be increased. In particular, since at least a part of the side wall surface of the air intake groove is joined without a gap, the restraint force of the mounting portion in the groove portion is increased and the effect of the beam is also generated, so that deformation of the mounting portion can be suppressed. . In addition, although the intake hole is not described in FIG. 2, the intake hole may be provided at an arbitrary position of the intake groove. For example, it may be provided only at one location in the center of the recess, or may be provided at a plurality of locations according to the position of the intake groove as shown in FIG.

このような構造は、セラミックス粉末が結合材により結合されて載置部の多孔質体を構成するとともに、多孔質体の結合材により多孔質体と前記支持部とが接合されて、前記凹部に多孔質体の載置部が形成される本発明の真空吸着装置に特有のものである。従来行われてきた支持部と載置部とを別々に作製し、接合面を精度良く加工して両者を接合する方法では、極めて高精度の加工が必要となるため高コストとなるばかりか、接合部に空洞がでできることから支持部と載置部との密着性が得られない結果、基板の加工精度は著しく低下する。また、特許文献2に記載されたような、支持部の内面全体に、ガラスペーストを塗布して接合する方法でも同様に、ガラスを溶融させた際の体積収縮や、載置部へのガラスの染み込みによって接合部に隙間ができ良好な密着性は得られない。 In such a structure, the ceramic powder is bonded by the binding material to form the porous body of the mounting portion, and the porous body and the support portion are bonded to each other by the porous body binding material. This is unique to the vacuum suction device of the present invention in which the porous portion is formed. The conventional method of preparing the support part and the mounting part separately, processing the joining surfaces with high precision and joining them together requires extremely high precision processing, which is expensive. Since the cavity is formed in the joint portion, the adhesion between the support portion and the placement portion cannot be obtained, and as a result, the processing accuracy of the substrate is significantly lowered. In addition, as described in Patent Document 2, even in the method of applying and bonding a glass paste to the entire inner surface of the support portion, the volume shrinkage when the glass is melted and the glass on the mounting portion By soaking, a gap is formed in the joint, and good adhesion cannot be obtained.

一方、本発明では、セラミックス粉末が結合材により結合されて載置部の多孔質体を構成するとともに、多孔質体の結合材により多孔質体と前記支持部とが接合されて、凹部に多孔質体の載置部が形成されることから、支持部と載置部の密着性は極めて良好であり、隙間無く接合された構造とすることができる。しかも、吸気溝の側壁面と載置部との接合は、吸気溝に充填される焼失材の量を調整することによって容易に可能となるので、側壁面の所定の位置まで載置部を設けることができる。 On the other hand, in the present invention, the ceramic powder is bonded by a binding material to form a porous body of the mounting portion, and the porous body and the support portion are bonded by the porous body binding material so that the porous portion is porous. Since the placing portion of the material is formed, the adhesion between the support portion and the placing portion is extremely good, and a structure can be obtained that is joined without a gap. Moreover, since the side wall surface of the intake groove and the mounting portion can be easily joined by adjusting the amount of burned material filled in the intake groove, the mounting portion is provided up to a predetermined position on the side wall surface. be able to.

図3は、吸気溝部分の他の実施態様を示したものである。この例では、載置部32を吸気溝部分に設けたC面31cに接合させた。図2に示した例と同様に、載置部32とC面31aとが隙間無く接合されているので、溝部分での載置部の拘束力が高まり、梁の効果も生じることから、載置部の変形を抑えることができる。さらに、C面を設けることによって、基板を真空吸着して加工する際の大気圧や押圧による応力を分散させることができるので、載置部の変形に伴う脱粒等の破損も防止することができる。 FIG. 3 shows another embodiment of the intake groove portion. In this example, the mounting portion 32 is joined to the C surface 31c provided in the intake groove portion. Similar to the example shown in FIG. 2, the mounting portion 32 and the C surface 31 a are joined without a gap, so that the restraining force of the mounting portion at the groove portion is increased and the effect of the beam is also generated. Deformation of the mounting portion can be suppressed. Furthermore, by providing the C surface, it is possible to disperse the atmospheric pressure and the stress caused by pressing when processing the substrate by vacuum suction, and therefore it is possible to prevent damage such as degranulation accompanying deformation of the mounting portion. .

図4は、載置部42を吸気溝部分に設けたC面41c及び、側壁面41dに接合させた例である。図2及び図3に示した構成を備えており、両者の効果が相俟って、より載置部の変形を抑制することができる。 FIG. 4 shows an example in which the mounting portion 42 is joined to the C surface 41c provided on the intake groove portion and the side wall surface 41d. The configuration shown in FIGS. 2 and 3 is provided, and the effects of both can be combined to further suppress the deformation of the mounting portion.

載置部と隙間無く接合されている吸気溝の深さ方向の長さは、溝幅の8%以上であることが好ましい。図2を用いて説明すると、載置部と接合されている吸気溝の深さ方向の長さは、21cの線分の長さに等しい。すなわち、側壁面21cの凹部21aに接する位置から側壁面の露出した部分21bに達する位置までの長さである。この長さを上記範囲とすることで、溝部分での載置部の拘束及び梁の効果によって載置部の変形を抑えることができる。なお、吸気溝そのものの深さは、載置部と隙間無く接合されている吸気溝の深さ方向の長さよりも大きいことは言うまでも無い。図3及び図4のような吸気溝にC面を有する場合も同様に、載置部と隙間無く接合されている吸気溝の深さ方向の長さは、凹部31a、41aから、それぞれ側壁面の露出した部分31b、41bに達するまでの長さである。 It is preferable that the length in the depth direction of the intake groove joined to the mounting portion without a gap is 8% or more of the groove width. If it demonstrates using FIG. 2, the length of the depth direction of the intake groove joined to the mounting part is equal to the length of the line segment of 21c. That is, it is the length from the position in contact with the recess 21a of the side wall surface 21c to the position reaching the exposed portion 21b of the side wall surface. By setting this length within the above range, it is possible to suppress deformation of the placement portion due to the restraint of the placement portion in the groove portion and the effect of the beam. Needless to say, the depth of the intake groove itself is larger than the length in the depth direction of the intake groove joined to the mounting portion without any gap. Similarly, when the intake groove as shown in FIGS. 3 and 4 has a C surface, the length in the depth direction of the intake groove joined to the mounting portion without any gap is set to the side wall surface from the recesses 31a and 41a, respectively. The length until the exposed portions 31b and 41b are reached.

吸気溝の溝幅は、載置部の厚みの2倍以下であることが好ましい。上記のような吸気溝の側壁面に載置部が形成された構造に加えて、吸気溝の溝幅を載置部の厚みの2倍以下、好ましくは半分以下とすることで、変形を僅かなものに抑えることができる。 The groove width of the intake groove is preferably not more than twice the thickness of the mounting portion. In addition to the structure in which the mounting portion is formed on the side wall surface of the intake groove as described above, the deformation of the intake groove is slightly reduced by making the groove width of the intake groove less than twice the thickness of the placement portion, preferably less than half. It can be suppressed to anything.

図5は、支持部を凹部側から見た模式図である。簡略化のため吸気溝及び吸気孔は記載していない。本発明の真空吸着装置は、凹部51aが、0.1〜4.0μmの表面粗さRaを有し、凹部51aの周方向の表面粗さRa1と径方向の表面粗さRa2との比Ra1/Ra2が0.2〜0.9であることが好ましい。凹部51aの表面粗さRa及び、前記Ra1/Ra2を上記範囲としたのは、吸気溝の側壁面に載置部が形成された構造に加えて、このような接合面とすることで凹部と載置部との密着を高めることができ、より載置部の変形を抑制することができるからである。なお、図5に示したように、Ra1は円形の凹部52aと、同心円の円周に沿った周方向の表面粗さを示し、Ra2は凹部51aの中心と外周を結ぶ方向に沿った径方向の表面粗さを示す。図5では、凹部が円の例を示したが、特に円に限定されず、基板の形状に応じて四角形等種々の形状を採用することができる。円以外の場合、Ra1は、その外周に沿った方向の表面粗さとすることができる。 FIG. 5 is a schematic view of the support portion viewed from the concave portion side. For simplification, the intake groove and the intake hole are not shown. In the vacuum suction device of the present invention, the recess 51a has a surface roughness Ra of 0.1 to 4.0 μm, and the ratio Ra1 between the circumferential surface roughness Ra1 and the radial surface roughness Ra2 of the recess 51a. / Ra2 is preferably 0.2 to 0.9. The reason why the surface roughness Ra and the Ra1 / Ra2 of the recess 51a are in the above range is that, in addition to the structure in which the mounting portion is formed on the side wall surface of the intake groove, such a joint surface can be This is because the close contact with the mounting portion can be increased, and deformation of the mounting portion can be further suppressed. In addition, as shown in FIG. 5, Ra1 shows the circular recessed part 52a and the surface roughness of the circumferential direction along the circumference of a concentric circle, and Ra2 is radial direction along the direction which connects the center and outer periphery of the recessed part 51a The surface roughness of is shown. Although FIG. 5 shows an example in which the concave portion is a circle, the shape is not particularly limited to a circle, and various shapes such as a quadrangle can be employed depending on the shape of the substrate. In a case other than a circle, Ra1 can be the surface roughness in the direction along the outer periphery.

上記のように、載置部の多孔質体の形成と、載置部と支持部との接合を載置部の多孔質体に含まれる結合材を利用して行う場合、接合時のピーク温度において各材料の膨張が最大となった後、冷却に伴って収縮が起こる。このような工程を経る場合、支持部と載置部の熱膨張を一致させることは困難である。これは、ガラス等の結合材は溶融前後で熱物性が異なり、昇降温に伴う熱膨張特性はヒステリシスを示すためである。したがって、上記のような熱膨張の不一致によって、載置部の接合部に引張り応力が働き、載置部は支持部から剥離し易くなるという問題があった。載置部が支持部から剥離して隙間が生じると、基板を真空吸着させたときの載置部の変形が大きくなり基板の加工精度も悪くなるおそれがあった。 As described above, when forming the porous body of the mounting portion and joining the mounting portion and the support portion using the binder contained in the porous body of the mounting portion, the peak temperature at the time of bonding After the expansion of each material becomes maximum, the shrinkage occurs with cooling. When going through such a process, it is difficult to match the thermal expansion of the support portion and the placement portion. This is because a bonding material such as glass has different thermophysical properties before and after melting, and the thermal expansion characteristics accompanying the temperature rise and fall show hysteresis. Therefore, there is a problem that due to the mismatch in thermal expansion as described above, tensile stress acts on the joint portion of the placement portion, and the placement portion is easily peeled off from the support portion. When the mounting portion is peeled off from the support portion and a gap is generated, the mounting portion is greatly deformed when the substrate is vacuum-sucked, and the processing accuracy of the substrate may be deteriorated.

本発明では、支持部と載置部とに熱膨張のズレが生じると、載置部に引張り応力が作用することから、径方向の表面粗さRa2を大きく形成し、径方向の応力に耐え得る接合構造とすることにより凹部から載置部が剥離することを防止することができる。 In the present invention, when a thermal expansion shift occurs between the support portion and the placement portion, tensile stress acts on the placement portion. Therefore, a large radial surface roughness Ra2 is formed to withstand the radial stress. By setting it as the junction structure obtained, it can prevent that a mounting part peels from a recessed part.

Ra1/Ra2が0.2よりも小さいと径方向に働く引張り応力による剥離を阻止する効果が小さくなり、また0.9よりも大きいと、多孔質体との密着性が低下する。なお、Ra1/Ra2は0.3〜0.5とすることがより好ましい。 If Ra1 / Ra2 is less than 0.2, the effect of preventing peeling due to tensile stress acting in the radial direction is reduced, and if it is greater than 0.9, the adhesion to the porous body is reduced. Ra1 / Ra2 is more preferably 0.3 to 0.5.

凹部51aの表面粗さRaは0.1〜4.0μmとすることが好ましい。上記と同様に、表面粗さがこれよりも小さいと剥離を阻止する効果が小さくなり、またこれよりも大きいと多孔質体との密着性が低下する。したがって、表面粗さとその異方性の両方を調整することによって、支持部から載置部が剥離することを防止することができる。なお、接合面の表面粗さRaは0.8〜2.5μmとすることがより好ましい。 The surface roughness Ra of the recess 51a is preferably 0.1 to 4.0 μm. Similarly to the above, if the surface roughness is smaller than this, the effect of preventing peeling becomes small, and if it is larger than this, the adhesion to the porous body is lowered. Therefore, by adjusting both the surface roughness and the anisotropy thereof, it is possible to prevent the mounting portion from peeling off from the support portion. In addition, it is more preferable that the surface roughness Ra of the bonding surface is 0.8 to 2.5 μm.

凹部51aの表面粗さRaは、凹部の10箇所について径方向及び周方向の表面粗さを測定し平均値を算出して求めた。なお、測定箇所は、円形の接合面51aの略中心からの距離が該円の半径の2/5〜4/5倍の範囲で任意の10箇所とした。 The surface roughness Ra of the recess 51a was determined by measuring the surface roughness in the radial direction and the circumferential direction at 10 locations of the recess and calculating the average value. In addition, the measurement place was made into arbitrary 10 places in the range whose distance from the approximate center of the circular joint surface 51a is 2/5 to 4/5 times the radius of the circle.

凹部51aは、いわゆる焼放し面であることが好ましい。焼放し面とは、支持部となる緻密質セラミックスを得るために焼成した後に、いわゆる仕上げ加工を施していない面のことである。緻密質セラミックスに仕上げ加工して表面粗さを調整するのは、加工歪みを与えることになるので好ましくない。支持部の凹部を加工した場合の加工歪みは、載置部との接合時に密着を阻害するような凹部の変形を招くおそれがある。また、緻密質セラミックスに加工を施すことはコスト面でも不利である。 The recess 51a is preferably a so-called burning surface. The fired surface is a surface that has not been subjected to so-called finishing after being fired to obtain a dense ceramic as a support portion. It is not preferable to finish the dense ceramics and adjust the surface roughness because it will give processing distortion. The processing distortion when processing the concave portion of the support portion may cause deformation of the concave portion that inhibits the close contact at the time of joining with the mounting portion. Moreover, it is disadvantageous in terms of cost to process the dense ceramics.

支持部の材質は特に限定されず、アルミナ、ジルコニア、炭化珪素、窒化珪素等の緻密質セラミックスが用いられる。ただし熱膨張の観点から、載置部のセラミックス粉末と同じセラミックスを使用することが好ましい。 The material of the support portion is not particularly limited, and a dense ceramic such as alumina, zirconia, silicon carbide, silicon nitride, or the like is used. However, from the viewpoint of thermal expansion, it is preferable to use the same ceramic as the ceramic powder of the mounting portion.

多孔質体からなる載置部の気孔は連通しており、真空吸着力および載置部表面の面精度の観点から平均気孔径が10〜100μm、気孔率が20〜50%とすることが好ましい。多孔質体は、セラミックス粉末と結合材とから構成される。セラミックス粉末には、アルミナ、ジルコニア、炭化珪素、窒化珪素等を用いることができ、その平均粒径は30μm〜150μmのものを使用することが好ましい。 The pores of the mounting portion made of a porous body communicate with each other, and it is preferable that the average pore diameter is 10 to 100 μm and the porosity is 20 to 50% from the viewpoint of vacuum adsorption force and surface accuracy of the mounting portion surface. . The porous body is composed of ceramic powder and a binder. As the ceramic powder, alumina, zirconia, silicon carbide, silicon nitride, or the like can be used, and those having an average particle size of 30 μm to 150 μm are preferably used.

載置部の結合材としては、ガラスまたは金属を用いることができる。ガラスとしては、熱膨張係数が支持部および載置部のもう一方の構成成分であるセラミックスの熱膨張係数より小さいものを使用することが好ましい。その理由は、低熱膨張のガラスを使用することにより、載置部と支持部との間の隙間を防ぐことができるからである。また、多孔質体において結合材としての役割を有するガラスに圧縮応力が加わった状態が望ましいからである。金属としては、シリコンを用いることができる。この場合セラミックス粉末は炭化珪素を用いることが好ましい。 Glass or metal can be used as the binder for the mounting portion. As the glass, it is preferable to use a glass having a thermal expansion coefficient smaller than that of the ceramic which is the other component of the support part and the mounting part. The reason is that a gap between the placing portion and the support portion can be prevented by using low thermal expansion glass. In addition, it is desirable that a compressive stress is applied to the glass having a role as a binder in the porous body. Silicon can be used as the metal. In this case, it is preferable to use silicon carbide as the ceramic powder.

支持部の凹部に設けられる吸気溝の溝の配置は、放射状、環状、格子状のほか、環状と放射状を組み合わせたもの等、種々の配置を採用できる。なお、吸気孔の径は吸着力を発揮できる範囲で小さいことが望ましい。吸気孔が大きいと、孔の部分で載置部の変形が大きくなるためである。具体的には、吸気孔の径は、吸気溝と同等か、それよりも小さいことが望ましい。 As the arrangement of the intake grooves provided in the concave portion of the support portion, various arrangements such as a combination of a radial shape, a circular shape, and a lattice shape, and a combination of a circular shape and a radial shape can be adopted. In addition, it is desirable that the diameter of the intake hole is small as long as the suction force can be exerted. This is because if the intake hole is large, the placement portion is greatly deformed at the hole portion. Specifically, the diameter of the intake hole is desirably equal to or smaller than the intake groove.

次に本発明の真空吸着装置の製造方法について説明する。 Next, the manufacturing method of the vacuum suction apparatus of this invention is demonstrated.

はじめに、支持部の製造について説明する。まず原料粉末を成形して、セラミックス成形体を得る。成形は、一軸加圧、CIP、鋳込み等種々の方法を採用できる。セラミックス成形体には、必要に応じて成形用のバインダ、鋳込みスラリー用の分散剤等の有機成分が含まれても良い。 First, manufacture of a support part is demonstrated. First, the raw material powder is molded to obtain a ceramic molded body. Various methods such as uniaxial pressing, CIP, and casting can be adopted for the molding. The ceramic molded body may contain organic components such as a molding binder and a casting slurry dispersant as required.

次にセラミックス成形体に対し、いわゆる生加工を施す。生加工とは、未焼結のセラミックス粉末の成形体に対して加工することを言い、旋盤、フライス盤、マシニングセンタ等種々の方法で行うことができる。生加工は、焼結した後の支持部の凹部の表面粗さRaが0.1〜4.0μm、周方向の表面粗さRa1と径方向の表面粗さRa2との比Ra1/Ra2が0.2〜0.9となるように施される。したがって、加工後のセラミックス生加工体の凹部となる面は、焼結後の表面粗さが所定値になるように加工される。凹部に形成される吸気溝は、生加工で形成しても良いし、焼結後の仕上げ加工で形成しても良いが、コスト面からは生加工で形成することが好ましい。吸気孔も同様に、生加工で形成しても良いし、焼結後の仕上げ加工で形成しても良い。コスト面からは生加工で形成することが好ましい。 Next, so-called raw processing is applied to the ceramic molded body. Raw processing refers to processing on a green ceramic powder compact, and can be performed by various methods such as a lathe, a milling machine, and a machining center. In the raw processing, the surface roughness Ra of the concave portion of the support portion after sintering is 0.1 to 4.0 μm, and the ratio Ra1 / Ra2 between the circumferential surface roughness Ra1 and the radial surface roughness Ra2 is 0. .2 to 0.9. Therefore, the surface to be the concave portion of the processed ceramic green body is processed so that the surface roughness after sintering becomes a predetermined value. The intake grooves formed in the recesses may be formed by raw processing or finish processing after sintering, but are preferably formed by raw processing from the viewpoint of cost. Similarly, the air intake holes may be formed by raw processing or by finishing processing after sintering. From the viewpoint of cost, it is preferably formed by raw processing.

次に生加工により得られたセラミックス生加工体を公知の焼成方法により焼結させて緻密質セラミックスからなる支持部を得る。このとき、焼放し面の凹部は、表面粗さが0.1〜4.0μm、周方向の表面粗さRa1と径方向の表面粗さRa2との比Ra1/Ra2が0.2〜0.9となる。 Next, the ceramic raw processed body obtained by the raw processing is sintered by a known firing method to obtain a support portion made of a dense ceramic. At this time, the concave portion of the burnt surface has a surface roughness of 0.1 to 4.0 μm and a ratio Ra1 / Ra2 between the circumferential surface roughness Ra1 and the radial surface roughness Ra2 of 0.2 to 0.00. 9

支持部において、載置部の側面と接合される凹部の側面についても、図5の51aの面と同様に、表面粗さが0.1〜4.0μm、より好ましくは0.8〜2.5μmとし、さらに周方向の表面粗さRa3と基台の厚さ方向の表面粗さRa4との比Ra3/Ra4が0.2〜0.9、より好ましくは0.3〜0.5となることが望ましい。基板を真空吸着させたときに大気圧が載置部の表面に加わるため、載置部の変形が起きやすくなる。変形は、大気圧によって載置面が押されて、沈み込むように生じる。その結果、載置部の側面が基台から剥離しやすくなる。上述のように載置部の側面と接合される凹部の側面についても表面粗さとその異方性を制御することによって基台から載置部が剥離したり、変形が著しくなったりすることを防止できる。 In the support portion, the side surface of the concave portion joined to the side surface of the mounting portion also has a surface roughness of 0.1 to 4.0 μm, more preferably 0.8 to 2. Further, the ratio Ra3 / Ra4 between the surface roughness Ra3 in the circumferential direction and the surface roughness Ra4 in the thickness direction of the base is 0.2 to 0.9, more preferably 0.3 to 0.5. It is desirable. Since the atmospheric pressure is applied to the surface of the placement portion when the substrate is vacuum-sucked, the placement portion is likely to be deformed. The deformation occurs so that the mounting surface is pushed by atmospheric pressure and sinks. As a result, the side surface of the mounting portion is easily peeled off from the base. As described above, the side surface of the concave portion joined to the side surface of the mounting portion also prevents the mounting portion from being peeled off or significantly deformed by controlling the surface roughness and its anisotropy. it can.

また、載置部の多孔質体には使用中に汚れが蓄積するため、吸気孔から高圧水を流して洗浄が行われる。このときに載置部と支持部の密着が悪く隙間があると高圧水が隙間を通過するため載置部を十分に洗浄できない。さらに高圧水の圧力に耐えられず載置部が剥離するおそれもある。本発明では、吸気溝部分の拘束を高め、さらに支持部の凹部の表面粗さとその異方性を調整して載置部を剥離し難くしているため上記のような不具合が生じることはない。 Moreover, since dirt accumulates during use in the porous body of the mounting portion, cleaning is performed by flowing high-pressure water from the intake holes. At this time, if the close contact between the mounting portion and the support portion is poor and there is a gap, high pressure water passes through the gap, so that the mounting portion cannot be sufficiently cleaned. Furthermore, there is a possibility that the mounting portion may not be able to withstand the pressure of the high-pressure water and peel off. In the present invention, since the restraint of the intake groove portion is increased and the surface roughness of the concave portion of the support portion and its anisotropy are adjusted to make it difficult to peel off the mounting portion, the above-described problems do not occur. .

以下、セラミックス粉末と結合材のガラス粉末とからなる多孔質体を支持部の凹部に流し込んで成形・焼成する製法について説明する。このような製法を用いれば、支持部と載置部との間は接合層を介することなく隙間無く接合できるので好ましい。また、凹部が焼き放し面であっても接合することができるので、容易に支持部と載置部の密着が高く、基板の加工精度に優れた真空吸着装置を得ることができる。 Hereinafter, a manufacturing method in which a porous body made of a ceramic powder and a glass powder of a binder is poured into a concave portion of a support portion and molded and fired will be described. Use of such a manufacturing method is preferable because the support portion and the placement portion can be joined without a gap without using a joining layer. In addition, since the bonding can be performed even if the concave portion is a burned-out surface, it is possible to easily obtain a vacuum suction device with high adhesion between the support portion and the mounting portion and excellent substrate processing accuracy.

はじめに載置部を形成する多孔質体の原料粉末であるセラミックス粉末およびガラス粉末に、水またはアルコールを加えて混合してスラリーを調整する。原料の混合は、ボールミル、ミキサー等、公知の方法が適用できる。ここで、水またはアルコール量は特に限定しない。セラミックス粉末の粒度、ガラス粉末の添加量を考慮し所望の流動性が得られるよう水またはアルコールの添加量を調整する。 First, water or alcohol is added to and mixed with ceramic powder and glass powder, which are raw material powders for the porous body forming the mounting portion, to prepare a slurry. For mixing the raw materials, a known method such as a ball mill or a mixer can be applied. Here, the amount of water or alcohol is not particularly limited. In consideration of the particle size of the ceramic powder and the addition amount of the glass powder, the addition amount of water or alcohol is adjusted so as to obtain a desired fluidity.

載置部の構成原料となるガラス粉末の平均粒径が載置部のもう一方の構成原料であるセラミックス粉末の平均粒径より小さい方が好ましい。その理由は、ガラス粉末の平均粒径がセラミックス粉末よりも大きいと、セラミックス粉末の充填を阻害するため、ガラス軟化点以上で焼成する際に焼成収縮を起こすからである。ガラスの平均粒径は、好ましくは、セラミックス粉末の平均粒径の1/3以下、さらに好ましくは1/5以下が望ましい。 It is preferable that the average particle diameter of the glass powder that is the constituent material of the mounting portion is smaller than the average particle diameter of the ceramic powder that is the other constituent material of the mounting portion. The reason is that if the average particle size of the glass powder is larger than that of the ceramic powder, the ceramic powder is prevented from being filled, and thus firing shrinkage occurs when firing above the glass softening point. The average particle size of the glass is preferably 1/3 or less, more preferably 1/5 or less of the average particle size of the ceramic powder.

添加するガラス粉末の量は、特に限定しないが、ガラス粉末の粒径が大きい場合と同様に大量に添加するとセラミックス粉末の充填を阻害し、焼成収縮を起こすため、少量が望ましい。ただし、少なすぎるとセラミックス粉末の結合強度が低下し、脱粒や欠けの問題が生じるため、結合強度を発揮するような量が必要である。具体的には、目標とする気孔率、セラミックス粉末の粒度、焼成温度およびガラス粘性等を考慮して調整されるが、概ねセラミックス粉末に対して5〜30質量%程度添加混合することが望ましい。 The amount of the glass powder to be added is not particularly limited, but a small amount is desirable because when it is added in a large amount as in the case where the particle size of the glass powder is large, filling of the ceramic powder is inhibited and firing shrinkage occurs. However, if the amount is too small, the bonding strength of the ceramic powder is lowered, and problems such as degranulation and chipping occur, so an amount that exhibits the bonding strength is required. Specifically, it is adjusted in consideration of the target porosity, the particle size of the ceramic powder, the firing temperature, the glass viscosity, and the like, but it is desirable to add and mix approximately 5 to 30% by mass with respect to the ceramic powder.

次に吸気溝及び吸気孔に、ろう、樹脂等の焼成温度よりも低温で焼失する焼失材を充填する。焼失材の充填は、少なくとも吸気溝の側壁面の一部が露出するように充填することが望ましい。側壁面の露出する部分とは、図2における21c、図3における31c、図4における41c、41dに相当する部分である。吸気溝に充填される焼失材の量を調整することによって、側壁面の所定の位置まで載置部を設けることができ、吸気溝に空間を確保しつつ、載置部の変形を抑えることができる。 Next, the air intake groove and the air intake hole are filled with a burned-out material that burns out at a temperature lower than the firing temperature of wax, resin, or the like. It is desirable to fill the burned-out material so that at least a part of the side wall surface of the intake groove is exposed. The exposed portions of the side wall surfaces are portions corresponding to 21c in FIG. 2, 31c in FIG. 3, and 41c and 41d in FIG. By adjusting the amount of burnt material filled in the intake groove, the mounting portion can be provided up to a predetermined position on the side wall surface, and the deformation of the mounting portion can be suppressed while securing a space in the intake groove. it can.

続いて、支持部の凹部の載置部が形成される部分に上記スラリーを充填する。この際、必要に応じて、残留気泡を除去するための真空脱泡や、充填を高めるための振動を加えると良い。 Subsequently, the slurry is filled in a portion where the mounting portion of the concave portion of the support portion is formed. At this time, it is advisable to apply vacuum defoaming for removing residual bubbles and vibration for enhancing filling as necessary.

次に、スラリーを充填した基台を十分に乾燥させた後、ガラスの軟化点以上の温度で焼成する。焼成により、多孔質体の形成、多孔質体の載置部と凹部等との接合、及び焼失材の消失による吸気溝の空間形成が同時になされる。この際、焼成温度がガラスの軟化点より低いと十分にガラスによるセラミックス粉末間の結合及び支持部との接合が不十分となり好ましくないが、反対に焼成温度が高すぎると多孔質体が変形や収縮を起こすため、できるだけ低温で焼成することが望ましい。なお、上記では結合材にガラスを用いた例を説明したが、金属を用いる場合も同様に、金属粉末の粒径等を調整し、金属の融点以上の温度で焼成すると良い。 Next, after the base filled with the slurry is sufficiently dried, it is fired at a temperature equal to or higher than the softening point of the glass. By firing, the formation of the porous body, the joining of the mounting portion of the porous body and the concave portion and the like, and the formation of the air intake groove space due to the disappearance of the burned-out material are simultaneously performed. At this time, if the firing temperature is lower than the softening point of the glass, the bonding between the ceramic powders by the glass and the bonding with the support part are insufficient, which is not preferable, but conversely, if the firing temperature is too high, the porous body may be deformed. It is desirable to fire at as low a temperature as possible to cause shrinkage. In addition, although the example which used glass for the binder was demonstrated above, also when using a metal, it is good to adjust the particle size etc. of a metal powder, and to bake at the temperature more than melting | fusing point of a metal.

焼成後、載置部の表面とその周りを囲む略同一平面の支持部表面の平面研削加工を行う。平面研削加工はダイヤモンド砥石等の通常用いる方法を採用できる。 After firing, surface grinding is performed on the surface of the mounting portion and the surface of the support portion having substantially the same plane surrounding the surface. The surface grinding process can employ a commonly used method such as a diamond grindstone.

以下、本発明の実施例と比較例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples and comparative examples of the present invention.

アルミナ粉末(平均粒径125μm)、ガラス粉末(ほう珪酸ガラス、平均粒径:20μm、熱膨張係数40×10−7/℃、軟化点800℃)および蒸留水を100:20:20の質量比で混合し、ミキサーを用いて混錬し多孔質体原料のスラリーを作製した。なお、本発明においては、レーザー回折式粒度分布測定によるメディアン径(D50)をもって原料粉末の平均粒径とする。 Alumina powder (average particle size 125 μm), glass powder (borosilicate glass, average particle size: 20 μm, thermal expansion coefficient 40 × 10 −7 / ° C., softening point 800 ° C.) and distilled water in a mass ratio of 100: 20: 20 And kneaded using a mixer to prepare a porous material slurry. In the present invention, the median diameter (D50) obtained by laser diffraction particle size distribution measurement is used as the average particle diameter of the raw material powder.

支持部は、図1に示したような断面凹型の緻密質アルミナ(熱膨張係数8.0×10−6/℃)を用いた。アルミナ粉末(平均粒径0.5μm)にバインダを加えてスプレードライにより作製した顆粒を用いて一軸加圧成形した後、CIPし、得られた成形体に生加工を施した。生加工体を1600℃で焼結し、支持部となる緻密質アルミナを得た。その形状は外径350mm、高さ20.5mm、凹部内径298mm、深さ3.5mm;削り代およそ0.5mm、吸気溝幅5mm、深さ3mm、吸気孔径2mmとした。また、吸気溝のエッジのC面を0mm、0.5mm、1.0mmとした。支持部の凹部の表面粗さは、生加工によって調整し、接合面は焼き放し面とした。生加工はマシニングセンタを用い、寸法及び表面粗さを調整した。支持部の凹部の表面粗さの測定は、触針式表面粗さ計を用い、JISB0601:2001に準拠して行った。表面粗さは、1.7μm、Ra1は0.98μm、Ra2は2.42μmであった。 The support part was made of dense alumina (coefficient of thermal expansion 8.0 × 10 −6 / ° C.) having a concave section as shown in FIG. After uniaxial pressure molding was performed using granules prepared by spray drying by adding a binder to alumina powder (average particle size 0.5 μm), CIP was performed, and the resulting molded body was subjected to raw processing. The green processed body was sintered at 1600 ° C. to obtain dense alumina serving as a support portion. The outer diameter was 350 mm, the height was 20.5 mm, the recess inner diameter was 298 mm, the depth was 3.5 mm; the cutting allowance was approximately 0.5 mm, the intake groove width was 5 mm, the depth was 3 mm, and the intake hole diameter was 2 mm. Further, the C surface of the edge of the intake groove was set to 0 mm, 0.5 mm, and 1.0 mm. The surface roughness of the concave portion of the support portion was adjusted by raw processing, and the joint surface was a burned-out surface. In the raw processing, a machining center was used, and dimensions and surface roughness were adjusted. The surface roughness of the concave portion of the support portion was measured using a stylus type surface roughness meter in accordance with JIS B0601: 2001. The surface roughness was 1.7 μm, Ra1 was 0.98 μm, and Ra2 was 2.42 μm.

吸気溝に焼失材としてエポキシ樹脂を完全に閉塞するように充填した。そして、吸気溝の側壁面の上部が0〜2mm露出するようにした。また、C面を設けたものについてはC面が露出するようにした。比較例として、吸気溝の側壁面の上部の露出の無いものも作製した。 The intake groove was filled with epoxy resin as a burned-out material so as to be completely closed. And the upper part of the side wall surface of the intake groove was exposed to 0 to 2 mm. In addition, the C surface was exposed for those provided with the C surface. As a comparative example, a non-exposed part of the side wall surface of the intake groove was also produced.

次に上記多孔質体原料のスラリーを凹部に注型し、真空脱泡を行った後、振動を加えて沈降充填させた。100℃で乾燥させた後、1000℃にて焼成した。次に#800ダイヤモンド砥石を用いて載置面及び支持部表面の平面研削を行い、平坦な載置部の表面を得た。なお、最終形状の載置部の表面から凹部の底面に接するまでの距離、すなわち載置部の厚みは3.0mmとした。 Next, the porous material raw material slurry was cast into the recesses, vacuum degassed, and then subjected to settling by vibration. After drying at 100 ° C., firing was performed at 1000 ° C. Next, the mounting surface and the surface of the support portion were subjected to surface grinding using a # 800 diamond grindstone to obtain a flat surface of the mounting portion. In addition, the distance from the surface of the mounting part of the final shape to the bottom surface of the recess, that is, the thickness of the mounting part was set to 3.0 mm.

得られた真空吸着装置の評価は、基板を真空吸着させたときの載置部の変形量を測定することによって行った。はじめに、ゲージ圧−5kPaでシリコンウエハ(直径300mm、厚さ50μm)を吸着させたときの載置部の基準高さを測定し、つぎに、−100kPaで吸着させたときの高さを測定し、基準高さとの差を求めた。測定は、吸気溝の真上(吸気溝上部)と、吸気溝を形成していない箇所(吸気溝なし部)、それぞれ10箇所を測定し変形量を算出した。 Evaluation of the obtained vacuum suction apparatus was performed by measuring the deformation amount of the mounting portion when the substrate was vacuum-sucked. First, the reference height of the mounting part when a silicon wafer (diameter 300 mm, thickness 50 μm) is adsorbed at a gauge pressure of −5 kPa is measured, and then the height when adsorbed at −100 kPa is measured. The difference from the reference height was obtained. In the measurement, the deformation amount was calculated by measuring 10 points directly above the intake groove (upper part of the intake groove) and the part where the intake groove was not formed (the part without the intake groove).

載置面の高さの測定は、zygo社製レーザー干渉変位計を用いた。なお、載置部の気孔率をアルキメデス法により測定したところ、35%であった。また、載置部の平均気孔径(メディアン径D50)を水銀圧入法により測定したところ30μmであった。 The height of the mounting surface was measured using a laser interference displacement meter manufactured by zygo. In addition, it was 35% when the porosity of the mounting part was measured by the Archimedes method. Moreover, it was 30 micrometers when the average pore diameter (median diameter D50) of the mounting part was measured by the mercury intrusion method.

測定の結果を表1に示す。 The measurement results are shown in Table 1.

Figure 0005530275
Figure 0005530275

吸気溝の側壁に接合部がない比較例では、吸気溝のない箇所と吸気溝上部の変形の差は、11.9nmであるのに対し、本発明の実施例では、5.1〜9.5nmであり、吸気溝部分の載置部の変形を小さくすることができた。 In the comparative example in which there is no joint on the side wall of the intake groove, the difference in deformation between the portion without the intake groove and the upper portion of the intake groove is 11.9 nm, whereas in the embodiment of the present invention, 5.1 to 9. It was 5 nm, and the deformation of the mounting portion of the intake groove portion could be reduced.

実施例1と実施例2を比較すると、吸気溝の側壁の接合部が深いほど、変形抑制効果は大きかった。実施例3と実施例4を比較すると、C面の値が大きいほど、変形抑制効果は大きかった。 Comparing Example 1 and Example 2, the deeper the joint portion of the side wall of the intake groove, the greater the deformation suppressing effect. When Example 3 and Example 4 were compared, the larger the C-plane value, the greater the deformation suppression effect.

10 真空吸着装置
11、21、31、41 51 支持部
21a、31a、41a、51a 凹部
21c、41d 載置部と接合された吸気溝の側壁面の一部
31c、41c 吸気溝のC面
12 載置部
13 吸気溝
14 吸気孔
10 Vacuum suction device 11, 21, 31, 41 51 Support portion 21a, 31a, 41a, 51a Recess 21c, 41d Part of side wall surface of intake groove joined to mounting portion 31c, 41c C surface 12 of intake groove Place 13 Intake groove 14 Intake hole

Claims (8)

凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部と、セラミックス粉末と結合材から構成された多孔質体の載置部とからなり、前記セラミックス粉末が結合材により結合されて多孔質体が得られるとともに、前記多孔質体の結合材により該多孔質体と前記支持部とが接合されて、前記凹部に多孔質体の載置部が形成されてなる真空吸着装置であって、
前記載置部と、前記凹部及び前記吸気溝の少なくとも側壁面の一部とが、隙間無く接合されていることを特徴とする真空吸着装置。
It comprises a support portion made of a ceramic dense sintered body provided with an intake groove in the recess, and a porous body mounting portion made of ceramic powder and a binder, and the ceramic powder is bonded by the binder. A vacuum suction device in which a porous body is obtained, and the porous body and the support portion are joined by a binder of the porous body, and a mounting portion for the porous body is formed in the recess. And
The vacuum suction device according to claim 1, wherein the placement portion and at least a part of the side wall surface of the recess and the intake groove are joined without a gap.
凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部と、セラミックス粉末と結合材から構成された多孔質体の載置部とからなり、前記セラミックス粉末が結合材により結合されて多孔質体が得られるとともに、前記多孔質体の結合材により該多孔質体と前記支持部とが接合されて、前記凹部に多孔質体の載置部が形成されてなる真空吸着装置であって、
前記載置部と、前記凹部及び前記吸気溝のC面とが、隙間無く接合されていることを特徴とする真空吸着装置。
It comprises a support portion made of a ceramic dense sintered body provided with an intake groove in the recess, and a porous body mounting portion made of ceramic powder and a binder, and the ceramic powder is bonded by the binder. A vacuum suction device in which a porous body is obtained, and the porous body and the support portion are joined by a binder of the porous body, and a mounting portion for the porous body is formed in the recess. And
The vacuum suction device according to claim 1, wherein the mounting portion and the concave portion and the C surface of the intake groove are joined without a gap.
前記載置部と、吸気溝の側壁面の少なくとも一部とが、隙間無く接合されている請求項2記載の真空吸着装置。   The vacuum suction device according to claim 2, wherein the mounting portion and at least a part of the side wall surface of the intake groove are joined without a gap. 前記吸気溝の溝幅は、前記載置部の厚みの2倍以下である請求項1〜3のいずれか一項に記載の真空吸着装置。   The vacuum suction device according to any one of claims 1 to 3, wherein a width of the intake groove is not more than twice a thickness of the mounting portion. 凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部を作製する工程と、
前記吸気溝に少なくとも側壁面の一部が露出するように焼失材を充填する工程と、
セラミックス粉末と結合材を含む混合物を前記凹部及び前記吸気溝の一部に充填し、焼成することにより多孔質体の載置部と前記凹部及び前記吸気溝の少なくとも側壁面の一部とが、隙間無く接合されるとともに、焼失材の焼失により吸気溝に空間が形成される工程と、を備える真空吸着装置の製造方法。
Producing a support portion made of a ceramic dense sintered body provided with an intake groove in the recess;
Filling the burnt material so that at least part of the side wall surface is exposed in the intake groove;
Filling the concave portion and a part of the intake groove with a mixture containing a ceramic powder and a binder and firing the mixture, the porous body mounting portion and at least a part of the side wall surface of the concave portion and the intake groove, And a step of forming a space in the intake groove by burning of the burned material while being joined without a gap.
凹部に吸気溝が設けられたセラミックス緻密質焼結体からなる支持部を作製する工程と、
前記吸気溝に少なくとも側壁面の一部が露出するように焼失材を充填する工程と、
セラミックス粉末と結合材を含む混合物を前記凹部及び前記吸気溝の一部に充填し、焼成することにより多孔質体の載置部と前記凹部及び前記吸気溝C面とが、隙間無く接合されるとともに、焼失材の焼失により吸気溝に空間が形成される工程と、を備える真空吸着装置の製造方法。
Producing a support portion made of a ceramic dense sintered body provided with an intake groove in the recess;
Filling the burnt material so that at least part of the side wall surface is exposed in the intake groove;
Filling the concave portion and a part of the intake groove with a mixture containing ceramic powder and a binder and firing the mixture, the porous body mounting portion and the concave portion and the surface of the intake groove C are joined without a gap. And a step of forming a space in the intake groove due to the burning of the burned material.
前記凹部の接合面が、0.1〜4.0μmの表面粗さRaを有し、前記凹部の周方向の表面粗さRa1と径方向の表面粗さRa2との比Ra1/Ra2が0.2〜0.9である請求項5又は6記載の真空吸着装置の製造方法。  The joint surface of the recess has a surface roughness Ra of 0.1 to 4.0 μm, and the ratio Ra1 / Ra2 between the circumferential surface roughness Ra1 and the radial surface roughness Ra2 of the recess is 0.1. It is 2-0.9, The manufacturing method of the vacuum suction apparatus of Claim 5 or 6. 前記凹部の接合面が、焼放し面である請求項7記載の真空吸着装置の製造方法。  The manufacturing method of the vacuum suction device according to claim 7, wherein the joint surface of the concave portion is a burnt surface.
JP2010150019A 2010-06-30 2010-06-30 Vacuum adsorption apparatus and method for manufacturing the same Active JP5530275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150019A JP5530275B2 (en) 2010-06-30 2010-06-30 Vacuum adsorption apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150019A JP5530275B2 (en) 2010-06-30 2010-06-30 Vacuum adsorption apparatus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012015300A JP2012015300A (en) 2012-01-19
JP5530275B2 true JP5530275B2 (en) 2014-06-25

Family

ID=45601381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150019A Active JP5530275B2 (en) 2010-06-30 2010-06-30 Vacuum adsorption apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5530275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154274B2 (en) * 2013-09-26 2017-06-28 京セラ株式会社 Suction board
JP6934335B2 (en) * 2017-07-03 2021-09-15 日本特殊陶業株式会社 Vacuum suction member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893450U (en) * 1981-12-18 1983-06-24 株式会社東芝 Holder
JP4336532B2 (en) * 2003-07-02 2009-09-30 太平洋セメント株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP4704971B2 (en) * 2006-07-21 2011-06-22 太平洋セメント株式会社 Vacuum adsorption device
JP2008028170A (en) * 2006-07-21 2008-02-07 Taiheiyo Cement Corp Vacuum suction device and manufacturing method thereof
JP4718397B2 (en) * 2006-08-31 2011-07-06 太平洋セメント株式会社 Manufacturing method of vacuum suction device
JP5261057B2 (en) * 2008-07-29 2013-08-14 京セラ株式会社 Suction board and vacuum suction device

Also Published As

Publication number Publication date
JP2012015300A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP4666656B2 (en) Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed
JP3469999B2 (en) Adsorber manufacturing method
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP2008028170A (en) Vacuum suction device and manufacturing method thereof
JP2004306254A (en) Vacuum chuck
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4405887B2 (en) Vacuum adsorption device
JP5279550B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005205507A (en) Vacuum-sucking device and its manufacturing method
JP2005279789A (en) Vacuum chuck for grinding/polishing
KR20110133120A (en) The porous ceramics materials with double-layered pore structure for vacuum chuck and method for manufacturing the same
JP4704971B2 (en) Vacuum adsorption device
JP6120702B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2005279788A (en) Vacuum chuck for grinding/polishing
JP2005118979A (en) Grinding/polishing vacuum chuck and sucking plate
JP4405886B2 (en) Vacuum adsorption device
JP2014128849A (en) Vacuum suction device and method of manufacturing the same
JP7216611B2 (en) Manufacturing method of SiC sintered member
JP5597155B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP4468059B2 (en) Hydrostatic bearing device
JP2009147384A (en) Vacuum suction device and method of manufacturing the same
JP2009148868A (en) Vacuum suction device
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP6590675B2 (en) Vacuum adsorption device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250